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Studies on The Identification Problem of the
| Simultaneous Economic Models from
: the Viewpoint of Unique
' Determination of Parameters(I)*# ‘

Tian Guogiang

Huazhong(Central China) University of Science and Technology

Abstract

Proceeding from the viewpoint that the par\ameters to be estimated should
be uniquely determined, we define the concepts of the distinction and identific-
ation of vectors such that under the basic assumptions of quite general nature,
study the identification problem of i_he contempoFaneous simultaneous models and
obtain a number of results. Among them, multicollinearity problem is treated as
an identification problem. More r}oticeable in this paper is the idea of removing
the usual assumption that no linear identities connect the exogenous variables.
The one-step identification method and two-step identification method are introd-
uced. The usual major theorems about the identification for contemporaneous simul-
taneous models can be treated as special cases of our more general results. Also

! given in the paper are the concepts of almost identification and completely under
1dent1flcat1on The proposal of the concepts of the distiction and identification of
vectors is of great significance, in which the identification of economic models
is abstractly included; further it has probability of linking up the relation between
systems such as economic system, control system and biological system. In our fol-

Fumo

lowing papers, we will study by using our viewpoint and methods the identifi-
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gation problems of the dynamic models(including the unstable ones), the nonlinear
models, the error-shock models (also including the unstable ones) and obtain a num-
ber of theorems for the identification which are similar to contemporaneous

models and are easy to verify.

§ 1. Introduction

The early work on the identification problem was done by Frisch‘4’, Haave-
1lmo ¢’ ,Hurwici“”, Koopmans and Reiers¢l¢!?’, and others. An extensive study
on identification of the contemporaneous models and nonlinear models under various
assumptions was seen in Fisher‘?’. Hsiao‘®’ surveyed the past development and
studied in particular the identification of dynamic models and error-shock models.
Marvall¢12’ discussed in detail the error-shock models with an equation under va-

rious assumptions. It is generally true that the identification problem was studied
on the basis of observational equivalence. Thus the scope of the study is usually
restricted to dealing with only a part of the implication of the basic definition

2.1 in the next section.

§ 2. Definitions and Useful Theorems

We base our discussions on
Definition 2.1 If and only if all the unknown parameters of a model can be

uniquely determined (or locally uniquely determined) from the observational and
prior information, the model is said to be identified (or locally identified).

Definition 2.2 A model is underidentified if there are more than one param-
eter vector that lead to the same distribution for the endogenous variables y, in
the model.

Definition 2.3 The structure S which is only identified with all the indepen-
dent prior information relevant to identification will be said to be just identi-
fied.

Definition 2.4 The structure S which can be identified with a part rather
than all of the independent prior information relevant to identification will be
called overidentifiable.

Without loss of generality, we assume that the prior information independent
in the following. In addition, the following two definitions are given.

Definition 2.5 If the structure S is identified with probability one, it is called
almost identifiable, )

Definition 2.6 If the‘ structure S is neither identifiable nor almost identifiable,

PURRY
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it is called completely nonidentifiabje,

the order conditions hold.

For the sake of discussion

theorems related to them. By such a mathematical abstract,
economic models can be considered to be

a special concrete cas
of vectors.

Definition2.7 For the ordered

pair of vectors (a,B),
characteristics

a,BERN, if @ has
»B also has, then q is said not to be distinguishable from B on the
basis of these characteristics, otherwise, they are*. °

Definition 2.8 For the vector @& RV

having certain characteristics,
are no other vectors in RV

having the same
determined, and we say that a js identifiab]e,

if there

characteristics, then, a is uniquely

only if a is not a linear combination

Theorem 2.2 If A is a basis for the r

ow kernel of W, then 4
under the normalization rule if and only if

¢ 1s identified

A, is distinguished from the linear
combination of the row vectors of A.

obtain

F(AW):(FA)W=O. .
Denote A*=FA. The g-th row of A" is denoted by A, where A;

=F,A. since both
A, and A; are the solutions of XW=9, A

¢ IS not distinguished from A;.

inguishability, q a

nd € ordered relation, such
rom B8, 8 may be distinguished fr

S Irom a,.From example, g =
ain ch]ractenstic. ’ co :

But
* According to the definition of dist
that while a is not distinguished f

(4,B), 8=(A4.B,C), where 4 B,

»We give below the concepts that vectors are distin.
rding to certain characteristicg they have ang the

the identification of

e of the identification
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if some restrictions are put on A, then A, is said not to be distinguishable from
A; only when A; also satisfics the same restrictions, otherwise A, is distinguis-
hed from A;, thus ruling-out many A®'s that may result from the invertible linear
transformation matrices F/s if the A®/s are required to satisfy the same restriction.
For the sake of discussion, the concepts of admissible transformation and admis-
sible matrix of vector are given. '

Definition 2.9 Let a GXG matrix A with certain characteristics be a basis
for the row kernel of W. If, for a certain G x G invertible matrix F, FA also has
the same characteristics, then the linear transformation, denoted by the matrix F,
is called admissible transformation and the corresponding matrix F is called admis-
sible matrix.

When A, has enough constraints such that it is uniquely determined, we know
by Theorem 2.2 that the elements of the g-th row of the admissible matrix F are
all zero except for the g-th, which is unity.

Thus we have )

Theorem 2.3 A, is identified if and only if the admissible matrix F is
merely

the g-th row
L the g-th column |

and A is identified if and only if the admissible matrix F is merely

L0 1)

It is known that when an equation has a definite meaning (i. €. the parameters
in the equation can be determined), multiplying by a nonzero constant both sides
of the equation will not change the meaning of the equation. Hence, the normaliz-
ation rule does not effect the identification probiem, therefore the diagonal elements
of the matrix F in Theorem 2.3 can be taken as nonzero constant.

Thus when A is a basis for the kernel of W, we only need to find conditions
such that the admissible matrix F can only be one like the matrix in theorem 2.3.
If we also know that the restrictions on A, are ‘

' . Agd’y:dy -
‘where ¢, is an NxR, known constant matrix; d; is a 1x R, known row vector,

then we have

PRRRIPRI
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Theorem 2.4 A necessary and sufficient condition for the identifiability of
A, under the constraints A,W =0 and Ap,=d, is ’ '

rank(Ad,) = {G ds#0,

G-1 d,=0,
where d,#0 means that there is at least one component which is not zero; dy=0
means that all the components are zero. The former means that there is a normali-
zation rule whereas the latter does not.

Proof: 1° (d,#0) For Fy=¢,/ (¢; is the g-th row of identity matrix), we have
A;b,=e]Ad,=A,d,=d, then it is known that e, is a solution of Eq. E,(Ad,)=d,.
The solution of the equation is unique if and only if rank (A)=G (including the
solution of a contradiction equation).

2° (dy=0) For F,=ue,, where a is a nonzero constant, ae; is a solution of
Eq. F,(Ady) =0, the solution is proportional if and only if rank(A¢,)=G~-1.

Corollary 2.1 A necessary condition for the identifiability of the g-th row A,
of A is

G d,-o0,

Rgz{
G-1 dy,=0.

We also need two lemmas in linear algebra for the following discussions.

Lemma 2.1 For the matrix A satisfying AW =0(A and W are GxN and
N x K matrixes respectively), we have

rank(A)<N-rank (W),

when rank(A)=N-rank (W),
it is true that we can choose N-rank(W) linearly independent vectors from the
row vectors of A as a basis for the row kernel of W. In particular, when G=N-
rank(W), A constitutes a basis for the row kernel of W. Similarly, when K=N-
rank(A), W constitutes a basis for the column kernel of A.

Lemma 2.2 For AW =0, if A has full row rank and G =rank (A)<N-rank

(W), then there must exist solution vectors C,CysresCNoGcank( W) of Eq XW =0 such

that

(A )
C,

1
i
a

2

L CN.-G-rnk( W)

is a basis for the row kernel of W.
We intend to discuss the identification problem in two ways: one is the
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onestep identification method, by which we mean that all the characteristics of
A, (g=1,2,--,G) are grouped together for the identification and the other is the
two-step identification method, which is meant that, first by applying XW =0, we
distinguish A, from row vectors which are not Jinear combinations of the rows

of A, then by the characteristics of A alone, we distinguish A, from row vectors
which are linear combinations of the rows of A.

We ignore the information contained in variance covariance matrix for the

time being.

§ 3. Contemporaneous Simultaneous
Equation Models

R

Much work has been done on the identification problem of contemporaneous
; simultaneous equation models‘®’¢®, which is descrited under the assumption that
: no linear identities connect the exogenous variables. In this section, we deal with
the identification problem of the more genefal models by removing the assumption
that no linear identities connect exogenous variables. The usual major theorems for
the identification are only a special case of our results‘3’¢®’ This also leads to a :
new point that multicollinearity may be regarded as an identification problem. - «
Suppose the models have the following form '

BY, +T'X,=U, 3.1
where Y,, X, and u, are respectively Gx1, Kx1 and G x1 vectors of observed
endogenous variables, observed exogenous variables and unobserved disturbance terms
at time t; B and I' are respectively Gx G and Gx K matrixes of coefficients to be ,
estimated.

Assumption 3,1 B is nonsingular.
Assumption 3.2 Eu,=0, EuXs’=0",
Letting Cxy=EX,X,, CYx=EY, X, CY=EY,Y,,

we have BCyx +I'Cx=0;
S =EUU’ = E(BY, + X )(BY, +I'X,)
=BCyB’ + BCyxI'! +I'CxyB’ +I'CxI'’ . - (3.2)
Simplifying the above, we have
BCyB/ =TCxI' + L, (3.3)

s When U, are serially uncorrelated, the assumption can be relaxed in the way that X; can be

T
’
2 Tetbt
allowed to contain lagged endogenous variables because :plim—'—"—oT——_- =0,
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It can be seen from (3.3) that X is also identified when B and I are iden-
tified . | -

Let’s first restrict ourselves to identifying the models with .the two-step identif-
ication method, As the first step, »define ‘

A=(B,D), 3.4
W= %’f] (3.5)

where W containg all the Sample observational information"(the observational in-
formation ig reflected by the Sample second order moments. ) Then,(3.2) can be
rewritten ags
AW =g, (3.6)

Suppose rank(W)=K°, By Assumpti_on 3.1, A has full row rank., We know
rank(W)=K° LK by Lemma 2.1.when Cy is nonsingular, i, e, K° =K, from Lemma
2.1, we know that A constitutes a basis for the row kernel of W. when Cy is sing-
ular, i, e, K°<K, A is not a basis for the row kernel of W, By Lemma 2.2, there
exist k~k° solution vectors C,, Cyy,Cx_x' of Eq. Xw=yg which is linearly
independent of the rows of A such that

[ A )
c, I
X=j CTZ' ’> | 3.7
L f;K-K J

FAW=y (3.9)
So A, (g= 1,2,-,0) is completely not identifiable,
Now we come to the second step.
If we also know that A, has the constraints
Ayd’g:dy o (3.10)

*+ Here ¥ is not the same as W:[{,I] in Literatures (3, 831, where IT is a parameter of the

reduced form of (3.1)+ Note that Cx may be singulaxe.
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where ¢, is a (G +K)x R, matrix with known elements, d, is a 1x R, vector with
known elements, then we have ‘
Theorem 3.1 (tahk condition) Under the restriction (3.10) and the assump-
tions 3.1-3.2, A, is identified if and only if
rank (Z¢g)={G+K—K° dy=0,
G+K-K° -1, d,=0,
By Theorem 2.4, this can be proved.
Corollary 3.1 (order condition) A necessary condition for the identifiability of
A, is . '
G+K-K° d,*0,

R >{
9= G+K'—K°_1’ dg=0.
Corollary 3.2 When Cx is nonsingular, A, is identified if and only if
G, dyx0,
rank (A¢ )={
o le-1, dy=0;
a necessary condition for the identification of A, is
G d
Rg>{ ’ 9#0’
G - 1, dg= 0.

Thus, we obtain the usual rank conditions and the order condition

Theoren 3.2 If rank (A ¢g)={G +K-K°, dyx0, 3
| G+K-K°-1,  d,=0,
then A, is just identifiable if and only if
{G+K—K° , dy20,
"lG+K-K°—1, dy=0s

A, is overidentifiable if and only if

{G+K—K°, dg,>0,

““lG+K~-K° -1, d,=0.

When Cyx is nonsingular (i.e.K°=K) we obtain the usual results (3).

1f the order conditions hold, but the rank conditions do not heold by com-

putation, we consider that this arises owingto the observational error and/or com-

putational error. Since the point set, on which the determinants of G xG submatri-

xes of the matrix A ¢, are equal to zero, is of Lebesque measure zero, fthus we
have

Theorem 3.3 A, is almost identifiable if and only if the order condition

holds. )

we shall focus on the identifiability of the model but not on just identifiabi-
lity, over identifiability and almost identifiability. This is because only discussing
the number of restrictions will result in corresponding conclusions.

[ —
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Note that the two-step identification method can only conveniently be applicable
to restrictions on the parameters of a particular equation. For restrictions on para-
meters of different equations (cross-equation restrictions), the one-step identification
method is more appropriate.

A, W=0 and A,p,=d, can be rewritten as

AWi 6)=(0} dy). (3.11)

Theorem 3.4 The g-th row A, of A is jdentified if and only if

G +K, d,*0,
G+K-1, d,=0,
A as a whole. We stack A in one row which

rank(W i ¢,)= {

Now consider the identifiability of

is denoted by A,i,e,, A =(A,, A, .,Ag)’. Then AW =0 can be rewritten as

IcQWHA =0, (3.12)
where IcQW’) is GK x G(G +K) matrix; ® denotes the Kronecker product, i. e.,
IcQW) is
W ]
w?
QW)= . ’ (3.13)
L . w ]
We now assume that additional prior information including normalization

—_—
rules is available in the form of R linear restrictions on A, i.e.,

$A =d, (3.14)

where ¢ is an R+ G(G + K) matrix and d is an Rx1 vector with known elements.

Letting

[’®;V’ e (3.15)

we have 0A =4, (3.18)

Theorem 3.5 A is identified if and only if rank(Q)=G(G +K).

Corollary 3.3 A necessairy condition for the identifiability of A is R=G(G +K

—K°), which becomes R>G? when Gy is nonsingular.
We obtain the usual result when Cx is nonsingular(8).

—> —
It is often that A 1is not identifiable, but a part of the elements of A is. In

this case, the method of proof in Literature (8) can be used to obtain the results

similar to those in (8).
When Cy is nonsingular, by (3.2), we have
CyxCx™'=-B'I=m (3.17)
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The posterior information suffices to determine the parameters of the reduced form
7. In this case, m can be consistently estimated. However, when Cx is singular, the
condition of proximity theorem(3) is not satisfied, and the consistent estimator of &
can not be obtained on the basis of observational information alone®. Thus we come
to the conclusion that when Cx is singular, x is not identified unless we have
prior inforniation about A or &

If (B, I') is identified, then of course is # by Eq. m= —B~'T. When Cy is
singular, we can not estimate & and A by using ordinary least-squares or Twostage
least-squares. But when A is identifiable, it can be estimaied by combining instrumental

variable with the prior information of A. The estimator II of m is determined by

- ﬁ - ‘f. AA and ﬁ thus obtained are both consistent. Now we are led to an important
view-point: multicollinearity may be viewed as an iden tification problem rather than
a relation between variables. As long as there is enough prior information, the
consistent estimator of A can always be obtained no matter how serious the multi-
collinearity is. We may also consider the muiticollinearity problem in another way.
Where ther exists multicollinearity, there must be some exogenous variables which
can be linearly or nearly linearly expressed by other variables. We might regard
these exogenous variables as endogenous variables. Thus we face a new model, and
more prior restrictions on A are necessary for identification. To demonstrate these,
we consider the model

P,=a,+a,W,+a,L,+a,l;+e (3.18)
where P,, W,, 1,, L, and e, represent respectively production, wage, input, labour, and
unobserved disturbace terms at time 1. _

Suppose that wage and labour are exactly linearly related: W,=KL,. Then wha-

tever a*% is, we have the same value P;

P,=ag,+a,W,+a,L;+a;l,+e,, (3.19)

P,=a, +(a,—a} W, +(a, +Kaj )L, + a3l + e (3.20)
Thus an infinite number of parameter estimators correspond to the same P,.In terms
of identifiability, Eq. (3.18) is completely underidentified. Substituting W,=KL, into
Eq. (3.18), we have

P,=a,+(a,K+a,)L,+a3l,+e, (3.21)

Suppose that the remainding variables have no multicollinearity. Regressing on

Eg. (3.21). we can obtain the consistent estimators of a,, 6=(a,K +a,) and a,. Then
for the parameters of (3.18), we have the restriction
Ka, +a,=b. (3.22)

* Consistent estimators are unique only in the asymptotic sense.*
** Since we know that there is alinear relation between W, and L, , we only need to take W,
or L, as an instrumental variable in estimation.
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By Theorem 3.1, the parameters of (3.18) can be uniquely determined under tke No,3
; . : 983
constraint (3.22)°. —

The problem may be viewed in still another way. Regard
Pi=ay+a,W+a,L, +a,l, +€,,,

W.=KL, +e,, (e,:=0) (3.23)
as a simultaneous equation. Thus
B=[1 "a‘], r=[‘a° ~ G _‘13]. (3.24)
1 0 -K 0

Clearly |B| =120, If thare is no prior information, (3.18) can not be distinguished
from the linear combination of the rows of (3.23). Hence, the first equation of(3.23)
is completely underidentified, unless some prior information is piven(e. g.,Ka; +a,
=b)

§4. Comments

It is seen from the above discussions that our viewpoint and methods have
concised the statement of many of the principal results in identification theory and
made it easy to understand what the identication is. In the following paper, we
will remove the usual assumption that the roots of the polynomial equation |B, +B,L
+ -+ + BpLf| = lie outside the unit circle when dealing with the dynamic models and
the dynamic error-shock models, so that we can study the unstable dynamic models
and the unstable dynamic error-Shock models. We will prove that, even for the
unstable economic models, the consistent estimators of their parameters still exist as
long as the estimators for the parameters of the models can be uniquely determined.
It is belived that the study of the unstable models is of great significance. This
is because the economic systems are almost unstable (some people do think so-11h),
and disturbance at every initial point will keep on dispersion with the shift of
time, one relies on artificial restrictions to hold back such dispersion. Thus it
seems necessary to study the identification of the unstable dynamic models.
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