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Modern microeconomics and macroeconomics study dynamic phenomena. Dynamics 

could predict future states of an economy based on its structural characteristics. 

Economic dynamics are modeled in discrete and continuous time context, mainly via 

autonomous difference and differential equations. In this study, we use Xcas and 

Mathematica as software tools, in order to generate results concerning the dynamic 

properties of the solutions of the difference and differential equation(s) models and 

determine whether an economic equilibrium exists. Our computational approach does 

not require solving the difference or differential equation(s) and makes no 

assumptions for initial conditions. The results provide quantitative information based 

on the qualitative properties of the mathematical solutions. The computer codes are 

fully presented and can be reproduced as they are in computational%based research 

practice and education. The relevant output of CAS software is created in a way as to 

be interpreted without the knowledge of advanced mathematics. 
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Our work aims to predict the dynamic behavior of economic systems, examining 

whether they follow a convergent time path or not. The results cover the classes of 

problems with behavioral equations linear autonomous n%th order difference and 

differential equations, linear autonomous systems of differential and difference 

equations and nonlinear autonomous systems of differential equations.�The answers 

come from conditions depending on characteristic roots and/or determinental 

expressions and not by the initial values of some elements. Schur’s theorem, routhian 

analysis, Jacobean matrices and matrix theory are the fundamental mathematics 

behind our computer codes.  

Mathematical software can solve difference or differential equation(s), the 

prediction though of the dynamic behavior of the solutions requires setting certain 

initial conditions, which vary from one case study to another. Computer packages 

provide solutions of the characteristic equations, letting the user evaluate their 

properties and result to stability conclusions. In our study, computer codes that test 

necessary and sufficient stability conditions in a black box function are proposed. The 

input needs no information about the initial state of the system; it requires some basic 

elements of the analytical model as the characteristic polynomial, the coefficient or 

the functional matrix or the variable vector.  

We create various functions in Mathematica and in Xcas to define whether the 

process of economic adjustment leads to equilibrium. When equilibrium can be 

accomplished as time passes, the output of our functions is «stable» (or 

«asymptotically stable») while when the model follows a divergent time path, the 

output of our functions is «unstable». Programmed functions in Mathematica are 

aimed at the wide community of Mathematica users. For readers with no access to 
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Mathematica or other commercial software of this kind, computer algebra system 

Xcas is free to single users and institutions.  

Using our computational approach the reader can reproduce the results avoiding 

the serious theoretical and computational difficulty underlying in stability analysis. In 

addition, the computer codes presented can make an open source material to enrich 

stability analysis with results like the list of the real or complex characteristic roots in 

absolute value, the determinants of Schur’s and Routh’s theorems and the future states 

of economic systems (in case of homogeneous systems of difference equations). 

The structure of the paper is the following. Section 2 introduces the general notion 

of stability. Sections 3 and 4 present the theoretical framework and the computational 

techniques of the discrete and continuous time dynamic economic models 

respectively. Section 5 presents computational performance of the programmed 

functions in several dynamic economic models, while the last section concludes the 

paper. 
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When the solution of a dynamic economic system follows a restrictive non%

explosive path, this is what characterizes economic equilibrium. The structure of the 

mathematical model that ensures existence of equilibrium has been studied among 

others by Jury (1974), Folsom et al. (1976), Blanchard and Kahn (1980), Gu et al. 

(2003), Batra (2006). In economic applications, stability appears to be a property with 

diachronic interest as shown in studies like Arrow and Hurwitz (1958), Arrow et al. 

(1959), Champsaur et al. (1977), up to recent studies of Zhang (2005), Ratto (2008), 

Gomes (2010), Halkos and Papageorgiou (2008, 2010, 2011).  
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The solution that follows a convergent time path is considered stable. Figure 1 

(a%d) depicts the motion of several quantities during a given period. Specifically, 

figures 1.a and 1.b depict unstable solutions that belong to models with explosive 

behaviors. Figure 1.c depicts a solution that follows a convergent time path with 

dampened oscillations; figure 1.d shows solutions with a non%oscillatory convergent 

time path.  

 

  

a.� Unstable oscillatory behavior b.� Unstable non%oscillatory 

behavior 

  

c.� Stable oscillatory behavior d.� Stable non%oscillatory behavior 

�
(������$: Dynamic evolution of the function under consideration 
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In the present section we examine economic models when time is considered a 

discrete variable. As time passes from one period t to the next t+1, t+2, etc., the 

economic system under consideration undergoes a discrete number of states. The 

mathematical formulation in this context, results in one single or, a simultaneous set 

of linear difference equations. Linearity is not restrictive in economic applications 
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since it may be imposed on a model through means of a first order Taylor 

approximation. Our interest focuses in whether the system reaches a steady state after 

a number of fluctuations. A stability result is useful information to an economist, as it 

gives a sense of security and certainty to program business activities.  

Classic discrete time discrete state economic models are the Cobweb model with 

memory of several periods, the Samuelson multiplier%acceleration interaction model, 

the inflation % unemployment model in discrete time, the dynamic market models, and 

common macroeconomic and macro%econometric models.  

In multi equation models, difference equations are often combined into a single 

fundamental dynamic equation. A simple second or third order difference equation 

usually does not suffice to explain the complicated economic mechanisms which 

occur in practice. As models become larger their dynamic behavior becomes more 

difficult and less straightforward. Therefore, a proper usage of computer software off%

loads manual solving procedures that require heavy mathematical background. 

Studies towards this direction are fount in textbooks like Amman et al. (1996), Varian 

(1996), Huang and Crooke (1997), Miranda and Fackler (2002), Judd and Tesfatsion 

(2006) as well as in research papers like Kendrick and Amman (1999). 
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Theoretically, stability results come from several kinds of symbolic 

calculations.  

Stability Conditions for Linear Autonomous Difference Equations  

���������� "
	����
	� %. For a n%th order linear difference equation 

byayayaya tnntntnt =++++ −+−++ ...22110 , a necessary and sufficient condition for the 

general solution to be stable is  
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niri ,...,1,1 =< ,     (1) 

where ir   are real or complex roots of the characteristic polynomial  
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1
  For a detailed analysis see Jury (1974), Neumann (1979), Chiang (1984, chapter 17). 
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Stability Conditions for Linear Autonomous Systems of Difference Equations 

����������"
	����
	
�%%%. Consider a system of linear constant coefficient first order 

difference equation in ku  

bAuu kk +=+1      (3) 

where ku  is a vector of date k economic variables, A is constant square matrix and b 

is a constant vector. It turns out that the eigenvalues of A help determining whether an 

equilibrium exists. After k steps there are k multiplications of the transformation 

1−= PDPA  and the complementary solution of (3) is the solution of  

1
1

11 uPPDuAu kk
k

−
+ ==     (4) 

where P is a matrix with columns the characteristic vectors of the matrix A and D is 

the Jordan matrix of A verifying D = P
�1

AP (Strang, 1988, 5G p. 264). 

The necessary stability conditions for system (3) are 

11 <<−

<<−

D

ntrAn
      (5) 

where trA is the trace of the coefficient matrix Α, n is the number of variables and D  

is the determinant of D (Strang 1988 5J). 

In cases of higher order difference equation systems, by extending the vector ku  

and relabeling some lagged variables we can transform a higher order difference 

equation system into a first order difference equation (Chiang 1984 p. 606). 
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In Xcas programming environment we create 
����
����
 function, with 

arguments the characteristic polynomial (poly) of the difference equation and its 

variable (var). 
����
����
 function calculates the determinant series (2). According 

to stability conditions II, if all determinants have positive signs, the corresponding 

difference equation is stable. For a direct answer to this stability test, we define 


����������
�$ function in Xcas, with arguments the characteristic polynomial (poly) 

of the difference equation and its variable (var). 
����������
�$ function returns 

«stable» for systems with equilibrium state(s) in case where all determinants (2) have 

positive signs and «unstable» for systems that have explosive behavior otherwise. The 

computer codes are: 

A11(poly,var):=matrix(degree(poly,var),degree(poly,var),(j,k)%>if(j<k) 0 ; else 

coeff(poly,var)[[j%k+1]];) :; 

A12(poly,var):=matrix(degree(poly,var),degree(poly,var),(j,k)%>if(j>k) 0 ; else 

coeff(poly,var)[[degree(poly,var)+j%k+1]];) :; 

A21(poly,var):=matrix(degree(poly,var),degree(poly,var),(j,k)%>if(j<k) 0 ; else 

coeff(poly,var)[[degree(poly,var)+k%j+1]];) :; 

A22(poly,var):=matrix(degree(poly,var),degree(poly,var),(j,k)%>if(j>k) 0 ; else 

coeff(poly,var)[[k%j+1]];):; 

schurseries(poly,var):=seq(det(blockmatrix(2,2,[subMat(A11(poly,var),0,0,k,k),s

ubMat(A12(poly,var),0,0,k,k),subMat(A21(poly,var),0,0,k,k),subMat(A22(poly,v

ar),0,0,k,k)])),k=0..degree(poly,var)%1):; 

                                                           
2
 All electronic files are available on request. 

3
 Xcas is a Computer Algebra System available free in http://www%fourier.ujf%grenoble.fr/~parisse/giac 

.html.    
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stabilitytest1(poly,var):=if([seq(sign(schurseries(poly,var)[[k]]),k=1..degree(poly,

var))]==makelist(1,1,degree(poly,var))) stable; else unstable;  :; 

 

The codes of� 
����
����
 and 
����������
�$ functions are saved in 

schurtheorem.cxx program file. Working in any session, by writing in a commandline 

read("schurtheorem.cxx") we can use schurseries and stabilitytest1 functions.  

In Xcas environment stability conditions (5) are examined using 
����������
�& 

function, taking system’s coefficient matrix (x) as argument. 
����������
�& function 

returns «stable» for systems with equilibrium state(s) in case where conditions (5) are 

satisfied and «unstable» for systems that have explosive behavior otherwise:   

stabilitytest2(x):=if (abs(trace(x))<length(x) and abs(det(jordan(x)[[2]]))<1) 

"stable"; else "unstable"; 

In case equilibrium exists, we create 
�����
���� function with arguments system’s 

coefficient matrix (a) and the system’s initial state (initialstate) in a column matrix 

form. 
�����
���� function calculates the asymptotic state of the system in a column 

matrix form. 
�����
���� function uses Xcas’ built%in function matpow which 

calculates the k=100000 power of a matrix by jordanization, as shown in (4): 

steadystate(a,initialstate):=approx(matpow(a,100000))*initialstate 

 

)�&�&�"
�������
	
��	�*�����������

In Mathematica’s environment we can easily create the list of the absolute values 

of the characteristic roots. ����-����
 function takes as arguments the characteristic 

polynomial (poly) of the difference equation and its variable (var). ����-����
 

function generates the list of the absolute values of the real or complex characteristic 

roots of the difference equation. 
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charvalues[poly_,var_]:=Table[Abs[Root[poly,i]],{i,1,Length[Solve[poly==0,var

]],1}] 

For a direct answer to the stability test (1), we define 
����������
� function in 

Mathematica, with arguments the characteristic polynomial (poly) of the difference 

equation and its variable (var). 
����������
� function returns «stable» for systems with 

equilibrium state(s) in case where the maximum element of the list of the absolute 

values of the characteristic roots is less than 1 and «unstable» for systems that have 

explosive behavior otherwise: 

stabilitytest[poly_,var_]:=If[Max[Table[Abs[Root[poly,i]],{i,1,Length[Solve[pol

y==0,var]],1}]]<1,stable,unstable] 

In the previous section�we defined�
�����
���� function in Xcas, which calculates 

the asymptotic behavior of the system 1
1

11 uPPDuAu
kk

k
−

+ ==  after k=100000 

steps. In the present section we define 
�����
���� function in Mathematica. 

Mathematica’s 
�����
����� function provides greater calculative precision, since the 

asymptotic behavior of the system is estimated for power ∞→k . 

The first argument of 
�����
���� function in Mathematica is system’s coefficient 

matrix (a) and the second argument is system’s initial state (initial) in a column matrix 

form. 
�����
���� function calculates the asymptotic behavior of the system in a 

column matrix form. 

steadystate[a_,initial_]:=Simplify[JordanDecomposition[a][[1]].Limit[MatrixPow

er[JordanDecomposition[a][[2]],k],k→∞].Inverse[JordanDecomposition[a][[1]]]]

.initial//MatrixForm 

Generalizing previous output, we create ��
�������
	� function, with arguments 

system’s coefficient matrix (a) and system’s initial state (initial). ��
�������
	� 

function calculates the system state in step / time k, in a column matrix form. 
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�����
���� and ��
�������
	� functions in Mathematica are based on the equality 

1−= PPDA kk  and use Mathematica’s built%in function JordanDecomposition which 

calculates a similarity matrix and the Jordan canonical form of a square matrix: 

distributionk[a_,initial_]:=Simplify[JordanDecomposition[a][[1]].MatrixPower[J

ordanDecomposition[a][[2]],k].Inverse[JordanDecomposition[a][[1]]]].initial//Ma

trixForm 

 

.��"
	��	�
�
��������	�������
	
����*
���

.�

In this section we examine the property of asymptotic stability in several dynamic 

economic systems, modeled in autonomous differential equation formulations of time 

parameter t. Asymptotic stability ensures intertemporal equilibrium for the economic 

quantity the solution stands for, regardless of what the initial conditions happen to be. 

Frequently applied continuous time economic models, are the Harrod%Domar model, 

the Solow model, the inflation and unemployment model, the Cagan monetary model, 

the simplified Keynesian Business Cycle model, the IS%LM model, dynamic market 

models, competitive equilibrium models, natural resources dynamic models, the 

Walrasian%Marshalian adjustment process, the Tobin%Blanchard model and the 

Ramsey model.�

Existence of economic equilibrium in continuous time models is checked via a 

Symbolic language, the Xcas program editor. We generate stability results of ordinary 

linear and nonlinear differential equations using functional programming in free 

computer algebra system Xcas. 

�

                                                           
4
 This section was presented in the 9th International Conference of Numerical Analysis and 

Applied Mathematics (ICNAAM), Halkidiki, Greece, September 25 2011 and was published 

at AIP Conf. Proc. 1389, 1769%1772, DOI:10.1063/1.3636951. 
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Following Zhang (2005, pp. 59%60) let us consider the system of the form 

)),(()( ttxftx =
•

 

The solution ),( 0xtφ defined in ),[ 0 +∞t  is stable if, for any given ε>0, there exists 

δ>0 such that if *

0x  is any given vector that satisfies δ<− *

00 xx , then the solution 

),( *

0xtφ with the initial conditions *

0x  exists in ),[ 0 +∞t  and satisfies  

,),(),( *

00 εφφ <− xtxt  

for all 0tt ≥  (Zhang, 2005).  

A solution ),( 0xtφ  in ),[ 0 +∞t  will be asymptotically stable if it is stable and 

there exists Y>0 such that if *

0x  is any given vector satisfying 
<− *

00 xx , then  

+∞→→− txtxt  as ,0),(),( *

00 φφ . 

The following theorem provides a necessary and sufficient condition for stability in a 

linear system (Zhang, 2005). 

���
��� .�$� Let A be a n×n constant matrix in the homogeneous system 

)()( txAtx nn×

•

=  with eigenvalues nii ,...,1, =ρ . The system is asymptotically stable if 

and only if nii ,...,1,0}Re{ =<ρ . If 0}Re{ >iρ for any i, the solution is unstable. The 

same Liapunov stability property holds for the solutions of the linear system 

btxAtx nn += ×

•

)()( , where b is a constant vector. 

�

�
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The n%th order homogeneous linear differential equation 

,0,0... 0

)2(

2

)1(

1

)( ≠=++++ −
−

−
− n

n

n

n

n

n

n axaxaxaxa  is equivalent to the system of n 

homogeneous linear differential equation ),()( tAxtx =
•
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−−
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0
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10...00
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0...100

0...010

,
...

,  

and where .1,...,1,, 10 −=== −

•

nixxxx ii (Zhang, 2005, p. 319) 

The eigenvalues ρ of A are the roots of the following n%th degree polynomial 

equation 0... 0

2

2

1

1 =++++ −
−

−
− aaaa n

n

n

n

n

n ρρρ  with real coefficients. The 

characteristic equation of the n%th order constant coefficient homogeneous linear 

differential equation and the characteristic equation of the matrix A are the same. 

 

/
���0������1����
���. For the real polynomial 

 0...)( 2

2

1

10 =++++= −−
n

nnn axaxaxaxf   

the real parts of all its roots ix  are negative if and only if the n determinants i�  are 

positive. 

                                                           
5
 For more details see Strang (1988, par. 5.4) and  Zhang (2005, theorem 8.2.4).. 
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Here 0a  is taken to be positive (if 0a <0, then multiply the equation by %1) (see  

Samuelson, 1947, pp. 429%435). 

Routh %Hurwitz Theorem provides a necessary and sufficient condition for stability 

in a linear system of differential equations with constant coefficients and in a higher 

order linear differential equation with constant coefficients and constant term. 

 

��
��
�����������
������������
��

The following theorem provides a necessary and sufficient condition for 

stability of equilibrium points in a nonlinear system.  

�

���
����.�&��(Zhang, 2005, p. 332) We consider a general autonomous system of the 

form )()( xftx =
•

 where ),(tx  is a vector valued function of t and f  is a vector 

valued function of x. Suppose that x* is an equilibrium point of )()( xftx =
•

. Let f  be 

a C
1
 function. If all the eigenvalues of the Jacobian matrix 

nnj

i

x

f
A

×











∂

∂
=  have 

negative real parts, then the equilibrium point x* is asymptotically stable. 

�
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The computer codes presented here are based on Routhian Analysis of sign of 

real parts of characteristic roots. Programmed functions generate stability results of n%

order linear differential equations with constant coefficients and constant term. 

In order to surpass the complexity of the low of formation of Routh’s 

determinants we create �
���
����
�function�in Xcas with arguments the characteristic 

polynomial (poly) and its variable (var). routhseries generates the first n minors of 

n� . To calculate the first n minors of n�  we use ����
���
����
� function with 

arguments the characteristic polynomial (poly) and its variable (var). 

routhseries(poly,var):=seq(subMat(blockmatrix(degree(poly,var),1,[seq(list2mat( 

[seq(if(j<=degree(poly,var))coeff(poly,var)[[j+1]];else0;,j=k..0)],2*degree(poly,v

ar)) ,k=1..2*degree(poly,var),2)]),0,0,t,t),t=0..degree(poly,var)%1):; 

detrouthseries(poly,var):=seq(det(subMat(blockmatrix(degree(poly,var),1,[seq(lis

t2mat([seq(if(j<=degree(poly,var))coeff(poly,var)[[j+1]];else0;,j=k..0)],2*degree(

poly,var)),k=1..2*degree(poly,var),2)]),0,0,t,t)),t=0..degree(poly,var)%1):; 

Although detrouthseries function generates the results of the stability conditions, 

we also create a direct stability test in Xcas based on Routhian analysis with the 

following function: 

stabtest(poly,var):=if([sign(detrouthseries(poly,var))]==makelist(1,1,degree(poly,

var)))stable; else unstable; :; 

The codes of functions �
���
����
 ����
���
����
 and 
�����
� are saved in 

rouththeorem.cxx program file. Working in any session, by writing in a commandline 

read("rouththeorem.cxx") we can use routhseries detrouthseries and stabtest functions.  

�
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The computer codes presented in this section are based on the sign of the real part 

of eigenvalues of the coefficient matrix or the jacobian matrix of the system 

(according to theorems 4.1 and 4.2). Programmed functions provide stability tests of 

linear constant coefficient first order systems and non%linear first order systems. 

In Xcas environment, stability conditions defined in theorem 4.1 are examined 

using ��	���
�
���
�������� function. ��	���
�
���
�������� function takes system’s 

coefficient matrix as argument and returns «asymptotically stable» for systems with 

equilibrium state(s) in case where theorem 4.1 holds and «unstable» for systems that 

have explosive behavior otherwise: 

linearsystemstability(a):=if([sign(re(eigenvals(a)))]==makelist(%1,1,length(a))) 

"asymptotically stable"; else "unstable"; :; 

In Xcas environment, stability conditions defined in theorem 4.2 are examined 

using 	
	��	���
�
���
��������, which takes as arguments the list of functions (listf) 

of the second part of the d.e. system )(xfx =
•

, T

nfff ),...,( 1= , the variable vector 

(vars) and the equilibrium point (equilibrium). 	
	��	���
�
���
�������� function 

returns «asymptotically stable» for systems with equilibrium state(s) in case where 

theorem 4.2 holds and «unstable» otherwise: 

jacobian(listf,vars):=transpose(seq(seq(diff(listf[[k]],vars[[m]]),k=1..length(listf))

,m=1..length(vars))):; 

nonlinearsystemstability(listf,vars,equilibrium):=if([sign(re(eigenvals(subst(jacobi

an(listf,vars),vars=equilibrium))))]==makelist(%1,1,length(jacobian(listf,vars)))) 

"asymptoticallystable"; else "unstable"; :; 
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��	���
�
���
�������� and 	
	��	���
����������
� functions are saved in 

eigentest.cxx program file and can be used in any session by writing 

read("eigentest.cxx"). 

 

2����
��	������������"
	����
	
�#
��"��

�����	�������
	
����*
���
�

The dynamic properties of several models are examined in this section. 

�

2�$�� ����������

	�*���������0����������
	�%	�������
	��
�����

The Samuelson multiplier%acceleration interaction model is condensed into a 

single second order difference equation (Chiang, 1984, p. 585): 

012 YY)α1( GaY ttt =++− ++ γγ , 

where γ represents the marginal propensity to consume and α stands for the 

accelerator. 

 

Assuming that γ=0.9, α=3, stabilitytest1 function in Xcas gives  

stabilitytest1(x^2%0.9*(1+3)*x+0.9*3,x) 

unstable 

As proven graphically, +∞→+∞→ tyt  as  (under arbitrarily chosen initial 

conditions): 

 

�
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which results in  

5001.28.2 12 =+− ++ ttt YYY  

Testing stability in Xcas we get 

schurseries(x^2%2.8*x+2.1,x) 

%3.4,2.1 

Or 

stabilitytest1(x^2%2.8*x+2.1,x) 

unstable 

����������

Consider two economies: 
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In the present case, exports of one economy are imports of the other. After the 

substitutions, the two macroeconomic models result in the system of difference 

equations 

227.03.0

331.065.0

211,2

211,1

=−−

=−−

+

+

ttt

ttt

YYY

YYY
       (2) 
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An initial solution of the system is the solution of the homogeneous system 

ttt

ttt

YYY

YYY

211,2

211,1

7.03.0

1.065.0

+=

+=

+

+
 

which gives the complementary solution cy , part of the total solution pct yyy += of 

the nonhomogeneous system. 

Testing the stability of the complementary solution in Xcas: 

stabilitytest2([[0.65,0.1],[0.3,0.7]]) 

"stable" 

we conclude that income vector tY  for both economies reaches a steady state as 

∞→t . The following graph presents the analytical solution of system (2) with initial 

conditions 120,110 0,20,1 == YY  and verifies Xcas’ stability result: 
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In the discrete time context, three difference equations describe the interaction of 

inflation and unemployment: 
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where p is the actual rate of inflation, π is the expected rate of inflation, U  is the 

rate of unemployment and m is the rate of growth of nominal money. After 
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elimination of the tU  term, the inflation%unemployment model formulates a second 

order difference equation in terms of function p(t) (Chiang 1984, p. 592):�

k
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p ttt β
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ββ
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−−
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Eliminating p, we can rewrite the model as the difference equation system (Chiang 

1984, p. 627): 
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Assuming certain values for the parameters h, a, β, j, k, we test the stability 

conditions to the inflation and unemployment difference%equation model in Xcas: 

h:=1/2;a:=5/6;b:=1/5;j:=1/3;k:=10  

stabilitytest1(x^2%(1+h*j+(1%j)*(1+b*k)/(1+b*k))*x+(1%j*(1%h)/(1+b*k)),x) 

stable 

The same result is achieved for the difference equation system formulation with  

stabilitytest2(inverse([[1,0],[%k*h,1+b*k]])*[[(1%j+j*h),%j*b],[0,1]]) 

"stable" 
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Difference equations or mixed difference and differential equations formulate the 

possible endogenous movements of a schematized economic system in the field of 

business%cycle analysis. Algebraic manipulations of such multi%equation multi%

variable models lead to one final equation, from which the possible movements of the 

system under consideration are studied (Koopmans, 1940).  

A well known numerical equation determined statistically in the analysis of 

economic fluctuations of U.S. (Tinbergen, 1939, p. 140), is the fourth order 

Tinbergen’s difference equation:  
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0027.0013.0220.0398.0 4321 =−−+− −−−− ttttt ZZZZZ   

with the associated characteristic equation  

     0027.0013.0220.0398.0 234 =−−+− xxxx .  

Checking for stability over time in Xcas 

 

schurseries(x^4%0.398*x^3+0.22*x^2%0.013*x%0.027,x) 

0.99927,0.99798,0.94986,0.80951 

stabilitytest1(x^4%0.398*x^3+0.22*x^2%0.013*x%0.027,x) 

stable 
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Extending the Cob%Web model of Hoy et al. (2001, p. 826),�we assume the dynamic 

model with time%lagged supply function:  

)(1 tt

S

t pgEfQ −+=  

     t

D

t bpaQ +=  

D

t

S

t QQ =  

where )(1 tt pE −  is the price expectation for period t estimated at period t%1.  We 

assume that 2111 )( −−−− �−�−= ttttt pkprppE ,p 211%t −− −=� tt pp 322%tp −− −=� tt pp .�

For parameter values 0≤r,k≤1, suppliers expect the next price change, to be in the 

opposite direction of the previous price change.  If �1≤r,k≤0, suppliers expect the next 

price change to be in the same direction as the previous price change. Equilibrium is 

then expressed via a third order difference equation, relating the price in the current 

period with the prices in 1, 2 and 3 periods ago: 

b
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−
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−
− +++  

We will test the stability for several values of g, b, r, k.  
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In Mathematica we get a list of the absolute values of the characteristic roots by 

writing: 

g = 13; b = %16; r = %0.3; k = 0.5; a = 60; f = 2; 

charvalues[x^3 % g*(1 % r)/b*x^2 % g*(r % k)/b*x % g*k/b, x] 

{1.61464, 0.501601, 0.501601} 

Alternatively we decide stability in Mathematica using 

stabilitytest[x^3 % g*(1 % r)/b*x^2 % g*(r % k)/b*x % g*k/b, x] 

unstable 

Testing stability in Xcas, we apply Xcas’ programmed function schurseries 

schurseries(x^3 % g*(1%r)/b*x^2 % g*(r%k)/b(%16)*x % g*k/b,x) 

0.83496,%0.4673,%7.3874 

Xcas’ stability test gives 

stabilitytest1(x^3 % g*(1%r)/b*x^2 % g*(r%k)/b(%16)*x % g*k/b,x) 

unstable 
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The following macroeconomic model is a quarterly model constructed by 

Kmenta and Smith. The equations were estimated with quarterly data over the period 

1954 to 1963.  
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where Y=gross national product, C=consumption expenditures, I
d
=producer’s outlays 

on durable plant and equipment, I
r
=residential construction, I

i
=increase in inventories, 

G=government purchases of goods and services plus net foreign investment, S=final 

sales of goods and services, T=time in quarters (first quarter of 1954=0), r=yield on 

all corporate bonds, percent per annum, M=money supply, i.e. demand deposits plus 

currency outside banks, TD=time deposits in commercial banks, L=money supply 

plus time deposits in commercial banks (representing liquid wealth). 

The original model by substituting Ct%1, St%1, St%2, I
d

t%1, I
r
t%1, I

i
t%1, results in a single 

dynamic equation: 

 

5113.0)4(0032.0)3(0192.0)2(1267.0

)1(2050.01034.0075.00314.00246.0

0580.01065.0048.00046.00082.0

2000.06253.07499.03168.01784.0

7463.05853.03779.15300.21427.1

0535.05585.00850.26561.30716.3
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The example is taken from (Pindyck and Rubinfeld, 1998). 

 

In Mathematica we get a list of the absolute values of the characteristic roots by 

writing: 

charvalues[x^5%3.0716*x^4+3.6561*x^3%2.085*x^2+0.5585*x%0.0535,x] 

{0.207946, 0.593134, 0.593134, 0.855162, 0.855162} 

Alternatively we check stability conditions using 

stabilitytest[x^5%3.0716*x^4+3.6561*x^3%2.085*x^2+0.5585*x%0.0535,x] 

stable 

Testing stability in Xcas we get 

schurseries(x^5%3.0716*x^4+3.6561*x^3%2.085*x^2+0.5585*x%0.0535,x)  
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1, 0.84, 0.24, 0.005, 2e%06  

or 

stabilitytest1(x^5%3.0716*x^4+3.6561*x^3%2.085*x^2+0.5585*x%0.0535,x)  

stable 
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��

In continuous time dynamic market models, buyers’ and sellers’ expectations 

for future price of goods are parameterized through coefficients of derivatives of the 

price function p(t). The derivative )(tp′  stands for the rate of change of the price and 

)(tp ′′  stands for the rate of change of the rate )(tp′  (Chiang 1984, p. 529). In the 

following examples, we propose some simplified demand and supply functions, 

modeled by linear differential expressions: 

 

)(3.0)(5.1)(1015

)(2)(3)(660

tPtPtPQ

tPtPtPQ

s

d

′′+′++−=

′′+′+−=
(1) 

)(3.0)(5.1)(1015

)(2)(3)(660

tPtPtPQ

tPtPtPQ

s

d

′′−′−+−=

′′−′−−=
(2) 

 

Equation of sd QQ ,  in both examples results in second order differential 

equations. Then, equilibrium is checked for stability via stabtest function in Xcas: 

 

75)(16)(5.1)(7.1 =+′−′′− tPtPtP  75)(16)(5.1)(7.1 =+′+′′ tPtPtP  

stabtest(%1.7*r^2%1.5*r+16,r) 

unstable 

stabtest(1.7*r^2+1.5*r+16,r) 

stable 

 

In problem (1) price follows a divergent time path and in problem (2) price follows a 

convergent time path. 
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Consider an economy with two production sectors with input%output Leontief 

model: 

21212

12211

'

,'

Dgxfxdxx

Dcxbxaxx

+++=

+++=
 

where 21 , xx  are the current production quantities from the two sectors and 21 , DD  the 

final demands for 21 , xx . Let us check the stability of the equilibrium solutions.  

By transforming the initial system of differential equations in the form 

),( 21 xxfx ii =′ , we can use linearsystemstability function in Xcas. We present a 

numerical example: 

linearsystemstability([[0.2,%0.85],[0.8/3,%0.7/3]]) 

"asymptotically stable" 

�
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Let the following aggregate excess demand functions of three goods for three 

consumers  
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The equilibrium situation is when 321 i, allfor  0 pppzi === . The equilibrium point 

is (1,1,1). We consider the following Walrasian tâtonnement  

),,( 321 pppzp ii
=

•

 

The example is taken from Zhang (2005, p. 387).  
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We will check if that equilibrium is asymptotically stable. In Xcas’ 

environment  

nonlinearsystemstability([%p2/(p1+p2)+p3/(p1+p3),%p3/(p2+p3)+p1/(p1+p2),%

p1/(p1+p3)+p2/(p2+p3)],[p1,p2,p3],[1,1,1]) 

"unstable" 
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In this work we considered applications of economic dynamics when time is 

modeled either in a discrete or a continuous variable. In the discrete time framework, 

dynamic economic systems give formulations with linear autonomous difference 

equations. In the continuous time framework, mathematical models constitute of 

linear or nonlinear autonomous differential equations.  

Our study began by gathering theorems and conditions that test whether the system 

reaches equilibrium, no matter what the initial conditions happen to be. We have 

presented conditions that ensure convergence based on methodologies from matrix 

algebra and differential calculus. Our contribution consists in programming functions 

in Mathematica and Xcas that produce direct stability results. As such, our proposed 

functions make the necessary symbolic and arithmetic calculations to foresee the 

possibility of convergence in the long run period. The output generated indicates 

«stable» for systems that reach equilibrium and «unstable» otherwise. The 

computational approach adopted in this study, follows functional programming style, 

similar to Xcas’ and Mathematica’s built%in functions. 

In the discrete time context, we created stabilitytest in Mathematica and 

stabilitytest1, stabilitytest2 functions in Xcas. By stabilitytest function, the stability 

result comes from checking the magnitude of the characteristic roots of a difference 
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equation. In stabilitytest1 function, stability test is based on Schur’s Theorem, and the 

result appears without solving the characteristic equation. stabilitytest2 function was 

programmed using theory of n%dimensional linear algebra to generate stability 

conclusions for systems of difference equations in matrix form.  

Computer codes in Xcas are written in a separate program level, saved and 

exported in schurtheorem.cxx program file. For stable systems expressed via 

simultaneous linear homogeneous difference equations, Xcas’ steadystate and 

Mathematica’ s steadystate functions give the stationary value at which the system 

comes to rest. distributionk function in Mathematica evaluates the future state of the 

system after k steps. 

In the study of continuous time economic models, Routh’s theorem constitutes a 

necessary and sufficient condition in determinental form for asymptotic stability of 

higher%order differential equations. In the case of simultaneous equations, matrix 

theory has a part to play. For systems of linear first order differential equations the 

eigenvalues of the coefficient matrix and for systems of nonlinear first order 

differential equations the eigenvalues of the jacobian matrix are examined.  

Our computer codes use two methodologies, routhian analysis and eigevalues’ 

calculation, in order to define the long run dynamic evolution of economic systems in 

continuous time. The property checked is asymptotic stability which is related to the 

existence of economic equilibrium. All functions are programmed in Xcas in 

rouththeorem.cxx and eigentest.cxx program files.  

With routhseries and detrouthseries functions of rouththeorem.cxx program file, 

the user can reproduce routh’s determinats symbolically and numerically. By stabtest 

function, stability conditions for higher dimensional differential equations are tested 
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using Routhian analysis. In this approach, there is no need for solving the 

corresponding characteristic equations.  

In eigentest.cxx program file, linearsystemstability function tests stability 

conditions for simultaneous first order linear differential equations with constant 

coefficients by checking the sign of the real part of the eigenvalues of the coefficient 

matrix. nonlinearsystemstability function tests stability of equilibrium points for 

simultaneous nonlinear differential equations, by checking the sign of the real part of 

the eigenvalues of the jacobian matrix. All calculations are made in one entry, with 

minimum input required. 

Numerical experiments on traditional applications of economic dynamics exhibit 

the simplicity clarity and brevity of input and output of our computer codes.  

�

�

�
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