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MULTIVALUED MAPPINGS
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Summary. For a multifunction a condition sufficient for lower hemicontinuity is presented.

It is shown that under convexity of graph it is possible for a multifunction to be not con-

tinuous only when a special representation of points of its domain is not feasible.
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1. Introduction

In the paper we deliver a sufficient condition for lower hemicontinuity of graph-convex

multifunctions from a set X ⊂ Rn into Y ⊂ Rm. This class of multifunctions plays an

important role in the theory of convex multisectoral growth models (see [6]) and dynamic

programming (see [5], p. 66-100) - lower hemicontinuity is a very useful property since it is

one of conditions for validity of the famous Berge’s Maximum Theorem ([1], p. 116), which

allows to conclude about continuity of solutions to optimization problems.

At the same time we also give some analogues and extensions of existing theorems on behav-

ior of concave functions and graph-convex mappings. From [3] it is known that for a closed

bounded subset X ofRn to be a polytope is equivalent to following fact: every closed concave

function defined on X is continuous. In our paper we state that if every graph-convex non-

constant multifunction is lower hemicontinuous on a compact set X, then X is a polytope.

Moreover there is an equivalence: if X is a polytope, then every graph-convex non-constant

mapping is lower hemicontinuous on X (corollary 2). Further, from theorem 10.2 in [7] we

know that if X is locally simplicial,1 then every closed concave function is continuous - we

proved an analogue of this result in terms of lower hemicontinuous graph-convex mappings

(see theorem 2, lemma 1 and remark 1).

1For definition of locally simplicial sets see [7], p.84.
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Assumption of local simplicity on technological set was used (among others ’standard’ as-

sumptions) in [2] to show that reduced-model utility function is continuous. This assump-

tion is a rationale for continuity of utility functions in reduced models of growth. Theorem

4 allows to make weaker assumptions on technological set but they ’leave’ continuity of

reduced-model utility function intact.

Last but not least we amend a theorem from [5] which asserts that every graph-convex map-

ping from a locally compact set is lower hemicontinuous2 and we give counterexamples in

which mappings are not lower hemicontinuous at a boundary point of domain (see examples

1 and 3). In theorem 4 we give equivalence of lower hemicontinuity of all graph-convex

mappings on X and some property of X. This theorem gives an extension to theorem 5.9 b

from [8].

The next part of the paper gives us notation. Section 3 contains counterexamples mentioned

above. Section 4 includes main results of the paper.

2. Notation

In what follows intA, clA, bndA, extA, convA denote interior of A, closure of A, boundary

of A, set of extreme points of A and convex hull of A, where A ⊂ Rn, respectively. For x ∈ Rn

‖x‖ denotes Euclid norm of x. B(x, ǫ) denotes closed ball centered at x ∈ Rn of radius ǫ > 0.

3. Preliminaries

Recall the definition of lower hemicontinuity ([5], p. 56):

Definition 1. Let ∅ 6= X ⊂ Rn, ∅ 6= Y ⊂ Rm, and Γ : X → Y be a multifunction s.t.

∀x ∈ X Γ(x) 6= ∅. Γ is lower hemicontinuous at x ∈ X (l.h.c. at x), if ∀y ∈ Γ(x) ∀{xn}
+∞
n=1 ⊂

X, xn → x ∃{yn}
+∞
n=1 ∈

∏+∞
n=1 Γ(xn) yn → y. Γ is called lower hemicontinuous (l.h.c.) if it

is l.h.c. at every x ∈ X.

For the further part of the paper we state

Assumption 1. X ⊂ Rn, intX 6= ∅, ∅ 6= Y ⊂ Rm and X is convex. Γ : X → Y is a

multifunction s.t. ∀x ∈ X Γ(x) 6= ∅ and if X1 ⊂ X is a bounded set in Euclid norm, then

there exists a bounded set Y1 ⊂ Y s.t. ∀x ∈ X1 Γ(x) ∩ Y1 6= ∅.

2It is true that such a mapping is lower hemicontinuous on interior of domain - [8], p. 155, theorem 5.9 b.
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In a very often referred book [5] the following theorem was presented ([5], p.61):

Theorem 1. Let assumption 1 hold and suppose ∀x ∈ X ∃ǫ > 0 : B(x, ǫ) ∩ X is closed.

Assume further that the graph of Γ is convex. Γ is l.h.c.

However it turns out that the above theorem is not true in general which is shown by

Example 1. Let X = {x ∈ R2 : ‖x‖ ≤ 1}, Y = [0, 1] (unit sector of real line). Define Γ as

follows

∀x ∈ X Γ(x) :=







[0, 1] , if ‖x‖ < 1 ∨ x = (1, 0);

{0} , if ‖x‖ = 1.

It is easy to check that all assumptions of theorem 3 hold. Γ is not l.h.c. at (1, 0): take x =

(1, 0), 1 ∈ Γ(x) and sequence x /∈ {xn}
+∞
n=1, ∀n ‖xn‖ = 1, xn → x; it is seen that ∀nΓ(xn) =

{0}, so that if yn ∈ Γ(xn), then yn = 0 - we can not approximate y = 1 ∈ Γ(1, 0) by any

sequence contained in {Γ(xn)}
+∞
n=1.

Remark that the multifunction from example 1 is not l.h.c. at a boundary point of its

domain. At the first glance it appears that strengthening of assumptions of theorem 1 by

adding closedness of graph will fix the error (graph of Γ from example 1 is not closed). But

this is not the point. Consider

Example 2. Let X = {x ∈ R2 : ‖x‖ ≤ 1}, Y = [0, 1]. Define Γ:

∀x ∈ X Γ(x) :=







[

0,
1−x2

1
−x2

2

2(1−x1)

]

, if x 6= (1, 0);

[0, 1] , elsewhere.

If ‖x‖ = 1, then Γ(x) = 0. Moreover one can show that ∀x ∈ X Γ(x) ⊆ [0, 1] and graph of

Γ is convex and closed. But Γ is not l.h.c. at (1, 0) (take sequences as in example 1).

4. Results

A ’correct’ version of theorem 1 is as follows:

Theorem 2. Let assumptions of theorem 1 hold and suppose that ∀x ∈ X∃ǫ > 0∀y ∈ X 0 <

‖y − x‖ < ǫ ⇒ ∃t ∈ [0, 1] ∃d ∈ X, ‖d− x‖ = ǫ : y = tx+ (1− t)d. Γ is l.h.c.
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Proof. Fix x ∈ X. And let ǫ′ > 0 be s.t. B(x, ǫ′) is closed. It is obvious that if hypothesis of

the theorem holds for some ǫ at x, then by convexity of X it holds for all numbers strictly

less than ǫ so w.l.o.g. assume that it holds for 0 < ǫ < ǫ′. The next part of the proof is as

in [5], p. 61:

Let X1 := B(x, ǫ)∩X - it is a compact set. We shall show that Γ is l.h.c. at x. Let y ∈ Γ(x)

and {xn}
+∞
n=1 ⊂ X1, xn → x and Y1 ⊂ Y be a bounded set such that ∀x ∈ X1 Γ(x) ∩ Y1 6= ∅.

W.l.o.g. assume x /∈ {xn}
+∞
n=1. Now fix N so that ∀n ≥ N ‖xn − x‖ < ǫ and consider further

only such n-s. It holds that ∀n ∃dn ∈ X ‖dn−x‖ = ǫ ∃tn ∈ (0, 1) : xn = (1− tn)x+ tndn. For

every dn choose an yn ∈ Γ(dn)∩Y1. Convexity of graph of Γ implies that ∀n (1−tn)y+tnyn ∈

Γ((1 − tn)x + tndn) = Γ(xn). Since (1 − tn)x + tndn → x, ‖x − dn‖ = ǫ, tn ∈ (0, 1) then

tn → 0 which means (1 − tn)y + tnyn → y, since {yn}
+∞
n=1 is bounded - l.h.c. at x follows.

Since x is arbitrary - the thesis follows. Q.E.D. �

The below lemma shows that ’representation’ in hypothesis of theorem 2 is equivalent to

finiteness of extX if X is compact.

Lemma 1. Let X ⊂ Rn be a compact convex set, intX 6= ∅. The following formulations are

equivalent

(1) ∀x ∈ X ∃ǫ > 0∀y ∈ X 0 < ‖y − x‖ < ǫ ⇒ y /∈ extX;

(2) ∀x ∈ X∃ǫ > 0∀y ∈ X 0 < ‖y − x‖ < ǫ ⇒ ∃t ∈ [0, 1] ∃d ∈ X, ‖d − x‖ = ǫ : y =

tx+ (1− t)d;

(3) X is a polytope.

Proof. ’1 ⇒ 2’ Since X is compact and convex, as closure of a convex set, it follows by the

Krein-Milman theorem that extX 6= ∅ ([4], p. 38). If extX is not a finite set, then by

the Bolzano-Weierstrass theorem exists a cluster point for which formulation 1 is violated.

Further, since conv(extX) = X ([4], p. 39) and extX is finite we get that X is a polytope.

There exists a finite number m of halfspaces H+
i := {x ∈ Rn : aix ≥ αi} ([4], p. 40), where

ai, αi are respectively a vector from Rn and a real number, i = 1, . . . ,m, such that

X =
m
⋂

i=1

H+
i .
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Fix a point x ∈ bndX and define a number ǫ:

ǫ := 2−1 min{ρ(x, bndH+
i ) : i ∈ I1},

where I1 := {i ∈ {1, . . . , n} : aix > αi}, ρ(x,A) := inf{‖x − y‖ : y ∈ A}. Since, by

assumption X is a compact set with nonempty interior it follows that ǫ > 0. Now take any

y ∈ X s.t. 0 < ‖x − y‖ < ǫ. By the choice of ǫ ∀i ∈ I1 : a
iy > αi and aiy ≥ αi for the rest

of indices. Define d := x + ǫ
‖y−x‖

(y − x). It holds that ‖d − x‖ = ǫ, ∀i ∈ I1 aid > αi (by

definition of ǫ) and since ∀t > 0∀i /∈ I1 : a
id = aix+ tai(y− x) = αi + t(aiy− αi) ≥ αi, then

d ∈ X. Finally y = (1− t′)x+ t′d, where t′ := ‖y−x‖
ǫ

∈ (0, 1), d ∈ X, ‖x− d‖ = ǫ.

’2 ⇒ 1’ Let x ∈ X. Choose ǫ > 0 as in the second formulation and fix y ∈ X, 0 < ‖x−y‖ < ǫ.

There exists d ∈ X, ‖d− x‖ = ǫ, and t ∈ (0, 1) : y = tx+ (1− t)d and we get that y /∈ extX

which proves the thesis.

’3 ⇔ 1’ This follows immediately from the proof of part ’1 ⇒ 2’ and definition of polytope

([4], p. 39). Q.E.D. �

Now we are ready to prove that every graph-convex mapping defined on a polytope is

l.h.c.

Theorem 3. Let assumption 1 hold and suppose Γ is graph-convex. If X is a polytope, then

Γ is l.h.c.

Proof. By lemma 1 assumptions of theorem 2 are met and the thesis follows. Q.E.D. �

Remark 1. By lemma 1 we could equivalently assume in the hypothesis that the second

condition of lemma 1 holds. It should be obvious, by the proof and lemma 1, that the thesis

would hold true if we assumed that X is locally simplicial (and even omitted assumption on

boundedness of X), since if set X is locally simplicial then - by the very definition of local

simplicity ([7], p. 84) - it meets condition 1 of lemma 1, and therefore condition 2 is also

met, so that we can apply theorem 2.

The following example shows that ’representation’ hypothesis of theorem 2 is crucial for

its validity in general case i.e. if X is any subset of Rn.3

3In theorem 2 it is assumed on X only that it is a convex set with non-empty interior.
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Example 3. Let X = {x ∈ R2 : ‖x‖ ≤ 1} × R. X is not compact and has no extreme

point but in spite of this the thesis of theorem 2 does not hold. Let Γ : X → R be defined as

follows

∀x ∈ X Γ(x) :=







[

0,
1−x2

1
−x2

2

2(1−x1)

]

, if x 6= (1, 0, x3), x3 ∈ R;

[0, 1] , if x = (1, 0, x3), x3 ∈ R.

Γ is not l.h.c. at x = (1, 0, x3), x3 ∈ R (see example 3).

The main result of the paper is theorem 4.

Theorem 4. Assume X ⊂ Rn, intX 6= ∅ and X is convex. Fix some x ∈ X. The following

formulations are equivalent:

(1) Every non-empty-valued graph-convex multifunction Γ : X → Y , where Y is an

arbitrary non-empty subset of Rm, m ∈ {1, 2, . . .}, s.t. there exists a bounded convex

neighbourhood X1 of x s.t. Y1 =
⋃

x∈X1
Γ(x) is bounded, is l.h.c. at x.

(2) ∃ǫ > 0∀y ∈ X 0 < ‖y−x‖ < ǫ ⇒ ∃t ∈ [0, 1] ∃d ∈ X, ‖d−x‖ = ǫ : y = tx+(1− t)d.

Proof. ’2 ⇒ 1’ This is a consequence of proof of theorem 2.

’1 ⇒ 2’ Assume that x ∈ X and for no number ǫ > 0 formulation 2 holds. For all k = 1, 2, . . .

choose xk ∈ X s.t. 0 < ‖xk − x‖ < 1/k and for all t ∈ [0, 1] ∀ d ∈ X ‖d− x‖ = 1/k : xk 6=

tx+ (1− t)d. Let

tk := sup{t ∈ [0, 1] : xk = tx+ (1− t)y, t ∈ [0, 1], y ∈ X} k = 1, 2, . . . .

Since xk 6= x, then tk < 1 for all k and x′
k := (1− tk)

−1(xk− tkx) ∈ clX, k = 1, 2, . . . are well-

defined points having following properties that stem from definition of tk: 0 < ‖x′
k − x‖ ≤

1/k, ∀t ∈ (0, 1] : tx+ (1− t)x′
k ∈ X, ∀t < 0 : tx+ (1− t)x′

k /∈ X. It also holds that x′
k

k
→ x.

Let a function g : X → [0, 1] be given by

g(x) :=







1 , if x = x,

0 , if x 6= x.

Denote graph of g by Gr(g) i.e. Gr(g) := {(x, g(x)) ∈ X × [0, 1] : x ∈ X}. Define

G := conv(Gr(g)) and another function p : X → [0, 1]

p(x) := sup{λ ∈ [0, 1] : (x, λ) ∈ G}.
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Since (x, 1) ∈ G, then p(x) = 1. Let ∀k ∀q > 1 : xq

k = q−1x + (1 − q−1)x′
k. It fol-

lows that ∀k ∀q ‖xq

k − x‖ ≤ k−1 and lim supq p(x
q

k) = 0. We shall substantiate the latter.

By the Caratheodory’s theorem ([4], p. 2)

G =

{

n+2
∑

i=1

αi(xi, g(xi)) :
n+2
∑

i=1

αi = 1, αi ≥ 0, xi ∈ X, i = 1, . . . , n+ 2

}

.

Value p(x) is strictly greater than zero only if there exists (x, λ) ∈ G : λ > 0. Since

G � (x, λ) =
∑n+2

i=1 αi(xi, g(xi)) for some αi ≥ 0, xi ∈ X and g(x) > 0 only if x = x,

then every x for which holds p(x) > 0 is representable as x = tx + (1 − t)y for a number

t ∈ (0, 1] and some y ∈ X. If for some k lim supq p(x
q

k) > ǫ > 0 then there is a subsequence

{x
qj
k }

+∞
j=1, 1 < qj < qj+1 ∀j s.t. p(x

qj
k ) > ǫ and x

qj
k = λjx+ (1− λj)yj, λj > ǫ, yj ∈ X. But at

the same time x
qj
k = qj

−1x+ (1− qj
−1)x′

k and we get for all j

qj
−1x+ (1− qj

−1)x′
k = λjx+ (1− λj)yj,

and therefore

x′
k = (1− qj

−1)−1(λj − qj
−1)x+ (1− qj

−1)−1(1− λj)yj.

It is easy to see that x′
k is a convex combination of x, yj ∈ X. By definition of x′

k and the

above equation we get

xk = αjx+ (1− αj)yj,

where αj = tk + (1 − tk)(1 − qj
−1)−1(λj − qj

−1). But it contradicts definition of tk since

1 ≥ αj > tk and yj ∈ X. So that fixing 0 < ǫ < 1 for all k = 1, 2, . . . we can find qk s.t.

xqk
k ∈ X : p(xqk

k ) < ǫ.

Define a multifunction Γ : X → [0, 1]:

∀x ∈ X Γ(x) := [0, p(x)].

We have that Γ(x) = [0, 1] and ∀k : Γ(xqk
k ) = [0, p(xqk

k )] ⊂ [0, ǫ), where xqk
k ∈ X are

constructed and chosen as above. Since by construction xqk
k → x it is sufficient to show

that Γ has convex graph - this will contradict formulation 1. To this end we shall show

that p(·) is a concave function on X. Let x′, x′′ ∈ X. For any integer m ≥ 1 there exist

λ′
m, λ

′′
m : p(x′) − 1/m < λ′

m, p(x
′′) − 1/m < λ′′

m, (x
′, λ′

m), (x
′′, λ′′

m) ∈ G. We get ∀t ∈ [0, 1] :

(tx′+(1− t)x′′, tλ′
m+(1− t)λ′′

m) ∈ G by convexity of G and it follows ∀t ∈ [0, 1] p(tx′+(1−
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t)x′′) ≥ tλ′
m+(1−t)λ′′

m. So it holds that ∀m = 1, 2, . . . ∀t ∈ [0, 1] tp(x′)+(1−t)p(x′′)−1/m <

tλ′
m + (1 − t)λ′′

m ≤ p(tx′ + (1 − t)x′′) and taking limit m → +∞ concavity of p(·) follows.

Q.E.D. �

Corollary 1. Every graph-convex mapping meeting assumption 1 is l.h.c. iff for each x ∈ X

condition 2 of theorem 4 holds.

Finally we get as a corollary of theorems 3 and 4:

Corollary 2. Suppose ∅ 6= intX ⊂ Rn and let X be compact and convex. Every non-empty-

valued graph-convex and bounded mapping Γ is l.h.c. on X iff X is a polytope.
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