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Abstract

This paper characterizes the top trading cycles mechanism for the school choice problem.
Schools may have multiple available seats to be assigned to students. For each school a strict
priority ordering of students is determined by the school district. Each student has strict pref-
erence over the schools. We first define weaker forms of fairness, consistency and resource
monotonicity. We show that the top trading cycles mechanism is the unique Pareto efficient and
strategy-proof mechanism that satisfies the weaker forms of fairness, consistency and resource
monotonicity. To our knowledge this is the first axiomatic approach to the top trading cycles
mechanism in the school choice problem where schools have a capacity greater than one.
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1 Introduction

In their seminal paper, Abdulkadiroglu and Sénmez [2003] introduce the school choice problem. Be-
fore that paper, in some of the major cities students were assigned to public schools via deficient
mechanisms which give high incentives to the students to misreport their true preferences in order to
get better allocations. To eliminate the gaming, they propose two competing strategy-proof mech-
anisms: the Top Trading Cycle (TTC) mechanism and the Deferred Acceptance (DA) mechanism.

*I owe very special thanks to Thomas Wiseman, Utku Unver, Onur Kesten and Thayer Morrill for detailed comments
and suggestions. I would like to also thank Tayfun Sonmez, Marcin Peski and Ayse Kabuk¢uoglu for useful discussions.

tAddress: The University of Texas at Austin, Department of Economics ; e-mail: umutdur@gmail.com; web page:
https://sites.google.com /site/umutdur/



The TTC mechanism is not only strategy-proof but also Pareto efficient. However, it fails to be fair.
On the other hand, the DA mechanism satisfies fairness but fails to be Pareto efficient. When the
policy makers decided to adopt one of the two strategy-proof mechanisms, the DA mechanism was
selected due to its better features in terms of respecting school district priorities.? However, in 2012
New Orleans Recovery School District became the first school district to adopt TTC.

Adoption of the TTC by New Orleans school district shows us that some school districts may
value efficiency over fairness. If Pareto efficiency and strategy-proofness are the main objectives of
the school districts then TTC can be considered one of the candidates. However, it is not the unique
Pareto efficient and strategy-proof mechanism. For instance, the serial dictatorship mechanism also

satisfies these two axioms.?

In this paper, we try to help the policy makers who are willing to
adopt a Pareto efficient and strategy-proof mechanism by providing the full characterization of the
TTC mechanism. Our characterization is based on Pareto efficiency, strategy-proofness, mutual best
along with two axioms that we introduce: resource monotonicity for top-ranked students and weak
consistency. We show that TTC mechanism is the unique mechanism satisfying Pareto efficiency,
strategy-proofness, mutual best, weak consistency and resource monotonicity for top-ranked students.

“Mutual best”® requires that a student be assigned to the school at the top of his preference
whenever he has the highest priority at that school. A mechanism is “resource monotonic for top-
ranked students” if the assignment of the top-ranked student for a school is not worsened when the
number of available seats in that school increases. A mechanism is said to be “weakly consistent” if
the removal of a set of agents with their assignments does not affect the assignments of the remaining
agents as long as each agent is the top-ranked student for one of the assignment of the removed agent.

Mutual best, weak consistency and resource monotonicity for top-ranked students are weaker
forms of fairness, consistency® and resource monotonicity®, respectively. TTC mechanism does not
satisfy fairness, consistency and resource monotonicity. In particular, there does not exist a mech-

anism that is fair, strategy-proof and consistent.” Moreover Pareto efficiency and fairness are in-

'Fairness is the natural counterpart of the stability in the school choice context [Balinski and Sénmez, 1999]. An
allocation is fair if there does not exist a student who prefers another school to his assignment and that school admitted
a student with lower priority.

2School districts in Boston, New York City and Denver have adopted versions of the DA mechanism.

3Pycia and Unver [2011b] provide a class of mechanisms satisfying strategy-proofness and Pareto efficiency in the
school choice problem.

“Morrill [2012] uses the same axiom in the characterization of TTC in a school choice problem where each school
has only one available seat.

A mechanism is consistent if whenever a set of agents are removed with their assignments then all the remaining
agents will be assigned to their initial assignment when we run the mechanism only considering the remaining agents
and remaining copies of the objects.

6Resource monotonicity requires that if the number of available objects increases then all agents should be affected
in the same direction [Chun and Thomson, 1988].

TAlcalde and Barbera [1994] show that DA mechanism is the unique strategy-proof and fair mechanism but it fails
to be consistent.



compatible.® Therefore, we cannot have a mechanism satisfying all of the axioms.® Kesten [2006]
shows that T'T'C satisfies fairness, consistency and resource monotonicity if the priority order satisfies
strong acyclicity condition. In this paper, we show that TT'C is not totally unsuccessful in these
three dimensions and none of the Pareto efficient and strategy-proof mechanisms can perform better
than TTC in all the three dimensions.

A mechanism which fails to satisfy mutual best, resource monotonicity for top-ranked students and
consistency may not meet the demands of both students (families) and school districts. We consider
mutual best as a must fairness requirement in the school choice context. For instance, most school
districts give highest priority at a school to a student whose elder sibling is already attending that
school and most of the families have preference over keeping their children in the same school [Pathak,
2011]. Therefore, both parents and school districts benefit from the mutually best mechanisms .
Similarly, resource monotonicity for top-ranked students is a must resource monotonicity requirement.
We modify this requirement in two ways. When public goods are allocated, we should not have a
decrease in the welfare of any of the agents. Otherwise, providing less and less public goods will
be a clear solution for the policy makers. Therefore, we restrict our attention to the mechanisms
under which the welfare of agents weakly increases when the number of available objects increases.!’
We also modify the resource monotonicity axiom by only requiring not to have a reduction in the
welfare of the top-ranked student for the school whose number of seats has increased. Therefore any
resource monotonic mechanism under which welfare of the agents weakly increase with an increase in
the number of available objects satisfies resource monotonicity for top-ranked students. Consistency
is a desired property in the school choice context where the assignment process for different types of
schools are done separately. For instance, in New York City the assignment of exam and mainstream
schools are done separately [Abdulkadiroglu et al., 2009]|. Therefore, running a consistent mechanism
will prevent the request of remaining agents for another run when the other agents are removed with
their assignments.

Although, mutual best and resource monotonicity for top-ranked students axioms are enough to
prove our uniqueness result, the TTC mechanism satisfies stronger forms of these two axioms. TTC
respects the priority of student ¢ for school s if the number of students with higher priority for school
s is less than the number of available seats in that school. Moreover, if the policy makers and families
are only sensitive to priority violation in the upper priority groups then TTC can be considered to
have a good performance in terms of respecting priorities. Under TTC mechanism, the students who
are ranked at the top ¢ of the priority order of school s cannot be made worse off due to the increase

in the number of available seats from ¢ to ¢'.

8Balinski and Sénmez [1999] show that there does not exist fair and Pareto efficient mechanism.
9Serial dictatorship mechanism satisfies four of them. It fails to be fair.
10Kojima and Unver [2010] define resource monotonicity similarly.



This is the first paper characterizing TTC mechanism in the school choice context where each
school may have more than one available seat. Abdulkadiroglu and Che [2010] and Morrill [2012] pro-
vide alternative characterizations of TTC mechanism in the school choice context where each school
is restricted to have only one available seat. Abdulkadiroglu and Che show that TTC mechanism is
the only mechanism that is Pareto efficient, strategy-proof and recursively respects top priorities.!!
Morill characterizes the TTC mechanism in two different ways. He first shows that TTC is the
unique mechanism which is strategy-proof, Pareto efficient, and independent of irrelevant rankings'?
and satisfies mutual best. He also demonstrates that TTC is the unique mechanism satisfying Pareto
efficiency, independence of irrelevant rankings, weak Maskin monotonicity and mutual best. Results
of these two papers do not hold in the school choice problem where schools may have more than
one available seat [Morrill, 2012]. Sénmez and Unver [2010] provide the characterization of the you
request my house-I get your turn (YRMH-IGYT) mechanisms in the house allocation problems with
existing tenants [Abdulkadiroglu and Sénmez, 1999|. They show that YRMH-IGYT mechanism is
the unique mechanism satisfying Pareto efficiency, strategy-proofness, individual rationality, weak
neutrality'® and consistency.'* Pycia and Unver [2011a] introduce a class of mechanism called trad-
ing cycles mechanisms and show that in the house allocation problem a mechanism is individually
rational, Pareto efficient, group strategy-proof if an only if it is a trading cycles mechanism.'® Pycia
and Unver [2011b] also analyze trading cycles mechanism in the school choice environment where
each school may have more than one available seat and show that trading cycles mechanisms are
Pareto efficient and strategy-proof.

The rest of the paper is organized as follows: In Section 2 we introduce the model and properties
of mechanisms. In Section 3 we describe the TTC mechanism. We present our main results in Section
4. In Section 5 we show the independence of axioms used in our main results. A brief conclusion is

given in the final section.

2 Model

A school choice problem is a list [I, S, g, P, =] where

e [ is the set of students,

1A mechanism respects top priorities if an agent is assigned an object, then the agent that is top-ranked by that
object should not be assigned to a worse object than that object.

12A mechanism is independent of irrelevant rankings if whenever the ranking of an agent at an object’s priority
order does not affect the assignment of that agent then it does not affect the assignment of all the other agents.

13[f a mechanism satisfies weak neutrality then the outcome of that mechanism will not depend on the names of the
unoccupied objects.

14Sgnmez and Unver [2010] also consider a weaker version of consistency in the house allocation problem with
existing tenants.

15The TTC mechanism belongs to the class of the trading cycles mechanisms.
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e S is the set of schools,
e ¢ = (gs)ses is the quota vector where ¢4 is the number of available seats in school s,

o P = (P));cs is the preference profile where P; is the strict preference of student i over the

schools including no-school option,

e = (>)ses is the priority profile where >, is the priority relation of school s over I.

We denote the no-school option with sy and ¢;, = co. Let R; be the at-least-as-good-as relation
associated with the strict preference order P; and for all s, 8" € SU sy sR;s’ if and only if s = ¢’ or
sP;s’. We assume that there are no ties in the priority profiles of schools.'®

A matching is a function p : I — S U sy such that u(i) = s and p(i) = ¢ if only if s = &', If
(1) = sp then student 7 is unassigned. In a matching p, the number of students assigned to a school
s cannot exceed the total number of available seats in school s. Let M be the set of all possible
matchings.

A mechanism is a procedure which selects a matching for each problem. That is, a mechanism
¢ takes the preference profile of the students, the priority order of students for schools, the quota
vector, then selects a matching for every problem. The matching selected by mechanism ¢ in problem
[1,S,q, P,>] is denoted by ¢ [I,S,q, P,>~]. Let ¢[I,S,q, P,>] (i) denote the assignment of student
i € I by mechanism ¢ for problem [I, S, ¢, P, >]|.

Student i strictly prefers matching p to matching p’ if he strictly prefers pu(z) to p'(3), p(i) Py (7).
A matching p is Pareto efficient if there does not exist a matching ;' € M in which each student
is not worse off and at least one student is strictly better off. More formally, matching p is Pareto
efficient if there does not exist a matching p/ € M where /() R;pu(7) for each i € I and p/(j)P;p(j)
at least for one j € I. A mechanism ¢ is Pareto efficient if for all problems it selects a Pareto efficient
matching.

A mechanism ¢ is strategy-proof if it is (weakly) dominant strategy for all students to tell their
preferences truthfully. Formally, a mechanism ¢ is strategy-proof if for every preference profile P
and P! ¢[I,S,q, P,>]|(i))R;p[I,S,q, (P!, P_;),>] (i) for all student ¢ € I. Here, P_; represents the
true preference profile of students except 1.

Let t7 be the set of schools ranking i over all other students under priority profile ». Formally,
t7 ={s € S|i=sjVjeTI\i}. Amechanism ¢ is mutually best if whenever there exists s € ¢ such
that sP;s’' for all s € S\ {s} then ¢[I, S, q, P, =| (i) = s for all s € .17

A mechanism ¢ is resource monotonic if for all s € S, all ¢, < ¢, either for all i € I |
611, S,q, P, =] () Ri 6 [1, S, (¢l a4, P,-] (i) or foralli € 1 6[1, S, (¢ q—s), P, ) Rio 11, S, q, P, ] (i) 1

16School districts mostly use random tie breaking rules.
1"Morrill [2012] defines mutual best similarly.
18See Thomson [2000], Ehlers and Klaus [2003] and Kesten [2009] for related results.



I use a different version of resource monotonicity. Intuitively, if student ¢ has the highest priority
for school s then his welfare should not be worsened when the number of seats in school s in-
creases. | formally define resource monotonicity for top-ranked students as follows: A mechanism
¢ is resource monotonic for top-ranked students if for all i € I and all ¢, > ¢; > 0 where s € t
OIL. S, (¢} q-s), P-] ()Rio 11,5, q, P. ] (0.

Before introducing our consistency axiom we need additional notation.

For any school s € S, priority order >, and a set of students J C I, let =7 be the restriction of

priority order =, to students in J. Let =7= (=7),cs and =—7= (="

s )SES'

Given a problem [I,S,q, P,>], a set of students J C I, and a quota profile § < ¢ we say
[J.S, G, P_y,="] is the restriction of the problem [I, S, g, P, =] to students in J and quota profile ¢."*

A mechanism is consistent if whenever a set of students are removed with their assignments then
all the remaining students will be assigned to their initial assignment when we run the mechanism
only considering the remaining students and objects.?’ Formally, a mechanism ¢ is consistent if for
any problem [, S, q, P,>|, when we remove a set of students J C I together with their assignments
¢lI,S,q, P,>](J), then for any i € I\ J

SIN T, S,q, Py, =~")(i) = 0|1, J,q, P, ~](3)

where @5 is the number of available seats remaining in school s.

In this paper, we introduce a weaker version of the consistency axiom.?’ A mechanism satisfies
weak consistency if whenever we remove a set of students with their assignment such that the student
with the highest priority for one of the removed student’s assignment is also another removed student
then the assignments of the remaining students do not change.

A mechanism ¢ is weakly consistent if for any problem [I, S, ¢, P, ], when we remove a set of
students J C I together with their assignments ¢[/, 5, g, P, =](J) satisfying [t7 NI, S, q, P, =](J)| =
1 for each j € J , then forany 1 € I\ J

SN TS, 4, Py, ="](0) = O[1, J.q. P, =] ().

Our restriction on the set of students and seats removed is simple. It is easy to see that any
mechanism which is consistent based on the traditional definition satisfies the weaker form of it that

we define here.

19Similar notation is used in Sénmez and Unver [2010].

20See Thomson [1990] and Ergin [2000] for related results.

21S6nmez and Unver [2010] also modifies the definition of the consistency axiom. In that paper, they characterize
YRMH-IGYT in the house allocation problem with existing tenants. YRMH-IGYT also fails to satisfy the consistency
axiom but satisfies the modified version defined in that paper.



3 Top Trading Cycles Mechanism

In the school choice context, the TTC mechanism was first introduced by Abdulkadiroglu and Sénmez
[2003|. It was based on the Gale’s top trading cycles algorithm |Shapley and Scarf, 1974]. It is a
direct mechanism and for any given problem [I, S, ¢, P, ] it works iteratively in a number of steps:

Top Trading Cycles Mechanism (TTC):

Step 1: Assign a counter to each school and set it to the quota of each school. Each student
points to his most preferred school. Each school points to the top-ranked student in its priority order.
School sy points to all students pointing to it. Due to the finiteness there is at least one cycle.??
Assign every student in the cycles to the school he points to and remove him. The counter of each
school in a cycle is reduced by one and if it reduces to zero, the school is also removed.

In general,

Step k: Each student points to his most preferred school among the remaining ones. FEach
remaining school points to the student with the highest priority among the remaining ones. School
sg points to all students pointing to it. There is at least one cycle. Assign every student in the cycles
to the school he points to and remove him. The counter of each school in a cycle is reduced by one
and if it reduces to zero, the school is also removed.

The algorithm terminates when all students are assigned.

We illustrate the dynamics of TT'C mechanism in the following example.

Example 1 Let S = {sy,59,83,84} , I = {i1,49,43,14,15} and ¢ = (1,1,1,2). The preferences of

students and priorities are as follows:

11 :81 5,80, 535, 54 81 :05 75y 13 75y U4 Pgy U2 gy 11
19 :52Pi251f)z‘254pi253 Sg g sy U1 sy Ua sy U2 sy U
’i3 281Pi383f)2'384pi382 S3 Iig > s3 19 > s3 14 > s3 11 > s3 7;5
’é4 :S3Pi4s4Pi481Pi452 Sy :il >—84 ’é3 >—84 i2 >_54 2.5 >_54 i4

15 154551 P55 80P 83
Step 1: Each students points to his most preferred school and each schools points to the student
with the highest priority. There is only one cycle: (s1,1is, S4,11). We assign each student in the cycle
to the school he points to and remove him: p(iy) = sy and p(is) = s4. We also reduce the counter of
each school in the cycle and remove only s, since its counter reduces to zero.
Step 2: Each remaining students points to his most preferred remaining school and each remaining
schools points to the student with the highest priority among the remaining ones. There is only

one cycle: (ss,iz). We assign the student in the cycle to the school he points to and remove him:

22A cycle is an ordered list of distinct schools and distinct students (81,11, 82, ..., Sk, k) where s1 points to i1 , i1
points to ss , ... , s§ points to ix , ix points to s .



w(iz) = s1. We also reduce the counter of the school in the cycle and remove it, s, since its counter
reduces to zero.

Step 3: Each remaining students points to his most preferred remaining school and each remaining
schools points to the student with the highest priority among the remaining ones. There is only one
cycle: (Sa,14, S4,12). We assign each students in the cycle to the school he points to and remove him:
w(ia) = so and p(iy) = s4. We also reduce the counter of each school in the cycle and remove only
both of them since their counter reduce to zero.

The mechanism terminates since all students are assigned.

4 Results

In the following theorem, we show that TTC is Pareto efficient, strategy-proof, weakly consistent,
resource monotonic for top-ranked students and mutually best. Moreover, there does not exist

another mechanism satisfying all these axioms. We prove it in the Appendix.

Theorem 1 In school choice problem TTC is the unique mechanism satisfying

e Pareto efficiency

Strategy-proofness

Weak consistency

Resource monotonicity for top-ranked students

Mutual best.

In the next section, we show that there always exist another mechanism satisfying only four of
the five axioms.

Mutual best can be considered as a very weak fairness requirement and satisfying it may not make
a mechanism more desirable. In the following proposition, we show that T'TC mechanism satisfies

much stronger fairness requirement.

Proposition 1 Under TTC mechanism, each student weakly prefers his assignment to each school

s for which he is ranked at the top qs portion of that school’s priority order.

Proof. Suppose not. Let student i’s rank for school s be r < ¢, and he be assigned to school &’
such that sP;s’. School s will start pointing student i after » — 1 students are assigned to it if 4 is not

assigned in an earlier step. First consider the case that ¢ is not assigned before s points him. School



s will keep pointing ¢ until he is removed. Therefore, ¢ will be assigned to s whenever he points to
that school. Now consider the case that ¢ is assigned before s points to him. In this case, ¢ should
be assigned to a better school and he never points to s.

]

We can also show that TTC mechanism satisfies a general form of resource monotonicity for
top-ranked student.

Proposition 2 When the number of available seats in school s is increased from qs to qs, keeping
everything else the same, then TTC mechanism assigns top qs students in school s’s priority order

to weakly better schools.

Proof. We refer to the proof of Theorem 1. The part that we prove TTC mechanism is resource
monotonic for top-ranked students can be extended for top ¢, students. It follows from the fact that
the first ¢ < g, seats of school s cannot be filled before top ¢ students in school s’s priority order are
removed.

[ ]

So far, we show that TTC mechanism outperforms other strategy-proof and Pareto efficient
mechanisms. Some school districts consider fairness as the most important concern and these districts
select DA mechanism instead of the TTC mechanism. In the rest of this section, we focus on the
fairness and the performance of the TTC in terms of respecting priorities.

In the most of the school districts, priority structure is determined based on some exogenous rules.
For instance, Boston school district gives the highest priority for a school to the students living in the
same walk zone and having a sibling attending that school.?> The second priority is given to students
having a sibling attending that school but living outside the walk zone of that school. Students who
are only living in the same walk zone have the third priority and the fourth priority is given to the
remaining students. Ties between students in the same priority group is broken by random lottery.
That is, the priority structure, >, in any problem is determined based on the priority groups and
random draw. Public policy makers and families might give more importance respecting priorities in
the upper priority groups |[Abdulkadiroglu, 2011|. In Proposition 3, we show that TTC is successful
at respecting priorities in the upper priority groups under some realistic conditions. Before presenting
our results we need some notation.

Suppose there are n priority groups and respecting priorities in the first n* priority group is more
important. Let G; : S — N be a function and G;(s) be the priority group that student 7 belongs
to for school s. We say student ¢’s preference P; is perfectly correlated with the priority groups
if the following condition holds: if G;(s) < n* and G;(s) < G;(s') then sP;s’. A preference profile

23This priority group is known as sibling-walk zone priority.



P = (P));es is perfectly correlated with the priority groups if each student’s preference is perfectly
correlated with the priority groups. As an example, suppose the first priority group (sibling-walk
zone) in Boston is given more importance than the others. Then the preference profile of the students
is perfectly correlated with the priority groups if each student having sibling-walk zone priority in
some school ranks one of the schools for which he has sibling-walk zone priority at the top of his
preference list.

Now we are ready to present our result on the performance of the TTC mechanism in terms of

respecting priorities.

Proposition 3 Let 7 be the outcome of TTC mechanism in problem [I,S,q, P,>]. There does not
exist a student and school pair (i,s) such that G;(s) < n*, sPw(i), there exists another student j
assigned to s and i >4 j if any one of the following conditions holds:

(a) The total number of students in the first n* priority class of each school s is less than or equal
to qs.

(b) Preference profile P is perfectly correlated with the priority groups.

5 Independence of Axioms

Below we show the independence of axioms mentioned in Theorem 1.

o Strategy-proof, weakly consistent, resource monotonic for top-ranked students, and mutually
best, but not Pareto efficient: Consider the following problem. Two schools S = {a, b} with
one available seat and two students I = {1,2}. Let the preference profile P and priority order

= be
P P, —
= >4 b
b —————————————
1 2
a
2 1
Sp S

Let mechanism ¢ assign 2 to b and 1 to a. Let ¥ select the same assignment in the above
problem independent of preferences. For all other problems, ¢ selects the same matching as

TTC mechanism. Mechanism 1 fails to be Pareto efficient and satisfies other 4 properties.

e Strategy-proof, weakly consistent, resource monotonic for top-ranked students, and Pareto effi-
cient, but not mutually best: Serial dictatorship mechanism is strategy-proof, (weakly) consis-
tent, and Pareto-efficient. Moreover, when the number of available seats in a school is increase
all students’ welfare weakly improve. That is, it satisfies more generalized version of the re-

source monotonicity for top-ranked students. However, it fails to be mutually best.
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e Strategy-proof, weakly consistent, Pareto efficient, and mutual best mechanism, but not resource
monotonic for top-ranked students: Consider the following problem: Two schools S = {a, b}
with one available seat and three students I = {1,2,3}. Let the preference profile P and
priority order > be

Py P, Ps =a b

S S S 3 2

Let mechanism v assign 3 to a and 1 to b in this problem. If the number of available seats
in school a is increased to 2 then v assigns 1 and 3 to a and 2 to b. Let 1 select the same
assignment in the above problem where a has two available seats and 1 ranks a above sy and
assign 1 to sp if he ranks a below sy. For all other problems ¢ selects the same matching as
TTC mechanism. Mechanism ¢ fails to be resource monotonic for top-ranked students and

satisfies other 4 properties.

e Strategy-proof, Pareto efficient, mutually best mechanism, resource monotonic for top-ranked
students but not weakly consistent: Consider the following problem. Three schools S = {a, b, ¢}
with one available seat and three students I = {1,2,3}. Let the preference profile P and
priority order > be

P P P ~a b 7c
a a 1 1 1
b b 2 2 2
b ¢ ¢ 3 3 3

Let mechanism v assign 1 to ¢ and 2 to b and 3 to a in this problem. Let i select the same
matching as long as 1 and 3 submit the same preferences and 2 ranks b over sy. If we remove
1 with his assignment then 2 is assigned to a and 3 is assigned to b. For all other problems v
selects the same matching as T'TC mechanism. Mechanism ¢ fails to be consistent and satisfies

other 4 properties.

e Pareto efficient, mutually best mechanism, resource monotonic for top priority students and
consistent but not strategy-proof: The Boston mechanism is Pareto efficient, resource monotonic
and consistent |Kojima and Unver, 2010]. Moreover, in the first step of the Boston mechanism
when a student applies to his most popular school for which he has the highest priority he will
be assigned to that school. Therefore it satisfies mutual best. The Boston mechanism fails to

be strategy-proof (Abdulkadiroglu and Sonmez, 2003) and satisfies other 4 properties.

11



6 Conclusion

TTC mechanism has been studied extensively in the market design literature. It and its variants
have been proposed as one of the best alternatives in many matching markets including public school
choice systems, on-campus housing and the kidney exchange programs. However, TTC mechanism
has never been characterized for the cases where objects have a capacity greater than one, i.e. school
choice problem. In this paper, we provide the first characterization of the TTC mechanism in the
school choice problem. Our characterization will help the school districts choose between strategy-
proof and Pareto efficient mechanisms. In particular, TTC mechanism is the unique strategy-proof
and Pareto efficient mechanism satisfying mutual best, weak consistency and resource monotonicity
for top-ranked students.

We also focus on the performance of the TTC mechanism in terms of respecting priorities. We
show that TTC mechanism respects priorities in the upper priority classes. If the policy makers
and families are only sensitive for the priority violations in the upper priority classes then TTC

mechanism will meet their needs.

Appendix

Proof of Theorem 1.

We first show that the TTC mechanism satisfies all of the axioms in the theorem. Then, we show
that it is the unique mechanism satisfying all of the axioms. Pareto efficiency and strategy-proofness
of TTC follows from Abdulkadiroglu and Sénmez [2003].

Mutual Best: Suppose TTC does not satisfy mutual best. Then, there exists a student school
pair, (7, s), such that student ¢ has the highest priority for school s and prefers school s to any other
school and i is not assigned to s by TTC. In the first step of the TTC, s will point to ¢ and ¢ will
point to s. They will form a cycle and 7 will be assigned to s. Therefore, TTC satisfies mutual best.

Resource Monotonicity: To show that TTC is resource monotonic for top-ranked students
take a student school pair (i,s) such that s € ¢7 and ¢; > 0. Denote the assignment of TTC in
problem [I,S,q, P,>~| with u. Now consider the problem [/, S, (¢s,q-s), P, ] where ¢s > ¢g;. We
consider a variant of the TTC mechanism in which only one cycle is removed in each step.?* Fix the
cycle selection rule. In particular, let C'y(k) be the cycle that is selected in the k' step of the variant
of the TTC mechanism when we consider the problem [I,S,q, P,>]. Let s be removed in step k of
TTC when we consider problem [I, S, ¢, P, >=]. We will also select Cy(k) in step k < k if we observe
that cycle when we run the variant of TTC for the problem [I, S, (Gs, q—s), P, >].

2ATTC is independent of the order in which cycles are selected.
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School s cannot be removed before student 7 is assigned to a school in problem [I,S,q, P, >].
Therefore, i is assigned in step k&’ < k in the problem [I,S,q, P,>=]. To see this recall that in the
TTC mechanism, s will point to ¢ until 7 is removed. Therefore, none of the seats of s will be assigned
to any student before 7 is removed. Also note that all the cycles selected in step k” < k" in problem
[1,S,q, P,>] will be observed in step &” of TTC when we consider the problem [I, S, (gs, ¢—s), P, >]
because none of them includes a student pointing to s and an increase in the number of available
seats in s will not affect their assignments. As a result the set of remaining schools in step &’ of the
TTC mechanism in both problem will be the same and we will observe the cycle including ¢ in both
problems.

Weak Consistency: We again consider the variant of the TTC that is defined above. Let J
be the set of students and let u(.J) be their assignments. Due to the requirement in the definition
of the weak consistency we only check the case in which each student in J has the highest priority
for one of the schools in z(J). Suppose none of the students in J belongs to a Cy(k) where k < k.
Then, it is clear that the assignment of students in Cy(k) where k < & will not be affected by the
removal of students in J with their assignments. Suppose i € Cy(k). Let p(i) be his assignment.
Therefore, 7; who is the top-ranked student in the priority order of (i) should be in J. This is also
true for the top-ranked student of the school that i; is assigned. Due to the finiteness we should
have a cycle. That is, Cy(k) C J and u(Cy(k)) € u(J). Therefore, removing these students before
running the TT'C mechanism or removing them within the mechanism will not affect the assignments
of the remaining students.

Uniqueness: Suppose there exists another mechanism ¢ satisfying all these 5 properties and
there exists a problem [I, S, ¢, P, >| in which ¢ and TTC select different matchings. We will
consider the version of TTC mechanism in which only one cycle is removed in a step and if there
are more than 1 cycle the one which will be removed is selected based on some exogenous rule, i.e.
the cycle with the school having the lowest index . Then suppose that each student removed before
step k > 1 of the TTC mechanism is assigned to the same school under ¢ and TTC. Denote these
students with set J. Let ¢ be the student who is removed in the step k of TTC and assigned to a
different school by ¢. If we remove students assigned in the first step of T'TC with their assignments
then assignments of the remaining students in the outcome of both mechanisms will not change due
to the weak consistency. We can continue removing all students in J with their assignments and
still remaining students will be assigned to the same schools.?> Denote the reduced problem with
[i,g,q,ﬁ, ;]. Here, [ = I\J, S =8, G = — S 1(¢[q, P,=](i) = $) + ¢5, P = P; and & ==1. In

ieJ
this reduced problem student ¢ will be removed in the first step of the TTC mechanism. Let s be

the school pointing student ¢ in the first step of TTC mechanism in the reduced problem. By the

Z5Here we remove students in the following order: Cy(2) — Cy(3) — ... — Cy(k — 2) — Cy(k — 1).
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definition of the TTC mechanism student ¢ should be the top-ranked student in =,. We consider
two cases. In the first case student ¢ is assigned to s and in the second case 7 is assigned to another
school by TTC.

Case 1: Student ¢ points to the school s in the first step of TTC. School s should be the most
preferred school in P; among the ones having available seats. Suppose i reports P! : sP/sy. Due to
the strategy-proofness TTC will assign ¢ to s and ¢ will assign to sg. Any mutual best mechanism
should assign ¢ to s in the reduced problem. Therefore, ¢ fails to satisfy mutual best.

Case 2: In this case i is assigned to s’ # s and there is another student j assigned to school s.
Now suppose student i reports s'P/sP!sy. TTC will select the same matching. Due to the strategy-
proofness ¢ will assign i to either s where he is top-ranked or s3.2° First consider the latter case
in which ¢ is assigned to sy by ¢ when he submits s'P/sP/sy. Now consider the case that ¢ submits
sP!sy and keeping everything same. Due to the strategy-proofness he will be assigned to sy by ¢.
However this will violate mutual best. Therefore the latter case is not possible. Therefore, when i
submits P/ he will be assigned to s by ¢. Now consider the case where i submits P/ and ¢s = 1.
Since ¢ is resource monotonic for top-ranked students, i cannot be assigned to his top choice s’ by
¢. Then he will be assigned to s or sg. Due to the aforementioned reasons he will be assigned to s.
Therefore student j who is assigned to s by TTC will be assigned to an other school by ¢. Given s
is the top choice of j among the schools with available seats j prefers his assignment under TTC to
0.

Note that since student j is assigned to a school by T'T'C in the first step there should be another
school s” where j is the top-ranked student. If we repeat the same steps for student j then we will
show that when ¢ = 1 and j submits sP;s"P/syp he will be assigned to s” by ¢. We can keep
continue and show that ¢ will assign all the students who are assigned in the first step of TTC to
one of the schools pointing to them in the first step of TTC in the reduced problem. Therefore
they will be assigned to strictly worse school by ¢ and no other student will be assigned to those
schools since all schools quota will be equalized to 1 when we keep repeating. Therefore a trade
between these students will increase the welfare without worsening any other student and ¢ fails to
be Pareto-efficient.

]

Proof of Proposition 3. Part (a) of the proposition is a direct result of Proposition 2. We
prove Part (b) by using the definition of the TTC mechanism. In particular, we use the variant of
TTC mechanism in which only one cycle is removed in each step (see Proof of Theorem1). Consider

the students who are ranked at the top of the priority order of schools. Then among these students

26Here, it is possible that i can be also assigned to another school that he doesn’t include to his preference list.
However, we can prove that this will violate either strategy-proofness of mutual best as a similar way that we follow
for showing that i cannot be assigned to sgp.

14



find the students who are pointed by schools that they belong to the k* priority group and there

does not exist a student pointed by a school that he belongs to the [t

priority group where [ < k.
If £ > n* then we are done. If £ < n* then among these students, select the one who is favored
in the random draw and denote him by 2;. We claim that in this step, 7; is pointed by his most
popular school. Suppose not. Then he is pointed by another school s and his most popular school s’
is pointing another student . Given s'P; s then G, (s) > G;,(s’). Moreover, G, (s') = k > Gy (')
since 7; is the most favored student in the random draw and ¢ =, 4;. This contradicts with the
fact that there does not exist a student pointed by a school that he belongs to the I** priority group
where [ < k. Then student i,’s priority is not violated in any school because he is assigned to his
most popular school.

We show in Theorem 1 that TT'C mechanism satisfies weak consistency. That is, when we remove
11 with his assignment the remaining students will be assigned to the same school by TTC mechanism
in the updated problem. Therefore, we can consider the reduced problem as a new problem and
repeat the steps above and show that there does not exist a student and school pair (i, s) such that
Gi(s) < n*, sPm(i), there exists another student j assigned to s and i >=; j.

|
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