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Abstract

This paper models time-varying skewness for financial return dy-
namics. We decompose financial returns into the product of the abso-
lute returns and signs, so-called the intriguing decomposition. The
joint distribution between the decomposed compomnents is modeled
through a copula function with marginals. Allowing the copula de-
pendence parameter time-varying, we estimate the dynamic nonlinear
dependence between absolute returns and signs, which governs time-
varying skewness for out-of-sample forecast of financial returns.

The empirical results in this paper show that the proposed models
with dynamic dependence obtain better gains of out-of-sample fore-
cast, and suggest the robust strategy for a risk-averse investor in re-
sponse to the market timing. This paper also explores the sources
of the forecasting performance via a recently developed econometric
pin-down approach. Beyond the pure statistical sense, we find that
the forecasts of time-varying skewness trace closely to NBER-dated
business-cycle phases.
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1 Introduction

An intriguing decomposition framework decomposes a financial return into
the product of its absolute return and its sign, e.g., Anatolyev and Gospodi-
nov (2010), Christoffersen and Diebold (2006), Christoffersen et. al. (2007),
Hong and Chung (2003), Linton and Whang (2007), Thomakos and Wang
(2010), Chung and Hong (2007), among others. Let r; denote the excess

return at time ¢, the intriguing decomposition is given by.

1y = |re|sign(ry) (1.1)

This simple return decomposition presents the potential nonlinear depen-
dence between the return higher moments such as volatility, skewness, down-
side risk, and the direction-of-change, etc. For instance, the negative signs
of financial returns materialize the market downturn generally associated
with higher return volatility and intriguing the asymmetric effects among
investors. As such, the intuition behind the intriguing decomposition is that
the nonlinear dependence between absolute returns and signs contain valu-
able information for return forecasting, through a direct connection between
return volatility forecastability and sign forecastability. This connection has
been revealed in the recent works. Christoffersen and Diebold (2006) show
that volatility dependence produces sign dependence to help forecast the mar-
ket timing, which is not likely to be detected via traditional methods due to
the special nonlinear nature of sign dependence and the dynamics between
absolute returns and signs. Anatolyev and Gospodinov (2010) show promis-
ing out-of-sample forecasting results through the modeling of the constant
nonlinear dependence between absolute returns and signs.

As in Christoffersen and Diebold (2006), the nonlinear “common feature”
raises the questions to understand and model the nonlinearities between abso-
lute returns and signs in any possible forms. The conditionally non-Gaussian
environments, for example, with time-varying conditional skewness remain
untapped for the link between volatility dependence and sign dependence.
In particular, this paper focuses on the higher moments’ dynamics of finan-

cial returns. We pretest the constancy of nonlinear dependence structure



(see details in Section 2) and show strong evidence for dynamic dependence
and time-varying asymmetry across different quantiles/tails. The pretest-
ing results imply that time-varying higher moments should be appropriately
modeled and estimated. The test results are also in line with Jondeau and
Rockinger (2006, 2007, 2012) and Patton (2004) who show the importance
of time variability in higher moments for asset allocation.

This paper models the time-varying skewness for the out-of-sample fore-
cast of financial returns. We propose a class of novel dynamic dependence
structures within the intriguing decomposition framework: (i) to forecast out-
of-sample returns, (ii) to constructively explore both the timing and sources
of forecast performance via an econometric pin-down approach, (iii) and to
economically link the forecasting performance to real economy for economic
justification. The joint distribution with dynamic dependence between ab-
solute returns and signs is modeled as a copula function with two marginals:
a multiplicative error model for the marginal of absolute returns and a dy-
namic logistic linked model for the marginal of signs. The proposed evolution
equations for copula functions, depending on the previous values of the de-
pendence parameters and the historical data, allow modeling the financial
return dynamics in tail dependence and varying in asymmetry over time.

Further, the forecast performance is econometrically pin-downed to three
source components, namely instability in models’ forecast ability, difference
in predictive content and the over-fitting issue. This econometric pin-down
approach based on Rossi and Sekhposyan (2011) attempts to understand the
reasons why a competing model perform better or worse than benchmarks.
In addition beyond a pure statistic sense, it is also important to see if the
forecast performance is driven by the fluctuation of real economy. To our
best knowledge, the latter two investigations have barely been studied in
literature.

We apply the proposed models to the forecast of U.S. financial returns.
The empirical results in this paper show that the proposed dynamic decom-
position models consistently perform better out-of-sample than benchmarks
including historical average, linear predictive regression, and constant decom-

position model. The largest difference in forecast gains has been observed



as 15.88% of the proposed dynamic decomposition models over the constant
decomposition models.

More interestingly, the out-of-sample performance exhibits specific mar-
ket timing forecastability, which is remarkably useful for a risk-averse in-
vestor. For instance, the dynamic decomposition models assuming a con-
ditional dependence between absolute returns and signs have much better
out-of-sample performance during the studied turmoil times, whereas they
seem not performing equally well in the tranquil periods; by contrast, we
obtain the opposite performance for the dynamic models assuming a condi-
tional independence. Intuitively, the better forecasting performance of the
dynamic conditional dependence models reflects the significantly increasing
correlations between the volatility (absolute returns) and asymmetric effects
(signs) in a turmoil period. In contrast, the comovement between the volatil-
ity and asymmetric effects is low in a normal time. These empirical results
seem to suggest the robust strategy that an investor effectively benefits from
applying the different dynamic decomposition models in different economic
states.

We employ a range of recently proposed approaches to test the empirical
results, including a direct comparison based on conditional predictive ability
test of Giacomini and White (2006) and an indirect comparison for out-of-
sample density forecasts based on Diks et al. (2010). As a result, the tests
further consolidate the empirical findings in this paper.

This paper also emphasizes in a good understanding for the reasons why
the forecasting models perform differently. We apply the econometric pin-
down approach, recently proposed by Rossi and Sekhposyan (2011), to ex-
tract the uncorrelated sources of forecasting performance. The identified
sources of a model’s superior forecasting performance is capable of providing
valuable information for improvement, for instance, the abilities to model the
market timing associated with time-varying skewness.

We gain better understanding of the forecasting performance sources in
a statistical sense; nevertheless, it tells very little about the economic sense
of forecasting performance. To provide insights on the economic sources

of forecasting performance, we analyze whether the forecast performance



can be significantly explained by real economy. A few studies in the lit-
erature have pursued in this respect, e.g., Rapach et al. (2010), Ghysels
et al. (2011), among others. Our results show that the forecasts of time-
varying return higher moments exhibit well-defined patterns to trace closely
to NBER-dated business-cycle phases, and precisely predict turning points
for those peaks and troughs. A further investigation shows the significant
relations with macroeconomic variables, i.e., term spread, term premium,
interest rate, housing price, inflation and industrial production growth.

The rest of this paper is structured as follows. Section 2 pretests the
U.S. financial returns for the existence of dependence and the constancy of
copulas between absolute returns and signs. Section 3 presents our dynamic
decomposition models. Section 4 provides forecasting methods. Section 5
describes data. Section 6 reports and evaluates the empirical results of out-
of-sample forecasts. Section 7 applies the econometric pin-down approach
to understand the sources of forecasting performance. Section 8 links the

out-of-sample forecasts to real economy. Section 9 concludes this paper.

2 Pretests Based on Empirical Copula Process

We pretest the U.S. stock return data for the following concerns: (1) whether
the empirical evidence exists for the dependence between the absolute returns
and signs? (2) whether the empirical evidence supports the time-varying de-
pendence in the different parts of the distribution? (3) which copula function
is chosen by the copula goodness-of-fit tests?

Panel A in Table 1 reports the test results for the existence of dependence
based on Genest and Rémillard (2004, 2006, 2007). Parametric bootstrap is
used to obtain critical values. The tests, based on the empirical copula
processes, have asymptotic distributions of Cramér-von Mises. The null hy-
potheses of both independence and serial independence are rejected at 5%
and 1% significance levels, respectively. The results present a statistically
substantial degree of dependence between absolute returns and signs. In
Panel B of Table 1, the copula goodness-of-fit tests, based on Genest, Remil-
lard and Beaudoin (2009), Genest and Remillard (2008), Kojadinovic, Yan



and Holmes (2011), Kojadinovic and Yan (2010), and Kojadinovic and Yan
(2011), are in favor of Clayton copula, while reject Gumbel copula and other
elliptical copulas. The favor in Clayton copula, a distribution with a lower
tail dependence, indicates the significant asymmetric effects in the U.S. re-

turn data.
|Table 1 about here]

Panel C in Table 1 reports the copula constancy tests based on Busetti
and Harvey (2011) and Harvey (2010). Their test approaches are flexible and
useful in the way that tests associated with different quantiles may point to
changes in the different parts of a copula distribution. 7 is the chosen quantile
level. For 7 = 50%, the test results reject both the constant lower and the
constant upper tail dependencies, while the constancy of overall copula is not
rejected and there is no evidence showing a jointly changing in the lower-
upper tails. Further, the test results show the significantly changing in the
lower tail dependence at the quantile level, 7 = 25%, whereas the upper
tail counterpart remains constant at the quantile level, 7 = 75%. Evidently,
changing in asymmetry is statistically significant across all tested quantile
levels. As a result, the evidence of changing in the lower tail dependence and
varying in asymmetry over time is substantially strong for the joint behavior
of absolute returns and signs.

Overall, the preliminary evidences empirically show both the existence
of significant dependence, and time-varying tail dependence and asymmetry
between the U.S. absolute returns and signs. Consequently, to forecast the
financial returns, we pay our attention to modeling dynamic tail behaviors

and time-varying asymmetry by adopting a Clayton copula.

3 Methodological Framework

The intriguing decomposition in eq(1.1) is generalized as:

r = e+ sign(r— o)l —d



where c is a user-determined threshold for generality. Nonzero thresholds may
be considered for e.g., transaction costs, and targeting rates, etc. Christof-
fersen and Diebold (2006) and Anatolyev and Gospodinov (2010) consider
the leading case, ¢ = 0. The return decomposition can be rewritten with the

leading case as:

re = 2 |Tt| ]I(Tt > 0) — |Tt| (31)

where I(-) is an indicator function. The conditional expected return is the

interest of a dynamic model given by

Et_lrt = 2Et—1 |Tt| ]I(Tt > 0) — Et—l |Tt| (32)

where E;_1(-) denotes the expectation operator conditional on the informa-
tion, I;_1, available up to time ¢ — 1. For simplicity, I;_; is suppressed as the
subscript t — 1.

The key to predict returns is to modeling the joint distribution of absolute
values, |r| and indicators, I(r; > 0). This paper models the joint distribu-
tion through a copula function due to the mixed marginals of a continuous
distribution for the absolute returns and a discrete binary distribution for
signs. The dependence parameter of the copula function governs the nonlin-
ear relation between absolute returns and signs. In this paper, we allow the
copula dependence parameter time varying for the dynamic skewness.

Copula models are widely used in financial economics and risk manage-
ment. Copulas, which are applied to financial time series data, are most
of time treated as constant over time. However, it has become a stylized
fact that correlations between financial data are not constant through time.
The dynamic structure of the dependence between the data can be modeled
by allowing either the copula function or the dependence parameter to be
time varying. Patton (2006) proposes a parametric model to describe the
evolution of the Gaussian copula parameter, while Jondeau and Rockinger
(2006) estimate a time-varying skewed Student-t copula GARCH model for
conditional dependencies between international stock markets.

Next we briefly introduce Anatolyev and Gospodinov’s constant decom-



position model; then, our dynamic dependence models are proposed.

3.1 Constant Decomposition Model

Let u; = |ry| and v; = I(r; > 0). The joint density/mass function f,,(u,v)
between absolute returns and signs is derived in Anatolyev and Gospodinov
(2010) as:

Fro (g, 00) = f(uglibr) oe[F (uelte)]” {1 — 0o[F (ueltoe))]} 1" (3.3)

where g,(z) = 1=0C(z,1—p;, ) /0wy, with wy, = F(uyl|-) and ¢, = Ey_q|ry|.
F(ut|-) and f(u|-) are the marginal CDF and PDF of the absolute returns
which will be specified in later sections. p; = Fy_11(r; > 0) are the conditional
expectations of signs. «, as the dependence parameter of a copula function,

C(+), is constant.

Remark 3.1. The decomposition model estimates the dependence between
absolute values and signs, and then predict the conditional expectation of re-
turns via eq(3.2). It might be helpful to understand how the sample moments
of returns are affected by the changes in . We conduct a small simulation
experiment.! The simulation results in Figure 1 show that the dependence
parameter of Clayton copula is negatively related to the second and third
moments of returns. For instance, when increasing in «, the return skewness
is more negative, while volatility decreases; this indicates that increasing the
dependence between absolute returns and signs raises the asymmetric effects

and tail dependence, but reduces the risk of returns.

|[Figure 1 about here]

'We take 200 points for a € (0,5]. At each point, we randomly draw 10,000 pairs of
data from Clayton copula, and then transform the data to absolute values and indica-
tors through their marginals to generate simulated returns. We take the estimated scale
parameter, k = 1.275, from Anatolyev and Gospodinov (2010) for the Weibull marginal
distribution of absolute values. The conditional expectation of absolute values is estimated
from the sample data and then resampled with replacement. We use the simulated returns
to compute the sample volatility and skewness against 200 points of a.



Remark 3.2. In Figure 1, the solid lines are the levels of sample moments
estimated from the U.S. return data, and the dot lines are the estimated de-
pendence parameter, o = 0.087, from the constant decomposition model of
Anatolyev and Gospodinov (2010). As seen, the sample volatility and skew-
ness request the corresponding dependence around 2.5 and 0.9, respectively,
much higher than the estimated constant dependence parameter. The de-
pendence underestimation consequently leads to the underestimated return

skewness.

3.2 Dynamic Decomposition Models

The emphasis of this paper is to modeling the time-varying skewness associ-
ated with the dynamic tail behaviors and varying in asymmetry within the
intriguing decomposition. As the joint distribution for absolute returns and

signs, Clayton copula is given by:

Clwne, wa) = (wi,™ + 1wy —1)7H (3.4)

and hence, g;(z) in eq(3.3) is derived as

Lop) oy 5

Qt(zt) =1- (1 + .
2

where a; > 0 is varying over time as specified in eq(3.6)-(3.13) and wy =

1 — pt. oy, depending on its past values and historical data, governs the

time-varying skewness.

3.2.1 Dynamic Tail Dependence

Patton (2006) proposes the observation driven copula models for which the
time-varying dependence parameter of a copula is a parametric function of
transformations of the lagged data and an autoregressive term. Patton (2006)
assumes that the functional form of the copula remains fixed over the sample
period, whereas the parameters vary according to some evolution equation.
In general, the model for the evolution of a dependence parameter (or tail

dependence) of a copula is specified as:

9



1 m
Qyp = A <W + BA_l(ogt_l) + ’YE Z |w1,t_i — w27t_i| -+ 5Zt_1) (36)

=1

where A(x) = exp(zx) is the transformation for Clayton copula. z; is a vector
of exogenous variables. wy; = F(u|¢;) and wy = 1 — p; are the marginal
CDFs of absolute returns and signs from eq(3.15) and (3.17). Patton choose
m = 10. Note that the expectation of this distance measure is inversely
related to the concordance ordering of copulas. In the empirical section, we

refer this specification as Patton.

3.2.2 Exponentially Weighted (ExpWeight) Dynamic Dependence

As pointed out in Patton (2006), the difficulty in specifying how the param-
eters evolve over time lies in defining the forcing variables of the evolution
equation. The eq(3.6) suggested by Patton (2006) is a martingale process
depending on the past, m, path.

Based on eq(3.6), we propose a new evolution equation using the exponentially-

weighted dynamic dependence as:

t—1
ap = A (w + A (o) + 711_;5\1 Z N wy s — wayi| + 074

- (3.7)
where 0 < A < 1 and 52+ "ZIM~' = 1. The exponentially weighted
dynamic dependence assigns more weights to the recent observations closer
to time ¢, whereas it gives less weights to the past observations far away from
time t. The intuition of this evolution equation is from the general fact that
the latest events and observations have larger influence on current and near

future dependence evolution than the far past.

10



3.2.3 GARCH-type (Gtype) Dynamic Dependence

Jondeau and Rockinger (2003) present various possible specifications for the
dynamics of Skewed Student-t distribution parameters. Similar to the spec-
ification in their model (3), we take a linear structure of the type of het-
eroskedesticity autoregressive form with the exponential transformation for

Clayton copula as:

ar = A (w + ﬁ/\fl(oétq) + v w1 — w2,t71’) (3.8)

with that the stability of the dynamics is assumed, for example, |G| < 1.

3.2.4 Integrated GARCH-type (IGtype) Dynamic Dependence

The integrated-GARCH type dynamics is a variant of eq(3.8) as follows, by
restricting w =0 and g+ v = 1:

ap = o1+ v |wip—1 — way—1| (3.9)

where 0 < 3,7 < 1.
Alternatively, eq(3.9) can be written in the recursive form of eq(3.7) as a

simple exponential smoothing:
ar = Aoy—1 + (1 = A) Jwy -1 — w1

3.2.5 One-Sided Asymmetric (OSA) Dynamic Dependence

The dynamic dependence parameter is modeled for the nonlinear relation
between absolute returns and signs; it can be described that oy measures the
interdependence of absolute returns and signs as the uncentered product,

Yy = |ry|I(ry > 0). Hence, we specify a new dynamic dependence as:

o = w + 6@75_1 + 719,5_1 (310)

The uncentered product is the second term in eq(1.1). Despite ¥, reveals

the information for modeling oy, the expectation of oy, is not equal to the

11



expectation of ;. For stationary, following the proof in Zakoian (1994) and
Nelsen (1990, 1991), we have the conditions, w > 0, 0 < 5 < 1, and v > 0.
In the empirical section, we estimate eq(3.10) via a logarithm transfor-

mation for easy convergence purpose as

logay = w + Plogay_1 + YY1 + 0241

with || < 1.

3.2.6 Two-Sided Asymmetric (TSA)Dynamic Dependence

An extension to eq(3.10) is a two-sided asymmetric tail dependence as:

logay = w + Blogay 1 + 9, | + M| + 0z (3.11)

where 8| < 1. 9} = |ry| I(r; > 0), 9; = |r|I(r; < 0). Such a specification
has been also suggested by Glosten et al. (1993) and Zakoian (1994). Jondeau
and Rockinger (2003) use the similar specification for a generalized skew-t
distribution with time-varying parameters. Eq(3.11) allows modeling the

dependence in terms of time-varying asymmetry.

3.2.7 TVC Dynamic Dependence

The time-varying dependence parameter, a4, is related to Kendall’s 7 via

o

T = 5 which implies that 0 < 7, < 1, due to oy > 0. The time variation
in oy can be modeled as a; = 127”% with 7; itself governed by the TVC-type

equation of Tse and Tsui (2002) as:
Tt = W -+ ﬁTt_l + ’}/7:13_1 (312)

where w > 0,0 <8,y <1and S+ < 1. 74_; is the non-negative estimates
transformed from sample Kendall’s 7 between periods ¢ — m and t — 1; i.e.,
for each of the m(m —1)/2 possible pairs, an estimate of Kendall’s 7 between

times t —m and t — 1 is first computed as

12



2
Tl = —— Z sign [(wiy, — wig,) (wa, — way, )]
m(m —1) t—m<ty<ta<t—1

and then, since the domain of sample Kendall’s 7 is [—1, 1], we take the
following transformation to ensure 7;_; € [0, 1] by keeping the original move-

ment of sample Kendall’s 7 intact:

~ exp(Ti_1)
Tt—l R e——
1+ exp(Ti-1)

The eq(3.12) implicitly assumes a martingale process to capture the variation
of sample Kendall’s 7;. The similar TVC approach is also specified in Jondeau
and Rockinger (2006) for a time-varying Student-t copula.

In this paper for the estimation of TVC dependence, we apply a variance-
targeting-like method suggested by Engle and Sheppard (2005) and the chap-
ter 11 of Engle (2009). In particular, we model the Kendall’s 7 as

=1 =B—=0+ BTy + 771
where 0 < B,y <1, B+ < 1. ¢ = ZZ;LR 7;/R with R being the length of

the estimation window specified in later sections.

3.2.8 Integrated-TVC (ITVC) Dynamic Dependence

The integrated-TVC is simply a special case of TVC specification by restrict-
ing w=0and 8+~ =1, such that

Ty = BTi—1 + YT (3.13)

where 0 < 3,7 < 1.

3.3 DMarginals

The ingredients for estimating the decomposition models also require for the

specifications of marginals for absolute returns and signs. Since |ry| is a

13



positively valued variable, the dynamics of absolute returns is specified using

the multiplicative error model (MEM) framework:

‘Tt| = (3~14)

where ¢, = E;_1 |ry| and 1, is a positive multiplicative error with E, 1 (n;) = 1,
and its conditional marginal distribution D. Such multiplicative error model
(MEM) has recently devoted to modeling volatility measured based on ultra-
high frequency data, volumes, number of trades, and durations, etc.?2 MEM
is particularly suited to model non-negative time series. Brownlees et al.
(2011) provide a review of MEM.

The dynamics for v, is specified in a logarithmic conditional autoregres-

sive model as:
Iy = wy + Bulnidy—1 + yln |ri—1| + ppl(re—1 > 0) + 3:;_151) (3.15)

where z;_; are economic predictors and observables at time ¢t — 1. The main
advantage of eq(3.15) is that no parameter restrictions are needed to en-
force positivity of E;_; |rs|, especially when (weakly) exogenous predictors
are present. The persistence of the process is governed by the parameter
1By + Yol- Eq(3.15)is referred to as the volatility model.

The possible choices for D include exponential, Weibull, Burr, and Gen-
eralized Gamma distributions, etc. In empirical section following Anatolyev
and Gospodinov (20010), we use the Weibull distribution with shape param-
eter, k£ > 0 and scale parameter, ¢ > 0. The advantage to apply the Weibull
distribution is that the Weibull parameters are reduced to one parameter dis-
tribution by using the condition of E; 1(n;) = 1. The cumulative probability

function of a Weibull distribution of a random variable X is given by

F(z; k) =1— 67(%)]6

with the probability density function, f(z, k,<),

Zsee, e.g., Engle et al. (2011), Chou(2005), Engle and Gallo(2006), Engle and Russel
(1998), Anatolyev (2009), among others

14



(E)k_l e_(%)k z >0

k
s (3.16)
0 r <0

fl@; &, ¢) =
The mean of a Weibull random variable can be expressed as E(X) =<' (14 1/k).
['(+) is a gamma function. In our case, F;_(n;) = 1, such that ¢ =T~ (1 + 1/k).
Hence, the Weibull distribution has been reduced to one parameter function.
By setting @ = n; = |r¢| /1y with the specification of ¢ in eq(3.15), we have
the marginal PDF and CDF functions for eq(3.3).

Specifying the sign dynamics, we take a Bernoulli marginal of the form:

B(p:) = pi (1 — pt)l_v

with p; is specified as a dynamic logit-linked model:

b= exp(6;)
" 1+ exp(6y)
with
0, = wg + Gal(re—1 > 0) + y;_,04 (3.17)

where eq(3.17) is referred to as the direction model. y;_; includes the set of
predictors such as macroeconomic variables as well as realized return higher

moments.

3.4 Likelihood Function

With the marginals of eq(3.15) and (3.17), the copula function eq(3.4) and
(3.5), and the dynamic dependence structures of eq(3.6)-(3.13), we have the

sample log-likelihood function as:

T

Z (re > 0)Ino[F(ug|vy))]

+[1 [(re > 0)]in(1 — oo [F(uel90))]) }

+ Z In f ()
t=1

15



With all the specified ingredients, the set of parameters to be estimated by
maximum likelihood estimation is ® = (wy, By, Vo, Pv, Ov, Kk, Wa, Ga, da, O),
where © contains the dynamic dependence parameters, (w, 3, v, \) from
eq(3.6)-(3.13). Note that in this paper, all parameters in the set, ®, are
obtained from maximizing the sample log-likelihood of the full decomposition

models.

4 Forecasting Methods

4.1 Conditional Mean Forecasts

Based on the eq(3.2), the one-period ahead forecast of financial returns at

time ¢ + 1 conditional on the past information is given by

72tJrl = 2ét+1\t - Zzt—‘rllt (41)

where 1,1, is the conditional expectation forecast of |r, | using eq(3.15).
étﬂ‘t = F, ]rtﬂ\/]l(r\tﬂ > () is the conditional expectation forecast for the
cross product of absolute returns and indicators. Anatolyev and Gospodinov
(2010) find that the expectation of the cross product happens to be weakly
conditional dependence. Thus, one might ignore the dependence by assuming

the conditional independence between absolute returns and indicators as

Tey1 = (Qﬁt+1|t - 1)12}t+1\t (4-2)

where py41); is the conditional forecast from eq(3.17). Note that eq(4.2) will
not be optimal under conditional dependence between the components.
For the general case of conditional dependence, the conditional expected

cross-product is given by

§t+1|t = Ei|req|I(re > 0)

= /0+°° uf (UWHM) Ot+1 (F (thﬂlt)) du (4.3)

16



which depends on the estimated parameters, <i>, at time t. Eq(4.3) is inte-
grated by using the approach proposed in Anatolyev and Gospodinov (2010).

4.2 Return Higher Moments Forecasts

Using the model estimators, we can also forecast the time-varying higher
moments, similar to eq(4.3). Particularly, we consider the out-of-sample
forecasts for downside risk and skewness used in the section 8.

Let Q.(z) denote the quantile function of the marginal distribution for

absolute returns. The conditional skewness at time ¢t + 1 is forecasted as

— — — — 3
— Ly (Tfﬂ) — 3E(rey1)vary(re) — [Et<rt+1>i|
skewy(ri11) = — (4.4)
[UC”"tO’tH)}
where
_— — 12
vary(re) = Ei(rfy,) — [Et(rt—&-l)}

— — 1

. 2
with Ey(ry41) is estimated by eq(4.1) and Ey(r7,,) = fo [Qt+1|t(z)] dz, and,

— —
—_—

E(r}) = 2E, [|7”t+1|31[(7“t+1 >0)] — E, (|T‘t+1|3)

with
— L 3
BT > 0) = [ [Qunl@)] g (202 (45)
0
—_— ]' A 3
Et’TtJrl‘S:/ |:Qt+1|t(z):| dz (4.6)
0

The conditional downside risk is also referred to semi-variance as
1
semivariance = T ; [(re = )’ L(re < )] = E [(re — p)*L(re < p)]

where p is the mean or average of returns. In our case, we set p = 0. Thus,

17



—

the conditional downside risk (semi-variance) forecast (drisk;y1) is given by

—

driski(riv1) = E(riy) — B [r2 I(req > 0)] (4.7)
with F, [rfﬂ?(?;l >0)] = fol [Qt+1|t(z)]2 Ot+1t (2) dz. See Appendiz A for
the proofs.

Note that each solution of these higher moments has a corresponding con-
ditional independence counterpart. However, in this paper, we only estimate
higher moments for conditional dependence cases. In the empirical section,
we apply both Monte Carlo simulation method and the Gauss-Chebyshev
quadrature formulas (Judd 1998, section 7.2) to evaluate integrals. Since
these methods have shown similar results, we only report the results ob-

tained from the Gauss-Chebyshev quadrature.

5 Data

The monthly U.S. return data from January 1952 to December 2002 is avail-
able from Anatolyev and Gospodinov’s website. We extend their dataset to
cover the period of the recent financial crisis till December 2010. For the
extended period, the value-weighted excess return is taken from the Cen-
ter for Research in Security Prices (CRSP); the earnings-price ratio (ep)
and dividend-price ratio (dp) data in logs are constructed using the dataset
provided by Shiller (2005); the three-month T-bill rate (ir3), and Moody’s
Aaa and Baa corporate bond yield data, are from Federal Reserve Bank of
St. Louis. We construct the yield spread (irs) by the difference between
Moody’s Aaa and Baa.

In this paper, the realized higher moments, i.e., realized variance (RV),
bipower variation (BPV), realized third (RS) and fourth (RK) moments,
are also extended till December 2010 and constructed from daily data on
the NYSE/AMEX value-weighted index from CRSP. As the proxies for the
unobserved volatility process, the realized variance is an estimator of inte-

grated variance plus a jump component while the latter is unaffected by the
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presence of jumps. For the detail formula, see e.g., Barndorff-Nielsen and
Shephard (2004, 2006, 2007), and Anatolyev and Gospodinov (2010), among
others.

We use predictors x; = (dpy, epy, irdy, irs;) in eq(3.15) for the marginal
dynamics of absolute returns, and y, = (dpy, epy, ir3y, irs;, RV;, BPV;, RS;, RK})
in eq(3.17) for the dynamics of the Bernoulli marginal. We employ a rolling
window with the length of the past 360 months for out-of-sample forecast.
It results in the out-of-sample period from January 1982 to December 2010,
which covers the forecasting period in Anatolyev and Gospodinov (2010),
and extends to the recent financial crisis of 2007-2009.

We briefly introduce the name convention used in the empirical section.
This paper estimates both conditional independence (C1, eq(4.2)) and condi-
tional dependence (C'D, eq(4.1)) scenarios. Constant decomposition models
are denoted as CDM, and DD M for dynamic decomposition models. Hence,
we represent a constant decomposition model from the conditional indepen-
dence estimation as CDM — C1I, and DDM — C'I for a dynamic decomposi-
tion model from the conditional independence estimation. For instance, the
dynamic decomposition model of OSA (eq(3.10)), if it were estimated from
the conditional dependence, would be denoted as OSA — CD.

6 Empirical Results

Table 2 presents the in-sample estimation results. The subsample estimation
from January 1952 to December 2002 is made comparable to the results of
Anatolyev and Gospodinov (2010). The parameter estimations in Panel A
are statistically significant at conventional confidence levels. The Wald tests
in Panel B show that the estimators of the dynamic decomposition mod-
els are jointly significant. As seen in Panel B, the dynamic decomposition
models obtain higher MLE log-likelihood values than the constant decompo-
sition models, and the likelihood ratio tests reject the null hypothesis at 1%

significance level.

|Table 2 about here]
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The persistence of a dependence structure is measured by the parameter
B. Among the dynamic models, OSA and TSA have the highest persistence,
whereas Patton shows less persistence in dependence structure. The smooth-
ing weighting parameter, \, is significant at 1% level, which provides the
evidence for the weighting of the time series observations. The integrated
models of IGtype and ITVC have the persistence of around 0.75 which is
lower than 0.94, the value calibrated for integrated GARCH model by J.P.
Morgan RiskMetrics.

The in-sample evidences support the hypothesis of time-varying nonlin-
ear dependence between absolute returns and signs. The results are also

consistent with the pretesting results of rejecting the constancy of copulas.

6.1 Out-of-Sample Forecast

The out-of-sample coeflicient of predictive performance (OS), suggested by

Campbell and Thompson (2008), is used for forecasting evaluation as

ZtT:RH L(ry — 7)
Z?:R—&-l L(ry —7)

where L(s) = s? if it is based on squared errors, and L(s) = |s| if it is based

0S=1-

on absolute errors. We use a rolling sample window of length, R = 360 for
out-of-sample forecast, while T is the total observations in the sample period,
such that the one-step ahead out-of-sample forecast period is H € [R+1, T7.
7; 18 the unconditional mean of r; computed from the last R observations
in the rolling scheme, which is referred to as the historical average. 7; is a
forecast at time ¢ from individual models.

The OS statistics measures the reduction in forecasting errors relative to
the historical average forecast. Thus, if OS > 0, the 7, forecast outperforms
the historical average forecast; if OS < 0, the historical average forecast
performs better.

Figure 2 plots the return forecasts from the linear predictive regression,
constant and dynamic decomposition models. We have the following obser-

vations in order. First, similar to Anatolyev and Gospodinov (2010), Figure
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2 show that in the late of 1990s the linear predictive model underestimates
the bull market by predicting predominantly negative returns, while both
constant and dynamic models capture well the upward trend in the market

and the increased volatility in the early 2000s.
|[Figure 2 about here|

Second, the difference of the forecasts between the constant and dynamic
models exists over time. The largest disagreements occur during: (1) the time
from late 1990s (around the late of 1997 when Asia financial crisis started)
to the early 2000s (the period of I'T bubble bust); and (2) the recent financial
crisis time.

Based on the observations above, the out-of-sample period is divided into
sub-samples: (1) a relatively tranquil period: 1982:01 - 1997:12; (2) the
first relatively turmoil period: 1998:01 - 2002:12; (3) the second turmoil
period: 2007:07 - 2010:12; (4) the comparison period with Anatolyev and
Gospodinov: 1982:01 - 2002:12.

Table 3 presents the out-of-sample forecast results. The average perfor-
mance of the dynamic decomposition models are also reported. The forecasts
from the conditional independence are estimated by ignoring the conditional
dependence structure between absolute returns and signs through eq(4.2),
while the conditional dependence forecasts are computed via eq(4.1) through

numerical integrations.
|Table 3 about here|

In line with the previous studies, e.g., Rapach et al. (2010), Welch and
Goyal(2008), and Campbell and Thompson (2008), etc., the out-of-sample
forecast of historical average in Table 3 performs better than the conditional
linear model and the difference in forecast gain is around 5%. The decom-
position models dominate both the historical average and conditional linear
models in terms of OS statistics. Observably, the dynamic decomposition
models achieve the most outstanding performance.

Of interest, we turn next to the detail analysis for comparisons between
the constant and dynamic decomposition models, and between conditional

independence and conditional dependence.
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6.1.1 Tranquil Period vs. Turmoil Time

As shown in Table 3, the proposed dynamic decomposition models consis-
tently perform better out-of-sample than the constant models both individu-
ally and on average across sample periods. For instance, CDM — C'I has the
OS statistics of 0.18% in the full sample period, while the dynamic decompo-
sition models have 1.41% on average with the highest individual gain, 2.53%,
by T'SA — CI model. The best out-of-sample performance in the full sample
period is 3.59% and 3.57% from IGtype — C'D and OSA — CD, respectively,
while the best for the comparison subperiod is 4.62% from IGtype — CI.3

Interestingly, among the out-of-sample forecasts, the largest difference in
gains is 8.63% during the recent financial crisis time between CDM (CDM —
CI with -3.57%) and DDM (T'SA — CI with 5.06%); moreover, for the
conditional dependence case, the largest gain differences between C DM and
DDM are 4.64% (CDM — CI with 5.18% and Patton — C'D with 9.82%),
and 5.59% (CDM — CI with 6.72% and [Gtype — CD with 12.31%) in the
two turmoil periods. However, the difference for the tranquil time, around
1% or less, is much less than those in the turmoil periods.

In summary, we see that the difference of forecasting gains between the
constant and dynamic decomposition models is considerably large during the
turmoil times, at least for our sample periods, whereas the difference in the
tranquil periods is still large in the individual level, but relatively small on

average. As a result, these results imply that an investor will benefit out-

3Note that the OS statistics in Table 3 of the constant model for the subperiod of
1982:01-2002:12 is similar to, but higher than the results of Anatolyev and Gospodinov
(2010). The reasons are the following: (i) we drop the first m = 10 observations for all
constant and dynamic models, as required by eq(3.6), to make them comparable and to
some extent reduce the initial value effects. We investigate the dataset and find the first
ten observations have large volatility, which might have influence on the estimation results;
(ii) The extreme events and outliers of returns and their realized higher moments produce
some extreme values for the probability of Bernoulli marginal distribution, such as p; might
reach the extreme values by p, = 0, or 1. These extreme values, most likely occurring in
crisis times such as the Black Friday in 1987, will make the sample log-likelihood function
exploded or collapsed. We consult this issue by empirically restricting 0.002 < p, < 0.998.
For those values out of this range, we set p, = 0.002 if p; < 0.002 and p; = 0.998 if
pe > 0.998. The restrictions should be consistent with the argument of Campbell and
Thompson (2008) that imposing theoretically and economically motivated restrictions on
individual models can improve their out-of-sample performance.
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of-sample forecasting from the dynamic dependence models in general, and

even more during a turmoil time.

6.1.2 Conditional Independence vs. Conditional Dependence

In this paper, the forecasting performance comparison between the condi-
tional independence and dependence is also great of interest. First, in the
full sample period, the forecast gains from the conditional dependence have
better performance than those from the conditional independence. In par-
ticular, CDM — C'D has higher forecasting gain than CDM — CI by 2% or
so, while DDM — C'Ds have 2.62% forecasting gain on average, larger than
DDM — CIs with 1.41%. All the individual DDM — CDs perform better
than their counterparts from DDM — Cls. For instance, OSA — C'D gains
2% more than from OSA — C1.

Second, we observe the much larger difference in forecasting gains be-
tween conditional dependence and conditional independence in the two tur-
moil times. The difference in the first turmoil period is 4.06% for CDM —C D
over CDM — C1, and 7.18% for DDM — CD over DDM — C1I on average,
and the difference for the recent financial crisis is 10.29% for CDM — CD
over CDM — C1, and 7.25% for DDM — C'D over DDM — CI on average.

Conversely, the conditional independence in tranquil periods performs
better out-of-sample forecast than the conditional dependence. During 1982:01
- 1997:12, DDM — C1 perform better out-of-sample than DDM — C'D by
3.26%. Most of the individual DDM —C'1s outperform DDM —C Ds in tran-
quil periods. Additionally, the comparison period also shows the conditional
independence slightly better on average.

As a result, we see that the conditional dependence provides better overall
out-of-sample forecast than the conditional independence, especially during
the turmoil times; however, the conditional independence does a better job
in the tranquil period relative to the conditional dependence.

Intuitively, the better forecasting performance of the conditional depen-
dence reflects that the volatility (absolute returns) is higher and asymmetric

effects (signs) are larger in a turmoil period, and they are more correlated
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and comoved in a bad time. On the other hand, markets are more stable in a
normal time such that volatility is low and the skewness is less negative, and
their correlation is less significant in a tranquil time. As such, the empirical
evidence in this paper supports that the proposed dynamic decomposition
models well capture these stylized facts and nonlinear dependence in differ-
ent market timings, by estimating conditional independence in a normal time
and conditional dependence during a turmoil period.

In summary, the robust strategy for an investor is to adopt the dynamic
decomposition models by exploiting conditional dependence for a turmoil
time. Suggestively, the better choice for a tranquil period is to take the dy-
namic decomposition models by assuming conditional independence. Hence,
the implication is useful for an investor to determine the model choices based

on the current state of an economy or the timing of financial markets.

6.1.3 Time-Varying Dependence

The concern has also been raised by Remark 3.2 as shown in Figure 1:
whether the dynamic dependence specifications reduce the gaps between the
dependence requested by the sample return moments and estimated by dy-
namic decomposition models. Figure 3 plots the out-of-sample dependence
parameters. The parameters estimated from the constant model are rela-
tively stable around its mean (0.0816) with the minimum (0.035) and maxi-
mum (0.179). By contrast, the dynamic decomposition models have the de-
pendence parameters more volatile than the constant model over time. For
instance, The exponentially weighted dynamic models have the estimated
dependence parameters with the minimum (0.00004) and maximum (1.55).
Its minimum value close to zero implies a conditional independence, while

its maximum value tends to close the gap.
|[Figure 3 about here|

In addition, the estimated dependence degree is remarkably higher for the
turmoil times. [Gtype model has the highest estimated mean dependence

around 0.275 which is 3.4 times higher than that of the constant model; more
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importantly, IGtype model has accomplished better out-of-sample forecast
than most of others. Compared to the constant model, the dynamic mod-
els improve the out-of-sample forecast performance by having the estimated

dependence structure closer to those requested by sample return moments.

6.2 Tests of Predictive Ability

To evaluate the statistical significance of the forecasting results, we adopt
Giacomini and White (2006) test of conditional predictive ability. Table
4 presents the test results. The rejection of the null of equal predictive
ability is denoted by *, ** *** at 10%, 5%, and 1% significance levels.
Relative performance summarizes the relative out-of-sample performance by
computing the proportion of times over the whole forecasting period that
the foregoing decision rule chooses the model given in column heading over
the model given in row heading. The entries of decision rule, scaled by
10%, is the mean values of fitted loss function difference. Following the two-
step procedure of Giacomini and White (2006), in the case of rejection, the
decision rule chooses the model in column heading if its entry is positive,
and vice versa. For technical details, see Giacomini and White (2006). Panel
A and Panel B report the test results from the squared and absolute errors,
respectively. The test results for the full and comparison forecast periods are

reported.*
|Table 4 about here]

For the constant models in the comparison sample period, Table 4 has
the similar results to Anatolyev and Gospodinov (2010) that the constant
decomposition models do not show statistically significant differences from
historical average and linear models, although the relative performance sug-
gests that the constant models dominate both historical average and linear
models.

However, the dynamic decomposition models tell different stories that the

statistically significant differences from historical average and linear models

4Other subsample periods are too short to conduct Giacomini and White’s test.
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have been observed in many dynamic model estimations. For instance, in
the comparison period based on absolute errors, most DDM — C'Is are sig-
nificantly different from historical average, and most of DDM — CDs are
significantly different from linear model. Furthermore, the tests based on the
full sample period provide more convincing evidence for the superior predic-
tive performance based on both squared and absolute errors. Table 4 also
shows that the dynamic decomposition models are statistically different from
constant decomposition model in both sample periods and different measures
of loss functions.

More importantly, in these significant cases, the values of decision rule
are positive, which imply the decisions of choosing dynamic decomposition
models given in column headings. In addition, all the dynamic decomposition
models have dominated benchmarks in terms of relative forecasting perfor-
mance. For instance, the dynamic decomposition models have on average
approximately 90% of the times over the whole forecasting period perform-
ing better than benchmarks.

In general, the plot of the predicted loss differences is useful for assessing
the relative performance of the competing methods at different times. Fig-
ure 4 plots the predicted loss differences over time: Panel A uses historical
average as benchmark and Panel B uses CDM — CTI as benchmark. A posi-
tive value at time ¢ indicates the competing models perform better than the

benchmarks.
|[Figure 4 about here]

Panel A is able to distinguish the under- vs. out-performance periods of
the models. Both CDM —CD and DD M — C' D have positive loss differences
in most of time periods above the zero line. Specifically, during the financial
crisis, the decomposition models are improved dramatically by exploiting the
dependence between return absolute values and signs, which turns the loss
difference to be positive, compared to the conditional independence cases
with negative loss difference. The evidence is even more consolidated when
comparing dynamic models to constant models in Panel B. The most impres-

sive improvement is during the two turmoil times shown as the positive loss
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difference over the period of time.

6.3 Copula Specifications: Out-of-Sample Density Fore-

cast Comparison

It has been recently developed to assess relative predictive accuracy by com-
paring out-of-sample density forecast through the Kullback-Leibler informa-
tion criterion (KLIC). Amisano and Giacomini (2007) provide an interest-
ing interpretation of the KLIC-based comparison in terms of scoring rules,
which are loss functions depending on the density forecast and the actually
observed data. Diks et al. (2010) compare predictive accuracy of various
copula specifications from an out-of-sample forecasting perspective by using
out-of-sample log-likelihood scores obtained from copula density forecasts.
Their test method is valid under general conditions on the competing copu-
las including the density forecasts from time-varying copula parameters.

In this paper, we apply Diks et al. (2010) approach to evaluate the
predictive accuracy of density forecasts among our copula decomposition
specifications, particularly eq(3.6)-(3.13). The KLIC of density forecast
obtained from a copula-based model can be decomposed as KLIC;;; =
ijl logfj,t(Y}'7t+]_) + logét(UtH), where ¢ is the conditional copula density
associated with the density forecast, and f;; is the forecast of marginal dis-
tribution, j. In our case, d = 2 for absolute returns and signs. Since in this
paper the conditional marginals are identically specified, the marginal log-
likelihood, logft(YtH), are canceled out, so that the test for the null hypoth-
esis of equal predictive accuracy is Hy : E(AKLIC) = E(logéas(Upsr)) —
E(logéat(UtH)) = 0, where the term logém(UtH) is a score assigned to the
copula model i based on the obtained probability integral transform (PIT)
Ut+1. The test statistic of equal KLIC scores, based on a heteroskedastic-
ity and auto-covariance consistent (HAC) estimator, asymptotically follows
a standard normal distribution by applying Theorem 4 of Giacomini and
White (2006). For details, see Diks et al. (2010).

Table 5 presents the test results of out-of-sample density forecasts for

the decomposition models. We use the constant decomposition model as
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benchmark, c, and the dynamic models as cg. The values in Table 5 is
the mean of AKLIC. The value signs indicate which copula specifications
perform better. In particular, a negative value indicates the better predictive
accuracy from the copula model given in column heading, as a higher average

copula score is preferred.
|Table 5 about here|

The test results in Table 5 show that the differences between the copula
models are statistically significant. In most of the significant cases, the dif-
ferences between KLIC scores are negative. For instance, IGtype, OSA and
T'S A have the best predictive accuracy of density forecasts. All these models
statistically significantly outperform the constant decomposition model due
to their negative AK LIC' signs across various sample periods. Table 5 also
exhibits that ExpWeight and Gtype dynamic models have negative signs but
insignificant. As a result, the test results for out-of-sample density forecast
accuracy are consistent with the tests of Giacomini and White (2006) that
both show the forecasting improvement from modeling time-varying skewness

by allowing the dynamic copula specifications .

7 The Sources of Forecasting Performance

The existing literature on out-of-sample forecasting has devoted to test whether
one model performs equally well or superior to the other models in a statis-
tical sense, e.g., Diebold and Mariano (1995), West (1996), White (2000)
and Clark and West (2006), among others. Elliott and Timmermann (2008)
provided a review. However, the comparison in a pseudo out-of-sample fore-
casting environment informs the researcher only about which model forecasts
best, and do not shed light on why that is the case. In contrast, the recent
paper, Rossi and Sekhposyan (2011), proposes a new econometric pin-down
method to decompose the existing measures of forecasting performance into
the uncorrelated components, namely predictive content, over-fitting issue,
and unstable forecasting ability, in order to exploiting the sources of fore-

casting performance.
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This paper particularly emphasize in the source component of unstable
forecast ability. The unstable forecasting ability might be caused by changes
in the parameters of the models, as well as by unmodeled changes in the
stochastic processes generating the variables. The instability of models’ fore-
casting ability measures the presence of time variation in the models’ per-
formance relative to their average performance in the presence of no time
variation in the expected relative forecasting performance.

Table 6 presents the test results for the unstable forecast ability with
the forecasting period: 1982:01-2010:12.5 The models in the first column
as benchmarks are compared to the models in the first row. The entries in
table 6 are the test statistics for the null hypotheses of no difference in time
variation of forecasting ability, denoted as F;(,A) in Rossi and Sekhposyan
(2011). Panel A and B report the test results from the loss functions of

squared errors and absolute errors, respectively.
|Table 6 about here|

The test results show that the dynamic decomposition models accounting
for time-varying skewness have significantly different forecasting ability over
time. The null hypothesis of no difference in the time variation of forecasting
ability are rejected for all pairwise model comparisons based on both squared
and absolute error loss functions. For instance, the dynamic decomposition
models could outperform constant decomposition models within a certain
time period, but possibly underperform for the other subperiod. Prominently,
these test results substantially support our empirical findings in previous
sections that the out-of-sample forecast of our dynamic decomposition models
generates much bigger gains than the constant models; nonetheless, the gains
are much smaller in a tranquil period than during a turmoil time. Also,
an investor benefits largely from the forecast models based on conditional
dependence within a turmoil time. This timing specific nature is highly in
line with the test results for unstable forecasting ability. Tests for the other

two components, not reported here, also provide the empirical evidences for

50ther subsample periods are too short to conduct the test of Rossi and Sekhposyan
(2011).
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understanding the different forecasting performances between models. The
significant difference in predictive content is due to the dynamic function
form in dependence parameters for modeling time-varying tail dependence
and asymmetry. By contrast, no strong evidence show the difference in over-

fitting issue between the models.

8 Links to Real Economy

The further forecasting improvement could also lie in whether the forecasts
are significantly and economically connected to real economy and justified
by economic theories. Campbell and Thompson (2008) argue that the em-
pirical models can yield useful out-of-sample forecasts if one restricts their
parameters in economically justified ways. Recently, the finance literature
has been exploiting the implications and evidence of economic theories in
out-of-sample forecasting. Engle and Rangel (2008) and Engle et al. (2008)
find that imputing economic fundamentals into stock volatility models pays
off in terms of both long and short horizon forecasting. Ghysels et al. (2011)
show a strong relationship between the conditional skewness and macroeco-
nomic variables. Rapach et al. (2010) link the combination forecasts to the
real economy for an economic rationale of the out-of-sample gains.
Particularly, we investigate whether the forecasts of time-varying skew-
ness and downside risks can be explained by a set of predetermined state
variables and well trace to economic fluctuations. The monthly economic
state variables, including NBER-dated business-cycle, GDP growth rate, in-
flation, short-term interest rate, term premium and term spread, were taken
from Federal Reserve Bank of St. Louis and the housing price from Fed-
eral Housing Finance Agency. The difference between corporate bond Aaa
and Baa yields represents term premium as a proxy of credit risk, while
term spread is computed as the difference between 10-year and 3-month T-
bill rates as an expectation of term structure for future economic condition.
Using the out-of-sample rolling window, we also compute the volatility for
short-term interest rate, GDP growth, inflation and housing price as the

proxy of macroeconomic uncertainty.

30



8.1 Trace to NBER-dated Business Cycle Phases

In the spirit of Rapach et al. (2010), we trace the time-varying skewness and
down risk forecasts to NBER-dated business cycle phases, to see if there is any
evidence for the connections to macroeconomic fluctuation. Figure 5 depicts
the out-of-sample forecasts along with vertical lines indicating NBER-dated
business-cycle phases of recessions (Rec) and expansions (Expan). Peaks (P)
and troughs (T) in Figure 5 are used to track turning points of these phases.
Over the 1982:01-2010:12 out-of-sample period, there are four recessions:
(1) 1982:01-1982:11; (2) 1990:08-1991:03; (3) 2001:04-2001:11; (4) 2008:01-
2009:06.

|[Figure 5 about here]

Figure 5 shows well-defined patterns for these forecasts around the peaks
and troughs. We have the following observations in order:

(i) The forecasts of return downside risk have sharp increases during these
recession periods and quick drops at the end of each recession period to
become turning points of recovering from bad times. These forecasts also
show low values closely near the peaks preceding these recessions, which
together with the followed sharp increases form turning points of entering
bad times. The forecasts of downside risk during expansion times are low
with downtrend.

(ii) The forecast of return skewness for the recession of early 1990s is
modest, while the largest changes in return skewness forecast occur in the
recent financial crisis. This makes sense, since the former recession is much
milder than the recent financial crisis. The skewness forecasts have well
reflected the turning points of in and out of bad times. On the contrary,
there is not much fluctuations in the skewness forecasts of historical average,
which has only a sudden and permanent decreasing in 1987, corresponding
to the stock market collapse.

Overall, Figure 5 demonstrates that the forecasts of time-varying return
higher moments closely track NBER-dated business-cycle phases. The his-
torical average forecast appears too smooth; that is, from an economic per-

spective, the historical average forecast ignores business-cycle fluctuations
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and thus fails to incorporate meaningful macroeconomic information. Oppo-
site to the historical average forecast, the decomposition model is capable of
including relevant macroeconomic information. In what follows, we further
investigate the relation significance between the forecasts and macroeconomic

variables.

8.2 Relation with Macroeconomic Variables

To investigate the connections of these forecasts to macroeconomic variables,
following Ghysels et al. (2011), we run the regressions of the forecasting

values at time ¢ 4+ 1 on state variables at time ¢:

Vg1 = Qo + 0174 + €141

where 0,1 = {mt+1, s//@;m} are forecast values at time ¢ + 1 of
time-varying downside risk and skewness from (4.4) and(4.7); and, z;, =
{GGy, Infly, IR,, HP,, TP,, T'S;,} contains the set of macroeconomic vari-
ables at time ¢, namely GDP growth, inflation, short-term interest rate,
housing price, term premium and term spread, respectively. e;;q is error
terms. The significance of the coefficient, ¢, is of interest for a relationship
testing purpose. Table 7 reports the regression results of the coefficient, ¢,
along with its significance at 1%, 5%, and 10% levels denoted by ***  **

and *.

|Table 7 about here|

8.2.1 Term Premium and Term Spread

The correlations between the forecasts and term spread are statistically sig-
nificant. In particular, term spread is positively correlated with downside
risk and negatively with skewness. Such significant correlations indicate that
the forecasts from the decomposition models effectively incorporate macroe-
conomic information (e.g., the expectation of future economic conditions),
and their forecast performance can be explained (justified) to some extent

by economic conditions. The forecasts are also substantially correlated with
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credit risk(term premium). This result indicates that credit risk is more
likely a type of tail risk or extreme events which can be better modeled by

the tail dependence.

8.2.2 Interest Rate

All the decomposition models have shown significant negative relations of the
short-term interest rate with downside risk, whereas the significant positive
correlations with return skewness forecast can be seen only in ExpWeight
and IGtype decomposition models. The negative correlations of the interest
rate with downside risk forecasts make sense in that an increase in interest
rate will generally have a negative effect on stock markets.

The volatility of short-term interest rate is not correlated with downside
risk and skewness forecasts. These results show that the interest rate un-
certainty does not explain well the forecast performance of decomposition
models; and, there is less evidence that the asymmetric effects of returns

(skewness) are affected by short-term interest rate.

8.2.3 GDP Growth

We see that the skewness forecasts are not significantly correlated with GDP
growth rate; however, GDP growth rate can significantly explain the fore-
cast performance of decomposition models, having negative correlations with
downside risk. The negative correlations support the hypothesis that a good
economic condition generates lower level of downside risk.

In addition, the macroeconomic uncertainty measured by the volatility of
GDP growth is correlated positively with downside risk, and negatively with
its skewness forecast. Both the positive and negative correlations consoli-
date the risk-aversion and asymmetric hypothesis that an investor requires
higher premium for bearing macroeconomic risk. As a result, these results
indicate that the overall economic condition and investment environment are
the important factors to the forecast performance of decomposition models.
The return asymmetric effects and extreme event effects are in a large scale

related to the current economic state.

33



8.2.4 Inflation

There is no evidence to show inflation correlated with the forecasts. However,
we do find strong evidence in the inflation fluctuation, which is significantly
related positively with downside risk and negatively with skewness. This
result seems to show that an investor more care about bearing inflation risk,
but ignoring the level of inflation. Regardless of the inflation level high or
low, as long as it remains stable, an investor can stay with it quite well
without requiring much risk premium. In other words, even in the case of a
low inflation level, once the inflation risk increases, a risk-aversion investor
will require a significant level of risk premium for bearing such inflation
uncertainty, and even more in recession times due to the asymmetric effects

(the increased degree of skewness).

8.2.5 Housing Price

Since the credit crunch and defaults in mortgage markets have triggered the
recent financial crisis, housing price has drawn much more researcher’s atten-
tions nowadays. Table 7 shows that no forecasts are significantly correlated
with housing price. However, the negative economic connection is strongly
established between the housing price fluctuation and the forecasts of return
downside risk. This new evidence shows that the expectation for a “bad”
thing occurring in the future stock performance will be risen substantially by
the housing price uncertainty. If an investor is less clear about the housing
price risk, he or she will be more anxiety to expect a worse future in stock

performance.

9 Conclusion

This paper proposes the intriguing decomposition framework for modeling
the time-varying return higher moments in out-of-sample forecast. The em-
pirical results show that the proposed dynamic decomposition models, by
allowing the nonlinear dependence between absolute returns and signs time-

varying, consistently perform better out-of-sample than benchmark models.
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More interestingly, the time-varying nonlinear dependence shows some spe-
cific capability of timing markets, which provides remarkably useful implica-
tions for a risk-averse investor. It suggests the best strategies for an investor
who can employ the proposed dynamic decomposition model with conditional
dependence within a turmoil time, and in contrast with conditional indepen-
dence in a tranquil period. This timing specific nature is also supported by
the source test of unstable forecasting ability based on Rossi and Sekhposyan
(2011). To further gain the economic sense of forecasting performance, we
find that the forecasts of time-varying downside risk and skewness exhibit
well-defined patterns to trace closely to NBER-dated business-cycle phases.

They precisely forecast turning points for those peaks and troughs.
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Table 1: Pretesting the independence, constancy and choice of Copulas. All
tests, based on the empirical copula processes, have asymptotic distributions
of Cramér-von Mises with different degrees of freedom. The independence
and serial independence tests in Panel A are as proposed by Genest and
Rémillard (2004, 2006, 2007). The goodness-of-fit tests in Panel B are based
on Genest and Remillard (2008), Genest, Remillard and Beaudoin (2009),
Kojadinovic, Yan and Holmes (2011), Kojadinovic and Yan (2010 & 2011).
The constancy tests in Panel C are based on Busetti and Harvey (2011), and
Harvey (2010). t denotes quantiles.

Indep. Serial Indep.
Panel A: Independence Tests Test Test

p value 0.041 <0.001

Normal  Student-t  Frank FGM Gumbel Clayton

Panel B: Goodness-of-fit Tests Copula Copula  Copula Copula Copula  Copula
p value 0.040 0.043 0.040 0.035 <0.001 0.154

Panel C: Constancy Tests T p value T p value T p value
Overall Constant Copula 0.5 0.378

Joint Constancy of Lower-Upper Tails 0.25 0.384

Constant Lower Tail Dependence 0.25 0.031 0.5 0.019

Constant Upper Tail Dependence 0.5 0.006 0.75 0.076

Constant Asymmetry 0.25 0.006 0.5 <0.001 0.75 <0.001
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Table 2: In-Sample Estimations. The monthly sample periods estimated are
Jan. 1952-Dec. 2010 with 708 observations, and Jan. 1952-Dec. 2002 with
612 observations. Panel A is the estimated parameters and their statistics.
Panel B is robustness tests. Log-likelihood values are computed as the mean
of the sample log-likelihood values. Standard errors are reported in square
brackets. *, ** *** represent the significant levels of 10%, 5%, and 1%,
respectively. p-values are reported for likelihood ratio tests and Wald joint
significance tests.

Constant Dynamic Decomposition Models

Decomposition
Model Patton Exp-Weighted IGtype  Gtype  OSA TSA e Ve

Full Sample: 1/1952-12/2010

Panel A
(0] -2.940%%* -2.222* 1249 0221 0314
[0.895)  [1.198] (0.948] [0.133]  [0.324]
B 0218 0512 0.767*** 0.489**  0.932*** 0901*** 0.645%  0.732*
[0.455]  [0.395] [0138] [0.219] [0.062] [0.125]  [0.358]  [0.361]
Y 4.815%%%  3909*** 0313 4.865%** 3785**  0.087
[0637)  [0.571] (0.545] [1120] [L712]  [0.111]
A 0.702%** 1.848
[0.286] [3.027]
a 0.112%
[0.052]
Panel B
Log-Likelihood Values 1.830 1831 182 1827 183 1831 1833 1831 1834
Likelihood Ratio Test <0001 <0.001 <0001 0004 0040  0.005 0002 0036
Wald Joint Significance Test <0.001  <0.001 <0001 <0.001 <0.001 <0.001  <0.001  0.041
Subsample: 1/1952-12/2002
Panel A
w -2.664%*  -2.236% 1366 <0235 -0.247
[1.255]  [1.329] (1439]  [0.153]  [0.200]
B 0436 0492 0.768*** 0436 0933*** 0.927*** 0608  0.753
[0.381]  [0.415] [0.148]  [0.480] [0.063] [0.090] [0.791]  [0.492]
Y 4.749* 3802 0092 5301%*  4.031%** 0,046
[2.814]  [2398] (0.825] [2310] [1590]  [0.153]
A 0677 1.016
(0.292] [1.890]
a 0.093*
[0.055]
Panel B
Log-Likelihood Values 1.855 185% 1857 185 185  185%  1.8% 1855  1.855
Likelihood Ratio Test <0001  <0.001 <0001 0003 0041  0.006 0001 0030
Wald Joint Significance Test 0002 0012 <0001 0011 <0001 <0001 0065 0120
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Table 3: Out-of-Sample Forecast Results. Values in this table are the OS statistic in percentage. Conditional
Independence is ignoring the dependence by assuming conditionally independence between absolute returns and
signs; its forecasts are obtained by eq(4.2). In the conditional dependence, the forecasts are computed by eq(4.1).
The average performance of dynamic dependence models are computed.

Lingar Conditional Independence Conditional Dependence

Model Constant Dynamic Dependence Models Constant Dynamic Dependence Models

Model ~Patton ExpWeight lgtype Gtype OSA TSA  TVC [ITVC Average Model Patton ExpWeight Igtype Gtype OSA TSA  TVC [TVC Average

1982:02-2010:12
Squared errors 387 018 133 088 189 08 157 253 176 062 141 216 303 158 359 099 357 191 298 332 262
Absolute errors 35 070 167 108 159 146 167 174 145 053 140 13 280 176 219 216 312 251 267 294 259
1982:01-2002:12
Squared errors 461 323 380 389 462 318 334 346 332 362 366 279 318 311 344 25 288 292 281 32 301
Absolute errors 481 245 305 305 339 338 276 249 278 244 29 230 276 281 283 377 253 240 272 350 292
1982:01-1997:12
Squared errors 442 413 4l 526 505 526 456 475 368 434 464 079 089 114 166 176 125 166 0% 173 138
Absolute errors 49 361 406 461 420 532 407 376 369 360 41 187 18 2% 231 313 L9 1983 223 2% 239
1998:01-2002:12
Squared errors 508 112 28 070 362 172 049 044 248 194 135 518 982 85 936 858 877 534 825 962 833

Absolute errors A4 050 049 092 133 -15%6 058 074 044 057 -0.26 342 515 397 416 388 443 359 398 48 4N

2007:07-2010:12
Squared errors 067 357 041 091 L79 -136 157 506 352 -258 106 672 930 730 1231 001 1121 649 1084 902 831
Absolute errors 242 206 418 515 615 172 573 678 543 14 4N 655 840 674 1099 178 1138 837 909 722 800
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Table 4: Tests of conditional predictive ability based on Giacomini and White (2006). [a]: The relative performance
indicates the percentage of times the model in column j dominates the model in row i over the whole forecasting
period. [b]: decision rule is the two-step procedure for adaptively selecting a forecasting method at time ¢. The
entries in decision rule are the loss differences, E(A Ly, 14| Fr). Step 1: Test the null hypothesis of equal conditional
predictive ability between the model in column j and the model in column 7. The rejection at 10%, 5% and 1% are
denoted by *, **, *** respectively. Step 2: in case of rejection, the decision
E(ALy, 4| Fr) > ¢ and use the model in row i if E(ALy, 1| Fr) <c. cis a

we use ¢ = 0. Test details are referred to Giacomini and White (2006).

rule is: use the model in column j if
user-specified threshold. In our case,

C Conditi [}

Linear

Model CDM-CI CDM-CD Patton ExpWeight IGtype Gtype OSA TSA TVC ITVC Patton  ExpWeight  IGtype Gtype OSA TSA TVC ITVC
Panel A: Squared Errors
1982:02-2010:12
Historical Average
[a]: relative performance 0.081 0.418 0.885 0.767 0.697 0.723 0.637 0.749 0.807 0.778 0.599 0.954 0.948 0.914 0.741 0.902 0.752 0.983 0.994
[b]: decision rule -0.762 -0.047 0.371 0.179 0.090 0.247**  0.089*** 0.224 0.414** 0.262 0.038* 0.541 0.258 0.653 0.144 0.649 0.324**  0.531 0.599
Linear Model
[a]: relative performance 0.856 0.804 0.862 0.816 0.939 1.000 0.925 0.934 0.890 0.890 0.821 0.726 0.816 0.830 0.841 0.856 0.810 0.824
[b]: decision rule 0.715* 1.133*** 0.941** 0.852** 1.010 0.852 0.986 1.176 1.024 0.801 1.303*** 1.020***  1.415*%** 0.906*** 1.410*** 1.086*** 1.293*** 1.3p1***
CcbM-CI
[a]: relative performance 0.784 0.885 0.879 0.942 0.882 0.954 0.899 0.954 0.879 0.833 0.700 0.824 0.986 0.824 0.804 0.813  0.850
[b]: decision rule 0.417*** 0.226*** 0.137 0.295 0.136 0.270* 0.460*** 0.309 0.086 0.588*** 0.304*** 0.700*** 0.191 0.695*** 0.371*** (0.577*** 0.646***
CDM-CD
[a]: relative performance 0.314 0.242 0.343 0.285 0.311 0.548 0.352 0.265 0.937 0.104 0.827 0.130 0.965 0.268 0.879 0.850
[b]: decision rule -0.19%**  -0.28** -0.12%**  -0.28***  -0.14*** 0.043** -0.10*** -0.33*** 0.171 -0.113 0.282*** -0.22**  0.278 -0.04**  0.160*** 0.228***
1982:01-2002:12
Historical Average
[a]: relative performance 0.000 0.797 0.932 0.916 0.988 0.908 0.972 0.988 0.841 0.884 0.928 1.000 0.857 0.984 0.960 0.924 0.821 0.980  0.976
[b]: decision rule -0.846 0.521 0.201 0.629 0.645 0.781 0.513 0.540 0.566 0.540 0.594 0.365 0.324 0.443 0.410 0.357 0.216 0.284 0.466
Linear Model
[a]: relative performance 0.980 0.841 0.988 1.000 1.000 0.964 0.996 1.000 0.980 1.000 0.857 0.817 0.833 0.857 0.873 0.880 0.837 0.857
[b]: decision rule 1.367  1.046*** 1.475 1.491 1.627 1.358 1.386 1.412 1.386 1.440 1.210*%*  1.169***  1.289*** 1.255%** 1.202** 1.061* 1.129%** 1.311%**
CDM-CI
[a]: relative performance 0.378 0.896 0.968 0.841 0.287 0.857 0.964 0.912 0.801 0.462 0.474 0.514 0.486 0.454 0.355 0.430 0.542
[b]: decision rule -0.32*** 0.108 0.123 0.259*** -0.009 0.019 0.045 0.018 0.073** -0.15%*%  -0.19%**  -0.07*** -0.11*** -0.16%** -0.30*** -0.23*** -0.05***
CDM-CD
[a]: relative performance 0.677 0.681 0.705 0.677 0.673 0.673 0.637 0.653 0.992 0.968 1.000 0.892 0.952 0.964 0.992 0.964
[b]: decision rule 0.428*** 0.444***  0.580*** 0.311*** (0.339*** (0.365*** 0.339*** (.393*** 0.164 0.123 0.243 0.209 0.156 0.015 0.083 0.265
Panel B: Absolute Errors
1982:02-2010:12
Historical Average
[a]: relative performance 0.003 0.516 0.746 0.963 0.764 0.850 0.960 0.899 0.772 0.827 0.352 0.761 0.671 0.738 0.839 0.769 0.697 0.841 0.914
[b]: decision rule -12.943 0.291  5.746 3.514 1.538 3.225 2.810 3.483 3.772 2.802 -0.286 7.697**  4.205* 7.641**  5.542 8.727**  6.692*** 7.211  8.134
Linear Model
[a]: relative performance 0.813 0.893 0.847 0.850 0.882 0.971 0.902 0.916 0.856 0.853 0.908 0.873 0.928 0.914 0.911 0.963 0.890 0.879
[b]: decision rule 13.23*%* 18.68** 16.45*** 14.48* 16.16* 15.753 16.42* 16.714 15.74** 12.65** 20.63**  17.14** 20.58** 18.48** 21.66*** 19.635 20.15%** 21.07***
CDM-CI
[a]: relative performance 0.793 0.847 0.720 0.827 0.876 0.994 0.798 0.968 0.271 0.844 0.784 0.957 0.919 0.816 0.824 0.807 0.914
[b]: decision rule 5.455%*%  3.223%** 1.247***  2.934*%** 2520 3.193 3.481*** 2,512 -0.57* 7.406* 3.915 7.351 5.252 8.436**  6.401* 6.920* 7.844
CDM-CD
[a]: relative performance 0.352 0.098 0.323 0.271 0.219 0.297 0.314 0.205 0.879 0.308 0.617 0.354 0.980 0.712 0.804  0.862
[b]: decision rule -2.23%*  -4.207 -2.52% -2.936 -2.262 -1.974 -2.94%%  -6.03** 1.952 -1.54%**  1.896*** -0.204 2.982 0.946***  1.465%** 2.388**
1982:01-2002:12
Historical Average
[a]: relative performance 0.020 0.665 0.892 0.717 0.845 0.801 0.781 0.737 0.677 0.673 0.705 0.944 0.996 0.984 0.948 0.876 0.876 0.928 1.000
[b]: decision rule -17.215 5.234** 5281 7.192**  7.147 8.260* 8.252**  6.192 5.381** 6.291*** 5.175* 6.808 6.954 7.034 10.085 6.090 5.616 6.655 9.198
Linear Model
[a]: relative performance 0.936  0.944 0.952 1.000 0.996 1.000 0.996 0.984 0.936 0.980 0.952 0.920 0.936 0.964 0.936 0.964 0.944  0.924
[b]: decision rule 22.449 22.496 24.408 24.362 25.475 25.468 23.407 22.597 23.507 22.391 24.023 24.16* 24.24* 27.300 23.305 22.831 23.870 26.41*
CDM-CI
[a]: relative performance 0.546 0.884 0.976 0.801 0.944 0.880 0.622 0.900 0.426 0.594 0.598 0.590 0.717 0.574 0.582 0.598 0.701
[b]: decision rule 0.046*** 1.958*  1.913 3.025%** 3.018 0.957 0.147 1.057 -0.059 1.573*%** 1.719%**  1.799*** 4.850*** 0.855*** 0.382 1.420%** 3.963**
CDM-CD
[a]: relative performance 0.554 0.558 0.590 0.633 0.526 0.470 0.498 0.474 1.000 0.964 0.857 0.972 0.896 0.992 0.932 1.000
[b]: decision rule 1.911*** 1.866** 2.979** 2.971* 0.911 0.100**  1.010*** -0.10*** 1.527 1.673 1.753 4.804 0.809 0.335 1.374 3.917




Table 5: Comparison of copula specifications in out-of-sample density fore-
casts. The values, scaled by 100, are reported the averages of the difference in
density forecasts between the benchmark model and competing models. The
benchmark model is the constant decomposition model. The null hypothesis
is the equality of the density forecasts between the benchmark model and

a competing mode

1 X cksk skekk
. ’ )

represent the significant levels of 10%, 5%,

and 1%, respectively. In the case of rejection, a negative value provides the
evidence of the superior density forecast ability of a competing model over
the benchmark model. The tests in this table are based on Diks et al. (2010).

Patton ~ ExplWeight  IGtype ~ Gtype  OA T TVC C
1982:02-2010:12 02364 0052 Q%09 %1 QM3 0516 01 00
1982.01-2002:12 0484 100 1™ 00 Al 08t
198201-1997:2 R K SO S | VA N K
1998:01-2002:12 005 0235 0806 025 024 3 0106 00
200707201012 D29 20600 0189 209 036 063 0612 060
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Table 6: Sources of Forecasting Performance. The entries are test statistics for the null hypotheses of no difference
in time variation of forecasting ability. The historical average, linear model, and constant models in the first column
as benchmarks are compared to competing models in the first row. *, ** *** denote the significance levels at 10%,
5%, and 1%. Panel A and B use squared and absolute error as a loss function, respectively.

linear Conditional Independence Conditional Dependence

Model CDM-Cl (DM-CD  Patton ExpWeight IGtype Gtype  OSA TSA vC ITVC Patton ExpWeight IGtype Gtype  0SA TSA VC ITVC
Panel A: Squared Errors
Historical Average 10.54 1207#4%% - 12.44%%%  1338%F* 2042%*F  18.02%** 1116  14.04*** 20.52%** 14.45%** 1154 13.06%%*%  19.43%**  17.22%**% 1011 14.19%** 21.94%** 14.77+** 11.85
Linear Model 1304%%F  13201%%F  1327%FF 1942%¢%  17.39%F% 16.11%*F% 14.15%%*F 14.70%F* 14.07%%* 13774 1308*** 18.66***  16.73%** 16.11%** 14.40%** 16.22*** 14.39%** 13.98***
CDM-CI 9.102 19.45%%% 28 51%F*  556%** 27.80%*F* 23.50%** 27.01%** 35.86%** 1541%**  14.68%** 26.60***  22.35%** 2583*** 20.83*** 25.03*** 3539%** 11.17
CDM-CD 21.70%%% 27.44%*%  23.83%** 29.43%** 23,59%** 28 87*** 34.34%** 2058***  1830*** 2637***  23.17*** 28.32%** 23.34*** 27.65%** 36.70%** 16.94***
Panel B: Absolute Errors
Historical Average 12.39%%%  1496%**  14.69%F*  14.84%** 2178%**  18.90%** 15.64%F* 13.75%F* 1739%** 14.59%F* 14.10%**  1565%** 21.89%**  19.40%** 15.66*** 15.11%** 19.69%** 15.80*** 14.05%**
Linear Model 19.31%%%  19.29%**  17.73%** 17.98%**  16.81%** 18.16*** 17.53*%** 17.39%** 1935%** 17.92%**  1744%** 1822%**  16.84*** 18.22%** 17.24*** 17.18*** 19.15%** 18.14***
CDM-CI 13.72%%%  15.96%** 24.63%**  20.82*%** 22.64*** 21.85%** 26.65*** 23.46*** 8.978 15.11%%%  24.79%%*%  21.30%** 20.06** 23.53*** 25.05*** 25.82*** 8376

CDM-CD 15.91%%% 22.74*%*  17.71%** 24.13*** 21.00*** 28.09*** 23.68*** 1141 16.42%%*  23.45%**  20.76*** 22.74*** 24.21*** 26.89*** 25.15*** 7.707
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Table 7: Links to real economy. TP is term premium. TS is term spread. IR is short-term interest rate, which
is GDP growth computed as the changes in industrial production. Infl is
* ¥ FEE denote the significance levels at 10%, 5%, and 1%.

Macro Variable in Level

is 3-month T-bill in this context. GG
inflation. HP is housing price changes.

Macro Variable in Volatility

TP TS IR GG infl HP IR GG infl HP
Panel A: Downside Risk
Historical Average 0.009%** -9.30 -0.00%** -0.00 -0.00%* -0.00 -0.00%** -0.03** 0.036 -0.00%**
Constant Model -0.06*** 0.008** -0.00** -0.02%** 0.014 0.0006 0.001 0.446%** 2.392%** -0.0014***
Patton -0.06*** 0.009** -0.00** -0.02%** 0.019 0.0006 0.001 0.488*** 2.677*** -0.0012**
ExpWeight -0.06*** 0.012%** -0.00 -0.02%** 0.016 0.0007 0.003 0.448*** 2.371%** -0.0010**
IGtype -0.06*** 0.012%** -0.00** -0.02%** 0.019 0.0006 0.004** 0.543%** 2.719%** -0.0010**
Gtype -0.05%** 0.004 -0.00 -0.02%** 0.020 0.0003 0.001 0.375%** 1.932%** -0.0012***
OSA -0.06*** 0.009** -0.00%* -0.02%** 0.017 0.0007 0.002 0.468*** 2.460*** -0.0013***
TSA -0.05%** 0.007** -0.00** -0.02%** 0.014 0.0002 0.001 0.444*** 2.313%** -0.0013***
TVC -0.06*** 0.010** -0.00** -0.02%** 0.014 0.0003 0.002 0.496*** 2.653*** -0.0013***
ITVC -0.06%** 0.009** -0.00** -0.02%** 0.016 0.0003 0.001 0.474*** 2.575%** -0.0013***
Panel B: Skewness
Historical Average -7.54%** 5.259%** 6.033*** 6.289*** 11.57** 0.150 4.736%** 7.878 -638.*¥** 1.410%**
Constant Model 4.789%** S2.77*** 0.330 0.361 3.795 0.089 -0.68 -32.3%* -187.%** -0.12
Patton 3.857** -1.26 -0.27 0.996 4.399 0.152 -0.23 7.189 34.12 -0.08
ExpWeight 2.285 -0.84 -1.81%** 3.110 3.348 0.099 0.204 78.75%** 524, 7*** -0.22
IGtype 0.859 -0.13 -1.28%** 1.564 3.509 0.144 -0.10 42.68** 275.6*** -0.15
Gtype 4.149%* -1.27%* 0.465 1.543 5.111 0.156 -0.42 -27.4%* -190.%** -0.04
OSA 2.454 -1.94** -0.12 -0.17 1.333 0.093 -0.58 -4.24 -49.2 -0.17**
TSA 3.492%* -2.20%** 0.072 0.597 3.397 0.125 -0.65 -8.61 -85.4 -0.14
TVC 4.964%** -2.76%** 0.223 0.124 4.714 0.100 -0.77 -32.5%* -189.%** -0.13
ITVC 4.774** -2.44%** 0.310 0.734 4.767 0.101 -0.70 -34.7%* -223.¥** -0.13




Figure 1: Scatter-plots of simulated return moments against changes in de-
pendence parameters, o, of Clayton copula. The solid lines represent sample
return moments of U.S. returns. The dotted lines are the estimated depen-
dence structure from constant decomposition model.
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Figure 2: Plot of Out-of-Sample Forecasts from Constant decomposition model (solid line), linear model (dash-dotted

line), and dynamic decomposition model (dash line). The out-of-sample forecast period is 1982:01-2010:12.
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Figure 3: Out-of-sample dependence structure estimation from the constant decomposition model (solid line) and

the dynamic decomposition models (non-solid lines).
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Figure 4: Plots of predicted loss differences over the entire time path. The
horizontal line denotes a zero level. Positive values represent the time periods
that a competing model performs better out-of-sample than benchmarks.

Panel A: Historical average as benchmark

Historical Average vs. Constant Model From Conditional Independence Historical Average vs. Constant Model From Conditional Dependence

predicted loss difference
predicted loss difference
o

T T T T T T T T T T
1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010

Time Time
Historical Average vs. Dynamic Conditi Historical Average vs. Dynamic Model From Conditional Dependence
3
o |
< 3
S
3 g
g g
g o 5 o
g s g °
5 5
8 o 8 5
o v
8 o g
s 9 3 o M M
8 8 !
by LA AN I
S
! -
o S
i
T T T T
1985 1990 1995 2000 2005 2010
Time Time

Panel B: Constant decomposition model as benchmark

Conditional Independence: Constant vs. Dynamic Models Conditional Dependence: Constant vs. Dynamic Models

1.0

05

MMM AWANVM MLM

predicted loss difference
00

predicted loss difference

-0.5

T T T T T T T
1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010

Time Time

02



Figure 5: Plots of out-of-sample forecasts for time-varying downside risk
and skewness along with vertical lines indicating NBER-dated business-cycle
phases. “Rec” and “Expan” denote recession and expansion periods, and “P”
and “T” represent a peak and a trough, respectively.
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A Higher Moments’ Forecasting

We integrate the following integral

ft = Et—l (‘Tt — C| ]I[Tt > C])
+o0
= [ uf @) o (F (wl)) du (A1)
0
We transform the infinity domain to be [0,1] by letting z = F (ul¢).

Hence, we have u = F ' (z|¢)) with 0 < z < 1 since F(-) is a CDF function.

Now, we rewrite (A.1) as:

& :/0 Q(2)o (2)dz (A.2)

1

where Q(z) = F ' (z|v) f (F*(ZW)W)) OF (aly) |

w\F
In our case, z = F(ulyp) =1 — e (3)" with k,A > 0 is a Weibull CDF
distribution, and u = F (z|¢)) = X [—In (1 — z)]% Further, the PDF for a
Weibull distribution is:

such that

f(F_l(z;A,k); A,k) = f{A[—ln(l—z)]%}

o4



and

oF sk O{A-(— 2]
0z 92

Combine (A.3) and (A.4) to obtain

Q(z) = Al-In(1—2)*F (A.5)

Therefore, Q(z) = u = F~!(z|¢) is the quantile function of the Weibull
distribution for z.

The solution for F(r;)? is derived as:

E'(Tt)2 _ /O+Oou2f(u|1/1t)du
= [l (7 Gl -l

_ /01 [P ()] d2

dz

Note that u = F~!(z|¢;) = Q(z), and based eq(A.3) and A 4, f (Fﬁl(zwt)]wt) w =

1. Thus, we have

E(r)? = / Q) dz (A.6)

for Q(z) = A[—In(1— z)]% as in eq(A.5). Following the proof of eq(A.6), we
can obtain the solutions of E |r,|* as in (4.6).
The solution for E(r?I(r, > 0)) is derived as

25
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E(TE]I(Tt>O)) = /0 uzf(th)Qt(F(th))du
= [Tl (P Gl a2,
= /0 [P )] oi(2)d

- [ 16er et

Similarly, we can prove the solution of E(|r,|* I(r; > 0)) as in eq(4.5).

o6
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