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EUROPEAN OPTION GENERAL FIRST ORDER ERROR

FORMULA

GUILLAUME LEDUC

Abstract. We study the value of European security derivatives in the
Black-Scholes model when the underlying asset  is approximated by
random walks (). We obtain an explicit error formula, up to a term

of order O(−
3

2 ), which is valid for general approximating schemes and
general payoff functions. We show how this error formula can be used
to find random walks () for which option values converge at a speed

of O(−
3

2 ).

1. Introduction

1.1. Motivation. The problematic of describing and controlling the error
for options evaluated under random walk approximations {()} of a geo-
metric Brownian motion  has attracted the attention of several researchers,
such as for instance [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. Knowledge and
control of the error is of obvious interest when evaluating options through
random walk approximations. An explicit error formula, up to a error term
of order −, for some   0, has allowed an "acceleration" of the speed
of convergence to an order of − in [13] and [11]. In a broader context,
the such error formulae is part of understanding how small modelling errors
affect option prices, which is intimately related to the important question of
option price robustness.
It is common practice to approximate a real valued functions  () by its

Taylor expansion, which, for  sufficiently regular, is given around  by

 () =
X

=0

 () ()

!
(− ) +

Z 



 (+1) ()

!
(− ) 

The first order term  (1) () provides a measure of the sensibility of  to
small changes of its parameter  around .
In the case of an option, its value  depend on the distribution of the

underlying , and small random/unknown changes in the distribution of
 induce a "modelling error" in the pricing. One would like to have an
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2 GUILLAUME LEDUC

analogue to Taylor’s expansion for the value  () of an option, seen as a
function of the distribution of the underlying , that would help to price
and perhaps hedge the modelling error.
In the case of a binomial schemes approximations {()} of the underlying

 in the Black-Scholes model, such analogue to Taylor’s expansion takes the
form

(1.1)  () = 
³
()

´
+

X

=1



³
()

´
−


2 +O(−

+1
2 )

If  = 2 then −

2 = −1, and explicit formulae for the coefficients 1

¡
()

¢

and 2
¡
()

¢
provides what we call a first order error formula. In Walsh

[25] such first order error formula is given for general piecewise (2) payoffs,
but only in the specific case where the binomial scheme is the Cox Ross and
Rubinstein scheme applied to the discounted process. In Diener and Diener
[4], a first order error formula is provided for General Binomial Schemes,
but only in the specific case where the payoff is a call option. In Diener and
Diener [5], this first order error formula is obtained for digital options. This
paper fills the obvious gap: we obtain a first error formula which is valid for
both general payoffs and for general binomial schemes approximations.
Chang and Palmer [2] showed how knowledge of a first order error formula

can be used to obtain schemes for which the error is smooth, that is for which
the error has the form −1+

¡
−1

¢
for some constant . Korn and Müller

[13], developed a optimization procedure to minimize the absolute value of
this . We will show here how, using the error formula obtained in this
paper, a slight modification of Korn and Müller [13] optimization procedure
allows to reach "accelerations" of the convergence to an order of O

¡
−15

¢
.

An interest of this paper is that, when the payoff of the option is con-
tinuously differentiable, our error formula remains valid for non-binomial
schemes approximations {()}, as long as 

()



satisfy some moment condi-

tions P1-P5 given in section 6. Our error formula is derived from a localiza-
tion of the error and an expansion of the local errors.

1.2. Main result. Throughout this paper we assume that   0 is the
(constant) risk free rate and that  = (F  ) is a geometric Brownian
motion with volatility  and drift  under the risk neutral probability. Here
F is the usual filtration and  denote the expectation when 0 = .
For all practical purposes, traders are interested in payoff functions which

are piecewise smooth. We consider here payoffs  which are piecewise (3)

and for which

(1.2)
¯̄
¯()()

¯̄
¯ ≤  (1 + ) for  = 0  3 and every  ≥ 0

for some integer  ≥ 1 and some real number . By piecewise (3), we mean
that there exists a partition 0  1    K  ∞ of [0∞) and  + 1



EUROPEAN OPTION GENERAL ERROR FORMULA 3

functions 0   ∈ (3) such that

 = 01[01) + 11[12) + + 1[ ∞)

We denote this class of payoffs by K(3) . We put a norm k k(3) on K
(3)


corresponding to the smallest value of  for which (1.2) holds. For any

integer  ≥ 0, we define K() and k k() analogously.
We want to provide a first order error formula when  is approximated

by binomial schemes {()}∞=1 where 
() is a random walk which, at every

positive time  in 
N, has a probability  of jumping from its current state


()
 to the state 

()
 , and a probability 1 −  of jumping to the state


()
 . Risk neutrality requires that



=
exp( )− 

 − 


and with



= exp

Ã



r



+ 2




+ 

2



µ




¶ 3
2

!





= exp

Ã

−
r




+ 2




+ 

2



µ




¶ 3
2

!



where || ≤ L for some one L, one gets fairly general binomial schemes,
analogue to those considered in [2] and [13]. We will refer to these schemes

as the flexible CRR scheme. Because we always assume that 
()
0 = 0, 

also denote the expectation when 
()
0 = .

Now if  belongs to K
(3)
 , then  can be split into a linear combination

of digital options and call options plus a function which is continuously

differentiable and in K(3) . Indeed it is easy to see that

(1.3)  () =  () +
X

=1

∆ (K) 1[K∞) () +
X

=1

∆0 (K)max (− K 0)

where  is (1) and belongs to K
(3)
 . Since error formulae for digital and

call options are already known, thanks to [4], [5] and [2], the contribution
of this paper is to find the error formula for the (1) part of . For the sake
of simplicity, we will restrict our exposition to continuous payoff functions
. Given that 0 = , we denote by  () () the error, under the Black-

Scholes model, resulting from pricing with a flexible CRR scheme {
()
 } a

European option with payoff  and maturity  . In other words

 () ()

= − ( ())− −((

()
 ))
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Let C () = max ( − 0) denotes the payoff of European call option,

and set d1 =
(ln( 

K
)+(+ 1

2
2))


√


, and d2 = d1− 
√
 . The following is due to

[4] and [2].

Theorem 1 (Call Option First Order Error Formula). Let {()} be a flex-
ible CRR scheme. For every   0 the error  (C) () satisfies

 (C) () = Λ

 () +O

¡
−15

¢

where Λ := Λ

 () is given by

Λ =
−05d

2
1

24
√
2

(+) 

(1.4)

 = 2
¡
6 + d21 + d

2
2

¢
+ 12 2

¡
 − 2

¢2 − 4
¡
d21 − d22

¢ ¡
 − 2

¢
(1.5)

 = 482
³
f()
´³
1 + f()

´
(1.6)

f() = (
1

2

³
ln− ln − 

√

√
+ 2

´ √

√

+ )

(1.7)

The following theorem is the main result of this paper. Given a continuous

payoff  in K
(3)
 , it provides a formula for the error  () ().

Theorem 2 (General First Order Error Formula). Let {()} be a flexible

CRR scheme and let  ≥ 1. For every continuous  in K(3) , if 0  K1 

  K  ∞ defines a partition of [0∞) for which  is (1) on the
corresponding closed subintervals then for every  ≥ 0,

(1.8)  () () =
Υ ( ) +

P
=1∆

0 (K)Λ

 (K )


+O

¡
−15

¢

where

Υ ( ) =

µ
1

2
∆2 −

1

3
∆3 +

1

4
∆4

¶
−

¡
2

00 ( )
¢

(1.9)

+
1

24

4∆3 − 5∆4

√


−

³
2

00 ( ) 

³



´´

+
1

24

∆4
2

−

³
2

00 ( )
³
2

³



´
− 1
´´



and

 () =
ln ()−

¡
 − 1

2
2
¢
√


(1.10)

∆2 = −4 2+ 24 2 + 2 2 +  22 +
5

12
4 2 − 2 22

∆3 = 2
22 − 24 2+ 24 2

∆4 = 2
4 2
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Remark 1. In Theorem 2, if additionally  is (1), then the error formula
(1.8) remains valid for any approximation scheme satisfying properties P1-
P5 of section 6. This is due to the fact that only these properties are used in
the proofs. They boil down to moments conditions and therefore, our error
formula remains valid under these broad assumptions on the moments of the

single step random walk jumps 
()



.

Let {()} be a flexible CRR scheme and  as in Theorem 2. For simplicity
assume that  = 1. We show here how a slight modification of Korn and
Müller [13] optimization procedure allows to reach accelerations to an order
of O

¡
−15

¢
. For this purposes only, we assume that, in addition to the

risk free rate , the volatility , the maturity  and integer , the payoff
 and the current value of the underlying  are also fixed and considered
constants. In other words, only  and f() are seen as variables. A glimpse
at (1.8) reveals that  () () can be written as

(1.11)  () () =
 () +

¡
f()
¢


+O

¡
−15

¢


where f() := f() ( ) is given by (1.7), and where for some constants
   ,

 () = 2 + + 


³
f()
´
= 

³
f()
´³
1 + f()

´


The following is admittedly a slight extension1 of Korn and Müller [13]
optimization procedure which shows how an optimal can be obtained for
our general payoff functions:

(1) Choose a constant 0 =  (0) for some −1  0  1,
(2) Choose 0 such that

(1.12) m0

= inf


| () + 0| = | (0) + 0|

(3) Set  := 0 − f() (0 0) and note that

f()(0 ) = 
³
f() (0 0) + 

´
= 0.

Under the binomial scheme with parameters (0 ), equation (1.11) can
be rewritten as

 () () =
m0


+O

³
−

3
2

´


When m0 = 0, the scheme convergence has been accelerated to an order of

O(−
3
2 ), otherwise, the constant m0 has been optimized.

1The differences with [13] are that we allow 0 6= 0 (which is sometimes necessary to
reach m0 = 0 as in the example provided below) and we use the error formula (1.8) to

show that the remainer term is of order (−
3

2 ), as opposed to 

−1


in [13].



6 GUILLAUME LEDUC

1.3. Example and simulations.

Example 1 (Simulation and the error formula). Consider the classical CRR
scheme, where  =  = 0, and the following payoff function

 () =

½
2 0 ≤  ≤ K
1 K   

which is continuous and belongs to K(3) with K = 1. It is easy (with Maple)
to calculate that

Υ ( ) =

µ
1

2
∆2 −

1

3
∆3 +

1

4
∆4

¶
A+

1

24

4∆3 − 5∆4

√


B +
1

24

∆4
2

C

where

A=2(−
2)
³
+ 

1
2
2
´


B=2(−
2)(
−
√
2+ 

√
 + 

√


1
2
2

√


)

C=2(−
2)(
−
√
2− 

√
2+ 2

√
+ 

1
2
22
√
√


)

and  = 2
√
 ,  =  (

K

 ),  = 
1
2
2 erf( −√

2
),  = exp

¡
−12 (−2+ )

¢
. In

figure 1, we set  = 008,  = 05,  = 1 and  = 11 and, in accordance

with Theorem 2, 15( ()−
Υ ()()

 −∆0 (K1)
Λ
K1
()

 ) is bounded.

Example 2 (Optimal Scheme). We use the same payoff function  of ex-
ample 1, as well as  = 008,  = 05,  = 1 and  = 11. Hence, everything
is fixed except  and . Reusing the formula of example 1, we calculate that
the General First Order Error Formula, can be rewritten as

 () () =
2 + + + 

¡
f()
¢ ¡
1 + f()

¢


+O

¡
−15

¢


where

 = −0031544554932975475877  = 0015054127355591099077
 = 0084196334462544764572  = −073282116693588932807

Choose 0 = −
4 , and note that 0 =  (0) with 0 = −05. Note also that

in equation (1.12), m0 = 0 is achieved with 0 = 18896959961364908175.

Letting  = 0 − f() (0 0), the flexible scheme () with parameters 0
and  satisfies 


 () () = O

¡
−15

¢
. The convergence is illustrated in

figure 2.

1.4. Settings and notation. The following contains some assumptions
and notation used throughout the remaining of this paper.

Constants , ,  ,  and L: we study the convergence of options

with payoffs  in K(3) , where  ≥ 1 is some integer, when the geomet-
ric Brownian motion is approximated by flexible binomial schemes
{()}, which depend on a parameters  and . We suppose that
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100 150 200 250 300 350

K0.02

K0.01

0.00

0.01

0.02

Figure 1. The quantity 15( () −
Υ ()()

 −
∆0 (K1)

Λ
K1
()

 ) oscillates rapidly but remains bounded.

|| ≤ L, for some L. Parameters , , ,  ,  and L are fixed
throughout this paper and expressions in terms of these parameters
are considered constants.

Independence of  and (): we assume that  and () are inde-
pendent.

Time steps : given ,  denotes the  time step, or in other
words,  = 

 .
Discounted expectations E and E: for every   ≥ 0 and mea-

surable functions  we denote E ()

= − ( ()) and sim-

ilarly, E  ()

= −((

()
 )). Note that E and E simply

denote the discounted expectation. They are semigroup operator:
E+ = EE and E


+ = E


 E


 . Because  and () are indepen-

dent, E and E commute: E E = EE

 .

The error : we denote  () ()

= E ()−E  (). When-

ever possible, we write   () instead of 

 () (). Note that

operator  commutes with E and E and therefore with itself.

The identity function  and the symbols 
()
 and ∆

()
 : the let-

ter  denotes the identity operator: ()

= , for every . Among
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100 150 200 250 300

0.7260

0.7265

0.7270

0.7275

Figure 2. The value of the option as a function of  for
both the optimal scheme and the classical CRR scheme of
example 2. The horizontal line is the value of the option in
the Black-Scholes model.

others, this allows to define expressions such as




µZ 

1
 () 

¶
() = −




ÃZ 


1
 () −

Z 
()



1
 () 

!



and for any integer  ≥ 0,


()



= E



³
| − 1|

´
(1) = −


1(|

()



− 1|)

∆
()



= 



³
( − 1)

´
(1) = −


1((


− 1) − (()



− 1))

Note that ∆
()
1 = 0 because both  and () are risk neutral.

A function  on 
(3)
 : given  in K

(3)
 and a partition 0  1 

  K  ∞ of [0∞) for which  is (3) when restricted to the
closed intervals defined by this partition,  is defined by:

(1.13)  ()

= kk(3) +

X

=1

2X

=0

2X

=0

(K)

¯̄
¯∆() (K)

¯̄
¯ 
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1.5. Proof of the main result.

Proof. of Theorem 2 Using (1.3) to split the payoff function  into the

sum of call options and a continuously differentiable function  in K
(3)
 one

obviously gets

 () () =
X

=1

∆0 (K)Λ

 (K ) + () () 

where Λ (K ) =  (max ( − K 0)) () is the error for a call option with
strike K. Because smooth functions are undoubtedly easier to deal with, we
replace  by E


, the option itself evaluated over one single time step. This

provides a new smoothed payoff which is infinitely differentiable. Obviously
this smoothing of  splits the error,  , into the sum of two terms:
 (−E


), the error coming from the payoff smoothing procedure itself,

and E

, the error of the smoothed payoff. The fact that the payoff

smoothing error is negligible, that is of order O(−
3
2 ), is what Proposition

2 says. As for the smoothed payoff error, Theorem 4 says that

(1.14) 

³
E


´
() =

1



4X

=2

∆

!





E  () +O(

− 3
2 )

Using the representation formulae for the derivatives 


E  (), Theorem

5, it is tedious but otherwise completely trivial to rewrites the above as



³
E


´
() = Υ () () +O(

− 3
2 )

Since 00 = 00 then Υ () () = Υ () (), which completes the proof. ¤

1.6. Outline of the paper. To summarize the proof of Theorem 2, finding

the first order error formula for  in (0) ∩K(3) , hinges around establishing

equation (1.14) when  belongs to (1)∩K(3) , and to use the representation
formulae for the derivatives of European options.
This paper exhibits how such a formula comes naturally –and in great

generality– from a localization formula and an expansion formula of these
local errors, used in conjunction with our representation formulae. Local
errors refer here to errors when the maturity is 

 , and error localization
refers to expressing an error as a sum of (discounted expected) local errors
and a sum of errors of local errors.
We now outline how (1.14) is obtained. Thanks to the localization formula

(Theorem 3),

E

 =

−1X

=0

E−+1
³




EE


´
−

−1X

=0

−+1

³




EE


´
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Thus, because  and E commute, and because E is a semigroup,

(1.15) E  =
X

=1




E  −
X

=1

− (




E)

To avoiding technicalities, let us temporarily ignore for this outline, that
local errors 



E () depend on the payoff E and on the initial value

 of the underlying, and that the O terms are not uniform in the payoff and
the initial value of the underlying. Then, as pointed out in Remark 3, we
can rewrite our local error expansion formula for 



E as




E =
1

2

4X

=2

∆

!





E +O(

− 5
2 )

from which we obtain the following error localization expansion formula for
E


,

E

 =

1



P4
=2

∆

!





E 

−
4X

=2

X

=1

∆

!2
− (

 


E) +O(

− 3
2 )

Therefore if

(1.16) − (
 


E) =

p

−(−1)

O(−1)

simple calculations give, as wanted,

E

 =

1



P4
=2

∆

!





E  +O(

− 3
2 )

To prove (1.16), we use the European option derivative representation for-
mulae which shows that, for   0 and  = 2 3 4,





E =

−2X

=0


− 
2E()

¡
200

¢


for some constants  and some nice and smooth functions E
()


¡
200

¢
.

In particular, if  is a long maturity, meaning that

2 ≤  ≤  , then

the functions E
()


¡
200

¢
are as smooth as it can be, yielding the equation

− (E
()


¡
200

¢
) = O(−1), and therefore

4X

=2

X


2
≤≤

∆

!2
− (

 


E) = O(

−2)

Now if  is a short maturity, that is when 0   

2 , then 


− is a long

maturity error and, using an extension of Berry-Esseen theorem, we show
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that − (E
()


¡
200

¢
) = O(−

1
2 ), from which (1.16) can be derived (see

Lemma 4).
To complete the outline of this paper, let us mention that section 2 gathers

the results about localization, section 3 deals with the smoothed payoff error
while section 4 establishes our representation formulae for the derivatives
of European options. The fact that payoff smoothing error are negligible is
proved in section 5. The appendix contains auxiliary results including a list
of simple properties, P1-P5, enjoyed by all flexible CRR schemes.

Remark 2 (On the O notation). In the remaining of the paper, unless
otherwise mentioned, the O notation is uniform. By this we mean that if ,
 and  ≥ 0 are real valued, then the expression  = +O

¡
−1

¢
means

that there exists a constant , which may depend only on our parameters ,
,  ,  and L, such that |−| ≤ −1.

2. Local errors and error localization

Theorem 3 (Error localization formula). Let  ≥ 1 be some integers
and let  be a polynomially bounded function. Then,

(2.1)  =
−1X

=0

E−+1
³




E
´
−

−1X

=0

−+1

³




E
´


Proof. First we show that

(2.2)  =
−1X

=0

E−+1

³




E
´


Note that, the rhs sum being telescopic,

(2.3) E− E =
−1X

=0

³
E−+1E+1− E−E

´


Also, because E and E

 are semigroup operators,

E−+1E+1 = E

−+1E

E

E−E = E

−+1E





E

Hence

E−+1E+1− E−E = E−+1
³³
E

− E



´
E

´

= E−+1

³




E
´


Substituting this in (2.3) gives (2.2). Obviously

E−+1

³




E
´
= E−+1

³




E
´
−−+1

³




E
´


so (2.1) follows form (2.2) in the most trivial manner. ¤
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Local errors are rich in ways they can be analyzed, including a simple
Taylor expansion as in Lemma 1 below, where the expression

P
=2 is un-

derstood to vanish in the case   2.

Lemma 1 (Local error expansion formula). For every integer  ≥ 0,  ≥ 1,
 ∈ () ∩K(+1) and  ≥ 0,

(2.4) 


 () =
X

=2

∆
()
 ()()

!
+R




³
+1(+1)

´
()

where

(2.5) R



() ()

=

1

 !




(

Z 

1

()(−)
+1

) (1) 

Proof. Recall that the Taylor expansion of  () around  is

 ()− () =
X

=1

() ()

!
( − ) +

1

 !

Z 


(+1) () ( − ) 

Using the (discounted expected) Taylor expansions of (

) and (

()



)

around  in




 () = −

1

µ
((


)− ())− ((()



)− ())

¶


one precisely gets (2.4) after a simple manipulation of the remainder. ¤

Remark 3 (Order of the remainder R



). If, for some constants  ≥ 0
and  ≥ 1, ¯̄

¯+1(+1) ()
¯̄
¯ ≤ 

³
1 + 

´


then¯̄
¯̄R




³
+1(+1)

´
()

¯̄
¯̄ ≤ 

 !




µ¯̄
¯̄
Z 

1
−(+1) ( − ) 

¯̄
¯̄
¶
(1)

+


 !




µ¯̄
¯̄
Z 

1
−(+1) ( − ) 

¯̄
¯̄
¶
(1) 

and, thanks to property P5,
¯̄
¯̄R




³
+1(+1)

´
()

¯̄
¯̄ = 

³
1 + 

´
O
³
−

+1
2

´


Now a glimpse at the error localization formula reveals that we deal with
local errors 



E where the payoff has the form E for some time step

. As pointed out in section 1.6, we are interested in the case   0, and  in

(1) ∩K(3) . But in this case, the European option derivative representation
formulae (see Remark 6) guarantees that

¯̄
¯̄5

5

5
E ()

¯̄
¯̄ ≤ kk(2)

¡√

¢−3 ¡

1 + +2
¢
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and thus

(2.6)

¯̄
¯̄R4




µ
5

5

5
E

¶
()

¯̄
¯̄ = kk(2)

¡√

¢−3 ¡

1 + +2
¢
O
³
−

5
2

´


According to Theorem 3, the error  () can be decomposed into
two components which need a separate analysis: (1) the main term of the
error, denoted  (), which is the sum, for  = 0  − 1, of the
local errors E−+1(





E); (2) the compounded errors term, denoted

 (), which is the sum, for  = 0 − 1, of these errors of local
errors −+1(





E). In other words,

 ()

=

−1X

=0

E−+1
³




E
´
() 

 ()

=

−1X

=0

−+1

³




E
´
() 

Of course we want to combine the error localization formula and the local
error expansion formula which gives:

Proposition 1 (Error localization expansion formula). Let integer  ≥
0, let 0   ≤  be the  time step, and assume that  belongs to

() ∩K(+1)
 . Then, for every integer  ≥ 0 and for every   0,

 () = ()−  ()

where

 () = 
X

=2

∆
()


!





E−1 () ()(2.7)

+R



µ
+1

+1

+1
E−1

¶
()

 () =
−1X

=1

X

=2

∆
()


!
−+1

µ





E

¶
()(2.8)

+
−1X

=1

R



µ
−+1

µ
+1

+1

+1
E

¶¶
()

+
X

=2

∆
()


!
−+1

µ







¶
()

+R



µ
−1

µ
+1 +1

+1


¶¶
()

Proof. Note that, for every   0, E belongs to 
() ∩ K(+1) , for every

integer  ≥ 0. The result is obtained by a mere combination of the error
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localization formula and the local error expansion formula, using the facts
that for every steps  and , every polynomially bounded function  and
every integer  ≥ 0, the following holds:

(1) E and 


commute,

E




 = 


E

(2) by independence and Fubini’s theorem,  and R




also com-

mute,

(R




()) = R



¡
()

¢


(3) thanks to Lemma 3,

E

µ





E

¶
= 




EE = 




E+

¤

Remark 4. We will use the error localization expansion formula with  =

4. The reason for this is, in essence, that if  belongs to (4) ∩ K(5) , then
each of the remainders –the R-terms– in formula (2.7) and (2.8) are of

order −
5
2 , which makes them collectively of order −

3
2 , and thus negligible.

3. The smoothed payoff error

As noted earlier –in section 1.6– we are particularly interested in the
error E


 (), which decomposes into

E

 () =E


 ()−E


 () 

Now thanks to the European option derivative representation formulae, The-
orem 5, for every integer  ≥ 0,





E  () = kk

(2)


¡
1 + +2

¢
O(−

3
2 ).

Therefore, using property P3, ∆
()
 =

¡
1


¢2
∆ + O(

−5
2 ), and Remark 3,

one rewrites the main term of the error as

E

 () =

1



4X

=2

∆

!





E  () + kk

(2)


¡
1 + +2

¢
O(−

3
2 )

As for the compounded errors term, E

 (), the error localization

expansion formula gives

E

 () =

X

=1

4X

=2

∆
()


!
−

µ





E

¶
()(3.1)

+
X

=1

R4



µ
−

µ
+1

+1

+1
E

¶¶
() 



EUROPEAN OPTION GENERAL ERROR FORMULA 15

Now it is clear from the European option derivative representation formu-

lae that, for every   0, the functions  


E are infinitely differ-

entiable and, together with there derivatives, uniformly bounded over all
 ≥ 0. This suggests –rightly so– that for every fixed  , 0     ,

− (
 


E) is of order 

−1. But unfortunately here  is not fixed
(and so isn’t −) but rather takes all positive time steps up to  . Now the
greater  −  is, the greater the averaging effect is (that’s the Berry-Esseen
theorem effect). On the other hand, the greater  is, the "smaller"  


E

is (because as  approaches zero, the maximum of function 
 


E as well

as the maximum of each of its derivatives goes to infinity). All in all, thanks
to Lemma 4, the correct estimate is, for 0     ,

(3.2) − (
 


E) =  ()

p

−(−1)

O
¡
−1

¢ ¡
1 + +3

¢


where κ is defined by (1.13). This obviously cannot work for  =  ,
but in the formula (3.1) for E


 (), this case accounts for only

O(−
3
2 ) kk(2)

¡
1 + +2

¢
, thanks to remark 3 and property P3. Thus, re-

placing (3.2) in (3.1) gives

E

 () =

−1X

=1

4X

=2


¡
−2

¢

!
 ()

p

−(−1)

O
¡
−1

¢ ¡
1 + +3

¢

+
−1X

=1

 ()
p

−4
O
¡
−1

¢ ¡
1 + +3

¢
O(−

5
2 )

+ kk(2)

¡
1 + +2

¢
O(−

3
2 )

=  ()
¡
1 + +3

¢
O(−

3
2 )

We have proved the following result:

Theorem 4. For every  ∈ (1) ∩K(3) and every   0,

(3.3) E

 () =

1



4X

=2

∆
! 

E
()
  () + κ ()

¡
1 + +3

¢
O(−

3
2 )

4. European option derivative representation formulae

Let  () be the pdf of a standard normal random variable and let,
as usual, ()() be its  derivative. To shorten expressions, we denote

 ()

= 

√
+(− 1

2
2), with which we can write

E () = −
Z ∞

−∞
 ( ())()
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We will show that the derivatives of E () can be expressed as linear com-

binations of smooth functions E
()
  () of the form

E()  ()

= −

Z ∞

−∞
 ( ())

()()

Not only do we need expressions for the derivatives of E (), but it turns

out that, actually, we need expressions for the derivatives of  


E, for

integers  ≥ 0. This motivates the notation

E()  ()

=




E () 

Ehi  ()

= E()  () 

and, more generally, for any function  in (),

hi ()

= () () 

Now let  be any continuous function in K(1) and let   0. Integration
by parts gives

(4.1)

Z ∞

−∞
 ()

0 ( ())
()() =

−1

√

E(+1)  () 

and since



E()  () =

Z ∞

−∞
 ()

0 ( ())
()()

then

(4.2)



E()  () =

−1

√

E(+1)  () 

Thus, for integers   ≥ 0, repeated differentiation gives that, for some real
numbers 1,...,,

(4.3) 


E()  () =

X

=1




µ −1√


¶

E(+)  () 

Note that equation (4.1) says that for  ≥ 1,

E()  () = −√−
Z ∞

−∞
( ())

0 ( ())
(−1)()

In other words

(4.4) E()  () = −√E(−1)

¡
0
¢
() 

Hence if  ∈ (1) ∩ K(2), then, for  ≥ 2, the relation (4.4) can be used a
second time, giving

E(−1)

¡
0
¢
() = −√E(−2)

³

¡
0
¢0´
() 

E()  () =
¡√


¢2 ³

E(−2)

¡
0
¢
() + E(−2)

¡
200

¢
()
´
(4.5)
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Nothing that

E () = E
(0)
  () 

we have essentially obtained the following result which can be used to obtain

explicit expressions for 


E () and




E
hi
  (), for any value of   ≥ 0.

Theorem 5 (European option derivative representation formulae). If  is a
continuous function in K(1), then for every  ≥ 0, there exists real numbers
for some real numbers 1  , such that

(4.6)  


E()  () =

X

=1


√

−
E(+)  ()

If additionally  ≥ 1, there exists real numbers for some real numbers
1  , such that

(4.7)  


E()  () =

−1X

=0


√

−
E(+)

¡
0
¢
()

If additionally  ≥ 2 and  ∈ (1)∩K(2), there exists real numbers for some
real numbers 1   and 1  , such that
(4.8)

 


E()  () =

−2X

=0


√

−
E(+)

¡
200

¢
() +

−2X

=0


√

−
E(+)

¡
0
¢
()

In particular, for  ∈ (1) ∩K(2) we have

2E(2)  () = E(0)

¡
200

¢
()

3E(3)  () = −2E(0)

¡
200

¢
()− 1


√

E(1)

¡
200

¢
() 

4E(4)  () = 6E(0)

¡
200

¢
() + 5√


E(1)

¡
200

¢
() + 1

2
E(2)

¡
200

¢
()

Proof. Equations (4.6), (4.7) and (4.8) is the content of the short discussion

at the beginning of this section. In order to get expressions for 


E () =




E
(0)
 () (),  = 2 3 4, one first calculate the actual values of  ,  =

0  4, such that (4.6) holds, and repeatedly calls (4.4) and (4.5). This is
tedious but otherwise trivial. ¤

Remark 5 (Expressing E
()
 in terms of E). Recall  from (1.10) and note

that  ( ()) = , note that ()())
()) is a polynomial in . Expressions

involving E
()


¡
200

¢
() can also be written in terms of E or the 

− in
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following manner:

E()
¡
200

¢
() = −

Z ∞

−∞
( ())

2 00 ( ())
()((

()


))

((
()


))

()

= E

µ
200

()(( ))
(( ))

¶
()

= −

µ
2

00 ()
()((



))

((


))

¶


In the statement of Theorem 2, we use the latest form.

Remark 6 (Boundedness of E
hi
  and  

E
hi
 ). The error localization

expansion formula, expresses errors E

 (), for  in (1) ∩ K(3), in

terms of errors of payoffs of the form −E
hi


(). Use the error local-

ization expansion formula to analyze these errors, bringing up errors of the
form



³
 


E
hi



´
()

With the European option derivative representation formulae, the form func-

tions  


E
hi


 is extremely simple and easy to deal with. If for instance

  ≥ 0 and  +  ≥ 2 and  ∈ (1) ∩K(2) then

 


E
hi


 =
+−2X

=0


√

−
E()

¡
200

¢
()

+
+−2X

=0


√

−
E()

¡
0
¢
() 

for some real numbers  ,  = 0   + − 2.
We are preoccupied with the boundedness of functions  


E
hi


. This

boundedness immediately follows from the fact that, given real number   ≥
0 and integer , there exists a constant  such that for every function 
satisfying | ()| ≤ 

¡
1 + 

¢
, and for every for every    0,

¯̄
¯E() () ()

¯̄
¯ ≤ 

³
1 + 

´


5. The payoff smoothing error

Recall  () from (1.13).

Proposition 2. For every  ∈ (1) ∩K(3) and every   0,

(5.1) 

³
− E


()
´
() =  ()

¡
1 + +3

¢
O
¡
−15

¢



EUROPEAN OPTION GENERAL ERROR FORMULA 19

Proof. We get from Taylor expansion theorem that

E

 () = −


  () + 0 () E


( − 1)

+ E

(

Z 

1
()2 00 () (−)

2
)(1)

Hence, since from risk neutrality, E

( − 1) = 1− −


 = O

¡
−1

¢
,

 ()− E

 () = (1− −


 )
¡
 ()− 0 ()

¢

− E


µZ 

1
()2 00 () (−)

2


¶
(1) 

and therefore



³
− E


()
´
() = O

¡
−1

¢


¡
− 0

¢
()(5.2)

− E


µZ 

1


¡
200

¢
() (−)

2 

¶
(1) 

But − 0 ∈ (0) ∩K(2)+2 and 200 ∈ K(1)+2. Hence, from Theorem 6,

¯̄


¡
− 0

¢
()
¯̄
≤ O

¡
−05

¢
 ()

³
1 + ()+3

´
(5.3)

¯̄


¡
200

¢
()

¯̄
≤ O

¡
−05

¢
 ()

³
1 + ()+3

´


Now
¯̄
¯̄
Z 

1

³
1 + ()+3

´
(−)
2



¯̄
¯̄ =

Z 

1

³
1 + ()+3

´
(−)
2



and since, thanks to P5,

E


µZ 

1

³
1 + ()+3

´
(−)
2



¶
= O

¡
−1

¢ ¡
1 + +3

¢


we obtain
(5.4)

E


µZ 

1


¡
200

¢
() (−)

2


¶
(1) = O

³
−

3
2

´
 ()

¡
1 + +3

¢


¤

6. Auxiliary results

We list here basic properties satisfied by all flexible CRR Schemes. Here



()

and  denote the cumulative distribution functions of 

()
 and ,

with 
()
0 = 0. Proofs are left to the reader.

Lemma 2 (Properties of {()}). For every flexible CRR Schemes {()}∞=1
the following hold
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P1 (Berry-Esseen): There exists a constant  such that for every
 ∈ 

N, with

2 ≤  ≤  ,

sup


¯̄
¯


()

()−  ()

¯̄
¯ ≤ −

1
2 

P2 (local estimate of the distance to 1): For integers  ≥ 0,


()



= E



³
| − 1|

´
(1) = O

³
−


2

´


P3 (local error of the difference to 1): For integers  = 2 3 4,
there exists ∆ such that

∆
()



= 



³
( − 1)

´
(1) = ∆

2
+O(−

5
2 )

P4 (local and global estimates for log and power functions):

E


(|ln ()|) (1) = O
³
−

1
2

´


Furthermore, for every fixed real number ,

E


() = E

() +O

¡
−2

¢

and (consequently)

E


(| − 1|) (1) = O
³
−

1
2

´


max
=0

¯̄
¯E



() ()− E 

() ()

¯̄
¯ = O

¡
−1

¢


max
=0

¯̄
¯E



() ()
¯̄
¯ = O (1) 

P5 (Remainder related local estimate): For integer  and inte-
ger  ≥ 0

E


(

¯̄
¯̄
Z 

1
 ( − ) 

¯̄
¯̄) (1) = O(−

+1
2 )

Remark 7. All the properties P1-P5 remain valid if () is replaced by .

Recall the notation of section 4. The following lemma is a practical and
simple result that we used on few occasions.

Lemma 3. Let integer  ≥ 0. For every  ∈ (−1)∩ K(),   0 and
 ≥ 0,

(6.1) 



E () = E

µ







¶
()
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Proof. Since E () = −
R∞
−∞  ( ())(), one writes

 (E)
() () = −





Z ∞

−∞
 ( ())()

= −
Z ∞

−∞
( ())

 () ( ())()

= −
Z ∞

−∞
( ())

 () ( ())()

= E

³
()

´
() 

¤

The result below extends Berry-Esseen property P1.

Theorem 6 (Berry-Esseen extension). If  ∈ K(1) then,

(6.2) max

2
≤≤

¯̄
 ()

¯̄
≤ (kk(1) +

X
|∆|)

¡
1 + +1

¢
O(−

1
2 )

Proof. If  belongs to K
(1)
 but is not continuous, then it can be decomposed

into a (finite) sum of piecewise constant functions and a continuous function

∗ in K
(1)
 . Note that k∗k

(1)
 ≤ kk(1) +

P
|∆|. Since the convergence

of option value occurs at a rate of a least −
1
2 when the payoff is piecewise

constant, thanks to property P1, we can assume, without loss of generality,

that  ∈ (0) ∩K(1) . Recall that, thanks to the European option derivative
representation formulae, there exists a constant  such that for 0   ≤ 
and for  = 2  5,

¯̄
¯Ehi () ()

¯̄
¯ ≤ 

kk(1)√

−1

¡
1 + +1

¢


Let time step  ∈
£

2  

¤
. Substituting the above estimate in the error

localization expansion formula (with  = 0 and  = 4) we get, thanks to
Remark 3 and property P3,

 () = 
4X

=2

O
¡
−2

¢

!

kk(1)√


−1
¡
1 + +1

¢

+
kk(1)√


−1
¡
1 + +1

¢
O(−

5
2 )

= kk(1)

¡
1 + +1

¢
O
¡
−1

¢
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Using additionally the fact that  and R




commute, we similarly get

 () =
−1X

=1

4X

=2

O
¡
−2

¢

!

kk(1)√

−1

¡
1 + +1

¢

+
−1X

=1

kk(1)√

4

¡
1 + +1

¢
O(−

5
2 )

+ kk(1)

¡
1 + +1

¢
O(−

1
2 )

= kk(1)

¡
1 + +1

¢
O(−

1
2 )

¤

The result below is used in the proof of Theorem 4.

Lemma 4. Let integer  ≥ 2 and  ∈ (1) ∩K(3) . Then,

(6.3)
¯̄
¯−(E

hi
 ) ()

¯̄
¯ ≤ ()√


−1O

¡
−1

¢ ¡
1 + +3

¢


for all time step 0     and  ≥ 0.
Proof. Using the fact that, for every   ≥ 0, thanks to Lemma 3,

EE
hi
  () = Ehi E () = E

hi
+ () 

the error localization expansion formula (with  =  = 4) gives

−E
hi
  () = 

4X

=2

∆
()


!





E
hi
−1 ()

+R4



µ
5

5

5
E
hi
−1

¶
()

−E
hi
  () =

−1X

=0

4X

=2

∆
()


!
−−+1

µ





E
hi
+



¶
()

(6.4)

+
−1X

=0

R4



µ
−−+1

µ
5

5

5
E
hi
+



¶¶
() 

Recall that, thanks to the European option derivative representation formu-
lae, there exists a constant  such that for   = 2  5,

¯̄
¯̄




Ehi 

¯̄
¯̄ ≤ 

kk(2)√

(+−2)

¡
1 + +1

¢


Thanks to Remark 3 and property P3, replacing this estimate in the above
formulae one gets that, not only

max
0

¯̄
¯−E

hi
  ()

¯̄
¯ = kk(2)

¡
1 + +2

¢
O
¡
−1

¢
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but also, that the contribution in
¯̄
¯−E

hi
  ()

¯̄
¯ of those  ’s for which


2 ≤  +  ≤  , amounts to kk(2)

¡
1 + +2

¢
O
¡
−1

¢
. Hence we are left

to consider the  ’s for which 0   +   
2 , in which case



2
≤  −  − +1  

Let us write  := ( ) = + and  := ( ) =  −−+1. Re-
call that, thanks to the European option derivative representation formulae,

 


E
hi
  () is a linear combination of terms of the form −


2E

()
 (0) ()

and −

2E

()


¡
200

¢
() with  ∈ {0   + − 2}. Now

E()
¡
200

¢
() = E

³
()2 00 () 

()(())
(())

´
(1)

so that
 (E

()


¡
200

¢
) () = E()

¡
 (

200)
¢
() 

and (recall 
2 ≤    ) Berry-Esseen extension Theorem 6 yields
¯̄
 (

200) ()
¯̄
=  ()O(

− 1
2 )
¡
1 + +3

¢


and since the same is true for the terms E
()
 (0) (), it follows that

(6.5)  (
 




Ehi ) () =

√

−(+−2)

 ()O(
− 1
2 )
¡
1 + +3

¢


Noticing that, with constant Q = 2 (1 +  )4,

kk(2)

¡
1 + +2

¢
≤ Q√−(+−2) ()

¡
1 + +3

¢


for every    0, and   = 2  5, we can replace the estimate (6.5) in

the formula (6.4) for −E
hi
  (), obtaining

¯̄
¯−E

hi
  ()

¯̄
¯

=
−−1X

=0

4X

=2

(
O(−25)√
+

+−2 +
O(−3)√
+

+3 ) ()
¡
1 + +3

¢


from which one easily gets
¯̄
¯−E

hi
  ()

¯̄
¯ =

O(−1)
√


−1 ()
¡
1 + +3

¢


¤
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