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Abstract

The leverage parameter is shown to turn up as part of the third-
order moment when a stochastic volatility process is linearly filtered.
If the filter is of the autoregressive class and possesses complex-valued
roots or is a Gegenbauer long-memory filter, the leverage effect plays
a determinant role in producing Amplitude Asymmetric Cycles, in
which the degree of asymmetry depends on the persistence of the
process at both levels (conditional mean and variance), the variance
of the shocks to the volatility and the value of their inter-temporal
correlation with the shocks to the levels.

Keywords: Leverage, stochastic volatility, skewness, amplitude asym-
metric cycles
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1 Introduction

Business cycle data are characterized by a number of non-linearities among
which the Amplitude Asymmetry, that is, differing lengths from the mean at
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peaks or troughs, is one of the least understood by macroeconometricians.
When a series displays signs of negative (positive) deepness asymmetry, it
is skewed negatively (positively), troughs are further (shorter) below mean
than peaks are above and there are more (less) observations above it than
below. Therefore, negative (positive) deepness asymmetry is the cyclical
expression of negative (positive) skewness in the series. Following this ap-
proach, Sichel (1993) proposes a test for amplitude asymmetry based on the
sample skewness and reports evidence of negative deepness asymmetry in the
unemployment and industrial production of US.

This asymmetry takes place in a scenery of strong persistence as oscil-
latory deviations from the trend level of the economic activity can remain
present for long periods of time. Collard (1998), Candelon and Gil-Alaña
(2004), Arteche and Velasco (2005), Caporale and Gil-Alaña (2006, 2007) and
Ferrara and Guegan (2008) have proposed cyclical and seasonal long memory
models in order to capture this periodic dependence in many macroeconomic
series.

On the other hand, heteroscedasticity in the cyclical behaviour has been
a key concept of business cycle modelling since the seminal paper by En-
gle (1982), who proposes an autoregressive conditional heteroscedasticity
(ARCH) model to capture the time-varying volatility of inflation rates in the
United Kingdom. Bollerslev (1986) proposes a natural extension, the Gen-
eralized ARCH (GARCH) models, to allow for past conditional variances in
the conditional variance equation that avoids the use of highly parametrized
models. Hamori (2000) fits GARCH(1,1) processes to the volatilities of the
GDP growth rates for US, UK, and Japan and finds evidence of lower volatil-
ity during expansions.

An alternative approach to the GARCH family, the Stochastic Volatility
(SV) models, were introduced by Taylor (1986) with the purpose of capturing
the statistical properties of daily asset returns. In SV models the volatility
depends on an unobservable stochastic process with innovations different to
those affecting the levels, which allows for a more flexible definition of the
stationarity conditions including long memory (Harvey, 1998; Breidt et al.,
1998), whereas Giraitis et al. (2000) show that stationarity and long memory
of squares are incompatible in GARCH models so strong persistence in the
squared observations necessarily implies explosive variance. SV long memory
models have been fitted to the volatility of Spanish inflation (Arteche, 2011).

A second property of the volatility of the returns of many economic series
is the asymmetric response to positive and negative shocks. This behaviour,
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firstly described for financial series by Black (1976), is known as leverage
effect for its consequences in this area. Ho and Tsui (2003) find significant
evidence of conditional volatility asymmetry in the growth rates of Canada
and the United States. Ho et al. (2009) fit five VC-QGARCH(1,1) models
to the five sectors of the US index of industrial production (consumer good,
investment good, manufacturing, non-durables and raw materials). Their
results show a negative leverage in all the five series implying that negative
shocks induce greater future volatilities on IIP than positive shocks of the
same magnitude.

This paper links the first one and the last one of the aforementioned ob-
served stylized facts in business cycle data and shows that a non-zero inter-
temporal leverage effect in the stochastic volatility process of innovations
produces a non-zero skewness in the series, which turns out as amplitude
asymmetry in cyclical models. This effect can be accommodated for both
short and long memory processes therefore providing the second order au-
toregressive amplitude asymmetric models and the Gegenbauer long memory
amplitude asymmetric models.

The structure of the paper is as follows. Section 2 shows the general
forms of the third order and some other moments of linearly filtered leverage
stochastic volatility processes. Section 3 analyses some specific cases of Am-
plitude Asymmetric cycles, starting from the simplest AR(2)-LSV(δ) with
no serial dependence in the volatility, and explores the behaviour of the Am-
plitude Asymmetry as a function of the dependence structures of both levels
and volatility. Section 4 illustrates the results of previous sections by fitting
an amplitude asymmetric model to a version of the US seasonally adjusted
Index of Industrial Production and finally Section 5 concludes.

2 Linearly filtered Leverage Stochastic Volatil-

ity process

Let
Φr (L)ht = Θs (L) ηt, (1)

be a stationary and invertible process with ηt innovations, where Φr (L) =
1 + ϕ1L+ ϕ2L

2 + . . .+ ϕrL
r and Θs (L) = 1 + ϑ1L+ ϑ2L

2 + . . .+ ϑsL
s, and

by Wold’s decomposition theorem let ht =K (L) ηt be its MA representation
with K (L) = 1 + κ1L+ κ2L

2 + κ3L
3 + . . .. and w ∈ {s,∞}.
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Then let

yt = σ∗ exp

(
ht

2

)
εt, (2)

be a Stochastic Volatility process with σ∗ a scale factor and εt innovations
distributed conjointly with ηt as

(
ηt+1

εt

)
→ N

[(
0
0

)
,

(
σ2

η δση

δση 1

)]
. (3)

where δ ≡ corr (ηt+1, εt) is the leverage parameter that represents a non-zero
correlation between the shocks to the volatility and the one-lagged shocks to
the levels.

In this paper the leverage effect is modelled inter-temporally between
both processes of innovations. Jacquier et al. (2004) allow contemporane-
ous correlation as δ = corr (εt, ηt) and Yang (2008) explores the first four
moments of the resulting process yt for the simplest case of a non-serially
dependent ht in (2). He shows that δ plays a role in the mean, variance,
skewness and kurtosis although the effect of the leverage becomes negligible
in even moments for small values of this parameter.

However, as argued by Yu (2005), under contemporaneous correlation the
process yt is not a martingale difference sequence. Alternatively, Harvey and
Shephard (1996) propose to introduce an inter-temporal correlation as in (3).
With this specification, the variance and kurtosis of yt are independent of δ
and the process has zero odd moments.

Nevertheless, the correlation between εt and ηt+1 induces a correlation
between the squares of yt and its lagged values. Specifically, the third-order
generalized autocovariances1of yt are defined as

E
[
y2

t yt−k

]
= σ3

∗δκk−1ση exp

{
σ2

h [5 + 4ρh (k)]

8

}
, (4)

where κ0 = 1 and κk = 0 for k > w and ρh (k) is the autocorrelation func-
tion of ht. The finiteness of E [y2

t yt−k] is guaranteed by the usual stationary
restrictions on ht and the Gaussianity of εt and ηt.

Finally let

xt =
Θq (L)

Φp (L)
yt = Ψv (L) yt, (5)

1In the terminology of Welsh and Jernigan (1983).
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with Θq = 1−θ1L− . . .−θqL
q and Φp = 1−φ1L− . . .−φpL

p two polynomials
with all roots outside the unit circle and Ψv (L) = Θq (L) Φp (L)−1 = 1+ψ1L+
ψ2L

2 + . . . with v ∈ {q,∞}.
Then,

E
[
x3

t

]
= 3σ3

∗δση exp

(
5σ2

h

8

)

·
min{v,w+1}∑

k=1

{
κk−1 exp

[
σ2

hρh (k)

2

]
v−k∑

i=0

ψ2
iψi+k

}
,

(6)

with ψ0 = 1.

Eq. (6) shows that the skewness of xt, defined as γ3 = E [x3
t ] /E [x2

t ]
3
2 , is a

weighted sum of third-order generalized autocovariances of the process yt and
is determined by the variance of the process of innovations to the volatility,
the dependence structure at both levels of the series and the leverage coef-
ficient δ. Note that δ = 0 or Ψv (L) = 1 imply γ3 = 0 whereas δ 6= 0 and
Ψv (L) 6= 1 do not necessarily imply γ3 6= 0 but on the contrary a certain
resonance between the dependence structures of the volatility and the levels
of the series is required.

Some other moments of xt that can become non-zero or are altered by
the presence of a non-zero leverage effect are the third-order generalized
autocovariances of xt, defined as

E
[
x2

txt−k

]
=

v+k∑

i=k+1

v−i+k∑

j=0

ψ2
jψj+i−kE

[
y2

t yt−i

]

+
k∑

i=max{1,k−v}

v−k+i∑

j=0

ψjψ
2
j+k−iE

[
y2

t yt−i

]

+ 2 1N∗ (v − k)
v−k∑

i=1

v−i−k∑

j=0

ψjψj+kψj+k+iE
[
y2

t yt−i

]

where 1N∗ (ν − k) is an indicator function taking value 1 if v − k > 0 and 0
otherwise, and the fourth-order moment of xt which is

E
[
x4

t

]
=

v∑

i=0

ψ2
i E
[
y4

t

]
+ 6

v−1∑

i=1

ψ2
i−1

v∑

j=i

ψ2
j E

[
y2

t y
2
t−(j−i+1)

]

+ 12
v−2∑

i=1

ψ2
i−1

v−1∑

j=i

ψj

v∑

k=j+1

ψk E
[
y2

t yt−(j−i+1)yt−(k−j+1)

]
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with the fourth-order moment and generalized autocovariances of yt defined
as

E
[
y2

t yt−jyt−k

]
= σ4

∗δ
2σ2

ηκj−1

(
κk−1 +

κk−j−1

2

)

· exp

{
σ2

h

2

[
3

2
+ ρh (j) + ρh (k) +

ρh (k − j)

2

]}
,

(7)

E
[
y2

t y
2
t−k

]
= σ4

∗

(
κ

2
k−1δ

2σ2
η + 1

)
exp

{
σ2

h [1 + ρh (k)]
}
, (8)

and

E
[
y4

t

]
= 3σ4

∗ exp
(
2σ2

h

)
. (9)

3 Amplitude Asymmetric Cycles

3.1 AR(2)-LSV(δ)

Second order autoregressive processes with complex-valued roots (which im-
plies −2

√−φ2 < φ1 < 2
√−φ2) display what has been denoted as pseudo-

cyclical behaviour that takes place at the frequency ω = cos−1
(
φ1/2

√−φ2

)

(Yule, 1927). If the innovations are generated from a SV process with inter-
temporal leverage effect as defined in (2) and (3), a skewed stochastic cyclical
model that shows amplitude asymmetry is obtained.

The simplest specification, the AR(2)-LSV(δ) process, is built with Eqs.
1 to 3 and 5 where ht = ηt and (1 − φ1L− φ2L

2)xt = yt. In this case,

E
[
x3

t

]
=

3φ1 (1 − φ1φ2)σ
3
∗δση exp

(
5σ2

η

8

)

(φ1 + φ2 − 1) (φ3
2 − φ1φ2 − 1) (φ2

1 − φ1φ2 + φ1 + φ2
2 + φ2 + 1)

.

(10)

Figure 1 shows the skewness of the AR(2)-LSV(δ) process xt for several
combinations of the AR parameters below the curve φ2

1 + 4φ2 = 0. In this
figure φ2 ranges from -0.05 up to -0.95, decrementing by -0.1, and φ1 =
−7

√−φ2/4, . . . , 7
√−φ2/4 incrementing by

√−φ2/4
2. When φ1 = −2

√−φ2

2In this figure, as in Figure 3, δ = σ∗ = σ2
η = 1.
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Figure 1: Skewness of an AR(2)-LSV(δ) process as a function of φ1 and φ2.

the process behaves pseudo-cyclically with frequency π. The frequency de-
creases as the value of φ1 increases and equals ω = π/2 for φ1 = 0 and
ω = 0 for φ1 = 2

√−φ2. The values of γ3 for φ1 = 7
√−φ2/4 in Figure 1 are

representative, therefore, of the behaviour of this measure of asymmetry for
business cycle frequencies. As can be seen, for these values of φ1 the am-
plitude asymmetry is relatively larger, reaches a maximum for intermediate
values of φ2 and displays identical sign as the leverage parameter.

Figure 2 depicts six examples of cyclical AR(2) processes with parameters
φ2 = −0.9875 and ω = 0.01 and LSV innovations with δ = ±0.95, no
dependence structure in the cases of the first row, a first order autoregressive
process with parameter ϕ = 0.9 in the second row and a long memory at-the-
origin process in the last one. It can be observed a moderate deviation from
amplitude symmetry when the volatility only possesses a leverage effect that
is consistent with the sign of δ. Figures 2(c) to 2(f) show that this deviation
enlarges in a considerable manner when the process of volatility has a stronger
persistence.
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(b) AR(2)-LSV(δ = −0.95)
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(c) AR(2)-ARLSV(ϕ = 0.9,δ = 0.95)
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(d) AR(2)-ARLSV(ϕ = 0.9,δ = −0.95)
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(e) AR(2)-LMLSV(d = 0.45,δ = 0.95)
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(f) AR(2)-LMLSV(d = 0.45,δ = −0.95)

Figure 2: AR(2) examples with LSV innovations. φ2 = −0.9875 and ω =
0.01.

3.2 GLM(d, ω)-LSV(δ)

The interaction between a LSV(δ) process and a Gegenbauer long mem-

ory filter, defined as (1 − 2L cosω + L2)
d
, produces a long memory ampli-
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Figure 3: Skewness of a GLM(d,ω)-LSV(δ) process as a function of d and ω.

tude asymmetric cycle with period τ = 2π
ω

. Specifically if ht = ηt and

(1 − 2L cosω + L2)
d
xt = yt is imposed in Eqs. 1 to 3 and 5, the third-order

moment of xt is

E
[
x3

t

]
= 3σ3

∗δση exp

(
5σ2

η

8

)
∞∑

i=0

[
G

(d)
i (cosω)

]2
G

(d)
i+1 (cosω) , (11)

where G
(d)
i (cosω) are the inverse Gegenbauer coefficients which are defined

as

G
(d)
i (ξ) =

[i/2]∑

k=0

(−1)k Γ (i− k + d) (2ξ)i−2k

Γ (k + 1) Γ (i− 2k + 1) Γ (d)
.

Figure 33 shows the skewness of the GLM-LSV(δ) process xt with ω
ranging from 59π

60
up to π

60
, decrementing by 3.625π

60
and memory parameter

3The infinite sum in (11) is truncated at i = 40000 for this representation.
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(a) GLM-LSV(δ = 0.95)
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(b) GLM-LSV(δ = −0.95)
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(c) GLM-ARLSV(ϕ = 0.9, δ = 0.95)
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(e) GLM-GLMLSV(d = 0.25, ω = 0.01,
δ = 0.95)
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(f) GLM-GLMLSV(d = 0.25, ω = 0.01,
δ = −0.95)

Figure 4: GLM(d = 0.45, ω = 0.01) examples with LSV innovations.
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d = 0.05, . . . , 0.45 incrementing by 0.05. It can be seen that the skewness
behaves in accordance with the sign of the leverage parameter when ω < π

2

(which implies business cycle frequencies) and opposite sign when ω > π
2
. It

can be also appreciated that the skewness is larger in absolute value for low
(business cycle) frequencies.

Figure 4 depicts six examples of GLM processes with parameters d = 0.45
and ω = 0.01 and LSV innovations with δ = ±0.95, no dependence structure
in the two first cases, a first-order autoregressive process with parameter ϕ =
0.9 in the two second ones and another GLM process with parameters d =
0.25 and ω = 0.01 in the two last ones. Again, only a slight deviation from
amplitude symmetry is observed when the volatility process is characterized
by no serial dependence but a leverage effect, that is consistent with the sign
of δ. Figures 4(c) and (d) show that this deviation increases considerably
when the process of volatility obeys to a persistent AR(1) component and
even more when the volatility displays long-memory (Figs. 4(e) and (f)).

4 Empirical illustration

The empirical illustration focuses on the analysis of a series of the Industrial
Production Index (IPI). In this case we deal with a monthly version of the
US seasonally adjusted IPI compiled by the Federal Reserve Bank of St.
Louis. The sample spans from January 1919 to August 2011 with a length
of T = 1112 months. The series, displayed in Figure 5(a), is characterized
by a long-term increasing pattern altered by a series of fluctuations. The
long-term component (Figure 5(b)) and the short-term (cyclical) component
(Figure 5(c)) are separated using a Hodrick-Prescott filter with smoothing
parameter λ = 120000 (see Maravall and del Rio, 2001). Sichel’s test reports
the presence of negative amplitude asymmetry (skewness γ̂3 = −0.5738) at
the 10% level in the short-term component of this indicator.

The parametric maximum likelihood estimation of SV models in the time
domain is very difficult to implement due to the non-linearity of the model
and the presence of two different innovations, which in this case is aggravated
by the inter-temporal correlation between them and the dependence structure
in the levels. In the frequency domain it is substantially easier to implement
the asymptotic approximation to maximum likelihood based on the so called
Whittle function. Zaffaroni (2003) proves the validity of this approach for
the estimation of the ARMA parameters in levels when volatility takes the
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Figure 5: US SA Industrial Production Index

form of a non-linear moving average, closely related to SV models, that
allows for a wide range of forms of persistence in volatility. This method
is implemented here for the analysis of the levels of the series. Once the
dependence structure for the levels has been extracted the parameters of the
volatility process are estimated on the residuals by the Generalized Method
of Moments (Hansen, 1982). Simulation analysis not included in this work4,
show that this sequential approach yields controlled variances and almost
zero biases in finite samples.

Figure 6 depicts the correlogram and the periodogram of the extracted
short-term component xt shown in Figure 5(c). The spectral peak that ap-

4But available upon request.
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Figure 6: Periodogram and Correlogram of xt.

pears in the periodogram at the low frequencies (Fig. 6(a)) can be considered
as pertaining to a second-order autoregressive process. Once an AR(2) pro-
cess is fitted to the series a MA(1) model is found appropriate for the remain-
ing serial dependence. The joint Whittle estimation of all the parameters of
the ARMA(2,1) model yields the results of φ̂1 = 1.9158, φ̂2 = −0.9320 and

θ̂1 = 0.7929. The estimated process is characterized by cyclicity, specifically
at the frequency ω̂ = 0.1121 (τ̂ = 56.0498 months).

The periodogram and correlogram of the residuals ŷt = 1−1.9158L+0.9320L2

1−0.7929L
xt

and of the logarithm of the squares of the residuals log (ŷ2
t ) are displayed in

Figure 7. In Figs. 7(a) and 7(b) it can be appreciated no remaining serial
dependence in the levels of the series5.

Figure 7(d) shows a persistent set of positive hyperbolically decreasing
values in the correlogram of log (ŷ2

t ), which indicates that a long-memory
process at the origin is appropriate for the volatility of the series. This
statement is confirmed by the spectral peak in Figure 7(c).

5Pérez (2000) shows that the asymptotic autocovariances of SV processes are defined

as γy (k) = exp[γh(k)]
T

. However, as the process ht is unobservable, the asymptotic auto-
variances of ARCH(q) processes as shown by Milhøj (1985) and Krämer and Runde (1994)
and defined as

γy (k) =
1

T

[
1 +

γy2 (k)

σ2
y

]

are used in the confidence intervals of the correlogram in Fig. 7(b) where γy2 (k) and σ2
y

are substituted by their sample counterparts calculated on the residuals ŷt.
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Figure 7: Dynamics of the residuals ŷt.
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The estimation of all the parameters of the LMLSV model for the volatil-
ity (namely δ, d, ση and σ∗) is carried out jointly with the Generalized
Method of Moments (see Hamilton, 1994, page 409 and following pages for
a detailed description). The selected 16 targeting moments for the proce-
dure are E [y2

t ] = σ2
∗ exp (σ2

h/2) and E [y2
t yt−k] for k = 1, . . . , 4, E [y2

t yt−jyt−k]

for j = 1, 2, 3 and k = j + 1, . . . , 4, E
[
y2

t y
2
t−k

]
for k = 1, . . . , 4 and E [y4

t ],

calculated as in (4), (7), (8) and (9) respectively with σ2
h = σ2

η
Γ(1−2d)

Γ(1−d)2 and

ρh (k) = Γ(1−d)Γ(k+d)
Γ(d)Γ(k+1−d)

.

The GMM results of estimation of the parameters of the volatility are
d̂ = 0.4315, σ̂2

η = 0.5731, σ̂∗ = 0.2256 and δ̂ = −0.675. The value of

δ̂ = −0.675 provides outstanding empirical evidence supporting the existence
of a negative leverage effect in the volatility of the US IPI.

The volatility process ht can be estimated by means of the smoothing
method proposed by Harvey (1998). This method requires the inversion
of the Variance-Covariance matrix of log(y2

t ) which has T×T non-null en-
tries due to the long memory components in ht. However, in order to make
the operation tractable and considering that the autocovariances at widely
separated lags are negligible, the estimated Variance-Covariance Matrix is
truncated here to a size of 151 × 151.

The standardised residuals ε̂t of the complete ARMA(2,1)-LMLSV model
are obtained from this smoothed estimation of the volatility as

ε̂t =
ŷt

σ̂∗ exp
(

ĥt

2

) .

Figure 8 shows the periodogram and correlogram of log (ε̂2
t ), where no

remaining dependence in the volatility can be appreciated. Therefore, the
short-term cyclical component of the US IPI is coherent with an ARMA(2,1)-
LMLSV process. The overall estimated model (with the SE, calculated via
Monte Carlo in 10000 replications, in parenthesis) is

(
1 − 1.9158

(0.0672)
L+ 0.9320

(0.0656)
L2
)
xt =

(
1 − 0.7929

(0.0967)
L
)
yt,

with

yt = 0.2256
(0.0359)

· e 1
2

(1−L)

− 0.4315
(0.0707)

ηtεt,
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Figure 8: Dynamics of log (ε̂2
t ).

and

V̂ ar

[(
ηt+1

εt

)]
=


 0.5731

(0.3944)
−0.6753

(0.1653)

√
0.5731

−0.6753
√

0.5731 1


 .

The estimated third-order moment Ê [x3
t ] = −2.1365 closely matches the

sampling M3 = −2.4722.

5 Conclusions

This paper provides a modelling strategy of the deepness or amplitude cycli-
cal asymmetry, which is characterized by an oscillatory fluctuation that
reaches different distances from the mean at peaks or troughs and consti-
tutes a common phenomenon in macroeconomic data regarding the business
cycle. Specifically, it is shown that the amplitude asymmetry is stochas-
tically induced by the presence of a leverage effect or correlation between
the shocks to the levels and the one-leaded shocks to the volatility when
a Stochastic Volatility model is linearly filtered, which provides a flexible
and global definition for both short and long memory amplitude asymmetric
models. The degree and sign of asymmetry is governed by the degree and
sign of the leverage correlation, the variance of the shocks to the volatility
and the dependence structures at both levels and volatility.
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Two cases are analysed in detail, the second-order autoregressive ampli-
tude asymmetric model and the Gegenbauer long memory amplitude asym-
metric model. It is shown that for these models the skewness (and conse-
quently the amplitude asymmetry) is relatively larger at low (business cycle)
frequencies for identical degrees of persistence and variance of the innova-
tions.

The empirical application focuses on the US seasonally adjusted Index of
Industrial Production. We find remarkable evidence of negative leverage in
the volatilities of the cyclical component of this indicator, which accounts for
the negative deepness asymmetry in the oscillations of the economic activity.

It is still unclear what causes the asymmetric volatility at the level of
industrial production. Ho and Tsui (2003) point out the existence of hetero-
geneous beliefs and short-run supply-side constraints as one possible expla-
nation. When a recessionary shock takes place, economic agents may tend
to reduce investment, which leads to a further contraction. This effect may
be aggravated if there exist heterogeneous beliefs about the future prognosis
of the economy which produces a greater sense of uncertainty that induce a
more prudent behaviour in (risk-averse) economic agents. On the contrary, if
an expansionary shock is perceived, the subsequent desire to increase invest-
ment expenditure may be limited by the potential productive capacity of the
economy in the short-run. The main policy implication for these asymmetric
effects is constituted by a vindication of the government’s role in stabilising
the macroeconomic environment, above all in the onset of recessions, that
may mitigate the adverse impact of negative shocks and in the end balance
the fluctuation of the economic activity around the trend level on condition
that the countercyclical measures are effective.
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