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ABSTRACT 
This paper aims to estimate technical and scale efficiency in the Italian citrus farming. 

Estimation was carried out from two different approach: a non parametric and a parametric 

approach using a Data Envelopment Analysis (DEA) model and a Stochastic Frontier Analysis 

(SFA) model, respectively. Several studies have compared technical efficiency estimates derived 

from parametric and non parametric approaches, while a very small number of studies have 

aimed to compare scale efficiency obtained from different methodological approaches. This is 

one of the first attempts that aims to put on evidence possible difference in scale efficiency 

estimations in farming due to methods used. Empirical findings suggest that the greater portion 

of overall inefficiency in the sample might depend on producing below the production frontier 

than on operating under an inefficient scale. Furthermore, we found that the estimated technical 

efficiency from the SFA model is substantially at the same level of this estimated from DEA 

model, while the scale efficiency arisen from SFA is larger than this obtained from DEA 

analysis. 
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1. INTRODUCTION 
 

Since the Farrell’s (1957) seminar paper on efficiency estimation several parametric and 

non parametric procedures have been proposed in order to calculate efficiency and 

productivity of firms. However two main approaches have been mainly proposed in 

literature: the Stochastic Frontier Analysis (SFA) and the Data Enveopment Analysis 

(DEA). The former is a parametric technique originally and independently proposed by 

Aigner et al. (1977) and Meeusen and van der Broeck (1977) and the latter is a non 

parametric approach originally proposed by Charnes et al. (1978).  

Both approaches have their advantages and disadvantages and the suitability of method 

to the data depends on the industry to be examined (Ruggiero, 2007). The main 

advantage of SFA is that it takes into account stochastic variation of the output due to 

ability to handle random noise that can affect output. On the other hand, SFA model is 

limited to the production of single output and some distributional assumptions need to 

be made on functional forms of production frontier and in order to separate the 

stochastic component from the inefficiency term. It is a fact that assumptions about the 

random error component, fixity of parameters, and production frontier specification can 

affect empirical results. Vice versa, DEA can take into account multi-output productions 

and no assumptions need to be made on functional forms for the production or cost 

frontiers and on distributions of the errors. On the other hand, it is a deterministic 
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method and it cannot separate inefficiency component from noise. This approach also 

produces biased estimates in presence of measurement error and other statistical noise
1
. 

Several studies on comparing the two approaches have been proposed in literature (see 

e.g. Gong and Sickles, 1992; Hjalmarsson et al. 1996; Sickles, 2005), also focusing 

attention on agriculture (Kalaitzandonakes and Dunn 1995; Sharma et al. 1997; Wadud 

and White, 2000; Minh and Long 2009). They have mostly investigated on differences 

between estimated technical efficiency scores and their distribution on the observed 

sample. Sharma et al. (1997) underlined that it is expected that the DEA efficiency 

scores would be less than those obtained under the specifications of stochastic frontier 

due to DEA method attributes any deviation of the data points from the frontier to 

inefficiency. However, empirical findings obtained from these studies confirm that the 

opposite may occur if the DEA frontier is fitted tightly to the sample data. Generally, 

the differences in the estimated results from two approaches could be mainly attributed 

to the different characteristics of the data, the choice of input and output variables, 

measurement and specification errors, as well as estimation procedures (Ruggiero 2007; 

Minh and Long 2009). 

On the contrary, poor relevance has been given on comparison in measuring scale 

efficiency despite its important role in conditioning economic efficiency. Indeed, scale 

efficiency is a measure inherently relating to the returns to scale of a technology at any 

specific point of the production process (Førsund and Hjalmarsson 1979). It measures 

how close an observed plant is to the optimal scale, i.e. it describes the maximally 

attainable output for that input mix
2
 (Frisch, 1965). 

In our opinion, more effort should be produced in comparing estimated scale 

efficiencies calculated from SFA and DEA approaches
3
. More attempts need to be done 

especially in agriculture due to the fact that a great number of papers have estimated 

scale efficiency in this sector but in most of these studies, the measure is calculated 

using a DEA model (Karagiannis and Sarris 2005; Bravo-Ureta et al., 2007). This is a 

relevant issue because differences in scale efficiencies interpretation and scale 

properties might derive form inherent differences between parametric and non 

parametric models. Therefore, it is expected to obtain some differences according to the 

methodology applied for estimating scale efficiencies in terms of scores and their 

distribution on the sample (Banker et al., 1986; Førsund. 1992). 

Efficiencies measures arisen from DEA are technology invariant due to the DEA 

method of enveloping the data for construction the frontier and observed units  at both 

ends of the size distribution may be identified  as efficient  simply  for  lack  of other  

comparable units. It means that real economies of scale at large (or small) units will  be 

difficult  to detect and it may be an identification problem whether scale inefficiency of 

technically  efficient  units  is real or due to the specification on variable returns to scale 

and the method of enveloping the data (Førsund. 1992). On the other hand, since the 

statistical theory is well developed for the parametric approaches, SFA allows us to 

make statistical inferences about estimated scale efficiency (Kumbhakar and Tsionas, 

                                                
1 However, some authors have proposed models in which properties of SFA and DEA are integrated in 

order to overcame disadvantages of both methods (Ruggiero, 2004; Simar and Zeleneyuk, 2011).  
2 This definition substantially corresponds to Banker’s (1984) concept of most productive scale size 

(MPSS) in the DEA context. 
3 Among the others, Banker et al. (1986); Ferrier and Lovell (1990), Bjurek et al. (1990)  Førsund (1992) 

have compared scale efficiencies and scale properties obtained from parametric and non parametric 

approaches.   
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2008). DEA generally does not permit to make it because any statements regarding the 

statistical properties of estimated efficiency measures including scale efficiencies can be 

formulated
4
. Furthermore, DEA and other deterministic models attributes any deviation 

of each observation from the frontier to inefficiency, while SFA models allow us to 

separate inefficiency component from noise.  

According to Orea (2002) and Karagiannis and Sarris (2005), the approach followed for 

the DEA is hardly transferable using a SFA approach with flexible functional forms for 

the production frontier. DEA calculates scale efficiency by dividing the technical 

efficiency estimated under the hypothesis of constant return to scale and technical 

efficiency estimated imposing variable return to scale technology. In case of parametric 

approach, hypothesis that variable returns to scale technology is enveloped from the 

constant returns to scale technology is weak by a theoretical point of view. Indeed, there 

is nothing to guarantee that the variable returns to scale technology is enveloped from 

the constant returns to scale technology in the parametric context.  

A model for estimating scale efficiency within a parametric flexible stochastic approach 

was proposed by Ray (1998). Following this methodology, a scale efficiency measure is 

obtained from the estimated parameters of the production frontier function under the 

variable returns to scale hypothesis and from the estimated scale elasticity. Ray’s (1998) 

model has the advantage of being easily tractable from the econometric point of view 

and being particularly suitable for a translog frontier function. In spite of these 

operational advantages, the model proposed by Ray (1998) has been scarcely adopted 

for estimating scale efficiency in agricultural studies. 

The objective of this paper is to contribute in the existing literature providing a 

comparison between SFA and DEA approaches for estimating technical and scale 

efficiency. In particular both parametric and non parametric approaches were applied to 

estimate technical and scale efficiencies exhibited by the Italian citrus farming
5
. While 

several studies have compared technical efficiency estimates derived from parametric 

and non parametric approaches, this is one of the first attempts that aims to put on 

evidence possible difference in scale efficiency estimations in farming due to methods 

used, especially considering a stochastic specification of the production frontier in the 

parametric model. Regarding the parametric approach, a non-neutral production 

function model and the Ray (1998) model were applied to estimate technical and scale 

efficiency in the Italian citrus farming, respectively.  

 

 

2. THE ITALIAN CITRUS FRUIT-GROWING SECTOR 
 

Citrus fruit growing is one of the largest categories in the Italian vegetable and fruit 

sector. Since 2006, the value of production has amounted to more than 1 billion euro, 

accounting for about 10% of the total value of vegetables and fruits produced (Giuca 

2008). Oranges comprise about 54% of citrus fruit production, whereas the contribution 

of lemons and tangerines to overall production (in terms of value) is equal to 17% and 

19%, respectively. 

                                                
4 As reported by Kumbhakar and Tsionas (2008), however some progress have been made into the DEA 

context in terms of bootstrapping and statistical properties of DEA findings.   
5 More in depth discussions of empirical findings from DEA and SFA are reported in Madau (2010) and 

Madau (2011), respectively. Obviously, findings from both methods are showed and discussed also in this 

paper for better supporting discussion on comparison between DEA and SFA results.   
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The land area cultivated to citrus fruits corresponds to about 122,000 ha, while the 

number of farms is about 85,000 (Ismea 2008). Substantially, the farms are situated in 

the southern regions of Italy and, specifically, more than 70% of the farms and about 

80% of cultivated land are located in only two regions: Sicily and Calabry. Since the 

early 1990s, however, land area covered by citrus fruits has decreased by about 30% (in 

1990, it amounted to 184,000 ha) and the number of citrus farmers decreased by about 

45% (about 170,000 in 1990). In this period, exports have slightly increased, while 

imports has grown sixfold (Giuca 2008). 

Several reasons for this deterioration can be explored. First, the increasing competition 

in the world citrus fruit market has penalised Italian farmers because of structural and 

organisational problems that historically characterised the Italian citrus fruit sector. 

Specifically, Italian farms appear significantly small (on average, the area is 1.44 ha) 

and most of the citrus farms are located in less favourable areas where economic and 

productive alternatives are limited. Furthermore, despite the small size, many farms are 

fragmented in more plots of land, with evident implications on the ability to operate 

under efficient conditions. 

These and other factors have contributed in the last few years to Italy’s declining 

competitiveness and efficiency in the world citrus fruit market. Structural constraints 

seem to negatively affect the performance of the Italian sector and inhibit economic 

development of citrus farming. The detection of technical and scale efficiencies can 

offer us more information about the nature of these problems. If significant technical 

and/or scale inefficiency were found, this would indicate that structural problems 

prevent farm expansion and the rational use of technical inputs. An analysis of the 

relationship between technical and scale (in)efficiency would allow us to determine 

direction priorities - technical efficiency or scale efficiency oriented measures - in order 

to improve overall efficiency in the farms.  

 

 

3. METHODOLOGICAL BACKGROUND 

 

Both for non parametric and parametric calculation of scale efficiency a preliminary 

step is estimating the frontier function and the correspondent measures of technical 

efficiency. As well-known, technical efficiency is defined as the measure of the ability 

of a firm to obtain the best production from a given set of inputs (output-increasing 

oriented), or as a measure of the ability to use the minimum feasible amount of inputs 

given a level of output (input-saving oriented) (Greene 1980; Atkinson and Cornwell 

1994)
6
. This section illustrates how technical and scale efficiency output-oriented 

measures can be obtained from the DEA and the SFA models
7
.   

 

3.1 Non parametric estimation: Data Envelopment Analysis (DEA) 

Data Envelopment Analysis (DEA) is a non parametric approach to estimate efficiency 

originally proposed by Charnes et al. (1978) and based on the Farrell’s model (1957). 

DEA consents the estimation of efficiency in multi-output situations and without 

                                                
6 When firm operates in a constant returns to scale area the input and output-oriented measures coincide 

(Fare and Lovell 1978). 
7 For a more detailed description of the methodologies and the impact of such a choice on the empirical 

findings see Wadud and White (2000) and Bravo-Ureta et al. (2007).  
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assuming a priori functional form for frontier production (Roland and Vassdal, 2000). 

Therefore DEA assumes that the production function is unknown and solving a linear 

programming problem it calculates efficiency by comparing each production unit 

against all other units. The best practice frontier is represented by a piecewise linear 

envelopment surface. Therefore, TE scores arisen from DEA are invariant to 

technology, because obtained trough comparisons among an observation and each 

others and not with respect to an estimated frontier.  

The discussion on DEA presented here is brief and concerns the output-oriented 

Constant Return to Scale (CRS) DEA and Variable Return to Scale (VRS) DEA. The 

output-oriented CRS DEA model for a single output is described below. TE is derived 

solving the following linear programming model (Ali and Seiford 1993): 

 

max θ,λ  θi 

subject to  0  s -  -   
1

 =∑ =
ii

n

j
jj yy θλ     

kik 
n

j
kjj  xex =+∑ =1

   λ      

λj  ≥ 0;   s ≥ 0;   ek ≥ 0         (1) 

 

where θi is the proportional increase in output possible for the i-th DMU (Decision 

Making Unit that in this study is a farm), λj is an N×1 vector of weights relative to 

efficient DMUs, s is the output slack; and ek is the k-th input slack. Banker et al. (1984) 

suggest to adapting the CRS DEA model in order to account for a variable returns to 

scale situation. Adding the convexity constraint N1’λ = 1, the model can be modified 

into VRS DEA
8
.  

The proportional increase in output which is possible is accomplished when output 

slack, s, becomes zero. A DMU results efficient when the values of θ and λi are equal to 

1; and λj = 0. On the contrary, a DMU is inefficient when θ > 1, λi = 0; and λj ≠ 0.  

Solving (1) we can obtain a measure of TE that reflects “distance” between the observed 

and optimal output production for a certain inputs bundle: 

 

TEi = 
*
iY

iY
 = 

iθ

1
  0 ≤ TEi ≤ 1      (2) 

           

where iY  and 
*
iY are the observed and maximum possible (optimal) output, respectively. 

A measure of scale efficiency (SE) can be obtained by comparing TE
CRS

 and TE
VRS 

scores. Any difference between the two TE scores indicates there is scale inefficiency 

that limits achievement of an optimal (constant) scale:  

 
CRS
iTE =  VRS

iTE * SEi              (3)     

 

Therefore, it can be calculated as (Coelli 1996a): 

 

                                                
8 Banker et al. (1984) proposed this modification for the input-oriented model, but this constraint can be 

added also for output-oriented VRS models.  
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SEi =  
VRS
i

CRS
i

TE

TE
  0 ≤ SEi ≤ 1                (4) 

 

where SEi = 1 indicates full scale efficiency and SEi < 1 indicates presence of scale 

inefficiency.  

However, a shortcoming of the SE score is that it does not indicate if a farm is operating 

under increasing or decreasing return to scale. This is resolvable by simply imposing a 

non-increasing return of scale (NIRS) condition in the DEA model, i.e. changing the 

convexity constraint N1’λ = 1 of the DEA VRS model into N1’λ ≤ 1. If TE
NIRS

 and 

TE
VRS

 are unequal, then farms operate under increasing return to scale (IRS); if they are 

equal a decreasing return to scale (DRS) exists. 

 

3.2 Parametric Estimation: Stochastic Frontier Analysis (SFA) 

SFA was originally and independently proposed by Aigner et al. (1977) and Meeusen 

and van der Broeck (1977). In these models, the production frontier is specified which 

defines output as a stochastic function of a given set of inputs. The presence of 

stochastic elements makes the models less vulnerable to the influence of outliers than 

with deterministic frontier models. It concerns that the error term ε may be separated in 

two terms: a random error and a random variable explanatory of inefficiency effects: 

 

yit  =  f (xit, t; ß) • exp ε        (5a) 

ε  = (vit - uit)   i = 1,2,….N   t = 1,2,….T    (5b)     

 

where yit denotes the level of output for the i-th observation at year t; xit is the row 

vector of inputs; t is the time index, ß is the vector of parameters to be estimated; f (•) is 

a suitable functional form for the frontier (generally Translog or Cobb-Douglas); vit is a 

symmetric random error assumed to account for measurement error and other factors 

not under the control of the firm; and uit is an asymmetric non-negative error term 

assumed to account for technical inefficiency in production.  

The vi’s are usually assumed to be independent and identically distributed N (0, σv

2 ) 

random errors, independent of the uit’s that are assumed to be independent and 

identically distributed and with truncation (at zero) of the normal distribution N (0, 

σu

2 ). The Maximum Likelihood Estimation (MLE) of (5) allows us to estimate the 

vector ß and the variance parameters σ2
=

22  + vu σσ  and γ = σu / σv; where 0 ≤ γ ≤ 1. The 

TE measure is obtained by the ratio of yit to the maximum achievable level of output: 

 

TE = 
*y

yit
 = exp (- uit)              (6) 

 

where y* is the output that lies on the frontier. Furthermore, assuming a semi-normal 

distribution for uit and according to Jondrow et al. (1982), the degree of technical 

efficiency of each firm could be estimated.  

In order to estimate inefficiency effects, some authors proposed a two-stage method, in 

which the first stage consists in technical efficiency estimation using a SFA approach, 

and the second stage involves the specification of a regression model that relaxes 
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technical efficiency with some explanatory variables (Pitt and Lee 1981; Kalirajan 

1982; Parikh and Shah 1994). 

One-stage SFA models in which the inefficiency effects (ui) are expressed as a function 

of a vector of observable explanatory variables were proposed by Kumbhakar et al. 

(1991), Reisfschneider and Stevenson (1991), Huang and Liu (1994). In this model, all 

parameters – frontier production and inefficiency effects – are estimated 

simultaneously. This approach was adapted by Battese and Coelli (1995) to account for 

panel data. They proposed an one-stage approach where the functional relationship 

between inefficiency effects and the firm-specific factors is directly incorporated into 

the MLE. The inefficiency term uit has a truncated (at zero) normal distribution with 

mean mit: 

 

uit = mit + Wit                (7a) 

 

where Wit is a random error term which is assumed to be independently distributed, with 

a truncated (at -mit) normal distribution with mean zero and variance σ2
 (i.e. Wit ≥ - zit  

such that uit is non-negative). 

The mean mit  is defined as: 

 

mit  = Z (zit, δ)  i = 1,2,….N   t = 1,2,….T        (7b) 

 

where Z is the vector (Mx1) of the zit firm-specific inefficiency variables of 

inefficiency; and δ is the (1xM) vector of unknown coefficients associated with zit. So 

we are able to estimate inefficiency effects arisen from the zit explanatory variables
9
.  

Orea (2002) argues that the non parametric approach difficultly can be directly 

transferred into a parametric approach in order to calculate scale efficiency. Indeed 

when parametric approach is used, hypothesis that VRS technology is enveloped from 

CRS technology is weak by a theoretical point of view. 

As mentioned above, Ray (1998) proposed a model in which scale efficiency can be 

calculated from the estimated parameters of the production frontier and from scale 

elasticity estimations. For a translog frontier function: 

 

ln yit = β0 +   -   ln ln
2

1
  ln )(

111

itit

l

k

kitjitjk

n

j

n

j

jitj uvxxx ββ +⋅+ ∑∑∑
===    (8) 

 

 

and assuming an output-oriented approach for the technical efficiency estimation, scale 

elasticity at farm-specific input bundle is equal to: 

 

∑ ∑
= =









++=

n

1  j

l

1 k 

         E tx jikitjkjit βββ
       (9)

 

 

Remanding to Ray (1998) for a more detailed description of the methodology, it follows 

that the output-oriented scale efficiency (SE
O
) corresponds to: 

                                                
9 According to Battese and Corra (1977), Battese and Coelli (1995) suggest to replacing the parameter λ 
with γ = ( )222

+  / vuu σσσ  because of it can be searched between zero and one and this property allows us to 

obtain a suitable starting value for an iterative maximisation process. 
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( )








=

β2

E - 1
exp    SE

2

itO

it

        (10)

 

where: 

 

∑ ∑
= =

=
n

 j 

l

k
jk

1 1

    ββ          (11) 

 

with ß that is assumed to be negative definite as to guarantee that 0 < O

it
SE  ≤ 110

. 

This output-oriented scale efficiency measures the role of scale in conditioning 

technical efficiency. Scale efficiency reflects the relative output expansion by producing 

at optimal scale on the frontier for the observed factor proportions of a firm whose 

technical inefficiency has been eliminated (Karagiannis and Sarris 2005). In other 

terms, following the Frisch’s definition, scale efficiency measures the distance to full 

efficient scale after moving a production unit to the frontier in the vertical direction.  

As reported by Ray (1998), scale efficiency (10) and scale elasticity (9) are both equal 

to one only at an MPSS, i.e. where constant returns to scale prevails. Elsewhere they 

differ and SE is <1 irrespective of whether Eit is greater than or less than unity. It means 

that the magnitude of scale elasticity reveals nothing about the level of SE at the points 

different by the MPSS.  

On the basis of the definition of scale efficiency measured by (10), the sub-optimal 

scale is associated with increasing returns to scale. When Eit > 0 (increasing returns to 

scale) then SE increases with an increase in output and the optimal scale should be 

reached expanding the observed output level. Vice versa, output should be contracted to 

reach the optimal scale when a plan operates in a decreasing returns to scale (supra-

optimal) area (Eit < 0)
11

.  

In order to explain scale efficiency differentials among plans, Karagiannis and Sarris 

(2005) used a two-stage approach. At the first stage, SEs are estimated using the 

formula (10) and successively, at the second stage, the SE scores are regressed against a 

set of explanatory variables. Following the procedure proposed by Reinhard et al. 

(2002), these authors in the second stage used a MLE technique to estimate this 

stochastic frontier regression model: 

 

ln O

it
SE  = mit + εit  with             (12a) 

mit  = Z (zit, ρ)  and        (12b) 

 

εit  = ( *

it
v - *

it
u )   i = 1,2,….N   t = 1,2,….T    (12c)     

       

where zit represents the same set of variables used in the inefficiency model (9), ρ are 

the parameters to be estimated, εit is the error term composed by *

it
v  that represents the 

                                                
10 Negative definiteness of β is a sufficient but not necessary condition (Ray, 1998). 
11 Among the advantages of this measure, Ray (1998) argues that “this (scale efficiency measure) should 

make findings from econometric models more directly comparable with the evidence from nonparametric 

DEA models, where scale efficiency measures are routinely reported (p. 193)”. 
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statistical noise (independently and identically distributed with N (0, 2

*v
σ ) random 

variable truncated at -mit) and by *

it
u  that represents the conditional scale inefficiency 

remaining even after variation in the zit has been accounted for ( *

it
u  ∼ N (-mit, 

2

*u
σ )). 

The two-stage approach in the SFA models has been criticized by several authors 

because it is inconsistent in it’s assumption regarding independence of the inefficiency 

effects (Battese and Coelli 1995; Kumbhakar and Lovell 2000). With specific reference 

to technical efficiency, the rationale underlying is that the specification of the regression 

of the second stage - in which the estimated technical efficiency scores are assumed to 

have a functional relationship with the explanatory variables - conflicts with the 

assumption that ui’s are independently and identically distributed (TE is the dependent 

variable in the second stage procedure). 

However, as underlined by Reinhard et al. (2002), a two-stage procedure can 

consistently be used as long as the efficiency scores are calculated from the first-stage 

parameter estimates, instead of being estimated econometrically at the first stage. In the 

case of the procedure illustrated above for computing scale efficiency effects, no such 

assumption is made with respect to the dependent variable SE because SE scores are 

obtained from the parameter estimates and the estimated values of scale elasticity. Thus, 

Reinhard et al. (2002) recommended application of the two-stage procedure for 

estimating scale efficiency effects.   

 

 

4. DATA AND THE EMPIRICAL MODELS 

Data were collected on a balanced panel data of 107 Italian citrus farms. All the selected 

farms participated in the official Farm Accountancy Data Network (FADN) during the 

period 2003-2005 and they are specialized in citrus fruit-growing (more then 2/3 of 

farm gross revenue arises from citrus production). Farms with less than two European 

Size Units (ESU) were excluded from the sample
12

. Therefore, both non parametric and 

parametric analyses are based on a total of 321 observations (see Table 1 for summary 

statistics about farms).   

 

 

4.1 DEA model 

We applied both CRS and VRS DEA models in order to calculate scale efficiency. 

Estimation of technical and scale efficiency was carried out performing separated 

analysis for each considered year.  

The dependent variable (Y) represents the output and it is measured in terms of gross 

revenue from the i-th farm. The aggregate inputs, included as variables of the 

production function, are 1) X1 the total land area (hectares) devoted to citrus fruit-

growing by each farm; 2) X2 the expenditure (euro) for seeds, fertilizers, water and other 

variable inputs used in the citrus fruits-growing; 3) X3 the value (euro) of machineries 

used in the farm; 4) X4 the value (euro) of capital (amount of fixed inputs such as 

buildings and irrigation plant, except for machineries); 5) X5 the expenditure (euro) for 

other inputs, consisting in fuel, electric power, interest payments, taxes, etc.; 6) X6 the 

total amount (annual working hours) of labour (including family and hired workers); 

                                                
12 In FADN, ESU indicates the farm economic size. ESU is defined on the basis of farm potential gross 

value added (Total Standard Gross Margin).  
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Regarding the machineries and capital variables, they were measured in terms of annual 

depreciation rate so to have a measure of annual utilization, on average, of the capital 

stock
13

. All variables measured in monetary terms were converted into 2003 constant 

euro value. 

 

Table 1 - Summary statistics for citrus farms in the sample (mean values) 
Variable 2003 2004 2005 

    

Gross revenue (euro) 54,508  53,861  56,542  

Land area (hectares)   13.21    13.26    13.41  

Expenditure for seeds, fertilizers, etc. (euro)   3,878    4,866    5,066  

Machineries (annual depreciation rate, euro)   2,395    2,489    2,962  

Capital (annual depreciation rate, euro)   5,050    5,182    5,052  

Other expenditures (euro)   1,240       939    1,322  

Labour (annual working hours)   2,785    2,814    2,772  

Age of farm owner     59.1      59.7      60.7  

Size (ESU*)       4.7        4.7        4.7  

Altitude (metres)      104       104       104  
Number of plots of land       1.6        1.7        1.7  

* ESU = European Size Units 

 

Furthermore, a set of explanatory variables of efficiency were selected in order to 

evaluate their effect on technical and scale efficiency. More precisely, individual 

estimated technical and scale efficiency were regressed to: 1) Z1 the age of the farm 

owner; 2) Z2 a dummy variable that reflects the size of the farm measured in terms of 

ESU that can assume a value involved from 3 to 7
14

; 3) Z3 the variable altitude that 

reflects the average altitude (in metres) by each farm; 4) Z4 the number of plots of land 

in which farm is fragmentized; Z5 a dummy variable that reflects the placement (or not) 

of each farm in a Less-favoured area such as defined by the EEC Directive 75/268 (0 = 

Less-Favoured zone; 1 = non Less-favoured zone); Z6-Z11 that represent a set of dummy 

variables indicating the regional location of farms (Rcam = Campany; Rcal = Calabria; 

Rapu = Apulia; Rbas = Basilicata; Rsic = Sicily; Rsar = Sardinia). 

Variables such as age of farmers, farm size, and regional location have been widely 

used in the efficiency analyses applied to agriculture. The first is generally used as a 

proxy of farmer skills, experience, and learning-by-doing (the rationale is that the 

expected level of efficiency increases with experience). The second was implemented to 

evaluate the role of farm economic size in conditioning efficiency (a positive sign is 

expected, i.e. efficiency tends to increase in larger farms). The third serves to estimate 

the presence of territorial and geographic variability that may affect efficiency. 

Altitude and location in a less-favoured area are variables used in some efficiency 

analysis to account for geoclimatic and socioeconomic heterogeneities (Karagiannis and 

Sarris 2005; Madau 2007). On the other hand, the number of lots has not been a variable 

generally employed in the efficiency analyses in agriculture. But, in our opinion and as 

highlighted above, it could be significant in conditioning both farm technical and scale 

efficiencies in the Italian citrus farming. Indeed, the subdivision of the farm land area 

                                                
13 As underlined by Madau (2008), value of capital goods is estimated in different ways into the 

efficiency analyses. Some authors have considered the total amount of value, whereas other authors have 

expressed capital in terms of annual capacity utilization. In this case, the capital measure depends on the 

adopted criteria for calculate capacity utilization.  
14 Any observed farm exhibits an ESU Class 8 or 9. 
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into more plots of land could be an obstacle toward achieving full (technical and scale) 

efficiency on the part of farmers. 

 

4.2 SFA model 

We assumed a Translog functional form as frontier technology specification for the 

citrus farms. The adopted model corresponds to the Huang and Liu (1994) non-neutral 

production function model applied on panel data, which assumes that technical 

efficiency depends on both the method of application of inputs and the intensity of input 

use (Karagiannis and Tzouvelekas 2005)
15

. It means that the inefficiency term uit 

explained by (7) is equal to: 

 

uit = δ0 + ∑
=

N

i 1

δit zi  +∑
=

M

m 1

δm ln xmit  +Wit i = 1,2,….N    t = 1,2,….T  (13) 

 

The Translog stochastic function production model is specified as formula (8) and 

involves seven variables: the variables X1-X6 correspond to the same bundle of inputs 

selected for the DEA model and X7 is a variable that represents the time (year) and it can 

assume value equal to 1 (2003), 2 (2004) or 3 (2005). 

In the inefficiency model (13) we found the same set of explanatory variables used for 

the DEA model. In addition, according to the non-neutral model proposed by Huang 

and Liu (1994), (in)efficiency is expected to depend by the inputs used in the 

production. Therefore, the same pool of variables (included time) used to describe the 

frontier function production (xit) were included in the inefficiency model. 

Finally, applying the second-stage regression (12), scale efficiency effects were 

calculated using the same bundle of variables used for the technical efficiency effects 

model, with the exception of inputs that describe the frontier production. 

 

5. ANALYTICAL FINDINGS  

5.1 Estimated results from non parametric approach 

Technical efficiency scores arisen by application of the DEA model were estimated 

using the DEAP 2.1 program created by Coelli (1996a).  

Results indicate that output-efficiency technical efficiency obtained for the CRS and 

VRS frontiers are, on average, equal to 0.623 and 0.711, respectively (Table 2). These 

measures were calculated as averages on the triennial period of observation (2003-

2005). Considering the latter measure – so called “pure efficiency” because devoid of 

scale efficiency effects – and since technical efficiency scores are calculated as an 

output-oriented measure, the results imply that citrus fruits-growing farmers would be 

able to increase output by about 30% using their disposable resources more effectively 

(at the present state of technology).  

Scale efficiency is calculated applying formula (4). The mean scale efficiency for the 

Italian citrus fruits producers in Italy is equal to 0.894. It means that adjusting the scale 

of the operation, citrus farms could improve their efficiency by 10.6%.  

                                                
15 Substantially, this model corresponds to the Battese and Coelli (1995) model with a non-neutral 

specification for the production frontier function. 
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Imposing the NIRS condition, we found that the most of the farms exhibit an increasing 

returns to scale (Table 3). Of the 107 farms, 71 (66.3%) show increasing (sub-optimal) 

returns to scale, 22 (20.6%) show constant (optimal) returns to scale, and 14 (13.1) 

show decreasing (supra-optimal) returns to scale. Therefore, this implies that scale 

inefficiency is mainly due to the farms operating under a sub-optimal scale, - i.e. farms 

where their output levels are lower than optimal levels and they should be expanded to 

reach the optimal scale. It was found that typology of returns to scale do not vary in 

each farms during the time of observation.  

 

Tab.2 – Estimated technical efficiency and scale efficiency using DEA 

Efficiency TECRS TEVRS SE 

    
Mean* 0.623 0.711 0.894 
s.d. 0.242 0.256 0.163 

Min 0.226 0.257 0.287 

Max 1.000 1.000 1.000 

        

* calculated on the basis of a triennial period 

 

In the most of sub-optimal scale farms, scale efficiency is sensitively low (the average 

SE in this group is less than 0.700). On the contrary, supra-optimal scale farms appear 

more efficient, in terms of ability to operate under an adequate scale (mean SE equal to 

0.934). Both TE and SE scores vary substantially across farms. To explain some of 

these variations, the efficiency scores were regressed on the farm-level characteristics. 

A Tobit regression model was used, since the efficiencies vary from zero to unity. 

 

Table 3 – Scale efficiency and returns to scale from DEA 
 Observations  Scale Efficiency 
 n. %   

Total sample (mean) 321 100  0.894 
     
Supra-optimal scale 42 13.1  0.934 
Optimal scale 66 20.6  1.000 
Sub-optimal scale 213 66.3  0.692 

 

 

Age of farmer is negatively related to technical efficiency, but the estimated coefficient 

is not statistically significant (Table 4). Farm size is positively related to efficiency 

level. The results indicate that improvement of technical efficiency depends, among the 

others, on citrus farms attaining an adequate size (magnitude is equal to 0.036). Altitude 

slightly affects technical efficiency, while, as expected, the number of lots is negatively 

correlated to technical efficiency.  

The findings imply that technical efficiency tends to decrease in the case of partitioning 

farms in more plots. The magnitude of this effect is 0.056, indicating that the presence 

of a plurality of lots affects sensitively efficiency from a technical point of view. 

Furthermore, farms situated in less-favoured areas tend to be more inefficient than those 

located in normal zones (magnitude is equal to -0.018). Finally, the fact that all the 

dummy variables reflecting geographical location of citrus farms are not significant by a 

statistical point of view suggests that this factor should not be considered an explanatory 

factor of technical efficiency variability. 
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Table 5 shows results on relationship between scale efficiency and possible sources of 

inefficiency. Age of farmers is negatively related to scale efficiency, even if magnitude 

is not sizeable (-0.003). It implies that citrus farms managed by younger farmers should 

be more scale efficient than farms managed by older farmers. Farm size might 

positively affect scale efficiency. It is the factor that contributes the most to 

conditioning scale efficiency (magnitude is equal to 0.042). This suggests that large-

sized farms tend to have higher scale efficiency than small-scale farms. Altitude and 

location in a less-favoured area are not significant variables by a statistical point of 

view. On the contrary, the number of plots of land represents the second most important 

factor in the order of importance that affects scale efficiency (-0.040). The consistent 

negative sign of the estimated coefficient indicates that in-farm land fragmentation 

might be a relevant structural constraint to achieving an adequate scale efficiency by 

part of citrus farmers. 

 

Tab.4 – Technical efficiency effects from DEA 
Variables Coefficient s.e. 

 

Constant δ0  0.607 ***  0.226 

Age δ1 -0.001 0.002 

Size δ2  0.036 * 0.023 

Altitude δ3 -0.001 0.003 

N. of plots of lands δ4 -0.056 * 0.032 

Less-favoured zones δ5 -0.018 * 0.011 

Campany δ6  0.110 0.169 

Calabry δ7  0.082 0.131 

Apulia δ8  0.225 0.174 

Basilicata δ9  0.049 0.143 

Sicily δ10  0.090 0.127 

Sardinia δ11 redundant 

*** = significance at 1% level **  = significance at 5% level * = significance at 10% level 

 

 

Tab.5 – Scale efficiency effects from DEA 
Variables Coefficient s.e. 

 

Constant δ0  0.756 *** 0.145 

Age δ1 -0.003 ** 0.001 

Size δ2  0.042 ** 0.020 

Altitude δ3 -0.001 0.002 

N. of plots of lands δ4 -0.040 ** 0.018 

Less-favoured zones δ5  0.005 0 012 

Campany δ6  0.269 * 0.167 

Calabry δ7 -0.002 0.089 

Apulia δ8 -0.045 0.102 

Basilicata δ9 -0.093 * 0.049 

Sicily δ10 -0.179 ** 0.082 

Sardinia δ11 redundant 

*** = significance at 1% level **  = significance at 5% level * = significance at 10% level 

 

Finally, the findings show that there are statistically significant differences in scale 

efficiency between farms located in different geographical regions of Italy, implying 

that location sensitively influences scale efficiency. 

Specifically, farms that operate in Campany should tend to be more scale efficient than 

the others (the variable that reflect location in Sardinia is redundant). 
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5.2 Estimated results from parametric approach 

Parameters for the function and inefficiency model were estimated simultaneously. ML 

estimation was obtained using the computer program FRONTIER 4.1, created by Coelli 

(1996b). ML estimates for the preferred frontier model were obtained after testing 

various null hypotheses in order to evaluate suitability and significance of the adopted 

model.As testing procedure we adopted the Generalised likelihood-ratio test, which 

allows us to evaluate a restricted model with respect to the adopted model (Bohrnstedt 

and Knoke, 1994)
16

.  

The test was applied in order to estimate the more suitable to the data functional form o 

the frontier (Transolg or Cobb-Douglas specification; non-neutral or neutral 

specification), presence of inefficiency effects, nature of inefficiency effects, presence 

of an intercept in the inefficiency model, presence of farm-specific factors, presence of 

regional effects and, finally, presence of Age and Altitude effects (because of poor  

estimated statistical significance). 

Table 6 reports the results of these t-tests and in the light of these the model was 

estimated to obtain the preferred form. MLE for the more appropriate model are shown, 

as reported above, in the Table 7. 

Since the Translog function takes into account also interaction among involved inputs, 

the production elasticities were computed using the traditional formula for the 

estimation of the elasticity of the mean output with respect to the k-th input (except for 

the time variable): 

 

)ln(

)(ln

kx

YE

∂
∂

  =    2
kj

       ∑
≠

++ jikjkikkk xx βββ
          (14)

 

 
Application of (14) indicates that, at the point of approximation, the estimated function 

satisfies the monotonicity (all parameters show a positive sign) and diminishing 

marginal productivities (magnitude is lower than unity for each parameter) properties 

(Table 8). 

The estimated production elasticities suggest that land is the foremost important input 

followed by expenditure for seeds and other technical inputs, labour, and machineries. It 

means that enlargement of the land area would affect significantly farm productivity. 

Specifically holding all other inputs constant, an increase of 1% in land area would 

result in a 0.47% increase in output. According to other research findings, the high 

elasticity of the land area is not surprising in presence of small size farms because this 

factor could be considered a quasi-fixed input (Alvarez and Arias 2004; Madau 2007). 

Except for land area, these findings suggest that production of Italian citrus farms is 

sensitively elastic with respect to these factors, which should allow farmers to easily 

vary their own use level in the short run - elasticity of seeds (and other technical inputs) 

and labour is equal to 0.27 and 0.18, respectively - while the other quasi-fixed inputs 

(capital and machinery) affect productivity less (elasticity equal to 0.04 and 0.11, 

                                                
16 The statistic test λ has approximately a chi-square (or a mixed-square) distribution with a number of 
degrees of freedom equal to the number of parameters (restrictions), assumed to be zero in the null-

hypothesis. When λ is lower than the correspondent critical value (for a given significance level), we 
cannot reject the null-hypothesis. 
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respectively). The time variable shows a negative sign, but the magnitude is not 

relevant, implying that time does not significantly affect production. 

 

Table 6 – Hypothesis testing for the adopted model for SFA 
Restrictions Model  L(H0)  λ d.f. 2

95.0χ  
Decision 

       
None Translog, non neutral  -89.81     
H0 : δm = 0 Neutral -100.18  20.74  6 12.59 Rejected 

H0 : βij = 0 Cobb-Douglas -168.34  157.06  21 32.67 Rejected 

H0 : γ = δ0; δr;δm = 0 No inefficiency effects  -120.45  61.28  6 11.91* Rejected 

H0 : γ = δ0;δm = 0 No stochastic effects -101.80  23.98  9 19.92* Rejected 

H0 : δ0= 0 No intercept  -90.44  1.26  1 3.84 Not rejected 

H0 : δr;δm = 0 No firm-specific factors -118.76  57.90  11 19.68 Rejected 

H0 : δ6….δ11 = 0 No Regional effects -94.88  10.14  6 12.59 Not rejected 

H0 : δ1;  δ3 = 0 No Age and Altitude effects -92.65  5.68  2 5.99 Not rejected 

* Critical values with asterisk are taken from Kodde and Palm (1986). For these variables the statistic λ is distributed 

following a mixed χ2 distribution.  

 
 

Returns to scale were found to be clearly increasing (1.144). Therefore, the hypothesis 

of constant returns to scale is rejected. It means that citrus farmers should enlarge the 

production scale by about 14%, on average, in order to adequately expand productivity, 

given their disposable resources. 

As to the estimated technical efficiencies, the analysis reveals that, on average, citrus 

farms are 71% efficient in using their technology (Table 7). Since technical efficiency 

scores are calculated as an output-oriented measure, the results imply that farmers 

would be able to increase output by about 30% using their disposable resources more 

effectively (at the present state of technology).  

The estimated ratio-parameter γ is significant (for α = 0.01) and it indicates that 

differences in technical efficiency among farms is relevant in explaining output 

variability in citrus fruits-growing (1/3 of the variability on the whole). Estimation of 

this parameter γ* suggests that about 58% of the general differential between observed 

and best-practice output is due to the existing difference in efficiency among farmers. 

Therefore, technical efficiency might play a crucial role into the factors affecting 

productivity in the citrus farming. 

Empirical findings concerning the sources of efficiency differentials among farms are 

presented in Table 7. Farm size is positively related to efficiency level. The results 

indicate that improvement of technical efficiency strongly depends on citrus farms 

attaining an adequate size (magnitude is equal to 0.495). Specifically, farm size increase 

should affect positively both productivity (returns to scale more than unity) and 

efficiency (negative sign of Size variable).  

As expected, the number of lots is negatively correlated to technical efficiency, 

implying that technical efficiency tends to decrease in the case of partitioning farms in 

more plots, also if the magnitude of this effect is low (0.014) Finally, farms situated in 

less-favoured areas tend to be more inefficient than those located in normal zones 

(0.012)
17

. 

 

 

                                                
17 Similar results were found by Madau (2007) 
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Tab. 7a – ML Estimates for SFA parameters and for TE (preferred model) - continue 
Variables Parameter Coefficient s.e 

FRONTIER MODEL 

Constant β0 -0.608 0.139 

Land Area β1 -1.827 0.422 

Expenditure for seeds, fertilizers, etc. β2 1.515 0.463 

Machineries β3 1.662 0.378 

Capital β4 -0.526 0.453 

Other expenditures β5 0.193 0.287 

Labour β6 0.576 0.569 

Year βT -1.697 0.696 

(Land Area) x (Land Area) β11 0.052 0.037 

(Land Area) x (V. expenditure) β12 0.102 0.038 

(Land Area) x (Machineries) β13 0.085 0.028 

(Land Area) x (Capital) β14 0.021 0.036 

(Land Area) x (O. expenditures) β15 0.010 0.035 

(Land Area) x (Labour) β16 0.060 0.060 

(Land Area) x (Year) β1T -0.111 0.053 

(V. expenditure) x (V. expenditure) β22 0.032 0.031 

(V. expenditure) x (Machineries) β23 0.016 0.026 

(V. expenditure) x (Capital) β24 -0.053 0.037 

(V. expenditure) x (O. expenditures) β25 0.099 0.033 

(V. expenditure) x (Labour) β26 -0.328 0.069 

(V. expenditure) x (Year) β2T -0.011 0.055 

(Machineries) x (Machineries) β33 0.074 0.017 

(Machineries) x (Capital) β34 -0.088 0.033 

(Machineries) x (O. expenditures) β35 -0.125 0.035 

(Machineries) x (Labour) β36 -0.198 0.051 

(Machineries) x (Year) β3T -0.020 0.035 

(Capital) x (Capital) β44 0.030 0.024 

(Capital) x (O. expenditures) β45 0.085 0.024 

(Capital) x (Labour) β46 0.046 0.058 

(Capital) x (Year) β4T 0.076 0.051 

(O. expenditures) x (O. expenditures) β55 0.029 0.021 

(O. expenditures) x (Labour) β56 -0.137 0.072 

(O. expenditures) x (Year) β5T 0.089 0.048 

(Labour) x (Labour) β66 0.228 0.076 

(Labour) x (Year) β6T 0.141 0.065 

(Year) x (Year) βTT 0.026 0.076 

INEFFICIENCY MODEL 

Constant δ0 - - 

Age δ1 -  

Size δ2 -0.495 0.087 

Altitude δ3 - - 

Number of plots of land δ4 0.014 0.031 

Less-favoured zones δ5 0.012 0.010 

Campany δ6 - - 

Calabria δ7 - - 

Apulia δ8 - - 

Basilicata δ9 - - 

Sicily δ10 - - 

Sardinia δ11 - - 

Land Area δSUP -0.679 0.147 

Expenditure for seeds, fertilizers, etc. δSV 0.359 0.105 

Machineries δQM -0.043 0.062 

Capital δQC 0.068 0.110 

Other expenditures δAS 0.319 0.149 

Labour δLAV -0.740 0.214 

Year δT 0.091 0.135 
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Tab. 7b – ML Estimates for SFA parameters and for TE (preferred model) 
Variables Parameter Coefficient s.d. 

VARIANCE PARAMETERS 

σ2   σ2 
0.127 0.016 

γ  γ 0.333 0.131 

γ* 
 γ* 0.579  

Log-likelihood function  -92.66  

TECHNICAL EFFICIENCY 

Mean 0.710 

s.d 0.266 

  
Maximum 1.000 
Minimum 0.060 

 

Regarding the relationship between technical efficiency and technical inputs, ML 

estimation shows that all inputs have a significant part to play in determining efficiency 

(Table 7). Land area, labour, and machinery carry a negative sign, implying that an 

increase in each variable positively affects technical efficiency.  

Finally, the empirical findings suggest that farmers tend to become less efficient over 

time even if the magnitude is really low (0.091)
18

. 

 

Tab. 8 – Estimated elasticities and returns to scale from SFA 
Input Elasticity s.d. 

   
Land area 0.466 0.219 

Expenditure for seeds, fertilizers, etc  0.265 0.146 

Machineries 0.112 0.101 

Capital 0.037 0.050 

Other expenditures 0.080 0.102 

Labour 0.182 0.073 

   

Returns to scale 1.144 0.372 
Time -0.001 0.145 

 

Scale elasticities and scale efficiencies were estimated applying formulas (9) and (10). 

Table 9 shows that the average scale efficiency is 81.8%. It implies that observed farms 

could have further increased their output by about 18% if they had adopted an optimal 

scale. Results also indicate that about 80% of the observations exhibit increasing returns 

to scale. They operate under a suboptimal scale, i.e., their output levels are lower than 

optimal levels and they should be expanded to reach the optimal scale. In these farms, 

scale efficiency is sensitively lower than the average (77.5%) and the average scale 

elasticity is abundantly upper than unity (1.237). 

On the other hand, only about 6% of the observations are characterised by operating 

under an optimal scale, while about 15% of the panel reveals decreasing returns to scale.  

The relationship between scale efficiency and farm size seems to be confirmed by 

analytical results on the scale efficiency effects (see Table 11 below). These were 

obtained from application of (12) to the estimated data. The original proposed model – 
the second-stage regression of the scale efficiency scores to the variables described 

                                                
18 We also calculated efficiency scores for each year separately in order to assess if technical change 

exists over the observed period. However findings arisen from application of SFA to cross-sectional data 

year-by-year suggest that no technical progress exists because of not significant differences between the 

estimated annual  technical efficiency scores(on average).     
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above - was tested using the Generalised likelihood-ratio test procedure in order to 

evaluate if a restricted model is preferable. Specifically three tests were applied 

concerning hypotheses on presence of intercept in the inefficiency effects, role of the 

regional areas in conditioning the farm scale inefficiency and presence of the Less-

favoured area parameter, respectively. On the basis of the t-test results (reported in 

Table 10), we estimated the preferred model that is different from the proposed one for 

the absence of the intercept and the Less-favoured area variable. Estimated findings of 

scale inefficiency effects are reported in Table 11.  

 

Tab. 9 – Estimated scale efficiency and scale elasticity from SFA 
         Observations  Scale efficiency Scale elasticity 

 n. %    

Total sample (mean) 321 100  0.818 1.144 
s.d    0.213 0.416 
Maximum    1.000 1.588 
Minimum    0.012 0.662 
      
Supra-optimal scale 47 14.7  0.978 0.897 
Optimal scale 19 5.9  1.000 1.000 

Sub-optimal scale 225 79.4  0.775 1.237 

 

 

Table 10 – Hypothesis testing for the scale efficiency effects model from SFA 
Restrictions Model  L(H0)  λ d.f. 2

95.0χ  
Decision 

       
None Translog, non neutral  123.92     

H0 : δ0= 0 No intercept  123.92  0.01  1 3.84 Not rejected 

H0 : δ6….δ11 = 0 No Regional effects 114.71  18.42  6 12.59 Rejected 

H0 : δ5  = 0 No Less-favoured area effects 112.88  2.08  1 3.84 Not rejected 

       

 

Farm size is the factor that contributes the most to conditioning positively scale 

efficiency (magnitude is equal to 0.040). This suggests that large-sized farms tend to 

have, as expected, higher scale efficiency than small-scale farms. 

 

Table 11 – Scale efficiency effects (preferred model) from SFA 
Variables Parameter Coefficent s.e 

 

Constant δ0 - - 

Age δ1 0.006 0.001 

Size δ2 0.040 0.017 

Altitude δ3 0.019 0.024 

Number of plots of land δ4 -0.030 0.014 

Less-favoured zones δ5 - - 

Campany δ6 0.044 0.013 

Calabry δ7 0.002 0.009 

Apulia δ8 -0.016 0.050 

Basilicata δ9 -0.011 0.057 

Sicily δ10 0.055 0.061 

Sardinia δ11 0.051 0.053 

Year δT -0.066 0.099 

 

The number of plots of land represents the second most important factor in the order of 

importance that affects scale efficiency (-0.030). The consistent negative sign of the 
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estimated coefficient indicates that in-farm land fragmentation might be a relevant 

structural constraint to achieving an adequate scale efficiency by part of citrus 

farmers.The low magnitude (0.006) of the farmers’ age parameter suggests that this 

variable has little influence on the observed efficiency differentials. In other words, 

older and more experienced farmers tend to be more scale efficient than younger 

farmers, but even though significant, this is not a sensitive cause of inefficiency. Also, 

altitude has positive and significant effects on scale efficiency (0.019). Most likely, this 

is probably linked to citrus fruit varieties grown by many farmers in Sardinia, which are 

more suited for cultivation in hilly areas. Similar to technical efficiency effect 

estimation, the relationship between time and scale efficiency is negative (-0.066).  

This lends support to the assertion that (technical and scale) efficiency tends to decrease 

over time. Finally, the findings show that there are statistically significant differences in 

scale efficiency between farms located in different geographical regions of Italy. Farms 

located in Apulia and Basilicata tend to be less scale-efficient than those located in the 

other southern regions. Specifically, farms situated in the two insular regions (Sicily and 

Sardinia) report a higher magnitude (0.055 and 0.051, respectively), implying that 

location in these regions positively and sensitively influences scale efficiency. 

 

 

6. A COMPARISON BETWEEN SFA AND DEA ESTIMATES AND DISCUSSION 

In this paper we applied two approaches to estimate technical and scale efficiencies on a 

sample of citrus fruit farms, in which the non parametric approach is based on DEA 

technique, while the parametric is based on a SFA model.  

We found that technical efficiency estimated from DEA model under variable returns to 

scale hypothesis and from SFA show not significant differences (averages equal to 

0.711 and 0.710, respectively). Vice versa, significant difference (for α = 0.05) is 

revealed between DEA CRS and SFA model (0.623 and 0.710, respectively). 

However, as reported above, while DEA attributes any deviation to the frontier to 

estimated inefficiency component, technical efficiency computed from SFA 

corresponds to real inefficiency devoid of noise effects. Therefore, distribution of scores 

on the sample should give us more information about differences between estimated 

technical efficiencies calculated from SFA and DEA. As reported in Table 12, findings 

arisen form DEA (under variable returns to scale) suggest that the main share of farms 

reveals an optimal degree of efficiency (more than 20%), while a full efficiency is 

achieved by less than 2% of the sample in case of estimation trough SFA model. On the 

contrary, the share of farms that report an efficiency score close to the frontier (0.900 < 

TE < 1.000) amounts to 34.9% and 14.9% for SFA and DEA models, respectively. It 

might depend on the DEA method of constructing the frontier and its inherent difficulty 

under variable returns to scale hypothesis to detect the real efficiency due to possibility 

of overestimating number of full efficient units (Førsund, 1992; Kumbhakar and 

Tsionas, 2008).   

In the light of differences in distribution of the scores on the sample, we computed the 

Spearman rank correlations between efficiency ranking of the observed sample (Table 

13). All the correlations coefficients are positive and highly significant. The strongest 

correlation is obtained between the rankings from the SFA and the DEA VRS model. It 

confirms that hypothesis of constant returns to scale should be rejected, as reported 

above, in the SFA model implying that under the same set of data and assuming 
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variable returns to scale for the DEA frontier, the SFA model holds no real advantage 

over DEA in estimating technical efficiency scores and efficiency variability.  

 

Table 12 – Frequency distributions of technical and scale efficiency estimates from the 

SFA and from DEA VRS models 
Efficiency score TECHNICAL EFFICIENCY 

 SFA  DEA
 VRS

 

 Observations %  Observations % 

      
< 0.200 13 4.0%  - - 
0.201 – 0.300 27 8.4%  12 3.7% 
0.301 – 0.400 17 5.3%  27 8.5% 
0.401 – 0.500 26 8.1%  51 15.9% 

0.501 – 0.600 22 6.9%  42 13.1% 
0.601 – 0.700 23 7.1%  39 12.1% 
0.701 – 0.800 19 5.9%  18 5.6% 
0.801 – 0.900 57 17.8%  18 5.6% 
0.901 – 0.999 112 34.9%  48 14.9% 
1.000 5 1.6%  66 20.6% 
        
Total 321 100.0%  321 100.0% 

      

Efficiency score SCALE EFFICIENCY 

 SFA  DEA
 VRS

 

 Observations %  Observations % 

      
< 0.200 3 0.9%  - - 
0.201 – 0.300 8 2.5%  3 0.9% 
0.301 – 0.400 9 2.8%  9 2.8% 
0.401 – 0.500 17 5.4%  6 1.9% 
0.501 – 0.600 18 5.6%  9 2.8% 

0.601 – 0.700 18 5.6%  6 1.9% 
0.701 – 0.800 34 10.6%  24 7.4% 
0.801 – 0.900 54 16.8%  57 17.8% 
0.901 – 0.999 141 43.9%  147 45.8% 
1.000 19 5.9%  60 18.7% 
        
Total 321 100.0%  321 100.0% 
      

 

Concerning scale efficiency estimates, there are significant differences from the two 

methods (for α = 0.05). The mean scale efficiency relative to SFA model (0.818) is 

lower than that estimated from the DEA model (0.894). Table 12 shows that distribution 

of scale efficiency scores on the sample is similar between DEA and SFA measures, 

except to share of farms that reveal full efficiency. Using SFA model, 5.9% of the 

sample reports an optimal degree of scale efficiency, while this percentage amounts to 

18.7% in case of application of DEA model. According to Førsund (1992), it could 

depend on identification problem of full efficient observations by part of DEA model 

because units located at the end of size distribution may be identified as efficient simply 

for lack of other comparable units. Vice versa, since the mean DEA scale efficiency 

score is higher than the correspondent SFA measure, a larger number of full efficient 

farms computed trough DEA might be attributed to real differences due to the empirical 

methodologies adopted to estimate the frontier and efficiency.  

Computation of the Spearman rank correlations suggests that correlation between scale 

efficiency ranking from the SFA and the DEA models is positive and significant but 

magnitude is not sensitively high (Table 13). It implies that choice of the 
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methodological approach might influence estimation of scale efficiency. This is a 

relevant point arisen from this study and it confirms how scale efficiency (and generally 

efficiency measures) can vary according to the model adopted for estimating frontier 

function on a given sample of farms, as underlined or found by several authors (Banker 

et al., 1986; Førsund. 1992; Sharma et al., 1997; Wadud and White, 2000; Ruggiero, 

2007).  

 

Table 13 – Spearman rank correlation matrix of TE and SE rankings obtained from 

different models 
TE Estimated average Spearman rank correlation (p) 

  TE
 CRS

 TE
VRS

 TE
SFA

 

TE
 CRS

 0.623 1.000   

TE
VRS

 0.711 0.715 1.000  

TE
SFA

 0.710 0.610 0.922 1.000 

   

SE Estimated average Spearman rank correlation (p) 

  TE
 DEA

 TE
SFA

  

TE
 DEA

 0.894 1.000   

TE
SFA

 0.818 0.547 1.000  

 

However, scale efficiency is found to be high, on average, from application of both 

methods. Since the technical efficiency score is, on average, lower than the scale 

efficiency score this implies that the greater portion of overall inefficiency in the sample 

might depend on producing below the production frontier than on operating under an 

inefficient scale. It means that the search for an optimal scale would not become a 

priority for citrus farmers, while it would be a priority increasing ability in using 

disposable technical inputs because of technical efficiency is higher than scale 

efficiency. In other terms, it means that farm size issue is much less important relative 

to the amount of technical efficiency 

Furthermore, both DEA and SFA analyses suggest that scale inefficiency is mainly due 

to the farms operating under a sub-optimal scale. Indeed, we found that the most of the 

observed farms operate under increasing returns to scale for both methods also if the 

incidence of sub-optimal scale farms on the total citrus farms is higher if scale 

efficiency is measured trough SFA (66.3% vs. 79.4% for DEA and SFA, respectively). 

In addition, both analyses suggest that these sub-optimal-scale farms must have adjusted 

their output levels to a greater extent than the supra-optimal-scale ones. In these latter 

farms, the margin that separate them from the optimal scale seem to be really narrow, as 

suggested by the estimated scale efficiency that is, on average, close to unity (SE equal 

to 0.934 and 0.978 for DEA and SFA, respectively), while in the sub-optimal scale 

farms this margin is large (scale efficiency equal to 0.692 and 0.775 for DEA and SFA, 

respectively). Therefore it implies that scale inefficiency is mainly due to the farms 

operating under a suboptimal scale. 

These findings are not surprising, considering that recent studies have focused on 

realities characterised by the presence of small-sized farms and have found similar 

results about diffusion of suboptimal-scale-efficient farms (Coelli et al. 2002; 

Karagiannis and Sarris 2005; Latruffe et al. 2005; Cisilino and Madau 2007). The 

underlying rationale is that these realities are often characterised by a large number of 

small-sized farms that generally face capital, structural, and infrastructural constraints 
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(e.g., vast land fragmentation, huge number of single-household farms, insignificant 

presence of land market). They usually do not have adequate farming implements or up-

to-date technologies or they are not allowed to reach their optimum size under their 

particular circumstances. Thiele and Brodersen (1999) argue that these market and 

structural constraints are among the main factors that usually impede achievement of 

efficient scales by part of farmers. Regarding the Italian citrus farms, Idda (2006) and 

Carillo et al. (2008) found that, often, the input mix is unbalanced (with respect to the 

rational and efficient composition of the input bundle) in favour of a high ratio of 

capital to land area and labour to land area. This should be mainly caused by a scarce 

flexibility in the land market, which forces farmers to expand the use of other inputs 

(except for land), especially labour and capital, with practical implications on the scale 

efficiency. Therefore, the presence of a quasi-fixed factor such as land should 

negatively affect scale efficiency and should favour exhibition of increasing returns to 

scale. 

Estimation of the (technical and scale) inefficiency effects show that it is slightly 

sensitive to the method used. Computation of DEA reveals that technical efficiency 

should significant depend on farm size (positive effect), on number of plots of land and 

(negative effect) and on location in a less-favoured area (negative effect). Application of 

SFA approach seem to confirm these findings because the only three factors appeared 

significant by a statistical point of view are those mentioned above and the sign of the 

effect is the same estimated from DEA. 

It must be underlined that the fact that farm size affect technical efficiency is an 

empirical finding that is often found in the literature, even if studies show controversial 

results about the relationship between technical efficiency and farm size (Sen 1962; 

Kalaitzandonakes et al. 1992; Ahmad and Bravo-Ureta 1995; Alvarez and Arias 2004). 

On the other hand, estimation of scale efficiency effects show similar results in DEA 

and SFA application. In both analysis farm size (positive effect), number of plots of 

land (negative effect) and geographical location of farm should be the main factors that 

affect scale efficiency in the Italian citrus farming. 

 

6. CONCLUSIONS 

This paper aimed to evaluate technical and scale efficiencies on a sample of citrus farms 

located in Italy. Using two different approach (parametric and non parametric) we found 

that some margins exist to increase efficiency, both using better disposable inputs and 

operating on a more appropriate scale. Empirical findings arisen from the two methods 

used suggest that the overall inefficiency should depend on producing below the 

production frontier and on operating under a rational scale.  

The former reason might be more important since technical inefficiency appears greater 

than scale inefficiency.  

However, the estimated technical efficiency from the SFA model is substantially at the 

same level of this estimated from DEA model, while the scale efficiency arisen from 

SFA is larger than this obtained from DEA analysis. 

Computation of both DEA and SFA analyses suggest that most of the scale-inefficient 

farms operate under increasing returns to scale, i.e., under a sub-optimal scale. 

Regarding factors that affect inefficiency, the results indicate that farm size and the 

number of plots significantly and sensitively influence both technical and scale 

efficiencies. More specifically, the larger and less fragmented farms tend to show higher 

technical and scale efficiencies.  
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Finally, the correlation between the efficiency rankings of the two approaches is 

positive and significant both for technical and scale efficiency ranking, also if 

magnitude of the Spearman rank correlation coefficient is higher for technical efficiency 

than for scale efficiency rankings.   
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