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1. Preliminaries

Since their introduction by Engle (1982) and Bollerslev (1986), GARCH models

have attracted much attention and have been widely investigated in the liter-

ature. Many extensions have been suggested and, among them, the EGARCH

(Exponential GARCH) introduced and studied by Nelson (1991) is very popu-

lar. In this model, the log-volatility is expressed as a linear combination of its

past values and past values of the positive and negative parts of the innovations.

Two main reasons for the success of this formulation are that (i) it allows for

asymmetries in volatility (the so-called leverage effect: negative shocks tend to

have more impact on volatility than positive shocks of the same magnitude), and

(ii) it does not impose any positivity restrictions on the volatility coefficients.

Another class of GARCH-type models, which received less attention, seems

to share the same characteristics. The log-GARCH(p,q) model has been intro-

duced, in slightly different forms, by Geweke (1986), Pantula (1986) and Milhøj

(1987). For more recent works on this class of models, the reader is referred to

Sucarrat and Escribano (2010) and the references therein. The (asymmetric)

log-GARCH(p, q) model takes the form






ǫt = σtηt,

log σ2
t = ω +

∑q
i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i

+
∑p

j=1 βj log σ2
t−j

(1.1)

where σt > 0 and (ηt) is a sequence of independent and identically distributed

(iid) variables such that Eη0 = 0 and Eη2
0 = 1. The usual symmetric log-

GARCH corresponds to the case α+ = α−, with α+ = (α1+, . . . , αq+) and

α− = (α1−, . . . , αq−).

Interesting features of the log-GARCH specification are the following.

(a) Absence of positivity constraints. An advantage of modeling the

log-volatility rather than the volatility is that the vector θ = (ω,α+,α−,β)
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with β = (β1, . . . , βp) is not a priori subject to positivity constraints1. This

property seems particularly appealing when exogenous variables are included in

the volatility specification (see Sucarrat and Escribano, 2012).

(b) Asymmetries. Except when αi+ = αi− for all i, positive and negative

past values of ǫt have different impact on the current log-volatility, hence on the

current volatility. However, given that log ǫ2t−i can be positive or negative, the

usual leverage effect does not have a simple characterization, like αi+ < αi−

say. Other asymmetries could be introduced, for instance by replacing ω by
∑q

i=1 αi+1{ǫt−i>0} + αi−1{ǫt−i<0}. The model would thus be stable by scaling,

which is not the case of Model (1.1) except in the symmetric case.

(c) The volatility is not bounded below. Contrary to standard GARCH

models and most of their extensions, there is no minimum value for the volatility.

The existence of such a bound can be problematic because, for instance in a

GARCH(1,1), the minimum value is determined by the intercept ω. On the other

hand, the unconditional variance is proportional to ω. Log-volatility models

allow to disentangle these two properties (minimum value and expected value

of the volatility).

(d) Small values can have persistent effects on volatility. In usual

GARCH models, a large value (in modulus) of the volatility will be followed by

other large values (through the coefficient β in the GARCH(1,1), with standard

notation). A sudden rise of returns (in module) will also be followed by large

volatility values if the coefficient α is not too small. We thus have persistence of

large returns and volatility. But small returns (in module) and small volatilities

are not persistent. In a period of large volatility, a sudden drop of the return due

to a small innovation, will not much alter the subsequent volatilities (because

1However, some desirable properties may determine the sign of coefficients. For instance,

the present volatility is generally thought of as an increasing function of its past values, which

entails βj > 0. The difference with standard GARCH models is that such constraints are not

required for the existence of the process and, thus, do not complicate estimation procedures.
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β is close to 1 in general). By contrast, as will illustrated in the sequel, the

log-GARCH provides persistence of large and small values.

(e) Power-invariance of the volatility specification. An interesting po-

tential property of time series models is their stability with respect to certain

transformations of the observations. Contemporaneous aggregation and tempo-

ral aggregation of GARCH models have, in particular, been studied by several

authors (see Drost and Nijman (1993)). On the other hand, the choice of a

power-transformation is an issue for the volatility specification. For instance,

the volatility can be expressed in terms of past squared values (as in the usual

GARCH) or in terms of past absolute values (as in the symmetric TGARCH)

but such specifications are incompatible. On the contrary, any power transfor-

mation |σt|s (for s 6= 0) of a log-GARCH volatility has a log-GARCH form (with

the same coefficients in θ, except the intercept ω which is multiplied by s/2).

The log-GARCH model has apparent similarities with the EGARCH(p, ℓ)

model defined by




ǫt = σtηt,

log σ2
t = ω +

∑p
j=1 βj log σ2

t−j +
∑ℓ

k=1 γkη
+
t−k + δk|ηt−k|,

(1.2)

under the same assumptions on the sequence (ηt) as in Model (1.1). Indeed, these

models have in common the above properties (a), (b), (c) and (e). Concerning

the property in (d), and more generally the impact of shocks on the volatility

dynamics, Figure 1 illustrates the differences between the two models (and also

with the standard GARCH). The model coefficients have been chosen to ensure

the same long-term variances when the squared innovations are equal to 1.

Interestingly, a shock close to zero has a very persistent impact on the log-

GARCH volatility, contrary to the EGARCH and GARCH volatilities. However,

a sequence of shocks close to zero do impact the EGARCH volatility (but not

the GARCH volatility).

This article provides a probability and statistical study of the log-GARCH,

together with a comparison with the EGARCH. While the stationarity proper-
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Figure 1. Curves of the impact of shocks on volatility. The top-left graph shows that a large
shock has a (relatively) small impact on the log-GARCH, a large but transitory effect on the
EGARCH, and a large and very persistent effect on the classical GARCH volatility. The top-
right graph shows the effect of a sequence of tiny innovations: for the log-GARCH, contrary
to the GARCH and EGARCH, the effect is persistent. The bottom graph shows that even one
tiny innovation causes this persistence of small volatilities for the log-GARCH.

ties of the EGARCH are well-known, those of the asymmetric log-GARCH(p, q)

model (1.1) have not yet been established, to our knowledge. As for the quasi-

maximum likelihood estimator (QMLE), the consistency and asymptotic nor-

mality have only been proved in particular cases and under cumbersome assump-

tions for the EGARCH, and have not yet been established for the log-GARCH.

Finally, it seems important to compare the two classes of models on typical

financial series. The distinctive features of the two models may render each

formulation more adequate for certain types of series.

The remainder of the paper is organized as follows. Section 2 studies the exis-

tence of a solution to Model (1.1). Conditions for the existence of log-moments

are derived, and we characterize the leverage effect. Section 3 is devoted to

the tail properties of the solution. In Section 4, the strong consistency and the
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asymptotic normality of the QMLE are established under mild conditions. Sec-

tion 6 presents some numerical applications on simulated and real data. Proofs

are collected in Section 7. Section 8 concludes.

2. Stationarity, moments and asymmetries of the log-GARCH

We start by studying the existence of solutions to Model (1.1).

2.1. Strict stationarity

Let 0k denote a k-dimensional vector of zeroes, and let Ik denote the k-

dimensional identity matrix. Introducing the vectors

ǫ+
t,q = (1{ǫt>0} log ǫ2t , . . . , 1{ǫt−q+1>0} log ǫ2t−q+1)

′ ∈ R
q,

ǫ−t,q = (1{ǫt<0} log ǫ2t , . . . , 1{ǫt−q+1<0} log ǫ2t−q+1)
′ ∈ R

q,

zt = (ǫ+
t,q, ǫ

−
t,q, log σ2

t , . . . , log σ2
t−p+1)

′ ∈ R
2q+p,

bt =
(
(ω + log η2

t )1{ηt>0},0
′
q−1, (ω + log η2

t )1{ηt<0},0
′
q−1, ω,0

′
p−1

)′ ∈ R
2q+p,

and the matrix

Ct =




1{ηt>0}α+ 1{ηt>0}α− 1{ηt>0}β

Iq−1 0q−1 0(q−1)×q 0(q−1)×p

1{ηt<0}α+ 1{ηt<0}α− 1{ηt<0}β

0(q−1)×q Iq−1 0q−1 0(q−1)×p

α+ α− β

0(p−1)×q 0(p−1)×q Ip−1 0p−1




, (2.1)

we rewrite Model (1.1) in matrix form as

zt = Ctzt−1 + bt. (2.2)

We have implicitly assumed p > 1 and q > 1 to write Ct and bt, but obvious

changes of notation can be employed when p ≤ 1 or q ≤ 1. Let γ(C) be the top
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Lyapunov exponent of the sequence C = {Ct, t ∈ Z},

γ(C) = lim
t→∞

1

t
E (log ‖CtCt−1 . . .C1‖) = inf

t≥1

1

t
E(log ‖CtCt−1 . . .C1‖).

The choice of the norm is obviously unimportant for the value of the top Lya-

punov exponent. However, in the sequel, the matrix norm will be assumed to

be multiplicative. Bougerol and Picard (1992a) showed that if an equation of

the form (2.2) with iid coefficients (Ct, bt) is irreducible2 and if E log+ ‖C0‖
and E log+ ‖b0‖ are finite, γ(C) < 0 is the necessary and sufficient condition

for the existence of a stationary solution to (2.2). Bougerol and Picard (1992b)

showed that, for the univariate GARCH(p, q) model, there exists a representa-

tion of the form (2.2) with positive coefficients, and for which the necessary and

sufficient condition for the existence of a stationary GARCH model is γ(C) < 0.

The result can be extended to more general classes of GARCH models (see e.g.

Francq and Zakoïan, 2010a). The problem is more delicate with the log-GARCH

because the coefficients of (2.2) are not constrained to be positive. The follow-

ing result and Remark 2.1 below show that γ(C) < 0 is only sufficient. The

condition is however necessary under the mild additional assumption that (2.2)

is irreducible.

Theorem 2.1. Assume that E log+ | log η2
0 | < ∞. A sufficient condition for

the existence of a strictly stationary solution to the log-GARCH model (1.1) is

γ(C) < 0. When γ(C) < 0 there exists only one stationary solution, which is

non anticipative and ergodic.

Example 2.1 (The log-GARCH(1,1) case). In the case p = q = 1, omitting

subscripts, we have

CtCt−1 . . .C1 =




1{ηt>0}

1{ηt<0}

1




(
α+ α− β

) t−1∏

i=1

(
α+1{ηi>0} + α−1{ηi<0} + β

)
.

2See their Definition 2.3.
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Assume that E log+ | log η2
t | <∞, which entails P (η0 = 0) = 0. Thus,

γ(C) = E log
∣∣α+1{η0>0} + α−1{η0<0} + β

∣∣ = log |β + α+|a|β + α−|1−a,

where a = P (η0 > 0). The condition |α+ + β|a|α− + β|1−a < 1 thus guarantees

the existence of a stationary solution to the log-GARCH(1,1) model.

Example 2.2 (The symmetric case). In the case α+ = α− = α, one can

see directly from (1.1) that log σ2
t satisfies an ARMA-type equation of the form

{
1 −

r∑

i=1

(αi + βi)B
i

}
log σ2

t = c+

q∑

i=1

αiB
ivt

where B denotes the backshift operator, vt = log η2
t , r = max {p, q}, αi = 0

for i > q and βi = 0 for i > p. This equation is a standard ARMA(r, q)

equation under the moment condition E(log η2
t )2 < ∞, but this assumption is

not needed. It is well known that this equation admits a non degenerated and

non anticipative stationary solution if and only if the roots of the AR polynomial

lie outside the unit circle.

We now show that this condition is equivalent to the condition γ(C) < 0 in

the case q = 1. Let P be the permutation matrix obtained by permuting the

first and second rows of I2+p. Note that Ct = C+1{ηt>0} + C−1{ηt<0} with

C− = PC+. Since α+ = α−, we have C+P = C+. Thus C+C− = C+P C+ =

C+C+ and ‖Ct · · ·C1‖ = ‖(C+)t‖. It follows that γ(C) = log ρ(C+). In view

of the companion form of C+, it can be seen that the condition ρ(C+) < 1 is

equivalent to the condition z − ∑r
i=1(αi + βi)z

i = 0 ⇒ |z| > 1.

Remark 2.1 (The condition γ(C) < 0 is not necessary). Assume for

instance that p = q = 1 and α+ = α− = α. In that case γ(C) < 0 is equivalent

to |α + β| < 1. In addition, assume that η2
0 = 1 a.s. Then, when α + β 6= 1,

there exists a stationary solution to (1.1) defined by ǫt = exp(c/2)ηt, with

c = ω/(1 − α− β).
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2.2. Existence of log-moments

It is well known that for GARCH-type models, the strict stationarity condition

entails the existence of a moment of order s > 0 for |ǫt|. The following Lemma

shows that this is also the case for | log ǫ2t | in the log-GARCH model, when the

condition E log+ | log η2
0 | <∞ of Theorem 2.1 is slightly reinforced.

Proposition 2.1 (Existence of a fractional log-moment). Assume that

γ(C) < 0 and that E| log η2
0 |s0 < ∞ for some s0 > 0. Let ǫt be the strict

stationary solution of (1.1). There exists s > 0 such that E| log ǫ2t |s < ∞ and

E| log σ2
t |s <∞.

In order to give conditions for the existence of higher-order moments, we

introduce some additional notation. Let ei be the i-th column of Ir, let σt,r =

(log σ2
t , . . . , log σ2

t−r+1)
′, and let the companion matrix

At =


 µ1(ηt−1) . . . µr−1(ηt−r+1) µr(ηt−r)

Ir−1 0r−1


 , (2.3)

where µi(ηt) = αi+1{ηt>0}+αi−1{ηt<0}+βi with the convention αi+ = αi− = 0

for i > p and βi = 0 for i > q. We have the Markovian representation

σt,r = Atσt−1,r + ut, (2.4)

where ut = ute1, with

ut = ω +

q∑

i=1

(
αi+1{ηt−i>0} + αi−1{ηt−i<0}

)
log η2

t−i.

The Kronecker matrix product is denoted by ⊗, and the spectral radius of a

square matrix M is denoted by ρ(M). For any (random) vector or matrix M ,

let Abs(M ) be the matrix, of same size as M , whose elements are the absolute

values of the corresponding elements of M .

Proposition 2.2 (Existence of log-moments). Let m be a positive integer.

Assume that γ(C) < 0 and that E| log η2
0 |m < ∞. Let A(m) = EAbs(A1)

⊗m

where At is defined by (2.3).
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• If m = 1 or r = 1, then ρ(A(m)) < 1 implies that the strict stationary

solution of (1.1) is such that E| log ǫ2t |m <∞ and E| log σ2
t |m <∞.

• If ρ(C(m)) < 1, then E| log ǫ2t |m <∞ and E| log σ2
t |m <∞.

Remark 2.2 (A sufficient condition for the existence of any log-mo-

ment). Let A(∞) = ess sup Abs(A1) be the essential supremum of Abs(A1)

term by term. Then, it follows from (7.2) in the proof that componentwise we

have

Abs(σt,r) ≤
∞∑

ℓ=0

(A(∞))ℓAbs(ut−ℓ). (2.5)

Therefore, the condition

ρ(A(∞)) < 1 (2.6)

ensures the existence of E| log ǫ2t |m at any order m, provided γ(C) < 0 and

E| log η2
0 |m < ∞. Now in view of the companion form of the matrix A(∞) (see

e.g. Corollary 2.2 in Francq and Zakoïan, 2010a), (2.6) holds if and only if

r∑

i=1

|αi+ + βi| ∨ |αi− + βi| < 1. (2.7)

Example 2.3 (Log-GARCH(1,1) continued). In the case p = q = 1, we

have

At = α+1{ηt−1>0} + α−1{ηt−1<0} + β and A(m) = E (|A1|)m
.

The conditions E| log η2
0 |m <∞ and

m∑

k=0



 m

k




(
a |α+|k + (1 − a) |α−|k

)
|β|m−k

< 1

thus entail E| log ǫ2t |m <∞ for the log-GARCH(1,1) model.

Example 2.4 (Symmetric case continued). When α+ = α− = α, the

matrix At is no more random:

A(∞) = A(1) = Abs(A1) =


 |α1 + β1| · · · |αr + βr|

Ir−1 0r−1


 .
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In view of the companion form of this matrix we have ρ
(
A(1)

)
< 1 if and only

if
r∑

i=1

|αi + βi| < 1.

The previous condition ensures E| log ǫ2t |m < ∞ for all m such that

E| log η2
0 |m <∞.

2.3. Leverage effect

A well-known stylized fact of financial markets is that negative shocks on the

returns impact future volatilities more importantly than positive shocks of the

same magnitude. Generally, this so-called leverage effect is measured by comput-

ing the covariance between the innovation (or the return) at time t− 1 and the

current volatility. In our framework, it is more convenient to evaluate the lever-

age effect through the covariance between ηt−1 and the current log-volatility.

We restrict our study to the case p = q = 1, omitting subscripts to simplify

notation.

Proposition 2.3 (Leverage effect in the log-GARCH(1,1) model). Con-

sider the log-GARCH(1,1) model under (2.6). Assume that the innovations ηt

are symmetrically distributed, E[| log η0|2] < ∞ and |β| + 1
2 (|α+| + |α−|) < 1.

Then

cov(ηt−1, log σ2
t ) =

1

2
(α+ − α−)

{
E(|η0|)τ + E(|η0| log η2

0)
}
, (2.8)

where

τ = E log σ2
t =

ω + 1
2 (α+ − α−)E(log η2

0)

1 − β − 1
2 (α+ + α−)

.

Thus, if the left hand side of (2.8) is negative the leverage effect is present:

past negative innovations tend to increase the log-volatility, and hence the

volatility, more than past positive innovations. However, the sign of the co-

variance is more complicated to determine than for other asymmetric models: it
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depends on all the GARCH coefficients, but also on the properties of the innova-

tions distribution. Interestingly, the leverage effect may hold with α+ > α−. Sim-

ple calculation shows that for the EGARCH(1,1) model, cov(ηt−1, log σ2
t ) = γ1.

3. Tail properties of the log-GARCH

In this section, we investigate differences between the EGARCH and the log-

GARCH in terms of tail properties.

3.1. Existence of moments

We start by characterizing the existence of moments for the log-GARCH. The

following result is an extension of Theorem 1 in Bauwens et al., 2008, to the

asymmetric case (see also Theorem 2 in He et al., 2002 for the symmetric case

with p = q = 1):

Proposition 3.1 (Existence of moments). Assume that γ(C) < 0 and that

ρ
(
A(∞)

)
< 1. Letting λ = max1≤i≤q{|αi+| ∨ |αi−|}

∑
ℓ≥0 ‖(A(∞))ℓ‖ < ∞,

assume that for some s > 0

E
[
exp

{
s
(
λ ∨ 1

)
| log η2

0 |
}]

<∞, (3.1)

then the solution of the log-GARCH(p,q) model satisfies E|ǫ0|2s <∞.

Remark 3.1. In the case p = q = 1, condition (3.1) becomes explicit:

E
[
exp

{
s
( |α1+| ∨ |α1−|

1 − |α1+ + β1| ∨ |α1− + β1|
∨ 1

)
| log η2

0 |
}]

<∞.

If α1+ and α1− are non negative, Proposition 3.3 below shows that, if η0 has

regular variations, the conditions (2.7) and E|η0|2s(α1+∨α1−∨1) < ∞ are suffi-

cient for E|ǫ0|2s < ∞. Note that condition E|η0|2s(α1+∨α1−∨1) < ∞ is always

weaker than condition (3.1).

The following result provides a sufficient condition for the Cramer’s type

condition (3.1).
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Proposition 3.2. If E(|η0|s) < ∞ for some s > 0 and η0 admits a den-

sity f around 0 such that f(y−1) = o(|y|δ) for δ < 1 when |y| → ∞ then

E exp(s1| log η2
0 |) <∞ for some s1 > 0.

For an explicit expression of the unconditional moments in the case of

symmetric log-GARCH(p, q) models, we refer the reader to Bauwens et al.

(2008).

3.2. Regular variation of the log-GARCH(1,1)

Under the assumptions of Proposition 2.3 we have an explicit expression of the

stationary solution. Thus it is possible to assert the regular variation proper-

ties of the log-GARCH model. Recall that L is a slowly varying function iff

L(xy)/L(x) → 1 as x → ∞ for any y > 0. A random variable X is said to be

regularly varying of index r > 0 if there exists a slowly varying function L and

p+ q = 1, p ∧ q ≥ 0 such that

P (X > x) ∼ px−rL(x) and P (X ≤ −x) ∼ qx−rL(x) x→ ∞.

The following proposition asserts the regular variation properties of the station-

ary solution of the log-GARCH(1,1) model.

Proposition 3.3 (Regular variation of the log-GARCH(1,1) model). Consider

the log-GARCH(1,1) model under (2.6) with α1+ ∧ α1− > 0. If (β1 + α1+) ∧
(β1 + α1−) < 0, assume additionally that there exists c > 0 such that P (1/η >

t) ≤ cP (η > t) for all t ≥ 1.

• If η0 is regularly varying of index 2r > 0 then σ2
0 and ǫ0 are regularly

varying of index r/(α1+ ∨ α1−) and 2r/(α1+ ∨ α1− ∨ 1) respectively.

• If η0 has finite moments of order 2r > 0 then σ2
0 and ǫ0 have finite mo-

ments of order r/(α1+ ∨ α1−) and 2r/(α1+ ∨ α1− ∨ 1) respectively.
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The square root of the volatility σ0 can have heavier tails than the in-

novations when α1+ ∨ α1− > 1. Similarly, in the EGARCH(1,1) model the

observations can have a much heavier tail than the innovations. Moreover,

when the innovations are light tailed distributed (for instance exponentially

distributed), the EGARCH can exhibit regular variation properties. It is not

the case for the log-GARCH(1,1) model.

In this context of heavy tail, a natural way to deal with the dependence

structure is to study the multivariate regular variation of a trajectory. As the

innovations are independent, the dependence structure can only come from the

volatility process. However, it is also independent in the extremes. The following

is a straightforward application of Lemma 3.4 of Mikosch and Rezapour (2012).

Proposition 3.4 (Multivariate regular variation of the log-GARCH(1,1)

model). Assume the conditions of Proposition 3.3 satisfied. Then the sequence

(σ2
t ) is regularly varying with index r/(α1+ ∨ α1−). The limit measure of the

vector Σ2
d = (σ2

1 , . . . , σ
2
d)′ is given by the following limiting relation on the Borel

σ-field of (R ∪ {+∞})d/{0d}

P (x−1Σ2
d ∈ ·)

P (σ2 > x)
→ r

α1+ ∨ α1−

d∑

i=1

∫ ∞

1

y−r/(α1+∨α1−)−11{yei∈·}dy, x→ ∞.

where ei is the i-th unit vector in Rd and the convergence holds vaguely.

As for the innovations, the limiting measure above is concentrated on the

axes. Thus it is also the case for the log-GARCH(1,1) process and its extremes

values do not cluster. It is a drawback for modeling stock returns when clusters

of volatilities are stylized facts. This lack of clustering is also observed for the

EGARCH(1,1) model in Mikosch and Rezapour (2012), in contrast with the

GARCH(1,1) model, see Mikosch and Starica (2000).

We have seen that the extremal behavior of the log-GARCH model is similar
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to that of the EGARCH(1,1) model, except that it has a much lighter tail for

the same innovations. It is the contrary for the extremely small values. Let us

consider the inverse (ǫ−1
t ) of the solution (ǫt) of a log-GARCH model. Then,

if the variance of (η−1
t ) exists and E(η−1

t ) = 0, the process (ǫ−1
t ) satisfies a

log-GARCH model. Under the assumptions of Proposition 3.3, the extremal

behavior of ǫ−1
0 is driven by the innovation η−1

0 which, in the gaussian case,

is inverse-gamma distributed with parameter (1/2, 1/2). Thus ǫ−1
0 is regularly

varying with index r = 1/2, implying that extremely small values of ǫ0 are

likely to occur. The time to return to the stationary regime from extremely

small values is much longer than from extremely large values.

If now we consider the case of an EGARCH model, the invertibility condi-

tion obtained by Wintenberger and Cai (2011) imposes that the volatility σ2
0

be bounded from below. Thus, its inverse is bounded from above and the ex-

tremal behavior of the return ǫ0 is the same as that of the innovation η0. As the

innovations have lighter tails than the returns, extremely small values are not

observed. This explains why the time to return to the stationary regime from

extremely small values is much shorter than from extremely large values, see

Figure 1 (the same reasoning also holds for GARCH(1,1) model).

4. Estimating the log-GARCH by QML

We now consider the statistical inference. Let ǫ1, . . . , ǫn be observations of the

stationary solution of (1.1), where θ is equal to an unknown value θ0 belonging

to some parameter space Θ ⊂ R
d, with d = 2q+p+1. A QMLE of θ0 is defined

as any measurable solution θ̂n of

θ̂n = arg min
θ∈Θ

Q̃n(θ), (4.1)

with

Q̃n(θ) = n−1
n∑

t=r0+1

ℓ̃t(θ), ℓ̃t(θ) =
ǫ2t

σ̃2
t (θ)

+ log σ̃2
t (θ),
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where r0 is a fixed integer and log σ̃2
t (θ) is recursively defined, for t = 1, 2, . . . , n,

by

log σ̃2
t (θ) = ω +

q∑

i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i +

p∑

j=1

βj log σ̃2
t−j(θ),

using positive initial values for ǫ20, . . . , ǫ
2
1−q, σ̃

2
0(θ), . . . , , σ̃2

1−p(θ).

Remark 4.1 (On the choice of the initial values). The initial values can

be arbitrary positive numbers, for instance ǫ0 = · · · = ǫ1−q = σ̃0(θ) = · · · =

σ̃1−p(θ) =
√

2 (for daily returns of stock market indices, in percentage, the

empirical variance is often close to 2). They can also depend on the parameter,

for instance ǫ0 = · · · = ǫ1−q = σ̃0(θ) = · · · = σ̃1−p(θ) = exp(ω/2). It is

also possible to take initial values depending on the observations, for instance

ǫ0 = · · · = ǫ1−q = σ̃0(θ) = · · · = σ̃1−p(θ) =
√
n−1

∑n
t=1 ǫ

2
t . It will be shown in

the sequel that the choice of r0 and of the initial values is unimportant for the

asymptotic behavior of the QMLE, provided r0 is fixed and there exists a real

random variable K independent of n such that

sup
θ∈Θ

∣∣log σ2
t (θ) − log σ̃2

t (θ)
∣∣ < K, a.s. for t = q − p+ 1, . . . , q, (4.2)

where σ2
t (θ) is defined by (7.3) below. These conditions are supposed to hold in

the sequel.

Remark 4.2 (Our choice of the initial values). Even if the initial values do

not affect the asymptotic behavior of the QMLE, the finite sample value of θ̂n

is however quite sensitive to these values. Based on simulation experiments and

on illustrations on real data, for estimating log-GARCH(1,1) models we used

the empirical variance of the first 5 values (i.e. a week for daily data) as proxi

for the unknown value of σ2
1 . These initial values allow to compute σ̃2

t for t ≥ 2.

In order to attenuate the influence of the initial value without loosing too much

data, we chose r0 = 10.

Remark 4.3 (The empirical treatment of null returns). Under the as-

sumptions of Theorem 2.1, almost surely ǫ2t 6= 0. However, it may happen that
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some observations are equal to zero or are so close to zero that θ̂n cannot be

computed (the computation of the log ǫ2t ’s being required). To solve this poten-

tial problem, we imposed a lower bound for the |ǫt|’s. We took the lower bound

10−8, which is well inferior to a beep point, and we checked that nothing was

changed in the numerical illustrations presented here when this lower bound

was multiplied or divided by a factor of 100.

We now need to introduce some notation. For any θ ∈ Θ, let the polynomials

A+
θ
(z) =

∑q
i=1 αi,+z

i, A−
θ

(z) =
∑q

i=1 αi,−z
i and Bθ(z) = 1 − ∑p

j=1 βjz
j. By

convention, A+
θ
(z) = 0 and A−

θ
(z) = 0 if q = 0, and Bθ(z) = 1 if p = 0. We also

write C(θ0) instead of C to emphasize that the unknown parameter is θ0. The

following assumptions are used to show the strong consistency of the QMLE.

A1: θ0 ∈ Θ and Θ is compact.

A2: γ {C(θ0)} < 0 and ∀θ ∈ Θ, |Bθ(z)| = 0 ⇒ |z| > 1.

A3: The support of η0 contains at least two positive values and two negative

values, Eη2
0 = 1 and E| log η2

0 |s0 <∞ for some s0 > 0.

A4: If p > 0, A+
θ0

(z) and A−
θ0

(z) have no common root with Bθ0
(z). More-

over A+
θ0

(1) + A−
θ0

(1) 6= 0 and |α0q+| + |α0q+| + |β0p| 6= 0.

A5: E
∣∣log ǫ2t

∣∣ <∞.

Assumptions A1, A2 and A4 are similar to those required for the consistency

of the QMLE in standard GARCH models (see Berkes et al. 2003, Francq and

Zakoian, 2004). Assumption A3 precludes a mass at zero for the innovation,

and, for identifiability reasons, imposes non degeneracy of the positive and neg-

ative parts of η0. Note that, for other GARCH-type models, the absence of a

lower bound for the volatility can entail inconsistency of the QMLE (see Francq

and Zakoïan, 2010b). This is not the case for the log-GARCH under A5. Note

that this assumption can be replaced by the sufficient conditions given in Propo-

sition 2.2 (see also Examples 2.3 and 2.4).

Theorem 4.1 (Strong consistency of the QMLE). Let (θ̂n) be a sequence



C. Francq, O. Wintenberger and J-M. Zakoïan/Exponential or Log GARCH? 18

of QMLE satisfying (4.1), where the ǫt’s follow the asymmetric log-GARCH

model of parameter θ0. Under the assumptions (4.2) and A1-A5, almost surely

θ̂n → θ0 as n→ ∞.

Let us now study the asymptotic normality of the QMLE. We need the clas-

sical additional assumption:

A6: θ0 ∈
◦

Θ and κ4 := E(η4
0) <∞.

Because the volatility σ2
t is not bounded away from 0, we also need the following

non classical assumption.

A7: There exists s1 > 0 such that E exp(s1| log η2
0 |) <∞, and ρ(A(∞)) < 1.

The Cramer condition on | log η2
0 | in A7 is verified if ηt admits a density f

around 0 that does not explode too fast (see Proposition 3.2).

Let ∇Q = (∇1Q, . . . ,∇dQ)′ and HQ = (H1.Q
′, . . . ,Hd.Q

′)′ be the vector

and matrix of the first-order and second-order partial derivatives of a function

Q : Θ → R.

Theorem 4.2 (Asymptotic normality of the QMLE). Under the assump-

tions of Theorem 4.1 and A6-A7, we have
√
n(θ̂n − θ0)

d→ N (0, (κ4 − 1)J−1)

as n→ ∞, where J = E[∇ log σ2
t (θ0)∇ log σ2

t (θ0)
′] is a positive definite matrix

and
d→ denotes convergence in distribution.

It is worth noting that for the general EGARCH model, no similar results,

establishing the consistency and the asymptotic normality, exist. See however

Wintenberger and Cai (2011) for the EGARCH(1,1). The difficulty with the

EGARCH is to invert the volatility, that is to write σ2
t (θ) as a well-defined

function of the past observables. In the log-GARCH model, invertibility reduces

to the standard assumption on Bθ given in A2.
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5. Asymmetric log-ACD model for duration data

The dynamics of duration between stock price changes has attracted much at-

tention in the econometrics literature. Engle and Russel (1997) proposed the

Autoregressive Conditional Duration (ACD) model, which assumes that the

duration between price changes has the dynamics of the square of a GARCH.

Bauwens and Giot (2000 and 2003) introduced logarithmic versions of the ACD,

that do not constrain the sign of the coefficients (see also Bauwens, Giot, Gram-

mig and Veredas (2004) and Allen, Chan, McAleer and Peiris (2008)). The asym-

metric ACD of Bauwens and Giot (2003) applies to pairs of observation (xi, yi),

where xi is the duration between two changes of the bid-ask quotes posted by a

market maker and yi is a variable indicating the direction of change of the mid

price defined as the average of the bid and ask prices (yi = 1 if the mid price

increased over duration xi, and yi = −1 otherwise). The asymmetric log-ACD

proposed by Bauwens and Giot (2003) can be written as





xi = ψizi,

logψi = ω +
∑q

k=1

(
αk+1{yi−k=1} + αk−1{yi−k=−1}

)
log xi−k

+
∑p

j=1 βj logψi−j ,

(5.1)

where (zi) is an iid sequence of positive variables with mean 1 (so that ψi can be

interpreted as the conditional mean of the duration xi). Note that ǫt :=
√
xtyt

follows the log-GARCH model (1.1), with ηt =
√
ztyt. Consequently, the results

of the present paper also apply to log-ACD models. In particular, the parameters

of (5.1) can be estimated by fitting model (1.1) on ǫt =
√
xtyt.

6. Numerical Applications

6.1. An application to exchange rates

We consider returns series of the daily exchange rates of the American Dollar

(USD), the Japanese Yen (JPY), the British Pound (BGP), the Swiss Franc
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Table 1

Log-GARCH(1,1) and EGARCH(1,1) models fitted by QMLE on daily returns of exchange
rates. The estimated standard deviation are displayed into brackets.

Log-GARCH

ω̂ α̂+ α̂− β̂ Log-Lik.
USD 0.024 (0.005) 0.027 (0.004) 0.016 (0.004) 0.971 (0.005) -0.104

JPY 0.051 (0.007) 0.037 (0.006) 0.042 (0.006) 0.952 (0.006) -0.354
GBP 0.032 (0.006) 0.030 (0.005) 0.029 (0.005) 0.964 (0.006) 0.547

CHF 0.057 (0.012) 0.046 (0.008) 0.036 (0.007) 0.954 (0.008) 1.477
CAD 0.021 (0.005) 0.025 (0.004) 0.017 (0.004) 0.969 (0.006) -0.170

EGARCH

ω̂ γ̂ δ̂ β̂ Log-Lik.
USD -0.202 (0.030) -0.015 (0.014) 0.218 (0.031) 0.961 (0.010) -0.116
JPY -0.152 (0.021) -0.061 (0.014) 0.171 (0.024) 0.970 (0.006) -0.334

GBP -0.447 (0.048) -0.029 (0.021) 0.420 (0.041) 0.913 (0.017) 0.503
CHF -0.246 (0.046) -0.071 (0.022) 0.195 (0.035) 0.962 (0.009) 1.568

CAD -0.091 (0.017) -0.008 (0.010) 0.103 (0.019) 0.986 (0.005) -0.161

(CHF) and Canadian Dollar (CAD) with respect to the Euro. The observations

cover the period from January 5, 1999 to January 18, 2012, which corresponds

to 3344 observations. The data were obtained from the web site

http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html.

Table 1 displays the estimated log-GARCH(1,1) and EGARCH(1,1) models

for each series. For all series, except the CHF, condition (2.7) ensuring the

existence of any log-moment is satisfied. Most of the estimated models present

asymmetries. However, the leverage effect is more visible in the EGARCH than

in the log-GARCH models. This is particularly apparent for the JPY model for

which γ̂ is clearly negative. For all models, the persistence parameter β is very

high. The last column shows that for the USD and the GBP, the log-GARCH has

a higher (quasi) log-likelihood than the EGARCH. The converse is true for the

three other assets. A study of the residuals, not reported here, is in accordance

with the better fit of one particular model for each series. This study confirms

that the models do not capture exactly the same empirical properties, and are

thus not perfectly substitutable.
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Table 2

Log-GARCH(1,1) models fitted on 5 simulations of a log-GARCH(1,1) model.

Iter ω̂ α̂+ α̂− β̂

1 0.025 (0.004) 0.028 (0.004) 0.018 (0.004) 0.968 (0.005)
2 0.021 (0.003) 0.023 (0.003) 0.013 (0.003) 0.976 (0.004)
3 0.026 (0.003) 0.028 (0.004) 0.017 (0.003) 0.969 (0.004)
4 0.022 (0.003) 0.024 (0.004) 0.018 (0.003) 0.972 (0.004)
5 0.024 (0.003) 0.028 (0.004) 0.014 (0.003) 0.974 (0.003)

Table 3

EGARCH(1,1) models fitted on 5 simulations of a log-GARCH(1,1) model.

Iter ω̂ γ̂ δ̂ β̂

1 -0.095 (0.016) -0.014 (0.009) 0.104 (0.017) 0.976 (0.006)
2 -0.127 (0.018) 0.009 (0.010) 0.148 (0.021) 0.976 (0.007)
3 -0.147 (0.018) 0.001 (0.010) 0.177 (0.022) 0.971 (0.007)
4 -0.136 (0.019) -0.012 (0.010) 0.155 (0.022) 0.976 (0.007)
5 -0.146 (0.019) -0.009 (0.010) 0.177 (0.023) 0.971 (0.007)

6.2. A Monte Carlo experiment

To evaluate the finite sample performance of the QML for the two models

we made the following numerical experiments. We first simulated the log-

GARCH(1,1) model, with n = 3344, ηt ∼ N (0, 1), and a parameter close to

those of Table 1, that is θ0 = (0.024, 0.027, 0.016, 0.971). Tables 2 and 3 display

the log-GARCH(1,1) and EGARCH(1,1) models fitted on these simulations. The

first table shows that the log-GARCH(1,1) is accurately estimated. In a second

time, we repeated the same experiments for simulations of an EGARCH(1,1)

model of parameter (ω0, γ0, δ0, β0) = (−0.204,−0.012, 0.227, 0.963). Tables 4

and 5 are the analogs of Tables 2 and 3 for the simulations of this EGARCH

model instead of the log-GARCH. Tables 5 indicates that the EGARCH are

satisfactorily estimated.
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Table 4

Log-GARCH(1,1) models fitted on 5 simulations of an EGARCH(1,1) model.

Iter ω̂ α̂+ α̂− β̂

1 0.039 (0.008) 0.071 (0.008) 0.052 (0.007) 0.874 (0.015)
2 0.055 (0.006) 0.058 (0.007) 0.052 (0.006) 0.913 (0.010)
3 0.052 (0.008) 0.070 (0.008) 0.060 (0.007) 0.873 (0.015)
4 0.051 (0.008) 0.076 (0.008) 0.056 (0.007) 0.878 (0.014)
5 0.056 (0.007) 0.061 (0.007) 0.060 (0.007) 0.896 (0.012)

Table 5

EGARCH(1,1) models fitted on 5 simulations of an EGARCH(1,1) model.

Iter ω̂ γ̂ δ̂ β̂

1 -0.220 (0.022) -0.024 (0.013) 0.235 (0.023) 0.950 (0.010)
2 -0.196 (0.020) -0.029 (0.012) 0.219 (0.022) 0.961 (0.008)
3 -0.222 (0.022) -0.005 (0.013) 0.241 (0.024) 0.947 (0.010)
4 -0.227 (0.022) -0.025 (0.012) 0.248 (0.023) 0.950 (0.010)
5 -0.209 (0.021) -0.003 (0.012) 0.234 (0.023) 0.955 (0.009)

7. Proofs

7.1. Proof of Theorem 2.1

Since the random variable ‖C0‖ is bounded, we have E log+ ‖C0‖ < ∞. The

moment condition on ηt entails that we also have E log+ ‖b0‖ < ∞. When

γ(C) < 0, Cauchy’s root test shows that, almost surely (a.s.), the series

zt = bt +

∞∑

n=0

CtCt−1 · · ·Ct−nbt−n−1 (7.1)

converges absolutely for all t and satisfies (2.2). A strictly stationary solution to

model (1.1) is then obtained as ǫt = exp
{

1
2z2q+1,t

}
ηt, where zi,t denotes the

i-th element of zt. This solution is non anticipative and ergodic, as a measurable

function of {ηu, u ≤ t}.
We now prove that (7.1) is the unique nonanticipative solution of (2.2) when

γ(C) < 0. Let (z∗
t ) be a strictly stationary process satisfying z∗

t = Ctz
∗
t−1 + bt.
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For all N ≥ 0,

z∗
t = zt(N)+ Ct . . .Ct−Nz∗

t−N−1, zt(N) = bt +
N∑

n=0

CtCt−1 · · ·Ct−nbt−n−1.

We then have

‖zt − z∗
t ‖ ≤

∥∥∥∥∥

∞∑

n=N+1

CtCt−1 · · ·Ct−nbt−n−1

∥∥∥∥∥ + ‖Ct . . .Ct−N‖‖z∗
t−N−1‖.

The first term in the right-hand side tends to 0 a.s. when N → ∞. The second

term tends to 0 in probability because γ(C) < 0 entails that ‖Ct . . .Ct−N‖ → 0

a.s. and the distribution of ‖z∗
t−N−1‖ is independent of N by stationarity. We

have shown that zt − z∗
t → 0 in probability when N → ∞. This quantity being

independent of N we have zt = z∗
t a.s. for any t. ✷

7.2. Proof of Proposition 2.1

Let X be a random variable such that X > 0 a.s. and EXr < ∞ for

some r > 0. If E logX < 0, then there exists s > 0 such that EXs < 1

(see e.g. Lemma 2.3 in Berkes, Horváth and Kokoszka, 2003). Noting that

E ‖Ct · · ·C1‖ ≤ (E ‖C1‖)t < ∞ for all t, the previous result shows that when

γ(C) < 0 we have E‖Ck0
· · ·C1‖s < 1 for some s > 0 and some k0 ≥ 1. One

can always assume that s < 1. In view of (7.1), the cr-inequality and stan-

dard arguments (see e.g. Corollary 2.3 in Francq and Zakoïan, 2010a) entail

that E‖zt‖s < ∞, provided E‖bt‖s < ∞, which holds true when s ≤ s0. The

conclusion follows. ✷

7.3. Proof of Proposition 2.2

By (2.4), componentwise we have

Abs(σt,r) ≤ Abs(ut) +

∞∑

ℓ=0

At,ℓAbs(ut−ℓ−1), At,ℓ :=

ℓ∏

j=0

Abs(At−j), (7.2)
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where each element of the series is defined a priori in [0,∞]. In view of the form

(2.3) of the matrices At, each element of

At,ℓAbs(ut−ℓ−1) = |ut−ℓ−1|
ℓ∏

j=0

Abs(At−j)e1

is a sum of products of the form |ut−ℓ−1|
∏k

j=0 |µℓj
(ηt−ij

)| with 0 ≤ k ≤ ℓ and

0 ≤ i0 < · · · < ik ≤ ℓ + 1. To give more detail, consider for instance the case

r = 3. We then have

At,1Abs(ut−2) =




|µ1(ηt−1)||µ1(ηt−2)||ut−2| + |µ2(ηt−2)||ut−2|
|µ1(ηt−2)||ut−2|

|ut−2|


 .

Noting that |ut−ℓ−1| is a function of ηt−ℓ−2 and its past values, we

obtain EAt,1Abs(ut−2) = EAbs(At)EAbs(At−1)EAbs(ut−2). More gen-

erally, it can be shown by induction on ℓ that the i-th element

of the vector At−1,ℓ−1Abs(ut−ℓ−1) is independent of the i-th element

of the first row of Abs(At). It follows that EAt,ℓAbs(ut−ℓ−1) =

EAbs(At)EAt−1,ℓ−1Abs(ut−ℓ−1). The property extends to r 6= 3. Therefore,

although the matrices involved in the product At,ℓAbs(ut−ℓ−1) are not inde-

pendent (in the case r > 1), we have

EAt,ℓAbs(ut−ℓ−1) =

ℓ∏

j=0

EAbs(At−j)EAbs(ut−ℓ−1)

=
(
A(1)

)ℓ+1

EAbs(u1).

In view of (7.2), the condition ρ(A(1)) < 1 then entails that EAbs(σt,r) is finite.

The case r = 1 is treated by noting that At,ℓAbs(ut−ℓ−1) is a product of

independent random variables.

To deal with the cases r 6= 1 and m 6= 1, we work with (2.2) instead of (2.4).

This Markovian representation has an higher dimension but involves indepen-

dent coefficients Ct. Define Ct,ℓ by replacing At−j by Ct−j in At,ℓ. We then
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have

EC⊗m
t,ℓ Abs(bt−ℓ−1)

⊗m =
(
C(m)

)ℓ+1

EAbs(b1)
⊗m.

For all m ≥ 1, let ‖M‖m = (E‖M‖m)1/m where ‖M‖ is the sum of the

absolute values of the elements of the matrix M . Using the elementary rela-

tions ‖M‖‖N‖ = ‖M ⊗ N‖ and E‖Abs(M)‖ = ‖EAbs(M )‖ for any ma-

trices M and N , the condition ρ(C(m)) < 1 entails E ‖Ct,ℓAbs(bt−ℓ−1)‖m
=

‖EC⊗m
t,ℓ Abs(bt−ℓ−1)

⊗m‖ → 0 at the exponential rate as ℓ→ ∞, and thus

‖Abs(zt)‖m ≤ ‖Abs(bt)‖m +

∞∑

ℓ=0

‖Ct,ℓAbs(bt−ℓ−1)‖m <∞,

which allows to conclude. ✷

7.4. Proof of Proposition 2.3

By the concavity of the logarithm function, the condition |α+ + β||α− + β| < 1

is satisfied. By Example 2.1 and the symmetry of the distribution of η0, the

existence of a strictly stationary solution process (ǫt) is thus guaranteed. By

2.3, this solution satisfies E| log ǫ2t | <∞. Let

at = (α+1{ηt>0} + α−1{ηt<0})ηt, bt = (α+1{ηt>0} + α−1{ηt<0})ηt log η2
t .

We have

Eat = (α+ − α−)E(η01{η0>0}), Ebt = (α+ − α−)E(η0 log η2
01{η0>0}),

using the symmetry assumption for the second equality. Thus

cov(ηt−1, log(σ2
t )) = E[at−1 log(σ2

t−1) + bt−1],

and the conclusion follows. ✷
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7.5. Proof of Proposition 3.1

By definition, | log(σ2
t )| ≤ ‖σt,r‖ = ‖Abs(σt,r)‖. Then, we have

E|σ2
t |s ≤ E {exp(s‖Abs(σt,r)‖)} =

∞∑

k=0

sk‖Abs(σt,r)‖k
k

k!

≤
∞∑

k=0

sk‖Abs(u0)‖k
k

{∑∞
ℓ=0 ‖(A(∞))ℓ‖

}k

k!

= E exp

{
s‖Abs(u0)‖

∞∑

ℓ=0

‖(A(∞))ℓ‖
}
,

where the last inequality comes from (2.5). By definition u0 = (u0, 0
′
r−1)

′ with

u0 = ω +

q∑

i=1

(αi+1η−i>0 + αi−1η−i<0) log η2
−i.

Thus ‖Abs(u0)‖ ≤ |u0| ≤ |ω| + max1≤i≤q |αi+| ∨ |αi−|
∑q

j=1 | log η2
−j | and it

follows that

E|σ2
t |s ≤ exp

{
s|ω|

∞∑

ℓ=0

‖(A(∞))ℓ‖
}

{
E exp

(
sλ| log η2

0 |
)}q

<∞

under (3.1). ✷

7.6. Proof of Proposition 3.2

Without loss of generality assume that f exists on [−1, 1]. Then there exists

M > 0 such that f(1/y) ≤M |y|δ for all y ≥ 1 and we obtain

E exp(s1| log η2
0 |) ≤

∫

|x|<1

exp(2s1 log(1/x))f(x)dx +

∫
exp(s1 log(x2))dPη(x)

≤ 2M

∫ ∞

1

y2(s1−1)+δdy + E(|η0|2s1 ).

The upper bound is finite for sufficiently small s1 and the result is proved. ✷
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7.7. Proof of Proposition 3.3

To prove the first assertion, note that if η0 is regularly varying of index 2r then η2
0

is regularly varying of index r. Thus u1 = ω+(α1+1{η0>0}+α1−1{η0<0}) log(η2
0)

is such that

P (eu0 > x) = P (η0 > 0)P
(
η2
0

α1+
> xe−ω | η0 > 0

)

+P (η0 < 0)P
(
η2
0

α1−
> xe−ω | η0 < 0

)
.

Then eu0 is also regularly varying with index r/(α1+)∧r/(α1−). An application

Lemma 3.3 in Mikosch and Rezapour (2012) yields the first assertion. The second

assertion follows easily by independence of η0 and σ0 with respective regularly

variation indexes r and r/(α1+ ∨ α1−). ✷

7.8. Proof of Theorem 4.1

We will use the following standard result (see e.g. Exercise 2.11 in Francq and

Zakoian, 2010a).

Lemma 7.1. Let (Xn) be a sequence of random variables. If supnE|Xn| <∞,

then almost surely n−1Xn → 0 as n → ∞. The almost sure convergence may

fail when supn E|Xn| = ∞. If the sequence (Xn) is bounded in probability, then

n−1Xn → 0 in probability.

Turning to the proof of Theorem 4.1, first note that A2, A3 and Proposi-

tion 2.1 ensure the a.s. absolute convergence of the series

log σ2
t (θ) := B−1

θ
(B)

{
ω +

q∑

i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i

}
. (7.3)

Let

Qn(θ) = n−1
n∑

t=r0+1

ℓt(θ), ℓt(θ) =
ǫ2t

σ2
t (θ)

+ log σ2
t (θ).

Using standard arguments, as in the proof of Theorem 2.1 in Francq and Za-

koian (2004) (hereafter FZ), the consistency is obtained by showing the following
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intermediate results

i) lim
n→∞

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)| = 0 a.s.;

ii) if σ2
1(θ) = σ2

1(θ0) a.s. then θ = θ0;

iii) if θ 6= θ0 , Eℓt(θ) > Eℓt(θ0);

iv) any θ 6= θ0 has a neighborhood V (θ) such that

lim inf
n→∞

inf
θ∗∈V (θ)

Q̃n(θ∗) > Eℓt(θ0) a.s.

Because of the multiplicative form of the volatility, the step i) is more delicate

than in the standard GARCH case. In the case p = q = 1, we have

log σ2
t (θ) − log σ̃2

t (θ) = βt−1
{
log σ2

1(θ) − log σ̃2
1(θ)

}
, ∀t ≥ 1.

In the general case, as in FZ, using (4.2) one can show that for almost all

trajectories,

sup
θ∈Θ

∣∣log σ2
t (θ) − log σ̃2

t (θ)
∣∣ ≤ Kρt, (7.4)

where ρ ∈ (0, 1) and K > 0. When the initial values are chosen as suggested

by Remark 4.2, K is the realization of a random variable which is measurable

with respect to σ ({ηu, u ≤ 5}). First complete the proof of i) in the case p =

q = 1 and α+ = α−, for which the notation is more explicit. In view of the

multiplicative form of the volatility

σ2
t (θ) = eβt−1 log σ2

1(θ)
t−2∏

i=0

eβi{ω+α log ǫ2t−1−i}, (7.5)

we have

1

t
log

∣∣∣∣
1

σ2
t (θ)

− 1

σ̃2
t (θ)

∣∣∣∣ =
−1

t

t−2∑

i=0

βi
{
ω + α log ǫ2t−1−i

}

+
1

t
log

∣∣∣e−βt−1 log σ2
1(θ) − e−βt−1 log σ̃2

1(θ)
∣∣∣ .

Applying Lemma 7.1, the first term of the right-hand side of the equality tends

almost surely to zero because it is bounded by a variable of the form |Xt|/t,
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with E|Xt| <∞, under A5. The second term is equal to

1

t
log

∣∣∣
{
log σ2

1(θ) − log σ̃2
1(θ)

}
βt−1e−βt−1x∗

∣∣∣ ,

where x∗ is between log σ2
1(θ) and log σ̃2

1(θ). This second term thus tends to

log |β| < 0 when t→ ∞. It follows that

sup
θ∈Θ

∣∣∣∣
1

σ2
t (θ)

− 1

σ̃2
t (θ)

∣∣∣∣ ≤ Kρt, (7.6)

where K and ρ are as in (7.4). Now consider the general case. Iterating (1.1),

using the compactness of Θ and the second part of A2, we have

log σ2
t (θ) =

t−1∑

i=1

ci(θ) + ci+(θ)1{ǫt−i>0} log ǫ2t−i + ci−(θ)1{ǫt−i<0} log ǫ2t−i

+

p∑

j=1

ct,j(θ) log σ2
q+1−j(θ)

with

sup
θ∈Θ

max{|ci(θ)|, |ci+(θ)|, |ci−(θ)|, |ci,1(θ)|, . . . , |ci,p(θ)|} ≤ Kρi, ρ ∈ (0, 1).

(7.7)

We then obtain a multiplicative form for σ2
t (θ) which generalizes (7.5), and

deduce that
1

t
log

∣∣∣∣
1

σ2
t (θ)

− 1

σ̃2
t (θ)

∣∣∣∣ = a1 + a2,

where

a1 =
−1

t

t−1∑

i=1

ci(θ)+ ci+(θ)1{ǫt−i>0} log ǫ2t−i + ci−(θ)1{ǫt−i<0} log ǫ2t−i → 0 a.s.

in view of (7.7) and Lemma 7.1, and for x∗j ’s between log σ2
q+1−j(θ) and

log σ̃2
q+1−j(θ),

a2 =
1

t
log

∣∣∣∣∣exp

{
−

p∑

j=1

ct,j(θ) log σ
2
q+1−j(θ)

}
− exp

{
−

p∑

j=1

ct,j(θ) log σ̃
2
q+1−j(θ)

}∣∣∣∣∣

=
1

t
log

∣∣∣∣∣−
p∑

j=1

ct,j(θ)
{
log σ

2
q+1−j(θ)− log σ

2
q+1−j(θ)

}
exp

{
−

p∑

k=1

ct,k(θ) log x
∗

k

}∣∣∣∣∣

=
1

t
log

∣∣∣∣∣−
p∑

j=1

ct,j(θ)

∣∣∣∣∣ + o(1) a.s.
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using (4.2) and (7.7). Using again (4.2), it follows that lim supn→∞ a2 ≤ log ρ <

0. We conclude that (7.6) holds true in the general case. The proof of i) then

follows from (7.4)-(7.6), as in FZ.

To show ii), note that we have

Bθ(B) log σ2
t (θ) = ω + A+

θ
(B)1{ǫt>0} log ǫ2t + A−

θ
(B)1{ǫt<0} log ǫ2t . (7.8)

If log σ2
1(θ) = log σ2

1(θ0) a.s., by stationarity we have log σ2
t (θ) = log σ2

t (θ0) for

all t, and thus we have almost surely

{
A+

θ
(B)

Bθ(B)
−

A+
θ0

(B)

Bθ0
(B)

}
1{ǫt>0} log ǫ2t +

{
A−

θ
(B)

Bθ(B)
−

A−
θ0

(B)

Bθ0
(B)

}
1{ǫt<0} log ǫ2t

=
ω0

Bθ0
(1)

− ω

Bθ(1)
.

Denote by Rt any random variable which is measurable with respect to

σ ({ηu, u ≤ t}). If

A+
θ

(B)

Bθ(B)
6=

A+
θ0

(B)

Bθ0
(B)

or
A−

θ
(B)

Bθ(B)
6=

A−
θ0

(B)

Bθ0
(B)

, (7.9)

there exists a non null (c+, c−)′ ∈ R
2, such that

c+1{ηt>0} log ǫ2t + c−1{ηt<0} log ǫ2t +Rt−1 = 0 a.s.

This is equivalent to the two equations

(
c+ log η2

t + c+ log σ2
t +Rt−1

)
1{ηt>0} = 0

and
(
c− log η2

t + c− log σ2
t +Rt−1

)
1{ηt<0} = 0.

Note that if an equation of the form a logx21{x>0} + b1{x>0} = 0 admits two

positive solutions then a = 0. This result, A3, and the independence between

ηt and (σ2
t , Rt−1) imply that c+ = 0. Similarly we obtain c− = 0, which leads

to a contradiction. We conclude that (7.9) cannot hold true, and the conclusion

follows from A4.
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Since σ2
t (θ) is not bounded away from zero, the beginning of the proof of iii)

slightly differs from that given by FZ in the standard GARCH case. In view of

(7.8), the second part of A2 and A5 entail that E| log σ2
t (θ)| <∞ for all θ ∈ Θ.

It follows that Eℓ−t (θ) <∞ and E|ℓt(θ0)| <∞.

The rest of the proof of iii), as well as that of iv), are identical to those given

in FZ. ✷

7.9. Proof of Theorem 4.2

A Taylor expansion gives

∇iQn(θ̂n) −∇iQn(θ0) = Hi.Qn(θ̃n,i)(θ̂n − θ0) for all 1 ≤ i ≤ d,

where the θ̃n,i’s are such that ‖θ̃n,i−θ0‖ ≤ ‖θ̂n−θ0‖. As in Section 5 of Bardet

and Wintenberger (2009), the asymptotic normality is obtained by showing:

1. n1/2∇Qn(θ0) → N (0, (κ4 − 1)J),

2. ‖HQn(θ̃n) − J‖ converges a.s. to 0 for any sequence (θ̃n) converging a.s.

to θ0 and J is invertible,

3. n1/2‖∇Q̃n(θ̂n) −∇Qn(θ̂n)‖ converges a.s. to 0.

In order to prove the points 1-3 we will use the following Lemma

Lemma 7.2. Under the assumptions of Theorem 4.1 and A7, for any m > 0

there exists a neighborhood V of θ0 such that E[supV(σ2
t /σ

2
t (θ))m] < ∞ and

E[supV | log σ2
t (θ)|m] <∞.

Proof. We have

log σ2
t (θ0) − log σ2

t (θ) = ω0 − ω +

p∑

j=1

βj{log σ2
t−j(θ0) − log σ2

t−j(θ)}

+Vθ0−θσt−1,r + A+
θ0−θ

(B)1ηt>0 log η2
t + A−

θ0−θ
(B)1ηt<0 log η2

t

with σt,r = (log σ2
t (θ0), . . . , log σ2

t−r+1(θ0))
′,

Vθ = (α1+1{ηt−1>0}+α1−1{ηt−1<0}+β1, . . . , αr+1{ηt−r>0}+αr−1{ηt−r<0}+βr).
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Under A2, we then have

log σ2
t (θ0) − log σ2

t (θ) = B−1
θ

(B) {ω0 − ω + Vθ0−θσt−1,r

+(A+
θ0−θ

(B)1ηt>0 log η2
t + A−

θ0−θ
(B)1ηt<0 log η2

t

}
.

Under A7 the assumptions of Proposition 3.1 hold. From the proof of that

proposition, we thus have that E exp(δ‖Abs(σt,r)‖) is finite for some δ > 0.

Now, note that Vθ, A+
θ
(1) and A+

θ
(1) are continuous functions

of θ. Choosing a sufficiently small neighborhood V of θ0, one can

make supV ‖Vθ0−θ‖, supV |A+
θ0−θ

(1)| and supV |A+
θ0−θ

(1)| arbitrarily small.

Thus E[exp(m supV ‖Vθ0−θσt,r‖)] and E[exp(m supV ‖(A+
θ0−θ

(B)1ηt−1>0 +

A−
θ0−θ

(B)1ηt−1<0) log(η2
t−1)‖)] are finite for an appropriate choice of V depend-

ing on m. We conclude that E
[
exp

(
m supV

∣∣log
{
σ2

t (θ0)/σ
2
t (θ)

}∣∣)] < ∞ and

the first assertion of the lemma is proved.

Consider now the second assertion. We have

sup
V

| log σ2
t (θ)| ≤ | log σ2

t | + sup
V

| log(σ2
t (θ0)/σ

2
t (θ))|.

We have already shown that the second term admits a finite moment of order

m. So does the first term, under A7, by Remark 2.2. �

Now let us prove that the point 1. follows from the fact that ∇Qn(θ0) is a

martingale in L2. Indeed

∇Qn(θ0) = n−1
n∑

t=r0+1

(1 − η2
t )∇ log σ2

t (θ0).

As ηt is independent of log σ2
t (θ0) and Eη2

t = 1 the Central Limit

Theorem for martingale differences applies whenever Q = (κ4 −
1)E(∇ log σ2

t (θ0)∇ log σ2
t (θ0)

′) exists. For any θ ∈
◦

Θ, the random vector
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∇ log σ2
t (θ) is the stationary solution of the equation

∇ log σ2
t (θ) =

p∑

j=1

βj∇ log σ2
t−j(θ) +




1

ǫ+
t−1,q

ǫ−t−1,q

σ2
t−1,p(θ)



, (7.10)

where σ2
t,p(θ) = (log σ2

t (θ), . . . , log σ2
t−p+1(θ))′.

Assumption A2 entails that ∇ log σ2
t (θ) is a linear combination of ǫ+

t−i,q,

ǫ−t−i,q and log σ2
t−i(θ) for i ≥ 1. Lemma 7.2 ensures that, for any m > 0,

there exists a neighborhood V of θ0 such that E[supV | log σ2
t−i(θ)|m] < ∞.

By Remark 2.2, ǫ+
t−i,q and ǫ−t−i,q admit moments of any order. Thus, for any

m > 0 there exists V such that E[supV ‖∇ logσ2
t (θ)‖m] < ∞. In particular,

∇ log σ2
t (θ0) admits moments of any order. Thus point 1. is proved.

Turning to point 2., we have

HQn(θ) = n−1
n∑

t=r0+1

Hℓt(θ),

where

Hℓt(θ) =

(
1 − η2

t σ
2
t (θ0)

σ2
t (θ)

)
H logσ2

t (θ) +
η2

t σ
2
t (θ0)

σ2
t (θ)

∇ log σ2
t (θ)∇ log σ2

t (θ)′.

(7.11)

By Lemma 7.2, the term σ2
t (θ0)/σ

2
t (θ) admits moments of order as large as we

need uniformly on a well chosen neighborhood V of θ0. Let us prove that it is

also the case for H logσ2
t (θ). Computation gives

H logσ2
t (θ) =

p∑

j=1

βjH log σ2
t−j(θ) +



 0(2q+1)×d

∇′σ2
t−1,p(θ)



 +



 0(2q+1)×d

∇′σ2
t−1,p(θ)




′

.

From this relation and A2 we obtain

H log σ2
t (θ) =


 0(2q+1)×d

Bθ(B)−1∇′σ2
t−1,p(θ)


 +


 0(2q+1)×d

Bθ(B)−1∇′σ2
t−1,p(θ)




′

.

Thus H logσ2
t (θ) belongs to C(V) and is integrable because we can always choose

V such that supV ‖∇′σ2
t−1,p(θ)‖ ∈ Lm (see the proof of point 1. above).
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An application of the Cauchy-Schwarz inequality in the RHS term of (7.11)

yields the integrability of supV Hℓt(θ). The first assertion of point 2. is proved

by an application of the ergodic theorem on (Hℓt(θ)) in the Banach space C(V)

equipped with the supremum norm:

sup
V

‖HQn(θ) − E[Hℓ0(θ)]‖ → 0 a.s.

An application of Theorem 4.1 ensures that θ̂n belongs a.s. to V for sufficiently

large n. Thus

‖HQn(θ̂n)−E[Hℓ0(θ0)]‖ ≤ sup
V

‖HQn(θ)−E[Hℓ0(θ)]‖+‖E[Hℓ0(θ̂n)]−E[Hℓ0(θ0)]‖

converges a.s. to 0 by continuity of θ → E[Hℓ0(θ)] at θ0 as a consequence of a

dominating argument on V . The first assertion of point 2. is proved.

The matrix J is non invertible iff there exists a non null deterministic vector

λ = (λ0, λ1, . . . , λp+2q)
′ such that λ′ ∇ log σ2

t (θ0) = 0 a.s. If the latter equality

holds, (7.10) entails (1, ǫ+
t,q, ǫ

−
t,q,σ

2
t,p(θ0))λ = 0 a.s. By A3 and arguments

used for proving the point (ii) in the proof of Theorem 4.1, we deduce λp+1 =

λp+q+1 = 0. For the same reason if λ1 = · · · = λi = 0 then λp+2 = · · · =

λp+1+i = 0 and λp+q+2 = · · · = λp+q+1+i = 0 for 1 ≤ i ≤ p ∧ q. Thus as

λ 6= 0 there exists λk 6= 0 for 1 ≤ k ≤ q such that λj = 0 for j < k. Then,

log(σ2
t−k) is a linear combination of (log(σ2

t−j))k<j≤q , (1{ǫt−j>0} log(ǫ2t−j))k<j≤p

and (1{ǫt−j<0} log(ǫ2t−j))k<j≤p. We thus find a log-GARCH(p′, q′) representation

with p′ < p and q′ < q, in contradiction with A4. Thus J is invertible.

From (7.10) and an equivalent representation for ∇ log σ̃2
t (θ), we have

∇ log σ2
t (θ) −∇ log σ̃2

t (θ) =

p∑

j=1

βj(∇ log σ2
t−j(θ) −∇ log σ̃2

t−j(θ))

+



 02q+1

σ2
t−1,p(θ) − σ̃

2
t−1,p(θ)




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where σ̃
2
t,p is defined as σ2

t,p. Thus, there exist continuous functions di and dt,i

defined on Θ such that

∇ log σ2
t (θ) −∇ log σ̃2

t (θ) =

t−1∑

i=1

di(θ)(log σ2
t−i(θ) − log σ̃2

t−i(θ))

+

p∑

j=1

dt,j(θ)∇ log σ2
p+1−j(θ).

The sequences of functions (di), (di,j), 1 ≤ j ≤ p, satisfy the same uniform

rate of convergence as the functions ci, ci+, c1− and ci,j in (7.7). An appli-

cation of (7.4) yields to the existence of K > 0 and ρ ∈ (0, 1) such that

supΘ ‖∇ logσ2
t (θ) − ∇ log σ̃2

t (θ)‖ ≤ Kρt, for almost all trajectories. Point 3.

follows easily and the asymptotic normality is proved. ✷

8. Conclusion

In this paper, we investigated the probabilistic properties of the log-

GARCH(p, q) model. We found sufficient conditions for the existence of moments

and log-moments of the strictly stationary solutions. We analyzed the depen-

dence structure through the leverage effect and the regular variation properties,

and we compared this structure with that of the EGARCH model.

As far as the estimation is concerned, it should be emphasized that the

log-GARCH model appears to be much more tractable than the EGARCH.

Indeed, we established the strong consistency and the asymptotic normality

of the QMLE under mild assumptions. For EGARCH models, such properties

have only been established for the first-order model and with strong invertibil-

ity constraints (see Wintenberger and Cai, 2011). By comparison with standard

GARCH, the log-GARCH model is not more difficult to handle: on the one

hand, the fact that the volatility is not bounded below requires an additional

log-moment assumption, but on the other hand the parameters are nor positively

constrained.
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A natural extension of this work, aiming at pursuing the comparison between

the two classes of models, would rely on statistical tests. By embedding the

log-GARCH model in a more general framework including the log-GARCH, it

should be possible to consider a LM test of the log-GARCH null assumption.

Another problem of interest would be to check validity of the estimated models.

We leave these issues for further investigation, viewing the results of this paper

as a first step in these directions.
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