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Abstract

This paper characterizes di¤erent belief revision rules in a uni�ed framework: Bayesian
revision upon learning some event, Je¤rey revision upon learning new probabilities of
some events, Adams revision upon learning some new conditional probabilities, and
�dual-Je¤rey� revision upon learning an entire new conditional probability function.
Though seemingly di¤erent, these revision rules follow from the same two principles:
responsiveness, which requires that revised beliefs be consistent with the learning
experience, and conservativeness, which requires that those beliefs of the agent on
which the learning experience is �silent� (in a technical sense) do not change. So, the
four revision rules apply the same revision policy, yet to di¤erent kinds of learning
experience.

Keywords: Subjective probability, Bayes�s rule, Je¤rey�s rule, axiomatic foundations,
unawareness

1 Introduction

Belief revision rules capture changes in an agent�s subjective probabilities. The most
commonly studied example is Bayesian revision. Here, the agent learns that some
event B has occurred. In response, he (or she) raises the probability of B to 1,
while retaining all probabilities conditional on B. Other revision rules have also
been studied. Under Je¤rey revision, the agent learns a new probability of some
event, for instance a 90% probability that someone stands at the end of the corridor,
prompted by vaguely seeing something or hearing a noise; or, more generally, he
learns a new probability distribution of some random variable such as the level of

1We are grateful for helpful feedback received from the audiences at presentations of earlier ver-
sions of this paper at D-TEA 2010 (HEC & Polytechnique, Paris, France, June 2010), LSE Choice
Group Seminar (London School of Economics, UK, September 2010), Pluralism in the Foundations
of Statistics (University of Kent, UK, September 2010), and Decisions, Games & Logic 2012 (Ludwig
Maximilians University of Munich, Germany, June 2012). Although this paper presents a jointly
authored project, Christian List and Richard Bradley wish to note that the bulk of the mathematical
credit should go to Franz Dietrich.
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rainfall or GDP. In response, he assigns the new distribution to the random variable,
while retaining all probabilities conditional on the random variable (e.g., Je¤rey 1957,
Shafer 1981, Diaconis and Zabell 1982, Grunwald and Halpern 2003). Je¤rey revision
generalizes Bayesian revision, where the agent learns a probability of 1 of some event.
Under a further revision rule, Adams revision, the agent learns a new conditional
probability of some event given another, or, more generally, a new distribution of
some random variable given another random variable, for instance a new distribution
of the weather given the weather forecast, or of GDP given in�ation (e.g., Bradley
2005, 2007, Douven and Romeijn 2012).2 An excellent treatment of various forms of
probabilistic belief and belief revision can be found in Halpern�s (2003) handbook.

Standard economic models rarely refer to non-Bayesian belief revision, but this is
at the cost of an arti�cial modelling move. To achieve a Bayesian representation of
a wide range of belief changes, they de�ne an agent�s subjective probability function
on a potentially very complex algebra of events: one that is constructed to contain
an event for each possible �learning experience� that might lead to a belief change.
Suppose we wish to model an Olympic sprinter who raises his subjective probab-
ility of winning gold from 25% to 75% after experiencing an overwhelming feeling
of strength before the race. If we de�ne the sprinter�s subjective probabilities on a
simple algebra consisting of all the subsets of the binary set 
 = fwinning; losingg,
we cannot represent the sprinter�s belief change in Bayesian terms. The sprinter�s
initial probability measure p on 2
 is given by p(fwinningg) = 1

4 and his new one
p0 by p0(fwinningg) = 3

4 . The change from p to p0 is not Bayesian, since there is no
event B � 
 such that p0 = p(�jB). This is due to the sparseness of 
, which does not
allow one to identify an event in 2
 representing the �observation� leading to the be-
lief change, i.e., the feeling of strength before the race. The Bayesian modeller would
therefore re-de�ne 
 more richly, for instance as 
 = fwinning; losingg � ffeeling
strong; not feeling strongg. The new algebra 2
 contains not only the event of vic-
tory, A = fwinningg � ffeeling strong; not feeling strongg, but also the event of
the feeling of strength, B = fwinning; losingg�ffeeling strongg. One can therefore
model the belief change as Bayesian conditionalization on B, namely by specifying
an initial probability measure p : 2
 ! [0; 1] and a new one p0 : 2
 ! [0; 1] such that
p(A) = 1

4 , p
0(A) = 3

4 , and p
0 = p(�jB).

Many authors have raised concerns about this modelling practice, for example
Je¤rey (1957), Shafer (1981), and Diaconis and Zabell (1982), who call the ascription
of prior subjective probabilities to �many classes of sensory experiences [...] forced,
unrealistic, or impossible� (p. 823). The importance of non-Bayesian belief revision
rules can be illustrated by considering two phenomena that call for them: incomplete
beliefs and unawareness.
1. Incomplete belief. One drawback of the Bayesian re-modelling is that we
must assume that the agent is able to assign prior probabilities to many com-
plex events: our illustrative sprinter must assign subjective probabilities to the
event that he will experience the feeling of strength, to the event that he will

2An important example of Adams revision is the learning of an equation X = f(Y ) + �, where
X and Y are two (possibly vector-valued) random variables, f is a deterministic function, and � is
a random error independent of Y . Learning this equation is equivalent to learning that X has a
particular conditional distribution given Y .
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experience it and lose the race, and so on. To give Bayesian accounts of further
belief changes, for instance during and after the race, we must ascribe beliefs
to the agent over an even more re�ned algebra of events, whose size grows
exponentially with the number of belief changes to be modelled. This is not
very plausible, since typical real-world agents have either no beliefs about such
events or only imprecise ones.3 If we restrict the complexity of the event al-
gebra, on the other hand, we may have to introduce non-Bayesian belief revision
to capture the agent�s belief dynamics adequately within the smaller algebra.

2. Unawareness. The literature on unawareness suggests that a belief in an
event (the assignment of a subjective probability to it) presupposes awareness
of this event, where �awareness� is understood, not as knowledge of the event�s
occurrence (indeed, the agent may believe its non-occurrence), but as conceptu-
alization, mental representation, imagination, or consideration of its possibility
(e.g., Dekel et al. 1998; Heifetz et al. 2006; Modica and Rustichini 1999). But
our Olympic sprinter may have experienced the overwhelming feeling of strength
for the �rst time. All his past experiences may have been di¤erent in kind or
intensity, so that he could not have imagined such a feeling before. He lacked
not only knowledge but also awareness of the event. Arguably, many real-life
belief changes � notably the more radical ones � involve the �observation� or �ex-
perience� of something that was previously not just unknown, but even beyond
awareness or imagination. A Bayesian modelling of such belief changes involves
an unnatural ascription of subjective probabilities to events beyond the agent�s
awareness.

In sum, the modeller faces a choice between (i) ascribing simple Bayesian revi-
sion of sophisticated beliefs and (ii) ascribing more complex non-Bayesian revision of
simpler beliefs. This choice is not just a matter of taste. The two alternatives are
not merely di¤erent ways of saying the same thing, but di¤erent models of genuinely
di¤erent phenomena, with distinct behavioural implications. 4

Our paper and the literature. We analyse four salient belief revision rules, namely
the above-mentioned Bayesian, Je¤rey, and Adams rules, and what we will call the
dual-Je¤rey rule, which is a simpler variant of the Adams rule and which stands out
for its duality to Je¤rey revision. 5 In searching for axiomatic foundations for the �rst

3Even under a pure �as if� interpretation of ascribed beliefs, highly sophisticated beliefs are dubious
given the complexity of their behavioural implications (which may be hard to test empirically).

4An exact characterization of the behavioural di¤erences between Bayesian and other belief revi-
sion models is beyond the scope of this paper.

5These four revision rules are of course not the only possible methods of belief revision; the
literature contains several alternatives. Many of them depart from our assumption that beliefs are
given by probability measures; see in particular (revision within) (i) the theory of Dempster-Shafer
belief functions (e.g., Dempster 1967, Shafer 1976, Fagin and Halpern 1991a, Halpern 2003), (ii)
theories with general non-additive probabilities (e.g., Schmeidler 1989, Wakker 1989, 2001, 2010,
Sarin and Wakker 1994), (iii) theories of beliefs as sets of probability measures (e.g., Gilboa and
Schmeidler 1989, Fagin and Halpern 1991b, Grove and Halpern 1998), and (iv) the theory of case-
based qualitative beliefs (e.g., Gilboa and Schmeidler 2001). The theory of opinion pooling (e.g.,
Hylland and Zeckhauser 1979, McConway 1981, Genest et al. 1986, Genest and Zidek 1986, Dietrich
2010) is also sometimes interpreted as a theory of belief revision, by assuming that the agent learns
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three rules, the literature has focused on a �distance-based� approach. This consists
in showing that a given revision rule is a minimal revision rule, which generates new
beliefs that deviate as little as possible from initial beliefs, subject to certain con-
straints (given by the learning experience) and relative to some notion of �distance�
between beliefs (probability measures). In Bayesian revision, the constraint is that a
particular event is assigned probability 1; in Je¤rey or Adams revision, it is that a
particular random variable acquires a given distribution or conditional distribution.
Bayesian and Je¤rey revision have been characterized as minimal revision relative to
either the variation distance (de�ned by the maximal absolute di¤erence in probab-
ility, over all events in the algebra), or the Hellinger distance, or the relative entropy
distance (e.g., Csiszar 1967, 1977, van Fraasen 1981, Diaconis and Zabell 1982, Grun-
wald and Halpern 2003). The third notion of distance does not de�ne a proper metric,
as it is asymmetric in its two arguments. Douven and Romeijn (2012) have recently
characterized Adams revision as minimal revision relative to yet another measure of
distance, the inverse relative entropy distance (which di¤ers from ordinary relative
entropy distance in the inverted order of its arguments).

As elegant as these characterization results may be, they convey a non-uni�ed
picture of belief revision and a sense of arbitrariness. Di¤erent notions of distance
are invoked to justify di¤erent revision rules, and their interpretation and relative
advantages are controversial. We propose novel axiomatic foundations, which are not
distance-based and lead to a uni�ed axiomatic characterization of all four revision
rules. In essence, we replace the requirement of distance-minimization from initial
beliefs with the requirement of conservativeness, i.e., the preservation of those parts
of a belief state (speci�c beliefs) on which the learning experience is �silent�. While the
distance-based approach suggests that di¤erent revision rules di¤er in their underlying
notions of distance, our main theorem shows that the four rules follow from the same
underlying requirement of conservativeness. The real di¤erence between the four rules
consists in the learning experience prompting the belief change, not in the agent�s way
of responding to it.6

2 Four revision rules in a single framework

A general framework for studying attitude revision (or more broadly, change in an
agent�s state) can be obtained by specifying (i) a set P of possible states in which the
agent can be, and (ii) a set E of possible (learning) experiences which can in�uence
that state (see also Dietrich 2012). A revision rule is a function that maps pairs (p;E)
of an initial state p in P and an experience E in E to a new state p0 = pE in P. Here,
the pair (p;E) belongs to some domain D � P � E containing those state-experience
pairs that are admissible under the given revision rule. The revision rule is thus a

information in the form of opinions of other agents and merges them with his own initial opinion
using an opinion pooling operator.

6Our conservativeness-based approach can be related to the rigidity-based approach (see Je¤rey
1957 for Bayesian and Je¤rey revision, and Bradley 2005 for Adams revision). For instance, Bayesian
revision is rigid in the sense of preserving the conditional probability of any event given the learned
event. The rigidity-based approach is so far not uni�ed. One may interpret our conservativeness
condition as a uni�ed rigidity condition, applicable to any belief revision rule.
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function from D to P.
Since we focus on belief revision, states are subjective probability functions. Spe-

ci�cally, we consider a �xed, non-empty set 
 of worlds which for expositional sim-
plicity is �nite or countably in�nite.7 Subsets of 
 are called events. Let P be the set
of probability measures over 
, i.e., countably additive functions p : 2
 ! [0; 1] with
p(
) = 1. We call any p in P a belief state. The complement of any event A � 

is denoted A (= 
nA), and p(!) is an abbreviation for p(f!g). By a partition, we
mean a partition of 
 into �nitely many non-empty events. The support of a belief p
is Supp(p) := f! 2 
 : p(!) 6= 0g.

Before de�ning �experiences�, we consider informally the four revision rules to be
studied. Suppose the agent is initially in belief state p in P.

Bayesian revision: The agent learns some event B (with p(B) 6= 0) and adopts the
new belief state p0 given by

p0(A) = p(AjB) for all events A � 
: (1)

Je¤rey revision: The agent learns a new probability �B for each event B in some
partition B (while keeping his conditional probabilities given B). He thus adopts the
new belief state p0 given by

p0(A) =
X

B2B

p(AjB)�B for all events A � 
: (2)

The family of learned probabilities, (�B) � (�B)B2B, is assumed to be a probability
distribution on B, i.e., to consist of non-negative numbers with sum-total one.8 Often
jBj = 2. For instance, if the agent learns that it will rain with probability 1

3 , then
partition B contains the events of rain (B) and no rain (B), where �B = 1

3 and
�B =

2
3 . Je¤rey revision generalizes Bayesian revision since B can contain a set B for

which �B = 1.

Dual-Je¤rey revision: The agent learns a new conditional probability function
given any event C from some partition C; i.e., he learns that, given C, each event A
has probability �C(A) (without learning a new probability of C). He thus adopts the
new belief state p0 given by

p0(A) =
X

C2C

�C(A)p(C) for all events A � 
: (3)

The family (�C) � (�C)C2C (2 PC) is assumed to be a conditional probability distri-
bution given C, i.e., to consist of belief states �C 2 P with support Supp(�C) = C.
Often jCj = 2. For instance, the agent might learn new distributions given the event
C of a �rainy� weather forecast and the event C of a �dry� forecast, so that C = fC;Cg.

7Everything we say could be generalized to an arbitrary (measurable) set 
.
8The revised belief state p0 is only de�ned under the condition that no event B in B has zero

initial belief p(B) but non-zero learnt probability �B . This ensures that whenever in expression (2) a
term p(AjB) is unde�ned (because p(B) = 0) then this term does not matter (because it is multiplied
by �B = 0).
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Dual-Je¤rey revision also captures the simple scenario of learning a new distribution
given just one event, say the event of the �rainy� forecast, without learning a new dis-
tribution given the �dry� forecast. Here, C contains the event C of a �rainy� forecast
and all the trivial singleton events f!g, where ! 2 C, �C is the newly learned con-
ditional belief given C, and each �f!g is trivially given by �f!g(!) = 1. The duality
between Je¤rey and dual-Je¤rey revision consists in the fact that, if B = C, the two
forms of revision concern complementary parts of the agent�s belief state: while the
former a¤ects probabilities of events in B and leaves probabilities given these events
una¤ected, the latter does the reverse.9

Adams revision: The agent learns a new conditional probability �CB of any event B
from a �rst partition B given any event C from a second partition C (without learning
a new probability of C or new conditional probabilities given B \C). He thus adopts
the new belief state p0 given by

p0(A) =
X

B2B;C2C

p(AjB \ C)�CBp(C) for all A � 
: (4)

The family (�CB) � (�
C
B)
C2C
B2B is assumed to be a conditional probability distribution on

B given C, i.e., a family of numbers indexed by both B and C such that
P
B2B �

C
B =

1 for all C 2 C and such that �CB > (=) 0 whenever B \ C 6= (=) ?.10 Often
jBj = jCj = 2. For instance, if the agent learns that it will rain with probability 9

10
given a �rainy� forecast and with probability 3

10 given a �dry� forecast, then partition
B contains the events of rain (B) and no rain (B), and partition C contains the
events of a �rainy� forecast (C) and a �dry� forecast (C), where �CB =

9
10 , �

C
B
= 1

10 ,

�CB =
3
10 , and �

C
B
= 7

10 . To represent the scenario in which the agent learns only a
single conditional probability, say only the new probability of rain given the �rainy�
forecast, one could de�ne B as containing the events of rain (B) and no rain (B) and
de�ne C as containing the event C of a �rainy� forecast and trivial singleton events f!g

for all ! 2 C, where we still have �CB =
9
10 and �

C
B
= 1

10 and where any �
f!g
B0 (B

0 2 B)
takes the trivial value of 1 if ! 2 B0 and 0 if ! 62 B0. Adams revision generalizes
dual-Je¤rey revision, which is obtained if B is the �nest partition ffag : a 2 
g. It
also �almost� generalizes Je¤rey revision, since if C is the coarsest partition f
g we
obtain Je¤rey revision with family (�B)B2B � (�
B)B2B, where this Je¤rey revision
is not of the most general kind since each �B (= �



B) is non-zero.

To give formal de�nitions of these four revision rules, we must �rst de�ne the no-
tion of a learning experience. Looking at Bayesian revision alone, one may be tempted

9As a consequence, any new belief bp (with full support 
) can be acquired in two steps: a Je¤rey
revision step of learning the new probability �B = bp(B) of each event B 2 B, and a dual-Je¤rey
revision step of learning the new conditional probability function �B = bp(�jB) for each event B 2 B.
In other words, revision towards bp is the composition of a Je¤rey revision and a dual-Je¤rey revision,
in any order.
10The revised belief p0 is only de�ned under the condition that p(B \ C) 6= 0 for all B 2 B and

C 2 C such that B \ C 6= ? and p(C) 6= 0. This condition ensures that in expression (4) the term
p(AjB\C) is de�ned whenever it matters, i.e., whenever the term �CBp(C) with which it is multiplied
is non-zero.

6



to de�ne experiences as observed events B � 
. But the other three revision rules are
based on mathematical objects distinct from events, namely families of probabilities
(or probability functions) of the forms (�B), (�

C), and (�CB). Methodologically, one
should not tie the notion of an experience (i.e., the de�nition of E) to a particular
kind of mathematical object that is tailor-made for a speci�c revision rule. Such a
notion would not only exclude other revision rules from the framework, but also pre-
vent one from giving a fully convincing axiomatic justi�cation for the revision rule in
question: key features of that rule would already have been built into the de�nitions
themselves.

We thus need an abstract notion of a learning experience. We de�ne an experience
simply as a set of belief states E � P, representing the constraint that the agent�s
revised belief state must belong to E. So, the set of logically possible experiences is
E = 2P (note that this is deliberately general). An agent�s belief change from p to
pE upon learning E 2 E is responsive to the experience if pE 2 E. Our four revision
rules involve the following experiences:

De�nition 1 A (learning) experience E � P is
� Bayesian if E = fp0 : p0(B) = 1g for some (learned) event B 6= ?;
� Je¤rey if E = fp0 : p0(B) = �B 8B 2 Bg for some (learned) probability
distribution (�B)B2B on some partition B;

� dual-Je¤rey if E = fp0 : p0(�jC) = �C 8C 2 C such that p0(C) 6= 0g for some
(learned) conditional probability distribution (�C)C2C given some partition C;

� Adams if E = fp0 : p0(BjC) = �CB 8B 2 B 8C 2 C such that p0(C) 6= 0g for
some (learned) conditional probability distribution (�CB)

C2C
B2B on some partition

B given some partition C.

Every Bayesian experience is a Je¤rey experience and every dual-Je¤rey and
�almost� every Je¤rey experience is an Adams experience (see the earlier remarks
for details). Some experiences are of none of these kinds, such as the experience
E = fp0 : p0(A \ B) > p0(A)p0(B)g that two given events A and B are positively
correlated, the experience E = fp0 : p0(A) � 9=10g that A is very probable, and so
on. In general, the smaller the set E, the stronger (more constraining) the experi-
ence. The strongest logically consistent experiences are the singleton sets E = fp0g,
which require adopting the new belief state p0 regardless of the initial belief state.
The logically weakest experience is the set E = P, which allows the agent to retain
his old belief state.

We can now formally de�ne the four revision rules.

De�nition 2 Bayesian (respectively Je¤rey, dual-Je¤rey, Adams) revision is
the revision rule (p;E) 7! p0 = pE given by formula (1) (respectively (2), (3), (4)) and
de�ned on the domain DBayes (respectively DJe¤rey, Ddual-Je¤rey, DAdams) consisting
of all belief-experience pairs (p;E) 2 P � 2P such that E is a Bayesian (respectively
Je¤rey, dual-Je¤rey, Adams) experience compatible with p (i.e., for which expression
(1) (respectively (2), (3), (4)) is de�ned11).

11Recall that expression (1) is de�ned under the condition that p(B) 6= 0, expression (2) under the
condition stated in footnote 8, expression (3) always, and expression (4) under the condition stated
in footnote 10.
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Je¤rey revision extends Bayesian revision, i.e., it coincides with Bayesian revision
on the subdomain DBayes (� DJe¤rey). Similarly, Adams revision extends dual-Je¤rey
revision. The de�nition of each revision rule makes implicit use of the fact that
the mathematical object entering the revision formula (and entering the de�nition
of the rule�s domain) � i.e., the event B or family (�B), (�

C) or (�CB) � is uniquely
determined by the set E, or is at least determined to the extent needed for uniqueness
of the revised belief state (and the domain).12

As mentioned, the literature has focused on characterizing Bayesian, Je¤rey, and
Adams revision as minimizing the distance between the revised belief state and the
initial one, subject to constraint given by the learning experience. Formally, a revision
rule (p;E) 7! pE on a domain D � P � 2P is distance-minimizing with respect to
distance function d : 2P � 2P ! R if, for every (p;E) 2 D, p0 = pE minimizes
d(p0; p) subject to p0 2 E. Di¤erent distance functions, however, have been used for
characterizing each of the di¤erent revision rules. We aim at a di¤erent, more uni�ed
characterization.

3 A uni�ed axiomatic characterization

We now introduce two plausible conditions on belief revision and show that these
force the agent to revise his beliefs in a Bayesian way in response to any Bayesian
experience, in a Je¤rey way in response to any Je¤rey experience, in a dual-Je¤rey
way in response to any dual-Je¤rey experience, and in an Adams way in response to
any Adams experience. This shows that the four seemingly di¤erent revision rules
follow from the same two principles and di¤er only in the kinds of experience for
which they are de�ned.

The �rst principle is that the revised belief state should be responsive to the
learning experience, i.e., respect the constraint posed by it.

Responsiveness: pE 2 E for all belief-experience pairs (p;E) 2 D.

Responsiveness guarantees, for instance, that in response to a Bayesian experience
the learned event is assigned probability one.

The second principle is a natural conservativeness requirement: those �parts� of the
agent�s belief state on which the experience is �silent� should not change in response
to it. In short, the experience should have no e¤ect where it has nothing to say. To
de�ne the principle formally, we must answer two questions: what do we mean by

12 In the case of Bayesian revision, the event B is uniquely determined by the (Bayesian) experience
E. Similarly, in the case of dual-Je¤rey revision the family (�C) is uniquely determined. In the case
of Je¤rey revision, the family (�B)B2B is essentially uniquely determined, in the sense that the
subpartition fB 2 B : �B 6= 0g and the corresponding subfamily (�B)B2B:�B 6=0 are unique. (The
subpartition fB 2 B : �B = 0g is sometimes non-unique. Uniqueness can be achieved by imposing the
convention that jfB 2 B : �B = 0gj � 1.) Je¤rey revision is well-de�ned because the revision formula
(2) (and the de�nition of the domain DJe¤ rey ) only depend on this subfamily. As for Adams revision,
the family (�CB) is far from uniquely determined by the Adams experience E, but Adams revision is
nonetheless well-de�ned because the revision formula (4) (and the domain de�nition) are invariant
under the choice of family (�CB) representing E. This non-trivial fact is shown in the appendix, where
we also give a characterization of the families (�CB) representing a given Adams experience.
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�parts of a belief state�, and when is an experience �silent� on them? To answer these
questions, note that, intuitively:

� a Bayesian experience of learning an event B is not silent on the probability of
B, but silent on the conditional probabilities given B;

� a Je¤rey experience is not silent on the probabilities of the events in the relevant
partition B, but silent on the conditional probabilities given these events;

� a dual-Je¤rey experience is silent on the unconditional probability of the events
in the relevant partition;

� an Adams experience is silent on the unconditional probability of the events in
the second partition as well as on conditional probabilities given events from
the join of the two partitions.

So, the parts of the agent�s belief state on which these experiences are intuit-
ively silent are conditional probabilities of certain events A given certain other events
B (where possibly B = 
). These conditional probabilities are preserved by the
corresponding revision rule, so that the rule is intuitively conservative.

We now de�ne formally when an experience E is silent on the probability of an
event A given another B. We need to de�ne silence only for the case that ? (

A ( B � Supp(E), where Supp(E) is the support of E, de�ned as [p02ESupp(p
0)

(= f! : p0(!) 6= 0 for some p0 2 Eg).
There are in fact two plausible notions of �silence�, and hence of �conservativeness�.

We begin with the weaker notion of silence. An experience is weakly silent on the
probability of A given B if it permits this conditional probability to take any value.
Formally:

De�nition 3 Experience E is weakly silent on the probability of A given B
(for ? ( A ( B � Supp(E)) if, for every value � in [0; 1], E contains some belief
state p0 (with p0(B) 6= 0) such that p0(AjB) = �.

For instance, the experience E = fp0 : p0(B) = 1=2g is weakly silent on the
probability of A given B. So is the experience E = fp0 : p0(A) � 1=2g. This weak
notion of silence gives rise to the following strong notion of conservativeness:

Strong Conservativeness: For all belief-experience pairs (p;E) 2 D, if E is weakly
silent on the probability of an event A given another B (where ? ( A ( B �
Supp(E)), this conditional probability is preserved, i.e., pE(AjB) = p(AjB) (provided
pE(B); p(B) 6= 0).

Although strong conservativeness may look like a plausible requirement, it leads
to an impossibility result.

Proposition 1 If #
 � 3, no belief revision rule on a domain D � DJe¤rey is both
responsive and strongly conservative.

Note that, on the small domain DBayes , the impossibility does not hold, because
Bayesian revision is responsive as well as strongly conservative. On that domain, the
present strong conservativeness condition is no stronger than the later, weaker one,
which we now introduce to avoid the impossibility more generally (so, the impossib-
ility occurs on domains on which the two conservativeness conditions come apart).
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We weaken strong conservativeness by strengthening the underlying notion of
silence. The key insight is that even if an experience E is weakly silent on the
probability of A given B, it may still implicitly �say� something about how this con-
ditional probability should relate to other probability assignments within the agent�s
belief state. Suppose for instance 
 = f0; 1g2, where the �rst component of a world
(g; j) 2 
 represents whether Peter has gone out (g = 1) or not (g = 0), and the
second whether Peter is wearing a jacket (j = 1) or not (j = 0). Consider the
events that Peter has gone out G = f(g; j) : g = 1g and that he is wearing a jacket
J = f(g; j) : j = 1g. Some experiences are weakly silent on the probability of J (given

) and yet require this probability to be related in certain ways to other probability
assignments, notably probabilities conditional on J . Consider for instance the (Jef-
frey) experience that G is 90% probable, E = fp0 : p0(G) = 0:9g. It is compatible with
any probability of J and thus weakly silent on the probability of J given 
. But it
requires this probability to be related in certain ways to the probability of G given J :
if this conditional probability is 1 (which is compatible with E), then the probability
of J can no longer exceed 0.9, because, if it did, the probability of G would exceed
0.9, in contradiction with the experience E. In short, although E does not directly
constrain the belief on J , it constrains this belief indirectly, i.e., after other parts of
the agent�s belief state have been �xed.

An experience is strongly silent on a probability of A given B if it permits this
conditional probability to take any value even after other parts of the agent�s belief
state have been �xed. Let us �rst explain this idea informally. What exactly are
the �other parts of the agent�s belief state�? They are those probability assignments
that are �orthogonal� to the probability of A given B. Expressed di¤erently, they are
all the beliefs of which the belief state p0 is made up, over and above the probability
of A given B. More precisely, assuming again that A is included in B, they can be
captured by the quadruple consisting of the unconditional probability p0(B) and the
conditional probabilities p0(�jA), p0(�jBnA), and p0(�jB).13 This quadruple and the
conditional probability p0(AjB) jointly determine the belief state p0, because

p0 = p0(�jA) p0(A)| {z }
�p0(B)

+p0(�jBnA) p0(BnA)| {z }
p0(B)��p0(B)

+p0(�jB) p0(B):| {z }
1�p0(B)

If an experience E is strongly silent on the conditional probability of A given B, then
this probability can be chosen freely even after the other parts of the agent�s belief
state have been �xed in accordance with E (which requires them to match those of
some belief state p� in E). This idea is illustrated in Figure 1, where an experience
E is represented in the space whose �rst coordinate represents the probability of A
given B and whose second (multi-dimensional) coordinate represents the other parts
of the agent�s belief state.

To de�ne strong silence formally, we say that two belief states p0 and p� coin-
cide outside the probability of A given B if the other parts of these belief states
coincide, i.e., if p0(B) = p�(B) and p0(�jC) = p�(�jC) for all C 2 fA;BnA;Bg such
that p0(C); p�(C) 6= 0. Clearly, two belief states that coincide both (i) outside the
probability of A given B and (ii) on the probability of A given B are identical.

13This informal discussion assumes that p0(A); p0(BnC); p0(B) 6= 0.
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Figure 1: Experiences E which are (a) not even weakly silent, (b) weakly silent, or
(c) strongly silent on the probability of A given B, respectively.

De�nition 4 Experience E � P is strongly silent on the probability of A given
B (for ? ( A ( B � Supp(E)) if, for all � 2 [0; 1] and all p� 2 E, E contains some
belief state p0 (with p0(B) 6= 0) which
(a) coincides with � on the probability of A given B, i.e., p0(AjB) = �,
(b) coincides with p� outside the probability of A given B (if p�(A); p�(BnA) 6= 0).

In this de�nition, there is only one belief state p0 satisfying (a) and (b), given by

p0 := p�(�jA)�p�(B) + p�(�jBnA)(1� �)p�(B) + p�(� \B); (5)

so that the requirement that there exists some p0 in E satisfying (a) and (b) reduces
to the requirement that E contains the belief (5).14

For example, the experiences E = fp0 : p0 is uniform on Bg and E = fp0 :
p0(B) � 1=2g are strongly silent on the probability of A given B, since this conditional
probability can take any value independently of other parts of the agent�s belief state
(e.g., independently of the probability of B).

There is an alternative and equivalent way of de�ning weak and strong silence,
which gives a di¤erent perspective on these notions. Informally, on this alternative
approach, weak silence means that the experience implies nothing for the probability
of A given B, whereas strong silence means that it implies only something outside
the probability of A given B, i.e., for those parts of the agent�s belief state that
are orthogonal to the probability of A given B. To state the alternatives de�nitions
formally, we �rst de�ne the �implication� of an experience for the probability of A given
B and for other parts of the agent�s belief state (where ? ( A ( B � Supp(E)):
� The implication of E for the probability of A given B is the experience,
denoted EAjB, which says everything that E says about the probability of A
given B, but nothing else (see Figure 2). So, EAjB contains all belief states p

0

which are compatible with E on the probability of A given B. Formally, EAjB
is the set of all belief states p0 such that p0(AjB) = p�(AjB) for some p� in E
(more precisely, such that if p0(B) 6= 0 then p0(AjB) = p�(AjB) for some p� 2 E
satisfying p�(B) 6= 0).

14To be precise, this is true whenever p�(A); p�(BnA) 6= 0.
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Figure 2: The experiences EAjB and EAjB derived from an experience E

� The implication of E outside the probability of A given B is the exper-
ience, denoted E

AjB
, which says everything that E says outside the probability

of A given B, but nothing else (see Figure 2). So, E
AjB

contains all belief states

which are compatible with E outside the probability of A given B. Formally,
E
AjB

is the set of all belief states p0 which outside the probability of A given B

coincide with some belief state in E (more precisely, with some belief state p�

in E satisfying the non-triviality condition

p�(C) 6= 0 for all C 2 fA;BnAg such that p0(C) 6= 0

if at least one belief state in E satis�es this condition).
Clearly, E � EAjB and E � EAjB. The experiences EAjB and EAjB capture two

orthogonal components (�subexperiences�) of the full experience E. Each component
re�ects what E has to say on a particular aspect. Weak and strong silence can now
be characterized by the following salient properties, which constitute the announced
alternative de�nitions:

Proposition 2 For all experiences E � P and events A and B (where ? ( A (

B � Supp(E)),
(a) E is weakly silent on the probability of A given B if and only if EAjB = P (i.e.,

E implies nothing for the probability of A given B),
(b) E is strongly silent on the probability of A given B if and only if E

AjB
= E

(i.e., E implies only something outside the probability of A given B).

An intuition for this result is obtained by combining Figures 1 and 2. By part (a),
weak silence means that the subexperience EAjB about the probability of A given B is
vacuous; graphically, it covers the entire area in the plot. By part (b), strong silence
means that the experience E contains no more information than its subexperience
E
AjB

about the parts of the agent�s belief state that are orthogonal to the probability
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of A given B; graphically, E covers a rectangular area reaching from the very left to
the very right.

This strengthened notion of silence leads to a weaker notion of conservativeness,
to be called just �conservativeness�. This condition is de�ned exactly like strong
conservativeness except that �weak silence� is replaced by �strong silence�:

Conservativeness: For all belief-experience pairs (p;E) 2 D, if E is strongly silent
on the probability of an event A given another B (for ? ( A ( B � Supp(E)), this
conditional probability is preserved, i.e., pE(AjB) = p(AjB) (if pE(B); p(B) 6= 0).

This weaker condition does not lead to an impossibility result, but to a charac-
terization of our four revision rules:

Theorem 1 Bayesian, Je¤rey, dual-Je¤rey and Adams revision are the only respons-
ive and conservative belief revision rules on their respective domains.

Corollary 1 Every responsive and conservative revision rule on an arbitrary domain
D � P � 2P coincides with Bayesian (respectively Je¤rey, dual-Je¤rey, Adams) revi-
sion on the intersection of D with DBayes (respectively DJe¤rey, Ddual-Je¤rey, DAdams).

It is easier to prove that if a revision rule on the domain of one of these four
revisions rules is responsive and conservative, then it must be that classic revision rule,
than to prove the converse implication that each of these four rules is in fact responsive
and conservative on its domain. For instance, if a belief-experience pair (p;E) belongs
to DBayes, say E = fp

0 : p0(B) = 1g, then the new belief state pE equals pE(�jB) (as
pE(B) = 1 by responsiveness), which equals p(�jB) (by conservativeness, as E is
strongly silent on probabilities given B). The reason why the converse implication is
harder to prove is that, for each of the four kinds of experience, it is non-trivial to
identify all the conditional probabilities on which this experience is strongly silent.
There are more such conditional probabilities than one might expect. For example, a
dual-Je¤rey experience is strongly silent not only on the unconditional probabilities
of events in the relevant partition, but also on a number of other probabilities, as
detailed in the Appendix. After having identi�ed all the conditional probabilities
on which an experience of each kind is strongly silent, one must verify that the
corresponding revision rule does indeed preserve all these probabilities, as required
by conservativeness.

4 Conclusion

We have shown that four salient belief revision rules follow from the same two basic
principles: responsiveness to the learning experience and conservativeness. The only
di¤erence between the four rules lies in the kind of learning experience that is admitted
by each of them. This characterization contrasts with known characterizations of
Bayesian, Je¤rey, and Adams revision as distance-minimizing rules with respect to
di¤erent distance functions between probability measures.

Our two principles can guide belief revision not just in the face of a learning
experience of one of the four kinds we have discussed. They constitute a general
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recipe for belief revision. An important question for future research is how far the
principles can take us. Can they deal with completely di¤erent learning experiences,
such as learning that the probability of rain exceeds the square root of the probability
of a thunder storm? This question has two parts. First, for which learning experiences
is responsive and conservative belief revision possible at all? Secondly, when is belief
revision in accordance with these principles unique? Another challenge is to extend
the conservativeness-based approach towards the revision of belief states distinct from
probability measures, such as Dempster-Shafer belief functions, general non-additive
probability measures, or sets of probability measures.
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A Appendix: proofs

Notation in proofs: For all a 2 
, let �a 2 P be the Dirac measure in a, de�ned
by �a(a) = 1. For every non-empty event A � 
, let unifomA 2 P be the uniform

probability measure on A, de�ned by uniformA(B) =
jB\Aj
jAj for all B � 
.

A.1 Well-de�nedness of each revision rule

As mentioned, our four revision rules (i.e., Bayesian, Je¤rey, dual-Je¤rey and Adams
revision) have been well-de�ned because the mathematical object used in the de�n-
ition of the new belief state (and of the rule�s domain) � i.e., the learned event B
respectively the learned family (�B), (�

C) or (�CB) � is uniquely determined by the
relevant experience E, or is at least su¢ciently determined so that the de�nition does
not depend on any underdetermined features. This fact deserves a proof. For the
�rst three revision rules, the proof is trivial and given by the following three lemmas
(which the reader can easily show):
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Lemma 1 Every Bayesian experience is generated by exactly one event B � E.

Lemma 2 Every dual-Je¤rey experience is generated by exactly one family (�C)C2C.

Lemma 3 For every Je¤rey experience E,
(a) all families (�B)B2B generating E have the same subfamily (�B)B2B:�B 6=0 (es-

pecially, the same set fB 2 B : �B 6= 0g);
(b) in particular, for every (initial) belief state p 2 P, the (revised) belief state (2) is

either de�ned and the same for all families (�B)B2B generating E, or unde�ned
for all these families.15

Well-de�nedness of Adams revision is harder to establish. We start by a lemma
which characterizes the common features of all families (�CB)

C2C
B2B generating the same

given Adams experience E. On a �rst reading of the lemma, one might assume
that no C 2 C is included in any B 2 B (so that Ctriv = ?). In this case, the lemma
implies that all these families share the same partition C and the same join of partition
B _ C = fB \ C : B 2 B; C 2 Cgnf?g. The sets C 2 B which are included in some
B 2 B are special because any value �CB (B 2 B) is then trivially one (if C � B) or
zero (if B \ C = ?).

Lemma 4 Let E be an Adams experience. All families (�CB)
C2C
B2B generating E have

(a) the same set CnCtriv, where Ctriv := fC 2 C : 9B 2 B such that C � Bg,
(b) the same set (B _ C)nCtriv, where Ctriv is de�ned as in part (a),
(c) for each a 2 
 the same value �CaBa , where Ba (resp. Ca) denotes the member

of B (resp. C) which contains a.

Proof. Consider an Adams experience E. The proof consists of showing several
claims about an arbitrary family (�CB)

C2C
B2B generating E. Claims 5, 7 and 8 complete

the proofs of parts (a), (b) and (c), respectively. For each a 2 
 let Ba (resp. Ca,
Da) denote the set in B (resp. C, B _ C) containing a. Note that Da = Ba \ Ca for
all a 2 
.

Our strategy is to show that the sets CnCtriv and (B _C)nCtriv and the values �
Ca
Ba

(a 2 
) can be de�ned in terms of E alone rather than in terms of the family (�CB)
C2C
B2B

generating E, which shows independence from the choice of family. We �rst prove
that several other objects � such as in Claim 1 the number jfB 2 B _ C : B � Cagj
and in Claim 2 the set CanDa (where a 2 
) � can be de�ned in terms of E alone.

Claim 1 : For each a 2 
, jfB 2 B _ C : B � Cagj = minp02E:p0(a) 6=0 jSupp(p
0)j.

Let a 2 
. To show that minp02E:p0(a) 6=0 jSupp(p
0)j � jfB 2 B _ C : B � Cagj,

consider any p0 2 E such that p0(a) 6= 0. It su¢ces to consider any B 2 B _ C such
that B � Ca and show that p

0(B) 6= 0. If a 2 B the latter is evident since p0(a) 6= 0.
Now let a 62 B. Since B 2 B _ C and B � Ca we have B = B

0 \ Ca for some B
0 2 B.

Noting that p0 2 E and p0(Ca) 6= 0, we have p
0(B0jCa) = �

Ca
B0 6= 0; so, p

0(B0\Ca) 6= 0,
i.e., p0(B) 6= 0.

To show the converse inequality,

min
p02E:p0(a) 6=0

��Supp(p0)
�� � jfB 2 B _ C : B � Cagj ;

15Footnote 8 speci�es when (2) is de�ned.
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note that one can �nd a p0 2 E with p0(a) 6= 0 such that

��Supp(p0)
�� = jfB 2 B _ C : B � Cagj ;

namely by picking an element aB from each set B in fB 2 B _ C : B � Cag,
where aDa = a, and de�ning p0 as the unique probability function in P such that
Supp(p0) = faB : B 2 B _ C : B � Cag and p

0(aBjCa) = �
Ca
B0 for all B 2 B _ C such

that B � Ca (where B
0 again stands for the set in B such that B = B0 \ Ca). Q.e.d.

In the rest of this proof, for all a 2 
 we let Ea be the set of all p0 2 E such that
Supp(p0) is minimal (w.r.t. set inclusion) subject to p0(a) 6= 0.

Claim 2 : For all a 2 
, CanDa = ([p02EaSupp(p
0))nfag.

Let a 2 
. The claim follows from the fact that, as the reader may verify, Ea is
the set of all p0 2 P such that for every B 2 B _ C included in Ca there is an aB 2 B
such that (i) aDa = a, (ii) Supp(p

0) = faB : B 2 B _ C; B � Cag (hence, p
0(Ca) = 1),

and (iii) p0(aB) = �
Ca
B0 (i.e., p

0(aBjCa) = �
Ca
B0 ) for all B 2 B _C included in Ca, where

B0 again stands for the set in B for which B = B0 \ Ca. Q.e.d.
Claim 3 : For all a 2 
, the following are equivalent: (i) Da = Ca, (ii) Ca � Ba,

(iii) �a 2 E, and (iv) E
a = f�ag.

For all a 2 
, (i) is equivalent to (ii) since Da = Ba \Ca; (ii) is clearly equivalent
to (iii); and (iii) is equivalent to (iv) by de�nition of Ea. Q.e.d.

In the following, for each a 2 
 such that Da 6= Ca, i.e., such that Ca 6� Ba, let
c(a) be a �xed element of CanDa.

Claim 4 : For all a 2 
 such that �a 62 E (i.e., such that Da 6= Ca by Claim 3),
Ca = [p02Ea[Ec(a)Supp(p

0).
Consider a 2 
 such that �a 62 E, i.e., by Claim 3 such that Da 6= Ca. Note that

Cc(a) = Ca and that Dc(a) and Da are non-empty disjoint subsets of Ca (= Cc(a)).
We may write Ca as

Ca = (CanDa) [ (CanDc(a)).

So, by Claim 2 applied to a and to c(a),

Ca =
�
([p02EaSupp(p

0))nfag
�
[
h
([p02Ec(a)Supp(p

0))nfc(a)g
i
:

Since
c(a) 2 ([p02EaSupp(p

0))nfag and a 2 ([p02Ec(a)Supp(p
0))nfc(a)g,

it follows that

Ca = ([p02EaSupp(p
0)) [ ([p02Ec(a)Supp(p

0))

= [p02Ea[Ec(a)Supp(p
0). Q.e.d.

Claim 5 : We have

CnCtriv =
n
[p02Ea[Ec(a)Supp(p

0) : a 2 
; �a 62 E
o

(which proves part (a) since CnCtriv depends on E alone rather than on the particular
family (�CB)).
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Note that C = fCa : a 2 
g and Ctriv = fCa : a 2 
; Da = Cag. So,

CnCtriv = fCa : a 2 
; Da 6= Cag .

This implies the claim by Claim 4. Q.e.d.
Claim 6 : For all a 2 
 such that �a 62 E (i.e., such that Da 6= Ca by Claim 3),

Da =
h
[p02Ec(a)Supp(p

0)
i/ �

[p02EaSupp(p
0)
�
fag

�
:

Consider any a 2 
 such that �a 62 E. We have Da = Can(CanDa). Hence, using
the expressions for Ca and CanDa found in Claims 4 and 2,

Da =
h
[p02Ea[Ec(a)Supp(p

0)
i/ �

[p02EaSupp(p
0)
�
fag

�
.

It is clear that we can replace �Ea [ Ec(a)� by �Ec(a)� without changing the resulting
set Da. Q.e.d.

Claim 7 : We have

(B _ C)nCtriv =
nh
[p02Ec(a)Supp(p

0)
i/

�
[p02EaSupp(p

0)
�
fag

�
: a 2 
; �a 62 E

	

(which proves part (b) since (B _ C)nCtriv depends on E alone rather than on the
particular family (�CB)).

Since B _ C = fDa : a 2 
g and Ctriv = fDa : a 2 
; Da = Cag, we have

(B _ C)nCtriv = fDa : a 2 
; Da 6= Cag.

The claim now follows from Claim 6. Q.e.d.
Claim 8 : Part (c) of the lemma holds.

Let a 2 
. Consider any other family (e� eCeC)
eC2eC
eB2 eB

also generating E, de�ne eBa
(resp. eCa, eDa) as the set in eB (resp. eC, eB _ eC) containing a, and de�ne eCtriv as
fC 2 eC : C � B for some B 2 eBg We have to show that �CaBa = e� eCa

eBa
. By parts (a)

and (b) (which we proved in Claims 5 and 7),

CnCtriv = eCneCtriv (6)

(B _ C)nCtriv = ( eB _ eC)neCtriv. (7)

By (6) we have [C2CnCtrivC = [
C2eCneCtriv

C. So, taking complements in 
 on both

sides,
[C2CtrivC = [C2eCtrivC: (8)

We distinguish between two cases.
Case 1 : a belongs to a set in Ctriv, or equivalently by (8), a set in eCtriv. Since a

belongs to a set in Ctriv, we have Ca � Ba, whence �
Ca
Ba
= 1. Similarly, since a belongs

to a set in eCtriv, we have eCa � eBa, whence e�
eCa
eBa
= 1. So, �CaBa = e�

eCa
eBa
(= 1).

Case 2 : a does not belong to a set in Ctriv, or equivalently, a set in eCtriv. We
deduce �rstly, using (6), that a belongs to a set in CnCtriv = eCneCtriv, so that Ca = eCa;
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and secondly, using (7), that a belongs to a set in (B _ C)nCtriv = ( eB _ eC)neCtriv,
so that Da = eDa. Choose any p0 in E such that p0(Ca) 6= 0 (of course there is

such a p0 in E). Then, as the families (�CB) and (e�
eC
eB
) both generate E, we have

p0(BajCa) = �CaBa and p
0( eBaj eCa) = e� eCa

eBa
. So, it su¢ces to show that p0(BajCa) =

p0( eBaj eCa), i.e., that p0(Ba \ Ca)=p0(Ca) = p0( eBa \ eCa)=p0( eCa), or equivalently, that
p0(Da)=p

0(Ca) = p
0( eDa)=p0( eCa). This holds because Da = eDa and Ca = eCa. �

Among the families representing a given Adams experience E, one stands out as
canonical, as the next lemma shows.

Lemma 5 Let E be an Adams experience. Among all families (�CB)
C2C
B2B generating

E, there is exactly one (�canonical�) one such that
(a) B re�nes C (i.e., each C in C is a union of one or more sets in B),
(b) jB \ Cj � 1.

Condition (a) on the family � more precisely, on the partitions B and C � is
the key requirement; essentially, it requires a �ne choice of B. Starting from an
arbitrary family (�CB)

C2C
B2B generating E, one can ensure condition (a) by re�ning B,

i.e., replacing each B 2 B by all non-empty set(s) of the form B \ C where C 2 C.
Condition (b) is no more than a convention to avoid trivial redundancies. Any set
B 2 B \ C leads to the trivial value �BB = 1. It su¢ces to have at most one such set,
since if there are many sets in B \ C then they can be replaced by their union. We
have just given an intuition for the lemma�s existence claim. The uniqueness claim
will be proved using Lemma 4.

Proof. Let E be an Adams experience.
1. In this part we prove existence of a family which generates E and has the two

properties (a) and (b). Let (�CB)
C2C
B2B be any family generating E, i.e.,

E = fp0 : p0(BjC) = �CB 8B 2 B 8C 2 C such that p
0(C) 6= 0g. (9)

We now de�ne a new family (b�CB)C2
bC

B2 bB
, of which we later show that it generates

the same experience E and has the two required properties that bB re�nes bC and��� bB \ bC
��� � 1.

Consider the �trivial� part of the partitions B and C, de�ned as Ctriv := fC 2 C :
C � B for some B 2 Bg. The partition bC is de�ned as C if Ctriv = ?, while otherwise
it is de�ned from C by replacing the trivial part by a single set:

bC :=
�
C if Ctriv = ?
(CnCtriv) [ f[C02CtrivC

0g if Ctriv 6= ?.

The partition bB is de�ned as the join of B and C if Ctriv = ?, and otherwise it is
derived from this join by replacing the trivial part by a single set:

bB :=
�
B _ C if Ctriv = ?
((B _ C)nCtriv) [ f[C02CtrivC

0g if Ctriv 6= ?.
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Finally, for all B 2 bB and C 2 bC, de�ne

b�CB :=

8
<
:

�CB0 if B ( C (so that C 2 CnCtriv), where B
0 is the set in B s.t. B � B0

1 if B = C (so that B = C = [C02CtrivC
0)

0 if B \ C = ?.

Note that the three mentioned cases � i.e., B ( C, B = C and B \ C = ? � are the
only possible ones since bB re�nes bC.

We now show that the so-de�ned family (b�CB)C2
bC

B2 bB
has the required properties.

Clearly, bB re�nes bC, and
��� bB \ bC

��� � 1 since bB \ bC is empty (if Ctriv = ?) or f[C02T C 0g
(if Ctriv 6= ?). It remains to show that (b�CB)C2

bC

B2 bB
generates E, i.e., that the sets (9)

and
bE := fp0 : p0(BjC) = b�CB 8B 2 bB 8C 2 bC such that p0(C) 6= 0g.

coincide.
First, let p0 2 E. To show that p0 2 bE, consider any B 2 bB and C 2 bC such that

p0(C) 6= 0; we have to prove that p0(BjC) = b�CB. We distinguish three cases:
� If B ( C, then p0(BjC) = b�CB since p0(BjC) and b�CB both equal �CB0 where B0
denotes the set in B such that B � B0, i.e., such that B = B0 \ C. To see why
p0(BjC) = �CB0 , note that p

0(BjC) equals p0(B0jC), which in turn equals �CB0 as
p0 2 E.

� If B = C, then p0(BjC) = b�CB since p0(BjC) = 1 and b�CB = 1.
� If B \ C = ?, then p0(BjC) = b�CB since p0(BjC) = 0 and b�CB = 0.
Conversely, let p0 2 bE. To show that p0 2 E, consider any B 2 B and C 2 C such

that p0(C) 6= 0. We prove p0(BjC) = �CB by again distinguishing three cases:
� If CnB;C \ B 6= ?, then p0(BjC) = �CB because p

0(BjC) and �CB both equal

b�CB0 where B0 := B \ C (2 bB). To see why p0(BjC) = b�CB0 , note that p0(BjC)
equals p0(B0jC), which in turn equals b�CB0 as p0 2 bE.

� If CnB = ? (i.e., C � B), then p0(BjC) = �CB since p
0(BjC) = 1 and �CB = 1.

� If B \ C = ?, then p0(BjC) = �CB since p
0(BjC) = 0 and b�CB = 0.

2. In this part we prove the uniqueness claim. Let (�CB)
C2C
B2B and (e�

C
B)
C2eC

B2 eB
be two

such families. De�ne

Ctriv � fC 2 C : C � B for some B 2 Bg = B \ C

eCtriv � fC 2 eC : C � B for some B 2 eBg = eB \ eC,
where the equalities on these two lines hold because B re�nes C and eB re�nes eC. By
Lemma 4,

CnCtriv = eCneCtriv, (10)

(B _ C)nCtriv = ( eB _ eC)neCtriv; (11)

�CaBa = e� eCa
eBa
for all a 2 
; (12)

where for each a 2 
 the set Ba (resp. Ca, eBa, eCa) denotes the member of B (resp.
C, eB, eC) which contains a. Since B re�nes C and eB re�nes eC we have B _ C = B and
eB _ eC = eB, so that equation (11) reduces to

BnCtriv = eBneCtriv: (13)
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Further, from (10) and the fact that C and eC are partitions of 
 and that each of the
sets Ctriv (= B \ C) and eCtriv (= eB \ eC) contains at most one member one can deduce
that Ctriv = eCtriv, which together with equations (10) and (13) implies that

C = eC and B = eB: (14)

It remains to prove that �CB = e�CB for all B 2 B (= eB) and C 2 C (= eC). Consider
any B 2 B (= eB) and C 2 C (= eC). If B \ C = ? then �CB = 0 and e�CB = 0, whence
�CB = e�CB, as required. Now assume B \ C 6= ?. Choose any a 2 B \ C. Since

a 2 B 2 B = eB we have Ba = eBa = B, and similarly, since a 2 C 2 C = eC we have
Ca = eCa = C. So, using (12), �CB = e�CB. �

We are now ready to prove that Adams revision has been well-de�ned.

Lemma 6 For every Adams experience E and every (initial) belief state p 2 P,
the (revised) belief state (4) is either de�ned and the same for all families (�CB)

C2C
B2B

generating E, or unde�ned for all these families.16

Proof. Let E be an Adams experience and p 2 P. We write � for the set of
families (�CB)

C2C
B2B generating E.

Claim 1 : Expression (4) is de�ned for either every or no family in �.

Consider two families (�CB)
C2C
B2B and (e�

eC
eB
)
eC2eC
eB2 eB

in �. By footnote 10 we have to

show that

[B \ C 6= ?&p(C) 6= 0]) p(B \ C) 6= 0 for all B 2 B; C 2 C (15)

if and only if

[ eB \ eC 6= ?&p( eC) 6= 0]) p( eB \ eC) 6= 0 for all eB 2 eB; eC 2 eC: (16)

We assume (15) and show (16); the converse implication holds analogously. To show
(16), consider any eB 2 eB and eC 2 eC such that eB \ eC 6= ? and p( eC) 6= 0. We have to
show that p( eB \ eC) 6= 0. We suppose w.l.o.g. that eC 6� eB, since otherwise trivially
p( eB \ eC) = p( eC) 6= 0. Again let Ctriv (eCtriv) be the set of sets in C (eC) included in
a set in B ( eB). As eC 6� eB and eB \ eC 6= ?, we have eC 62 eCtriv. So, since by Lemma
4 CnCtriv = eCneCtriv, we have eC 2 C. Moreover, since eCtriv does not contain eC, it also
does not contain any subset of eC, so that eB\ eC 62 eCtriv. Hence, eB\ eC 2 ( eB_ eC)neCtriv.
As by Lemma 4 (B _ C)nCtriv = ( eB _ eC)neCtriv, it follows that eB \ eC 2 B _ C. Thus
there exist (unique) B 2 B and C 2 C such that eB \ eC = B \ C. Since eC 2 C we
have C = eC. Using that p(C) = p( eC) 6= 0 and that B \ C = eB \ eC 6= ?, we have
p(B \ C) 6= 0 by (15), i.e., p( eB \ eC) 6= 0. Q.e.d.

Claim 2 : The revised belief state (4) is the same for all families (�CB)
C2C
B2B in � for

which it is de�ned.
Let (�CB)

C2C
B2B and (b�

bC
bB
)
bC2bC
bB2 bB

be two families in � for which the revised belief state

is de�ned. We write p0 and bp0 for the corresponding new belief states, respectively.
16Footnote 10 speci�es when (4) is de�ned.
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To show that p0 = bp0, we consider a �xed a 2 
 and show that p0(a) = bp0(a). Note
that

p0(a) = p(ajBa \ Ca)�
Ca
Ba
p(Ca); (17)

bp0(a) = p(aj bBa \ bCa)b�
bCa
bBa
p( bCa); (18)

where Ba (resp. Ca, bBa, bCa) denotes the element of B (resp. C, bB, bC) which contains
a. By Lemma 4, we have CnCtriv = bCnbCtriv, where Ctriv := fC 2 C : C � B for some
B 2 Bg and bCtriv := f bC 2 bC : bC � bB for some bB 2 bBg. So, [C2CnCtrivC = [ bC2bCnbCtriv bC,
and hence, taking complements on both sides,

[C2CtrivC = [ bC2bCtriv
bC: (19)

We consider two cases.
Case 1 : a does not belong to a set in Ctriv, or equivalently by (19) a set in bCtriv.

By parts (a), (b) and (c) of Lemma 4 we therefore have Ca = bCa, Ba \Ca = bBa \ bCa
and �CaBa = b�

bCa
bBa
, respectively. So, equations (17) and (18) imply that p0(a) = bp0(a).

Case 2 : a belongs to a set in Ctriv, or equivalently a set in bCtriv. Then Ca � Ba
and bCa � bBa, whence �CaBa = 1 and b�

bCa
bBa
= 1. So, equations (17) and (18) reduce to

p0(a) = p(ajCa)p(Ca) = p(a),

bp0(a) = p(aj bCa)p( bCa) = p(a).

Hence, p0(a) = bp0(a). �

A.2 Proposition 1

Proof of Proposition 1. Suppose that#
 � 3. For a contraction, consider a responsive
and conservative revision rule on a domain D � DJe¤rey. As #
 � 3 there are
events A;B � 
 such that A \ B;BnA;AnB 6= ?. Consider an initial belief state
p such that p(A \ B) = 1=4 and p(AnB) = 3=4, and de�ne the Je¤rey experience
E := fp0 : p0(B) = 1=2g. Note that (p;E) 2 D. What is the new belief state pE?

First note that E is weakly silent on the probability of A \ B given B. So, by
Strong Conservativeness pE(A \ BjB) = p(A \ BjB) (using that p(B) 6= 0 and that
pE(B) 6= 0 by Responsiveness), i.e., (*) pE(AjB) = 1.

Similarly, (**) pE(AjB) = 1. (This is trivial if A \ B = B, and can otherwise be
shown like (*), using this time that E is weakly silent on the probability of A \ B
given B.) By (*) and (**), pE(A) = 1.

Further, E is weakly silent on the probability of A\B given A, so that by Strong
Conservativeness pE(A \ BjA) = p(A \ BjA) (using that pE(A); p(A) 6= 0). Given
the fact that pE(A) = 1 and the de�nition of p, it follows that pE(B) = 1=4. But by
Responsiveness pE(B) = 1=2, a contradiction. �

A.3 Proposition 2

We start by giving a convenient reformulation of strong silence (we leave the proof to
the reader).
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Lemma 7 For all experiences E and all events ? ( A ( B � Supp(E), E is
strongly silent on the probability of A given B if and only if E contains a p� with
p�(A); p�(BnA) 6= 0 and for every such p� 2 E and every � 2 [0; 1] E contains the
belief state p0 which coincides with � on and with p� outside the probability of A given
B, i.e., the belief state

p0 := p�(�jA)�p�(B) + p�(�jBnA)(1� �)p�(B) + p�(� \B):

Proof of Proposition 2. Consider E � P and ? ( A ( B � Supp(E).
(a) First suppose EAjB = P. Consider any � 2 [0; 1]. As ? ( A ( B there exists

a belief state p0 such that p0(B) 6= 0 and p0(AjB) = �. As EAjB = P, we have that
p0 2 EAjB, so that E contains a p� (with p�(B) 6= 0) such that p�(AjB) = p0(AjB),
i.e., such that p�(AjB) = �, as required to establish weak silence.

Now assume E is weakly silent on the probability of A given B. Trivially EAjB �
P; we show that P � EAjB. Let p

0 2 P. If p0(B) = 0 then clearly p0 2 EAjB.
Otherwise, by weak silence as applied to � := p0(AjB), E contains a p� such that
p�(B) 6= 0 and p�(AjB) = p0(AjB), so that again p0 2 EAjB.

(b) First, in the (degenerate) case that E contains no p0 such that p0(A); p0(BnA) 6=
0, the equivalence holds because strong silence is violated (see Lemma 7) and moreover
E
AjB

6= E because E
AjB

but not E contains a belief state p0 such that p0(A); p0(BnA) 6=

0. Now assume the less trivial case that E contains a ~p such that ~p(A); ~p(BnA) 6= 0.
First suppose E

AjB
= E. To show strong silence, consider any � 2 [0; 1] and any

p� 2 E with p�(A); p�(BnA) 6= 0. By Lemma 7 it su¢ces to show that the belief
state p0 which coincides with p� outside the probability of A given B and satis�es
p0(AjB) = � belongs to E. Clearly, p0 belongs to E

AjB
. Hence, as E = E

AjB
, p0

belongs to E.
Conversely, assume E is strongly silent on the probability of A given B. Trivially,

E � E
AjB
. To show the converse inclusion, suppose p0 2 E

AjB
. Then there is a

p� 2 E such that p0 and p� coincide outside the probability of A given B and such
that p�(C) 6= 0 for all C 2 fA;BnAg with p0(C) 6= 0.

We distinguish two cases. First suppose p�(A); p�(BnA) 6= 0. Then p0(B) =
p�(B) 6= 0. By E�s strong silence on the probability of A given B, E contains a
belief state ~p (with ~p(B) 6= 0) which satis�es ~p(AjB) = p0(AjB) and coincides with
p� outside the probability of A given B. Note that, since p�(A); p�(BnA) 6= 0, there
can be only one belief state that coincides with p� outside the probability of A given
B and such that the probability of A given B takes a given value. Therefore, p0 = ~p,
and so p0 2 E, as had to be shown.

Next assume the special case that p�(C) = 0 for at least one C 2 fA;BnAg. As
p�(C) = 0 ) p0(C) = 0 for each C 2 fA;BnAg and as p0(A) + p0(BnA) = p0(B) =
p�(B) = p�(A) + p�(BnA), it follows that p0(C) = p�(C) for each C 2 fA;BnA;Bg.
This and the fact that p0(�jC) = p�(�jC) for all C 2 fA;BnA;Bg for which p0(C)
(= p�(C)) is non-zero imply that p0 = p�. So again p0 2 E. �
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A.4 Characterization of where each kind of experience is strongly

silent

As a step in establishing Theorem 1, this section determine where Bayesian, Je¤rey,
dual-Je¤rey and Adams experiences are strongly silent. We do not treat Bayesian
experiences explicitly and instead move directly to Je¤rey experiences, since the latter
generalize the former.

Lemma 8 For all Je¤rey experiences E (of learning a new probability distribution
on a partition B) and all events ? ( A ( B � Supp(E), E is strongly silent on the
probability of A given B if and only if B � B0 for some B0 2 B.

Proof. Let E, B, A and B be as speci�ed, and let (�B)B2B be the learned probab-
ility distribution on B. First, if B � B0 for some B0 2 B then E is strongly silent on
the probability of A given B, as one easily checks using Lemma 7. Conversely, suppose
that B 6� B0 for all B0 2 B. For each D � 
 we write BD := fB

0 2 B : B0 \D 6= ?g.
Note that BB = BA [ BBnA, where #BA � 1 (as A 6= ?), #BBnA � 1 (as BnA 6= ?)
and #BB � 2 (as otherwise B would be included in a B0 � B). It follows that there
are B0 2 BA and B

00 2 BBnA with B
0 6= B00. Note that E contains a p� such that

p�(B0 \ A) = �B0 and p
�(B00 \ (BnA)) = �B00 . Since each of B

0 and B00 has a non-
empty intersection with B, and hence with Supp(E) (� B), we have �B0 ; �B00 6= 0.
Now p�(B00 \A) = p�(B00 \B) = 0, since

p�((B00 \A) [ (B00 \B)) = p�(B00)� p�(B00 \ (BnA)) = �B00 � �B00 = 0.

By Lemma 7, if E were strongly silent on the probability of A given B, E would
also contain the belief state p0 which coincides with p� outside the probability of
A given B and satis�es p0(AjB) = 1; i.e., E would contain the belief state p0 :=
p�(�jA)p�(B) + p�(� \B). But this is not the case because

p0(B00) = p�(B00jA)p�(B) + p�(B00 \B) = 0 6= �B00 ,

where the second equality uses the shown fact that p�(B00 \ A) = p�(B00 \ B) = 0.
Hence, E is not strongly silent on the probability of A given B. �

Next, we determine where dual-Je¤rey experiences are strongly silent.

Lemma 9 For all dual-Je¤rey experiences E (of learning a new conditional probab-
ility distribution given a partition C) and all events ? ( A ( B � 
 (= Supp(E)),
E is strongly silent on the probability of A given B if and only if A = [C2CAC and
B = [C2CBC for some sets ? ( CA ( CB � C.

Proof. Let E, C, A and B be as speci�ed, and let (�C)C2C be the learned condi-
tional probability distribution given C. First, if A = [C2CAC and B = [C2CBC for
some sets ? ( CA ( CB � C then E is strongly silent on the probability of A given
B, as one can check using Lemma 7. Conversely, suppose that one cannot express
A, B as such unions. Consider the belief state p� := 1

#C

P
C2C �

C . Clearly, p� 2 E.
If E were strongly silent on the probability of A given B then E would also contain
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the belief state p0 which coincides with p� outside the probability of A given B and
satis�es p0(AjB) = 1, i.e., the belief state

p0 := p�(�jA)p�(B) + p�(� \B):

But E fails to contain p0, for the following reason. We distinguish between two cases.
Case 1 : There is no set CA � C such that A = [C2CAC. Then there exists

a C 2 C such that C \ A;CnA 6= ?. By the de�nition of p0 (and the fact that
C \A;CnA 6= ?), p0(C \A) > p�(C \A) and 0 < p0(CnA) � p�(CnA). This implies
that p0(C); p�(C) 6= 0 and p0(AjC) > p�(AjC). So, as p�(�jC) = �C (by p� 2 E),
p0(�jC) 6= �C , and therefore p0 62 E.

Case 2 : There is a set CA � C such that A = [C2CAC. Then there is no CB � C
such that B = [C2CBC; and so, there is a C 2 C such that C \B;CnB 6= ?. As A is
included in B and a union of sets in C, C\A = ?. Note that p�(C\B); p�(CnB) 6= 0
(as C\B;CnB 6= ? and by de�nition of p�); further, that p0(C\B) = p0(C\(BnA)) =
0 (where the �rst equality holds because C \ A = ? and the second by de�nition of
p0); and �nally, that p0(C) = p0(C \ B) + p0(CnB) = 0 + p�(C \ B) 6= 0. Since
p0(C); p�(C) 6= 0, the conditional belief states p0(�jC) and p�(�jC) are de�ned; they
di¤er since p0(C \ B) = 0 but p�(C \ B) 6= 0. Hence, as p�(�jC) = �C (by p� 2 E),
p0(�jC) 6= �C , and so p0 62 E. �

We now turn to Adams experiences. Before we can show where they are strongly
silent, we derive two useful lemmas.

Lemma 10 Every Adams experience E is convex, i.e., if p0; p00 2 E and � 2 [0; 1],
then �p0 + (1� �)p00 2 E.

Proof. Let E, p0; p00 and � be as speci�ed, and �x any family (�CB)
C2C
B2B generating

E. To show that q := �p0 + (1 � �)p00 2 E, we consider any B 2 B and C 2 C such
that q(C) 6= 0, and have to prove that q(BjC) = �CB. Note that

q(BjC) =
q(B \ C)

q(C)
=
�p0(B \ C) + (1� �)p00(B \ C)

�p0(C) + (1� �)p00(C)
: (20)

There are three cases:
� First let p0(C) = 0. Then also p0(B\C) = 0; and so by (20) q(BjC) = p00(B\C)

p00(C) =

p00(BjC), which equals �CB as p
00 2 E.

� Now let p00(C) = 0. Then also p00(B\C) = 0; hence by (20) q(BjC) = p0(B\C)
p0(C) =

p0(BjC), which equals �CB as p
0 2 E.

� Finally, let p0(C); p00(C) 6= 0. Then p0(BjC) = p00(BjC) (= �CB), i.e.,
p0(B\C)
p0(C) =

p00(B\C)
p00(C) . So there is a � > 0 such that

p00(B \ C) = �p0(B \ C) and p00(C) = �p0(C);

so that by (20) q(BjC) = p0(B\C)
p0(C) , which equals �

C
B. �
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Lemma 11 If E is an Adams experience, (�CB)
C2C
B2B is its canonical family, pB 2 P

with Supp(pB) � B for all B 2 B, and �C � 0 for all C 2 C where
P
C2C �C = 1,

then E contains

p �
X

C2C;B2B

�C�
C
BpB

0
@=

X

C2C

�C
X

B2B

�CBpB =
X

C2C

�C
X

B2B:B�C

�CBpB

1
A :

Proof. The lemma follows from the convexity of Adams experiences (see Lemma
10) since each pB belongs to E and the coe¢cients �C�

C
B satisfy

X

C2C;B2B

�C�
C
B =

X

C2C

�C
X

B2B

�CB =
X

C2C

�C � 1 = 1. �

The next lemma determines where Adams experiences are strongly silent, com-
bining insights from Lemmas 8 and 9 about Je¤rey and dual-Je¤rey experiences. In
fact, the next lemma implies Lemma 9 � not surprisingly, since Adams experiences
generalize dual-Je¤rey experiences. (We have nonetheless stated and proved Lemma
9 separately, as a useful warm-up for the next complex lemma.)

On a �rst reading of the next lemma, one might assume that B \ C = ?, so that
DA = DB = [D2B\CD = ?.

Lemma 12 Consider an Adams experiences E and let (�CB)
C2C
B2B be the canonical

family generating E (de�ned in Lemma 5). For all events ? ( A ( B � 
 (=
Supp(E)), E is strongly silent on the probability of A given B if and only if
(a) either B � B0 for some B0 2 B,
(b) or A = ([C2CAC)[DA and B = ([C2CBC)[DB for some CA � CB � Cn(B\C)

and some DA � DB � [D2B\CD.
17

Proof. Let E, (�CB)
C2C
B2B, A and B be as speci�ed. For each C 2 C let BC := fB 2

B : B � Cg. Also, let D := B \ C (note that jDj � 1) and let 
� := 
n([D2DD).
First, if A and B take the form (a) or (b), then A is strongly silent on the

probability of A given B, as one can verify using Lemma 7.
Now suppose E is strongly silent on the probability of A given B. For a contra-

diction, suppose A and B are neither of the form (a) nor of the form (b). We derive
a contradiction in each of the following cases.

Case 1 : There does not exist any C 2 CnD such that C \ A;CnA 6= ?. In other
words, A = ([C2CAC) [ DA for some CA � CnD and some DA � [D2DD. Since
condition (b) does not hold, B cannot take the form ([C2CBC)[DB with CB � CnD
andDB � [D2DD. In other words, there exists a C 2 CnD such that C\B;CnB 6= ?.
Since B \ C;CnB 6= ? and since the set BC (which partitions C) has at least two
members, there are distinct bB; eB 2 BC such that bB \B; eBnB 6= ?.

Note that since B 6� C and A � B, we have A 6� C, and so A \ C = ?. Hence,
as A 6= ? there is a C� 2 CnfCg such that A \ C� 6= ?. (Possibly C� 2 D, in which
case A \ C� can di¤er from C�.)

17Since by the canonicity of (�CB)
C2C
B2B the set B \ C is either empty or a singleton set fD

�g, the
union [D2B\CD is either ? or D�. In the �rst case the requirement �DA � DB � [D2B\CD� reduces
to DA = DB = ?, and in the second case it reduces to DA � DB � D

�.
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Now for each B0 2 BC we choose an aB0 2 B
0, where a bB 2 bB \ B (6= ?) and

a eB 2
eBnB (6= ?). By Lemma 11 (applied with �C = �C� =

1
2 and �C0 = 0 for all

C 0 2 CnfC;C�g), E contains

p� :=
1

2

X

B02BC

�CB0�aB0 +
1

2

X

B02BC�

�C
�

B0 uniformB0 .

Hence, since E is strongly silent on the probability of A given B, and since p�(A) 6= 0
(as A \ C� 6= ?) and p�(BnA) 6= 0 (as a bB 2 BnA), by Lemma 7 E also contains the
belief state p0 which satis�es p0(AjB) = 1 and coincides with p� outside the probability
of A given B, i.e., the belief state

p0 := p�(�jA)p�(B) + p�(� \B):

Now

p0( bB) = p�( bBjA)p�(B) + p�( bB \B) = 0� p�(B) + 0 = 0
p0( eB) = p�( eBjA)p�(B) + p�( eB \B) = 0� p�(B) + p�(a eB) 6= 0:

Note that p0(C) � p0( eB) > 0 and p0( bBjC) = 0 6= �C
bB
, a contradiction since p0 2 E.

Case 2 : There exists a C 2 CnD such that C \A;CnA 6= ?.
Subcase 2.1 : (BnA) \ C = ? (i.e., A \ C = B \ C). So, as A ( B, there is a

C� 2 C such that (BnA) \ C� 6= ?. (Possibly C 2 D.) Hence, there is a B� 2 BC�

such that B� \ (BnA) 6= ?. By Lemma 11 (applied with �C� = �C =
1
2 and �C0 = 0

for all C 0 2 CnfC�; Cg), E contains

p� : =
1

2

0
@�C�B�uniformB�\(BnA) +

X

B02BC�nfB
�g

�C
�

B0 uniformB0

1
A

+
1

2

X

B02BC

�CB0uniformB0 :

So, because E is strongly silent on the probability of A given B (and because
p�(A); p�(BnA) 6= 0), by Lemma 7 E also contains the belief state p0 which satis-
�es p0(AjB) = 1 and coincides with p� outside the probability of A given B, i.e., the
belief state

p0 := p�(�jA)p�(B) + p�(� \B):

For all eB 2 BC such that eB\A 6= ? we have eB\A = eB\B and (0 <) p�(A) < p�(B),
so that

p�( eBjA) = p�( eB \A)
p�(A)

>
p�( eB \B)
p�(B)

= p�( eBjB),

and hence,

p0( eB) = p�( eBjA)p�(B) + p�( eB \B)
> p�( eBjB)p�(B) + p�( eBnB) = p�( eB \B) + p�( eBnB) = p�( eB).
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Further, for all eB 2 BC such that eB \A ( eB \B) is empty we have

p0( eB) = p�( eBjA)p�(B) + p�( eB \B) = 0� p�(B) + p�( eB) = p�( eB).

As we have shown, p0( eB) � p�( eB) for all eB 2 BC , where some inequalities hold
strictly and some hold as equalities. For every bB 2 BC such that p

0( bB) = p�( bB) we
have

p0( bBjC) = p0( bB)
P

eB2BC
p0( eB)

<
p�( bB)

P
eB2BC

p�( eB)
= p�( bBjC) = �C

bB
.

So, p0( bBjC) 6= �C
bB
, a contradiction since p0 2 E.

Subcase 2.2 : (BnA) \ C 6= ? and no set in BC includes B \ C. Since (BnA) \ C
and A \ C are both non-empty, and since the union of these two sets, B \ C, is not
included in any set in BC (hence, intersects with at least two sets in BC), there exist
distinct B1; B2 2 BC such that

? 6= B1 \ ((BnA) \ C) ( = B1 \ (BnA))

? 6= B2 \ (A \ C) ( = B2 \A).

Now for each B0 2 BC we �x an aB0 2 B
0 such that aB1 2 B1 \ (BnA) (6= ?) and

aB2 2 B2 \A (6= ?). By Lemma 11, E contains the measure

p� :=
X

B02BC

�CB0�aB0 .

So, since E is strongly silent on the probability of A given B (and since p�(A) 6= 0
as aB2 2 A and since p

�(BnA) 6= 0 as aB1 2 BnA), by Lemma 7 E also contains the
belief state p0 which satis�es p0(AjB) = 1 and coincides with p� outside the probability
of A given B, i.e., the belief state

p0 := p�(�jA)p�(B) + p�(� \B):

We have

p0(B2) = p�(B2jA)p
�(B) + p�(B2 \B) = 0� p

�(B) + 0 = 0;

p0(C) = p�(CjA)p�(B) + p�(C \B) = 1� p�(B) + p�(CnB) = p�(C) = 1.

So, p0(B2jC) = 0 6= �
C
B2
, a contradiction since p0 2 E.

Subcase 2.3 : (BnA) \C 6= ? and some B� 2 BC includes B \C. Since condition
(a) does not hold, B 6� B�. So, B 6= B \ C, i.e., BnC 6= ?. Hence there are
bC 2 CnfCg and bB 2 B bC such that bB \B 6= ?; hence, bC \B 6= ?. (Possibly bB = bC.)
Subsubcase 2.3.1 : A \ bC 6= ?. By Lemma 11, the belief state

p� :=
1

2

0
@�CB�uniformB�\A +

X

B02BCnfB�g

�CB0uniformB0

1
A+ 1

2

X

B02B bC

�
bC
B0uniformB0

belongs to E. Since p� belongs to E which is strongly silent on the probability of A
given B (and since p�(A); p�(BnA) 6= 0), E also contains the belief state p0 for which
p0(AjB) = 0 and which coincides with p� outside the probability of A given B,

p0 := p�(�jBnA)p�(B) + p�(� \B)):
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Notice that

p0(B�) = p�(B�jBnA)p�(B) + p�(B� \B)) = 0� p�(B) + 0 = 0;

p0(C) = p�(CjBnA)p�(B) + p�(C \B)) = 0� p�(B) + p�(CnB�) = p�(CnB�);

where the latter is positive since B� 6= C. So, p0(B�jC) = 0 6= �CB� , a contradiction
as p0 2 E.

Subsubcase 2.3.2 : A \ bC = ?. We re-de�ne p� by replacing �unformB�\A� by
�uniformB�\(BnA)� in the previous de�nition of p

�. Again, p� 2 E by Lemma 11, so
that as E is strongly silent on the probability of A given B (and as p�(A); p�(BnA) 6=
0) E also contains the belief state p0 for which p0(AjB) = 1 and which coincides with
p� outside the probability of A given B,

p0 = p�(�jA)p�(B) + p�(� \B):

Notice that

p0(B�) = p�(B�jA)p�(B) + p�(B� \B) = 0� p�(B) + 0 = 0;

p0(C) = p�(CjA)p�(B) + p�(C \B) = 0� p�(B) + p�(C \B) = p�(C \B) > 0:

So, p0(B�jC) = 0 6= �CB� , a contradiction since p
0 2 E. �

A.5 Theorem 1

Based on previous lemmas, we now prove the central result.

Proof of Theorem 1. It su¢ces to consider Je¤rey and Adams revision, since
Bayesian and dual-Je¤rey revision are extended by Je¤rey and Adams revision, re-
spectively. We prove each direction of implication in turn.

1. First we consider a responsive and conservative revision rule on one of the
domains DJe¤rey and DAdams. We show that the rule is Je¤rey respectively Adams
revision, by distinguishing between the two domains.

Je¤rey : Suppose (p;E) 2 DJe¤rey, say E = fp
0 : p(B) = �B 8B 2 Bg. Then pE is

given by Je¤rey revision because we may expand pE(a) as

pE =
X

B2B:pE(B) 6=0

pE(�jB)pE(B); (21)

in which pE(B) reduces to �B by Responsiveness, and pE(�jB) reduces to p(�jB) by
Conservativeness (as by Lemma 8 E is strongly silent on the probability given B of
any event strictly between ? and B).

Adams: Now suppose (p;E) 2 DAdams, say E = fp0 : p0(BjC) = �CB 8B 2 B
8C 2 C such that p0(C) 6= 0g. Then pE is given by Adams revision because we may
expand pE as

pE =
X

B2B;C2C:pE(B\C) 6=0

pE(�jB \ C)pE(BjC)pE(C),
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in which pE(BjC) reduces to �
C
B by Responsiveness, pE(C) reduces to p(C) by Con-

servativeness (as by Lemma 12 E is strongly silent on the probability of C given 

if C 6= 
), and pE(�jB \C) reduces to p(�jB \C) by Conservativeness (as by Lemma
12 E is strongly silent on the probability given B \ C of any event strictly between
? and B \ C).

2. Conversely, we now show that Je¤rey and Adams revision are responsive and
conservative. Responsiveness is obvious. To show Conservativeness, consider any
(p;E) in the rule�s domain (DJe¤rey or DAdams) and any events ? ( A ( B � Supp(E)
such that E is strongly silent on the probability of A given B and pE(B); p(B) 6= 0.
We have to show that pE(AjB) = p(AjB), by distinguishing between the two rules.

Je¤rey : First suppose the rule in question is Je¤rey revision. Then the experience
takes the form E = fp0 : p0(B) = �B 8B 2 Bg for some learned probability distribu-
tion (�B)B2B on some partition B. As E is strongly silent on the probability of A
given B, by Lemma 8 B � B0 for some B0 2 B. It follows that pE(AjB) = p(AjB),
because

pE(AjB) =
pE(A)

pE(B)
=
p(AjB0)�B0

p(BjB0)�B0
=
p(A)=p(B0)

p(B)=p(B0)
= p(AjB),

where the second equality holds by de�nition of Je¤rey revision.
Adams: Now consider Adams revision. Then E is an Adams experience, of the

form E = fp0 : p0(BjC) = �CB 8B 2 B 8C 2 C such that p
0(C) 6= 0g where (�CB)

C2C
B2B is

a conditional probability distribution on some partition B given another C. By Lemma
5 we may assume that the family (�CB)

C2C
B2B is the canonical one for E, i.e., that B

re�nes C and B \ C is empty or singleton. By E�s strong silence on the probability of
A given B and Lemma 12, there are only two cases:
(a) B � B0 for some B0 2 B, or
(b) A = ([C2CAC) [DA and B = ([C2CBC) [DB for some CA � CB � Cn(B \ C)

and some DA � DB � [D2B\CD. (So, as B\C is empty or a singleton set fDg,
we have DA = DB = ? or DA � DB � D, respectively.)

In case (a) we have pE(AjB) = p(AjB) because, writing C
0 for the member of C

which includes B0, we have

pE(AjB) =
pE(A)

pE(B)
=
p(AjB0)�C

0

B0p(C
0)

p(BjB0)�C
0

B0p(C
0)
=
p(AjB0)

p(BjB0)
= p(AjB).

In case (b) we again have pE(AjB) = p(AjB), this time because

p(AjB) =
p(A)

p(B)
=

P
C2CA

p(C) + p(DA)P
C2CB

p(C) + p(DB)

pE(AjB) =
pE(A)

pE(B)
=

P
C2CA

pE(C) + pE(DA)P
C2CB

pE(C) + pE(DB)
,

where, as one easily checks, each pE(C) equals p(C), and pE(DA) = p(DA), and
pE(DB) = p(DB). To see for instance why pE(DA) = p(DA), recall that either
DA = ? or DA � D (2 B \ C). If DA = ? then clearly pE(DA) = p(DA). If DA � D
then pE(DA) = p(DAjD)�

D
Dp(D) = p(DA) (where, as usual, �p(DAjD)�

D
Dp(D)� is

de�ned as 0 if p(D) = 0). �
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