Tian, Guoqiang (1981): Matrixes Satisfying Siljak’s Conjecture. Published in: Science Exploration , Vol. 2, No. 1 (March 1982): pp. 6976.

PDF
MPRA_paper_41388.pdf Download (340kB)  Preview 
Abstract
Siljak’s Conjecture on the existence of a symmetric positive definite matrix V having a specified structure and satisfying Liapunov’s matrix equation A*V+VA= W is shown to be true in cases when A is an orthogonal matrix; when A is a symmetric matrix; when A is a normal matrix or A is the linear combination of nonnegative coefficient of all these matrixes.
Item Type:  MPRA Paper 

Original Title:  Matrixes Satisfying Siljak’s Conjecture 
Language:  English 
Keywords:  Matrix; Siljak’s Conjecture 
Subjects:  C  Mathematical and Quantitative Methods > C0  General 
Item ID:  41388 
Depositing User:  Guoqiang Tian 
Date Deposited:  17 Sep 2012 13:35 
Last Modified:  03 Oct 2019 05:12 
References:  [1]. N. J. Pullman, Matrix Theory and Its Application, (Selected Topics), New York, 1976, pp. 1758. [2] L. T. Grujic and D. D. Siljak, Stability of Largescale system with stable and Unstable subsystem, Proc (1972) JACC, paper 173, pp. 5503. [3] D. D. Siljak, Stability of Largescale systems, Proc. 5th, IFAC Congr., C32 (1972), pp. 111. [4] J. J. Montemayer and et al. IEEE Trans. Automat Contr., Ac20 (1975), pp. 5723. [5] B. N. Datta, IEEE Trans, Automat, Contr., Ac22 (1977), pp. 1323. [6] Joel N. Franklin, Matrix Theory, PrenticeHall Inc., Englewood Cliffs, (1978), p. 105. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/41388 