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Abstract 

 
A literature search shows that robust regression techniques are rarely used in applied econometrics. 

We present a technique based on Rousseeuw and Van Zomeren [Journal of the American Statistical Association, 

85 (1990) 633–639] that removes many of the difficulties in applying such techniques to economic data. We 

demonstrate the value of these techniques by re-analyzing three OLS-based regressions from the literature.  
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1. Introduction 

 
Since it is well-established that even high quality data tend to contain outliers, and it is a rare 

economic data set that qualifies as ‘high-quality’, one would expect far greater reliance on robust 

regression techniques than is actually observed. Searching through ECONLIT for the term ‘robust 
regression’ led to a remarkably low total of 14 papers published in different journals most of 

which apply robust regression techniques to real economic data sets. We believe that this reluctance 

to use robust regression techniques may be due to the following factors. 

 
 The belief that large sample sizes make robust techniques unnecessary — with enough data, 

one can find the truth. 

 The belief that outliers can be detected simply by eye, or by looking for unusual OLS 

residuals, or by sensitivity analysis, obviating the need for a robust analysis. 

 Existence of several ‘robust regression’ techniques with little guidance available as to which 

is appropriate. 

 Unfamiliarity with interpretation of results from a robust analysis. 

 Unawareness of gains available from robust analysis in real data sets. 

 
In this paper we hope to remove some of these barriers and facilitate more routine use of a particular 

set of robust regression procedures, based on Rousseeuw and Van Zomeren (1990) and modern 

algorithms. We comment on the factors listed above, starting with the large sample size illusion. 
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1.1. OLS and large samples 

 
Since  OLS  has  a  0%  breakdown  value  (meaning  that  an  arbitrarily  small  percentage  of  bad 

observations can change the OLS coefficients to any value at all from   to  ),  even a small 

proportion  of deviant observations in a very large sample can cause systematic distortions in OLS 

estimates. For a real example, see Rousseeuw and Wagner (1994), who study distortions in earnings 

functions introduced by a few outliers in the form of uneducated millionaires and unemployed Ph.Ds. 

As  another  example,  Knez  and  Ready  (1997)  show  that  the  unexpected  findings  of  size  and 

book-to-market premia on stocks disappear if 1% of the most extreme observations are trimmed. Both 

these examples show the sensitivity of OLS estimates to outliers, even in large samples. 

 
1.2. Removing outliers 

 
In small sample sizes (as well as in large ones) OLS residuals are of little help in identifying 

outliers. Rousseeuw and Leroy (1987) present many real data sets in which OLS residuals fail to find 

any unusual data although big outliers exist. Sensitivity analysis techniques delete one observation and 

assess the effects of such deletions on the regression output. These were recommended by Belsley et 

al. (1980), and are implemented in MINITAB and many other packages. Unfortunately, when outliers 

are clustered, they ‘mask’ each other, and sensitivity analysis fails to detect such outliers. In low 

dimensional data sets we can resort to plotting as an effective method for locating outliers, but there 

do not seem to be any simple methods for visually detecting outliers in high dimensional data sets — 

see Rousseeuw and Van Zomeren (1990) for a discussion. OLS output, even suitably supplemented 

with sensitivity analysis, will not produce any signals about the presence of distortionary outliers. 

 
1.3. What is robust? 

 
Another factor  which  causes  difficulty for  practitioners  is  the  presence  of  a  large  number  of 

techniques bearing the name ‘robust’. A review and comparison of strengths and weaknesses of 

alternative approaches is given in Chapter 5 of Zaman (1996). In this paper we propose to use a 

simple and intuitive criterion for robustness. We will call a procedure (for estimation and / or testing) 

robust  if  it  is  not  altered  by  removing  or  modifying  a  small  percentage  of  the  data  set.  It is a 

little-known fact that most techniques labelled ‘robust’ in the literature do not have this property. 

A popular approach is based on Huber’s M-estimators, which achieve robustness in the case of 

location parameters. Unfortunately generalizations to regression models fail to achieve robustness. As 

Rousseeuw (1984) shows, regression M-estimators also have 0% breakdown value. Generalizations of 

M-estimators by Mallows, Schweppe, and others also fail to achieve high breakdown values. 

Some  studies  use  the  Krasker–Welsch estimator  to  achieve  robustness,  as  recommended  by 

Krasker,  Kuh and Welsch (1983) in their influential review article ‘Estimation with dirty data and 

flawed models’. Although this estimator has many nice asymptotic properties, it is not robust in the 

sense that a small percentage of deviant observations can cause large changes in this estimator. See 

Zaman (1996, p. 114) and Yohai (1987) for an illustration of this failure and some discussion. 
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2. Robust regression via LTS 

 
Methods which achieve the goal of being insensitive to changes in a small percentage of the 

observations have only recently been developed.  Rousseeuw (1984) developed the first practical 

robust regression estimators (least median squares (LMS), least trimmed squares (LTS), and variants) 

which behave reasonably even in the presence of a large number of outliers. The gains available from 

these high breakdown techniques are discussed in the context of three examples of regressions, taken 

from economics literature. We illustrate how to identify a small subset of points, the removal of which 

makes a big impact on the original regression findings. 

We will focus on the LTS (least trimmed squares) estimator, which has high breakdown value, in 

this exposition. Consider the regression model 
t t t

y x    for 1,2,...,t T , where y
t   

is scalar, x
t   

is 

a 1 K vector of regressors, and   is a 1K  vector of unknown coefficients. Given any  , define 

the squared residual    22

t t t
r y x   , and order them in an increasing sequence: 

           2 2 2

1 2
0 ...

T
r r r      . Let  be a trimming percentage, such as 10%, for example. Then 

the -trimmed LTS estimator is defined as the value of  which minimizes the following sum of 
squares: 

 

SS()=∑                  

 

Rousseeuw (1984) showed that such estimators achieve a high breakdown value  —  that  is,  they  
continue  to  give  reasonable  results  even  in  the  presence  of  many  bad observations. It is worth 

noting that SS() is a highly nonlinear, non-differentiable function with multiple local maxima. 
Standard algorithms for numerical maximization can easily fail to converge to global maximum, and 
efficient numerical optimization techniques are described in Rousseeuw and Van Driessen (1998)  

A straightforward approach to robust regression is to run an LTS analysis, and flag observations 

having unusually large residuals. The LTS method provides an efficient way of detecting outliers, 

which is hard to do otherwise in a high dimensional problem. Then we can run a standard OLS 

regression without the outlying observations, as was proposed in Rousseeuw (1984). However, it may 

happen that this approach flags too many points as outliers. Removing too many points runs the risk 

that the resulting regression may not reflect the relationship which the econometrician desires to 

estimate. One way of avoiding this problem is to study the leverage of observations. Observations 

whose x
t    

lie far away from the bulk of the x
t    

have high leverage, in the sense that they exercise a 

big influence on the OLS regression coefficients. Observations whose x
t    

lie close to the center have 

little leverage; even if they have high residuals they do not affect the shape of the regression 

relationship very much. As Rousseeuw and Van Zomeren (1990) suggest, the leverage of the t-th 

observation is calculated as the distance between x
t   

and the center of the xt of all the observations. For 

this, it is very important to use a robust estimate for the centerpoint of the xt and a robust estimate 

for the covariance   of the xt . For data analysis we should at least eliminate the bad leverage 

points — these are  points  with  high  leverage  which  also  have  large  LTS  residuals.  Such points 

are especially damaging to an OLS analysis. We  present  practical  illustrations  below  of  how  to  

identify  and eliminate  outliers, and the effects of such elimination on the OLS analysis. 
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2.1. Interpretation and value of robust analysis 

 
The next section will present a way to effectively utilize these high-breakdown techniques for data 

analysis in the context of a regression model. Software supporting this analysis is readily available. 

The  present  paper  uses  the  least  trimmed  squares  (LTS)  technique,  which  has  better  statistical 

efficiency. Recently  a  fast  algorithm  for  LTS  regression  was  constructed  (Rousseeuw  and  Van 

Driessen, 1998), which moreover can  deal with very large data sets. The source code of the new 

program FAST-LTS is available from the website http: / / win-www.uia.ac.be / u / statis / index.html. The 

LTS is also available in S-Plus (as ltsreg) and in SAS / IML version 7 (as LTS ). 

The current paper employs the minimum covariance determinant (MCD) method for computing 

robust distances. Rousseeuw and Van Zomeren (1990) calculated robust distances with the minimum 

volume ellipsoid method, but the MCD is more advantageous in terms of efficiency, and it recently 

became available for routine use because of a new and fast algorithm (Rousseeuw and Van Driessen, 

1999). The source code of the FAST-MCD program is available from the website mentioned above. 

This  new  algorithm  was  recently  incorporated  into  S-Plus  4.5  (as  the  function  cov.mcd )  and  in 

SAS / IML 7  (as  the function MCD ). The outputs of these programs are easy to read and evaluate. 

Before proceeding it is worth noting that analysis of outliers is not a purely mechanical task. An 

outlier may arise for many different reasons, and different reasons may require different treatments. 

One has to be careful while applying the robust regression techniques. 

If an outlier arises from a recording / measurement error, then eliminating it is a good solution. 

However, if the outlier represents a valid observation, it may point to some significant behavior falling 

out of the range of our model. If all outliers from the Ptolemaic circular orbits had been smoothed 

over or eliminated, it is possible that Copernicus would have never discovered the elliptical orbits! In 

any case, proper analysis of outliers requires understanding why the outlier arose, and this requires 

specific knowledge about the process by which the data were gathered as well as the process which is 

generating the data. This is also the view  point of Knez and Ready (1997), who consider that the 

analysis  of  the  small  percentage  of  points  which  lead  to  aberrant  results  will  lead  to  a  deeper 

understanding of the market. Relatively mechanical analysis of the kind we will illustrate below 

provides input to deeper analysis, which is essential.  This deeper analysis inevitably requires 

knowledge of the subject matter itself, and cannot be treated here. 
 
 
 

3. Growth study of De Long and Summers 

 
Our first example is a regression analysis carried out by De Long and Summers (1991) about 

national growth of 61 countries from all over the world from 1960 to 1985. Their main claim is that 

there is a strong and clear relationship between equipment investment and productivity growth. The 

regression equation they use and on which we will concentrate is: 
 

0 1 2 3 4GDP LFG GAP EQP NEQ            (1) 

 

where the response variable is the GDP growth per worker (GDP) and the regressors are the constant 

term,  labor  force  growth  (LFG),  relative  GDP  gap  (GAP),  equipment  investment  (EQP),  and 

non-equipment  investment (NEQ). 
 

 

 

 

 

 

http://www.uia.ac.be/
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Table 1 

Classical and robust regression results for De Long and Summers data on national growth 
 

Var. OLS     ROBUST  

 Coeff. S.E. t-value P-value  Coeff. S.E. t-value P-value 

Con 20.014 0.0103 21.391 0.170  20.022 0.0934 22.379 0.021 
LFG 20.030 0.1984 20.150 0.881  0.045 0.1771 0.253 0.802 
GAP 0.020 0.0092 2.208 0.031  0.025 0.0082 2.982 0.004 
EQP 0.265 0.0653 4.064 0.000  0.283 0.0581 4.859 0.000 
NEQ 0.062 0.0348 1.791 0.079  0.085 0.0314 2.703 0.009 

R 
2  

0.34 F-value 7.175     R 
2

 0.44        F-value   11.000 

 
Although the authors selected different time periods and sets of countries — which led them to 

carry out many different regressions — we focused on the main regression, stated above, where 

the time period is the longest, from 1960 to 1985, and all 61 countries are included. 

Table 1 displays regression statistics for both the non-robust technique applied in the original 

paper, OLS, and the robust regression technique (ROBUST) that detects and eliminates the vertical 

outlier in the way explained in the previous section. Robust distances were obtained, as well as the 

standardized LTS residuals.  Zambia appeared as the country with a very high standardized LTS 

residual, and is excluded from the group of observations — the LTS residual of Zambia was —
5.41, which indicates that Zambia is a very significant outlier. OLS was run with and without this 

point, and the results are reported in Table 1 

Our robust regression technique shows that Zambia is an outlier. Eliminating just this one point 

has a substantial effect on the OLS analysis of De Long and Summers. The non-equipment 

investment (and also the constant term) appear insignificant in the original analysis, but our robust 

analysis reveal them to be significant. There is also a substantial improvement in the fit, indicated 

by the F-statistic, the R 
2
, and the standard error of the regression. 

 
 

4. Solow model applied to the OECD countries 

 
Nonneman and Vanhoudt (1996) introduce human capital to the Mankiw et al. (1992) study on 

the augmented Solow model. The augmented Solow model suggests 

       0 0 1 0 2 3ln / ln ln ln
t k

Y Y Y S N              (2) 

 

where Y  is the real GDP per capita of working age, Sk is the average annual ratio of domestic 

investment to  real  GDP,  and  N  is  annual  population  growth  plus  5%. The data set contains 22 

countries. The original paper tries different versions of the more general equation, and this is an 

arbitrary one selected among them. 

It is important to observe that it is not at all easy to detect outliers in multidimensional data 

sets. For example, a study of the OLS residuals reveals no outliers in the present data. But there 

are five points with standardized LTS residuals bigger than 2.5 standard deviations in absolute 

value. These are Canada, Japan, Norway, Turkey, and New Zealand. Since Japan and Norway are 

not leverage 
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Table 2 

Regression results for Solow’s growth model 
 

Var. OLS ROBUST 
 

 Coeff. S.E. t-value P-value  Coeff. S.E. t-value P-value 

Const. 2.98 1.02 2.91 0.009  4.71 1.17 4.04 0.001 
ln (Y0  )  20.34 0.06  26.07 0.000    20.41 0.05  27.60 0.000 
ln (S

k  
) 0.65 0.20 3.22 0.005  0.52 0.18 2.90 0.011 

ln (N )  20.57 0.29  21.97 0.064    20.12 0.35  20.35 0.729 

 R 
2 

0.75 F-value 17.7  R 
2 

0.83 F-value 25.2 

 
 

points, we retain them in the data set. Canada, Turkey, and New Zealand have standardized LTS 

residuals of 4.21, —6.14 and —3.16 and robust distances 7.25, 9.36, and 5.98 which together say 

that these are bad leverage points. We obtain different results reported in Table 2 when these 

countries are removed from the data  set. 

Elimination of these three countries has a large effect on the regression. As before, the fit is 

improved. Equally important, the population growth variable ln (N ), which is borderline significant in 

the  original equation, appears insignificant in the robust regression. 
 

 
 
 

5. Benderly and Zwick’s return data 

 
Benderly and Zwick (1985) aim to explain the yearly return on USA common stocks by output 

growth and inflation, over the 1954–1981 per iod. Return on stocks is measured using the 

Ibbotson– Sinquefeld data base, output growth is proxied by the percentage change in real GNP, and 

inflation is measured by the deflator for personal consumption expenditures. 

The regression equation concentrated on is: 
 
 

0 1 2t t t t
R G I             

  (3) 
 
where R, G, and I stand for return on common stocks, output growth, and inflation, respectively. A 
standard OLS analysis reveals no outliers among these 28 years. However, a robust LTS analysis 
reveals  that  two  of  the  observations  have  standardized  residuals  just  outside  of  the  2.5  standard 
deviations tolerance band. In addition, these years have slightly high robust distances; hence they are 
mild leverage points. Indeed, the robust distances and the standardized LTS residuals are 3.65 and 
2.60 for 1979, whereas they are 3.55 and 2.82 for 1980. OLS was run with and without these years, 

and the regression results for both OLS and ROBUST are displayed in Table 3. 

The OLS results suggest that inflation is not significant; but deleting just the two moderate outliers 

alters this result, and inflation becomes significant in the robust analysis. As usual there is substantial 

improvement in the fit.  One  would  guess  that  the  OLS  analysis  is  misleading  regarding  the 

non-significance of  inflation in the original paper. 
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Table 3 

Benderly and Zwick’s data for return on common stocks 
 

Var. OLS    ROBUST  

 Coeff. S.E. t-value  Coeff. S.E. t-value 

Const. 23.59 8.58 20.42  3.26 7.82 0.42 
Growth 4.78 1.37 3.49  4.31 1.22 3.54 
Inflation 21.05 1.15 20.91  22.97 1.16 22.56 

R 
2    

and F 0.56 10.5   0.65 21.0  

 

 
 
 

6. Concluding remarks 

 
We have applied high breakdown robust regression techniques to several linear regression 

models found in the recent economic literature. In each case we observed that deleting a few 

outlying points has a big impact on the regression results. The fit often improves and the significance 

of the regressors changes, with implications for theory. The application of this technique is strongly 

recommended, even for simple regression, to avoid the misleading effects of bad leverage points. 

The classification of data into groups of regular observations, bad leverage points, good leverage 

points, and vertical outliers, offers the researcher important diagnostic insight in the data. The 

good leverage points are very valuable, because they allow to obtain the regression fit with high 

precision. The bad leverage points pull the OLS regression fit in the wrong direction. The vertical 

outliers are also capable of strongly affecting the OLS regression fit: recall that the removal of 

just one such significant vertical outlier — belonging to Zambia — led to a drastic change of the 

regression results in De Long and Summers’ data set. 

Although high breakdown robust regression techniques still take somewhat more computation time 

than plain OLS regression, their benefits more than outweigh the cost of applying them. 
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