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Abstract: The directional distance function model is a generalization of the radial model in data 

envelopment analysis (DEA). The directional distance function model is appropriate for dealing 

with cases where undesirable outputs exist. However, it is not a units-invariant measure of 

efficiency, which limits its accuracy. In this paper, we develop a data normalization method for 

DEA, which is a universal solution for the problem of units-invariance in DEA. The efficiency 

scores remain unchanged when the original data are replaced with the normalized data in the 

existing units-invariant DEA models, including the radial and slack-based measure models, i.e., the 

data normalization method is compatible with the radial and slack-based measure models. Based on 

normalized data, a units-invariant efficiency measure for the directional distance function model is 

defined.  

Keywords: Data Envelopment Analysis; Data normalization; Units-invariance; Directional distance 

function 

 

1. Introduction 

Data Envelopment Analysis (DEA), originally developed by Charnes et al. (1978), is a 

nonparametric method that draws on linear programming for measuring the comparative efficiency 

of Decision making Units (DMUs). DEA has been applied extensively in many different areas 

(Cook & Seiford, 2009; Seiford, 1996). A fundamental advantage of DEA is units-invariance, 
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which means that efficiency scores assigned to DMUs are independent of the measurement units of 

the inputs and outputs that are utilized in the assessment process (Lovell & Pastor, 1995; Tone, 

2001). Radial DEA models, such as CCR and BBC models (Banker et al., 1984; Charnes, 1994), 

and the radial measure, such as the slack-based measure (SBM), are units-invariant (Färe & Knox 
Lovell, 1978; Tone, 2001 ).  

 

The directional distance function model is a generalization of radial models (Chambers et al., 1996; 

Chambers et al., 1998; Chung et al., 1997). A special feature of the directional distance function 

model is that the direction the DMUs under evaluation are projected to the production frontier can 

be customized. By assigning a direction vector in Euclidean space, one can project the evaluated 

DMU on a specific point on the frontier. Particularly when the direction vector points towards the 

origin of the coordinates, the directional distance function model is equivalent to the radial model. 

Two advantages of the directional distance function model are that: 1) researchers can specify the 

direction of decreasing inputs and increasing outputs by assigning a direction vector, and 2) 

researchers can easily deal with the cases where undesirable outputs exist. However, a drawback of 

the directional distance function is that its measurement is generally not units-invariant. Taking into 

account that the inputs and outputs of the evaluated DMUs serve as the direction vector, changes in 

the measurement units of inputs or outputs potentially can lead to significant differences in the 

results. 

  

The proposed data normalization method provides a universal solution when the applied DEA 

model violates the units-invariance criterion. The properties of the proposed method are tested with 

the DEA-based directional distance function model, but the new method can be applied to all 

existing and future DEA models.  

 

2. The method of data normalization of DEA and its properties 

The measurement of efficiency using radial DEA models is not affected by the measurement units 

of inputs and outputs because efficiency results from the comparison of the inputs and outputs of 

the evaluated DMU against the corresponding values of the target DMU (benchmark). For radial 

models, the inputs or outputs are improved in proportion. In non-radial models, such as SBM 

models, the “proportional improvement” restriction is loosened, but the measurement of efficiency 

still draws on input-output ratios. As a result, efficiency scores are not affected by the measurement 

units of inputs and outputs. 

 

The concept used to develop a method for dealing with the issue of units-invariance is based on the 

introduction of a preparation stage prior to the application of DEA models. In this stage, the 

original input and output data are converted into dimensionless data. When dimensionless data are 

utilized, this stage ensures that the efficiency scores produced by any DEA model will meet the 

units-invariance criterion. 

 

The proposed procedure is expected to satisfy the conditions below: 

(1) The data conversion should not affect efficiency scores measured by any units-invariant radial 

or non-radial DEA model. 
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(2) The results produced by DEA models using converted data can be converted reversely so that 

to be completely consistent with the results obtained from DEA models utilizing original data. 

The consistency of the results should be expected regardless of the units-invariance DEA 

model (i.e., radial or non-radial) that is applied. 

 

The above two conditions ensure the proposed model’s compatibility with existing units-invariant 

DEA measures. 

 

Taking into account the points raised above, in this paper, we develop a DEA data normalization 

method. 

 

Let m represents the number of inputs and q represents the number of outputs for each of the n 

DMUs. Column vectors xj and yj express the inputs and outputs, respectively, of DMUj, ˆ
j

x  and 

ˆ
j

y  denote the normalized value of inputs and outputs, respectively; and x0 and y0 stand for the 

original inputs and outputs, respectively, of the evaluated DMU (DMUo). A conversion is applied as 

follows 

0
ˆ / , 1, 2, ...,

ij ij i
x x x i m  

0
ˆ / , 1, 2, ...,

rj rj r
y y y r q  

j = 1, 2, . . . , n               (1) 

The normalization formula can be extended to inputs or outputs with negative values as follows 

0
ˆ / , 1, 2, ...,

ij ij i
x x x i m  

0
ˆ / , 1, 2, ...,

rj rj r
y y y r q  

j = 1, 2, . . . , n               (2) 

 

Essentially, the inputs (outputs) of DMUo serve as measurement units for every input (output) of 

the sample. The data conversion presented in formulas (1) and (2) does not affect the efficiency 

scores measured by any DEA model that is originally units-invariant. 

 

Unlike other data normalization methods, the proposed data normalization for DEA yields one 

discrete normalized dataset for each DMUj, i.e., there will be n normalized data sets for the n 

DMUs of the sample. 

 

Data normalization for DEA has the following properties: 

(1) DEA data normalization is a dimension-free conversion. Regardless of the measurement units 

of the original inputs and outputs or even the changes in the measurement units used with the 

original inputs and outputs, the normalized data remain the same. 

(2) All the inputs and outputs of DMUo are equal to unity after normalization. 
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Subsequent to data normalization, the DEA models that are originally units-invariant yield 

efficiency scores that are identical to those obtained when non-normalized data are used. In 

addition, when normalized data are used, the slacks generated from DEA models can be converted 

reversely, as follows 

i0 r0
ˆ ˆs s x s s y,i ri r

 (3) 

where s stands for reversely converted slacks, ŝ  are the slacks identified by the DEA model when 

normalized data are utilized, xi0 and yr0 express the inputs and outputs, respectively, of DMUo. 

 

The input-oriented CRS model using raw data can be expressed as 

m in  

0
s.t. 0X s x  

0
Y s y  

, , 0s s       (4) 

 

The output-oriented CRS model using raw data can be expressed as: 

m ax  

0
s.t. X s x  

0
0Y s y  

, , 0s s       (5) 

 

In radial DEA models, radial movement and slack movement are negative for inputs, and positive 

for outputs. The relationship between the original inputs (outputs), radial movements, slack 

movements, and target inputs (outputs) are formulated as follows  

Target value = original value + radial movement + slack movement 

0 0
( 1) ( )X x x s  (6) 

0 0
( 1)Y y y s   (7) 

where (θ-1) expresses the radial movement of the input in model (6), and (φ-1) denotes the radial 

movement of the output in model (7). 

 

After normalization of the data, the input-oriented CRS model becomes 

m in  
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0

ˆ ˆ ˆs.t. 0X s x  

0

ˆ ˆ ˆY s y  

ˆ ˆ, , 0s s       (8) 

 

Respectively, after normalization of the data, the output-oriented CRS model is written as 

m ax  

0

ˆ ˆ ˆs.t. X s x  

0

ˆ ˆ ˆ 0Y s y  

ˆ ˆ, , 0s s       (9) 

 

According to property (2) of the data normalization method for DEA, when normalized data are 

utilized in radial DEA model, all of the inputs and outputs of DMUo are equal to unity. As a result, 

formulas (6) and (7) can be rewritten as  

ˆ ˆ1 ( 1) ( )X s   (10)  

ˆ ˆ1 ( 1)Y s   (11)  

 

The non-oriented CRS-SBM model can be expressed as 

1

1

0

0

1

1

m in

1

1

m

m

q

q

i

i

r

r

i

r

s

x

s

y

 

0
s.t. X s x  

0
Y s y  

, , 0s s       (12) 

 

After normalization of the data, model (12) becomes 

1

1

1

1

m in

ˆ1

ˆ1

m

im

i

q

rq

r

s

s

 

0

ˆ ˆ ˆs.t. X s x  
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0

ˆ ˆ ˆY s y  

ˆ ˆ, , 0s s       (13) 

 

In model (13), the inefficiency is expressed as the average of the slacks identified when normalized 

data are applied.  

 

In order to prove empirically the consistency of the efficiency scores when normalized data are 

incorporated in units-invariant DEA models, we refer to Table 1. The testing sample consists of 

seven DMUs with two inputs (x1 and x2) and one output (y). Let DMU G be the unit under 

evaluation (DMUo) and apply the input-oriented CRS model to original (raw) and normalized data. 

The normalized data illustrated in Table 1 are calculated using formula (1). The efficiency score 

obtained from raw data is identical with the score that resulted from the utilization of normalized 

data. In a radial model, radial movement (-0.31) represents the degree of inefficiency.  

 

 

Table 1. Illustration of DEA data normalization: efficiency measurement of DMU G using the 

input-oriented CRS model 

DMU Raw data  Normalized data 

 x1 x2 y 1
x̂  

2
x̂  ŷ  

A 10.00 40.00 10.00 0.20 0.67 0.50 

B 15.00 25.00 10.00 0.30 0.42 0.50 

C 32.00 24.00 16.00 0.64 0.40 0.80 

D 48.00 16.00 16.00 0.96 0.27 0.80 

E 24.00 48.00 16.00 0.48 0.80 0.80 

F 54.00 27.00 18.00 1.08 0.45 0.90 

G 50.00 60.00 20.00 1.00 1.00 1.00 

Efficiency score 0.69   0.69   

Radial movement  -15.62 -18.75 -0.00 -0.31 -0.31 -0.00 

Slack movement  -0.00 -0.00 -0.00 -0.00 -0.00 0.00 

Projection  34.38 41.25 20.00 0.69 0.69 1.00 

 

3. Efficiency measurement using the directional distance function model 
The linear programming of the directional distance function model is defined as follows  

m ax  

0
s.t. X v x  

0
Y u y  
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, , 0u       (14) 

where v and u denote the input and output direction vectors, respectively. 

 

In directional distance function models, direction vectors determine the directions of movement of 

the inputs and outputs of the inefficient DMUs and target values (projections on the frontier), 

thereby determining efficiency scores. Direction vectors also reflect the relative importance of 

inputs and outputs in efficiency measurement. Figure 1 illustrates the impact of direction vectors on 

efficiency measurement drawing on an input-oriented CRS directional distance function model 

using normalized data.  
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Figure 1. An input-oriented CRS directional distance function model using normalized data 

 

In Figure 1, the horizontal coordinate represents the consumption of x1 for each unit of output and 

the vertical coordinate represents the consumption of x2 for each unit of output. When the direction 

vector is parallel to the horizontal axis, i.e., v = (1, 0), improvement is applied solely to x1, and the 

efficiency score is determined exclusively by the inefficiency of x1. Similarly, when direction 

vector is parallel to the vertical axis, i.e., v = (0, 1), improvement is associated only with x2, and the 

efficiency score is determined exclusively by the inefficiency of x2. Furthermore, a downward 

movement of the direction vector, i.e., from v to v’, indicates a decrease of the impact of x1 on the 

measurement of the efficiency score and an increase of the impact of x2. 

 

When the directional distance function models are incorporated in DEA, the inputs and outputs of 

DMUo usually are utilized as direction vectors. In such situations, directional distance function 

models are equivalent to radial DEA models, and β, which reflects the degree of inefficiency, has 

the property of units-invariance. Unless the direction vectors are equal to the inputs and outputs of 

the DMU under evaluation, β is no longer units-invariant. Previous studies have not developed a 

solution for the problem of units-variance. As a result, the applicability of directional distance 

function models in efficiency measurement is limited. 

 

Drawing on the definition of SBM model, we defined a units-invariant directional distance function 

model on the basis of DEA data normalization as follows  
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1 1

1 1

1 1

1 1

1 1

1 1

m m

i im m

i i

q q

r rq q

r r

v v

u u

  

m ax   

0

ˆ ˆs.t. X v x  

0

ˆ ˆY u y  

, , 0u       (15) 

where βv and βu represent the inefficiency of the inputs and outputs, respectively. The inefficiency 

score of the evaluated DMU is calculated as the arithmetical mean of the inefficiency scores of 

inputs and outputs.  

 

In model (15), when the input direction vector v is set equal to the input vector of DMUo, i.e., v = (1, 

1…, 1), and the output direction vector u is assigned a null vector, the model becomes equivalent to 

the input-oriented radial DEA model using normalized data, with efficiency score θ = 1-β. The 

efficiency score obtained from the application of model (15) is identical with the results obtained 

from radial models (4) and (8). 

 

Alternatively, in model (15), by assigning a null vector to the input direction vector v, and setting 

the output direction vector u equal to the output vector of DMUo, i.e., u = (1, 1…, 1), the directional 

distance function model becomes equivalent to the output-oriented DEA model using normalized 

data. In this case, the efficiency score is defined as θ = 1/(1+β). The efficiency score calculated by 

the directional distance function model (15) is identical with the results provided by radial models 

(5) and (9). 

 

Theorem 1: For the data set illustrated in Table 1, if the length of the direction vector changes and 

the direction of the same vector is unchanged, then the efficiency remains unchanged. 

 

Proof: Assume that the direction vectors of input and output are scaled up proportionally from v 

and u to bv and bu, respectively, with b being a positive real number, and the Euclidian directions of 

the vectors are unchanged. Thus, model (15) becomes 

1

1

1

1

1

1

m

im

i

q

rq

r

b v

b u

  

m ax b   

0

ˆ ˆs.t. X bv x  

0

ˆ ˆY bu y  
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, , 0u    (16) 

 

 

If we let α be equal to βb 

1

1

1

1

1

1

m

im

i

q

rq

r

v

u

  

m ax   

0

ˆ ˆs.t. X v x  

0

ˆ ˆY u y   

, , 0u   (17) 

Model (17) is equivalent to model (15), so the efficiency scores they produce will be identical. 

 

Theorem 2: For the same data set, model (15) is equivalent to model (18) shown below 

1

1

1

1

m in

1

1

m

im

i

q

rq

r

v

u

 

0

ˆ ˆs.t. X v x  

0

ˆ ˆY u y  

, , 0u       (18) 

 

Proof: Using normalized data, the inputs and outputs of the evaluated DMUs are all equal to unity. 

We know from the constraint condition of model (18) that 

1
0 , ..., )1 / max( i 1, 2, ...,

i
v v m，   

Considering the interval of β, the numerator in model (18) is a monotonic decreasing function, 

while the denominator is a monotonic increasing function. As a result, within the interval of β, θ is 

regarded as a monotonic decreasing function. Therefore, model (18) is equivalent to model (15).  

 

Acknowledging that model (18) is a nonlinear programming model, model (15) should be used 

instead for the measurement of efficiency when the directional distance function is incorporated. 

On the basis of model (15) we can introduce weights to inputs and outputs according to their 

relative significance in the efficiency measurement. To be more precise, model (19) is presented 

1

1

1

1

1

1

m

i im

i

q

r rq

r

w v

h u
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m ax  

0

ˆ ˆs.t. X v x  

0

ˆ ˆY u y  

, , 0u  

1 1

,

qm

i r

i r

w m w q     (19) 

where w stands for the weight assigned to inputs, and h indicates the weight of outputs. 

 

Efficiency measurement can be extended to cases with undesirable outputs. Namely, when 

undesirable outputs are present, the directional distance function model is defined as follows 

1

1

'

'1

1 ' 1

' '1

' ''

1

1

i

m

i im

q q

r rq

r r

r rq

w v

h u h u

  

' ' '

m ax

s.t.
k

k

k

X v x

Y u y

Y u y

   

'

'

1 1 1

, ,

q qm

i r t

i r t

w m w q w q   

  '   1                        (20) 

where q' denotes the number of undesirable outputs incorporated in the model, h' stands for the 

weight of undesirable outputs, u' expresses the direction vector of undesirable outputs, and ω and 

ω’ are the weights that determine the mix of desirable and undesirable outputs, respectively, in the 

measurement of efficiency. 

4. Concluding remarks 

Although units-invariance is commonly recognized as one of the most fundamental properties of 

DEA, some DEA models violate this property. The data normalization method we developed in this 

paper provides a universal solution for this problem. As inputs and outputs are rendered 

dimensionless, efficiency scores are independent of the measurement units of the inputs and outputs. 

The proposed data normalization method extends the applicability of the directional distance 

function model because it eliminates its units-variant problem. However, the virtues of the 

proposed approach are not limited to the directional distance function, since it can support any 

future development of DEA that may not respect the units-invariant property. 
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