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1 Introduction

This paper analyzes, within the context of a dynamic general equilibrium model, the

effects of changes in the composition of technical progress on transitional dynamics

— with an emphasis on the speed of convergence.

The speed of convergence is important because it indicates what weight should

be placed on transitional dynamics of a growth model relative to the steady-state

behavior. Whether the speed of convergence is likely to go up or down in the future

matters for the evaluation of growth-promoting policies. In growth models with

diminishing returns successful growth-promoting policies have transitory growth

effects and permanent level effects. Slower convergence implies that the full benefits

are slower to arrive.

There is a substantial literature attempting to empirically estimate the speed of

convergence and theoretically assess what factors affect it. One of the first econo-

metric studies of “conditional convergence” was accomplished by Barro and Sala-i-

Martin (1992). They found a speed of convergence of around 2% a year, implying

that the time it takes to recover half the initial distance from steady state is around

35 years (assuming no further disturbances). To reconcile such slow adjustment

with the standard neoclassical growth model (the Ramsey model with exogenous

technological change), an output elasticity with respect to capital as high as 0.75–

0.8 is needed. Mankiw et al. (1992) showed that including human capital in the

accumulation process along with physical capital brings the theoretical speed of

convergence in line with the empirical estimate of around 2% a year. Newer studies

show that strictly convex capital installation costs also tend to reduce the implied

speed of convergence (Ortigueira and Santos, 1997). In Eicher and Turnovsky (1999)

it is demonstrated that the speed of convergence is substantially reduced by adding

an R&D sector to the model. However, Turnovsky (2002) finds that the elastic-

ity of substitution in production between capital and labor significantly affects the

speed of convergence in the Ramsey model. A reduction in the elasticity of factor

substitution from the benchmark level of one to a lower (empirically realistic) level,

however, increases the model’s implied speed of convergence. Dalgaard (2003), fol-

lowed by Chatterjee (2005), finds that the convergence speed critically depends on
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capital utilization rates and that models with full capital utilization may overstate

the speed of convergence.

The overall conclusion from this theoretical literature is that “natural” exten-

sions of the standard neoclassical growth model (except with regard to the elasticity

of substitution in production between capital and labor) tend to bring down the

asymptotic speed of convergence closer to the empirical estimate of 2% a year found

by Barro and Sala-i-Martin (1992) and Mankiw et al. (1992). In turn, some em-

pirical studies questioned these low estimates of the convergence speed, arguing

that a number of econometric issues, like endogeneity of explanatory variables and

country-specific fixed effects, had been ignored. Evidence has been put forward that

the speed of convergence significantly varies across periods and groups of countries.

Some studies provide estimates for a convergence speed of approximately 6% (Evans,

1997) and of 4.7% for a sample of 75 countries and 9.3% for OECD countries (Islam,

1995). Recently, the cross-country study by McQuinn and Whelan (2007), based on

data for changes in the capital-output ratio, suggests convergence speeds of about

7% per year.

So we may say that the theoretical and empirical convergence literature has

shown “convergence” with each other. Yet several factors of importance for the

speed of convergence have not received much attention in the literature. The con-

tribution of the present paper is to examine how the composition of technical change

affects the speed of convergence - both in an asymptotic sense and in finite distances

from the steady state. We consider the composition of technical change along three

dimensions. The first relates to the form of technical change, i.e., the degree in

which technical change is embodied rather than disembodied.1 The second dimen-

sion relates to the source of technical change, where we contrast exogeneity with

endogeneity in the form of learning by doing in the Arrow (1962) sense (that is,

learning from investment experience). The third dimension involves the vehicle of

investment experience. What role does it play whether the vehicle through which

1Following Solow (1960), technical change is said to be embodied if taking advantage of new
technical knowledge requires construction of new investment goods. The newest technology is
incorporated in the design of newly produced equipment; and this equipment will not participate
in subsequent technical progress.
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learning occurs is gross investment rather than net investment?

Studying the role of the composition of technical change in this context is mo-

tivated by two facts. First, based on data for the U.S. 1950-1990, Greenwood et al.

(1997) estimate that embodied technical progress explains about 60% of the growth

in output per man hour, the remaining 40% being accounted for by disembodied

technical progress. So, empirically, embodied technical progress seems to play the

dominant role. Furthermore, there are signs of an increased importance of embod-

iment of technical change in the wake of the computer revolution, as signified by a

sharper fall in the quality-adjusted relative price of capital equipment (Greenwood

and Jovanovic 2001; Jovanovic and Rousseau, 2002; Sakellaris and Wilson, 2004).2

This raises the question how a shift in the relative importance of disembodied and

embodied technical progress is likely to affect the speed of convergence. Second,

most of the learning-by-investing literature has assumed that it is experience from

net investment that drives learning.3 The distinction between learning from gross

rather than net investment has not received much attention so far.

To disentangle these issues, we set up a dynamic general equilibrium model in

continuous time. The model builds on the framework on embodied technical change

laid out by Greenwood et al. (1997).4 By introducing endogenous learning from

investment, our model essentially follows one of the “future directions” suggested

by these authors. We depart, however, by allowing learning to imply scale effects

on productivity levels. Such effects seem plausible in view of spillovers and the non-

rival character of knowledge. On the other hand, we simplify by ignoring structures.

We focus on the robust case of semi-endogenous growth rather than the knife-edge

case of fully endogenous growth.

Within this framework, the paper presents four main results. First, endogeniz-

ing a fraction of the productivity increases as coming from learning by investing

substantially lowers the speed of convergence. Intuitively, the presence of learn-

2For a survey, see Hornstein et al. (2005).
3Leading textbooks such as Acemoglu (2009), Aghion and Howitt (1998, 2009), Barro and

Sala-i-Martin (2004), de la Croix and Michel (2002), and Valdez (1999), concentrate on this case
— likely because of its mathematical simplicity. Probably for the same reason this literature
predominantly disregard learning in the embodied form.

4The authors use the alternative term investment-specific technical change.
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ing by investing adds a slowly moving complementary kind of capital (“investment

experience”) to the dynamic system — thereby slowing down the speed of conver-

gence.

Second, the distinction between gross- and net investment as the vehicle through

which learning by investing occurs is significant with regard to transitional dynam-

ics and the speed of convergence. If net investment is the vehicle, then cumulative

investment experience coincides with the capital stock. If, however, gross invest-

ment is the vehicle, cumulative investment experience becomes an additional stock

variable, and the dimensionality of the dynamic system rises by one. This has two

implications. As learning by investing becomes operative, the speed of convergence

exhibits a discrete fall. This feature is absent if net investment is the vehicle of

learning. Moreover, the speed of convergence is lower when the vehicle is gross

rather than net investment. Intuitively, when the vehicle is gross investment, there

is more overhang from the past, which slows down the speed of convergence. The

notion that the vehicle of learning is gross investment is in our view more intu-

itive. It also accords better with the original ideas of Arrow who emphasized both

embodiment of technical progress and learning from gross investment.5

Third, whether embodiment speeds up convergence as “old growth theory” con-

cluded, turns out to depend critically on whether technical progress is exogenous or

driven by learning. There is an early literature (Phelps, 1962; Sato, 1966; Williams

and Crouch, 1972) which, within Solow-style neoclassical growth models, showed

that for a given exogenous rate of technical progress, a higher degree of embodi-

ment results in faster convergence. Since, to our knowledge this issue has not so far

been taken up within Ramsey-style neoclassical growth models with an endogenous

saving rate and not in models with endogenous technical change, we address the

issue here. Somewhat surprisingly, the “classical” result that embodiment speeds

up convergence turns out not to hold when growth is driven by learning. Hence,

we conclude that a rising relative importance of embodied technical change in the

wake of the computer revolution need not speed up the pace of adjustment. If

5In Arrow’s words: “each new machine produced and put into use is capable of changing the
environment in which production takes place, so that learning is taking place with continually
new stimuli” (Arrow, 1962).
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accompanied by a rising relative importance of learning by investing, the computer

revolution may even slow down the speed of convergence.

Fourth, a series of numerical simulations gives a quantification of the theoretical

results mentioned above. Specifically, the numerical simulations point to a speed of

convergence on the small side of 2% per year.

Our paper is related to Jovanovic and Rousseau (2002) who also set up a model

with embodied technical change and show that a greater ability to learn from invest-

ment experience slows down the speed of convergence. The present model departs

by allowing multi-facetted technical change with learning based on gross rather than

net investment and by assuming strictly concave utility (so that the interest rate is

not fixed). Our focus on transitional dynamics and speed of convergence issues in

a semi-endogenous growth setup is the main difference vis-à-vis the model named

“Solow (1960) meets Arrow (1962)” in the survey by Greenwood and Jovanovic

(2001). One of the models in Groth et al. (2010) also deals with embodied learning

from investment. That paper aims at exploring conditions leading to less-than-

exponential growth. In contrast, the present paper studies speed of convergence to

a balanced growth path. Section 4 contains further comparisons with the existing

literature.

The paper is organized as follows. Section 2 develops the gross-investment based

version of the model, which we refer to as the “benchmark model”. This version

leads to a three-dimensional dynamic system the steady-state and stability proper-

ties of which are studied in Sections 3.1 and 3.2, respectively. Different measures of

the speed of convergence are introduced in Section 3.3. Section 3.4 shows the novel

result, linked to the distinction between decomposable and indecomposable dynam-

ics, that as soon as learning becomes part of the growth engine, the asymptotic

speed of convergence displays a discrete fall. Section 4 describes the case of learn-

ing based on net investment. This “alternative model” leads to two-dimensional

dynamics and the appealing discontinuity disappears. By numerical simulations,

Section 5 quantifies the mentioned discontinuity implied by the benchmark model.

In addition, Section 5 explores the otherwise smooth dependency of different mea-

sures of the speed of convergence on the composition of technical change along the
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three dimensions described above. Finally, Section 6 concludes.

2 A benchmark model

2.1 Disembodied and embodied learning by investing

The learning-by-investing hypothesis is that variant of the learning-by-doing hy-

pothesis that sees the source of learning as being primarily experience in the invest-

ment goods sector. This experience embraces know-how concerning how to produce

the capital goods in a cost-efficient way and how to design them so that in combina-

tion with labor they are more productive in their applications. The simplest model

exploring this hypothesis is in textbooks sometimes called the Arrow-Romer model

and is a unified framework building on Arrow (1962) and Romer (1986). The key

parameter is a learning parameter which in the “Arrow case” is less than one and

in the “Romer case” equals one.6 Whatever the size of the learning parameter, the

model assumes that learning generates non-appropriable new knowledge that via

knowledge spillovers across firms provides an engine of productivity growth for the

major sectors of the economy. Summaries of the empirical evidence for learning and

spillovers is contained in Jovanovic (1997) and Greenwood and Jovanovic (2001).

In the Arrow-Romer model firms benefit from recent advances in technical

knowledge irrespective of whether they acquire new equipment or not. That is,

technical change is assumed to be disembodied: new technical knowledge improves

the combined productivity of capital and labor independently of whether the work-

ers operate old or new machines. No new investment is needed to take advantage

of the recent technological or organizational developments.

In contrast we say that technical change is embodied, if taking advantage of new

technical knowledge requires construction of new investment goods. The newest

technology is incorporated in the design of newly produced equipment; and this

equipment will not participate in subsequent technical progress. An example: only

the most recent vintage of a computer series incorporates the most recent advance

in information technology. In this way investment becomes an important bearer of

6See, e.g., Valdés (1999) and Barro and Sala-i-Martin (2004).
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the productivity increases which this new knowledge makes possible. This view is

consistent with the findings in the cross-country studies by DeLong and Summers

(1991), Levine and Renelt (1992), and Sala-i-Martin (1997). In the Levine and

Renelt (1992) study, among over 50 different regressors only the share of investment

in GDP, other than initial income, is found to be strongly correlated with growth.

Let the aggregate production function be

Yt = Kt
α(AtLt)

1−α, 0 < α < 1, (1)

where Yt is output, Kt capital input (measured in efficiency units), Lt labor input,

and At labor-augmenting productivity originating in disembodied technical change,

all at time t. Time is continuous. We consider two sources of growth in At, an

endogenous source, accumulated investment experience, represented by the variable

Jt, and an unspecified exogenous source, eγt:

At = Jβt e
γt, 0 ≤ β < 1, γ ≥ 0. (2)

The parameter β indicates the elasticity of labor-augmenting productivity w.r.t.

investment experience and is thus a measure of the strength of disembodied learning.

For short we name β the disembodied learning parameter. The upper bound on β

is brought in to avoid explosive growth. In our benchmark model we assume that

investment experience, Jt, is proportional to cumulative aggregate gross investment,

Jt =

∫ t

−∞
Iτdτ, (3)

where Iτ is aggregate gross investment at time τ and we have normalized the fac-

tor of proportionality to one. The parameter γ in (2) is the rate of exogenous

disembodied technical progress.

We consider a closed economy so that national income accounting implies

Yt = It + Ct, (4)

where Ct is aggregate consumption. We shall assume that, once produced, capital

goods can never be used for consumption. So gross investment, It, is always non-

negative.
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The embodied component of technical progress, explaining about 60% of pro-

ductivity growth according to Greenwood et al. (1997), is modeled in the following

way:

K̇t = QtIt − δKt, δ > 0, (5)

where a dot over a variable indicates the time derivative, andQt measures investment-

augmenting productivity, for short just the “quality”, of newly produced investment

goods. The growing level of technology implies rising Qt. A given level of invest-

ment thus gives rise to a greater and greater addition to the effective capital stock.

For realism and to allow a difference between gross and net investment we have the

rate, δ, of physical capital depreciation strictly positive.

As with growth in At, there are also two potential sources of growth in Qt. One

is an endogenous source in the form of the investment experience Jt. The other is

an exogenous source represented by the factor eψt. Specifically, we assume that

Qt = Jt
λeψt, 0 ≤ λ <

1− α

α
(1− β), ψ ≥ 0. (6)

That is, the quality Qt of investment goods of the current vintage is determined by

cumulative experience which in turn reflects cumulative aggregate gross investment.

The parameter λ indicates the elasticity of the quality of newly produced invest-

ment goods w.r.t. investment experience and is thus a measure of the strength of

embodied learning. For short we name λ the embodied learning parameter. The

upper bound on λ is brought in to avoid explosive growth.7

TABLE 1
technical change parameters

Source of technical change
Form of technical change Exogenous Learning

Disembodied γ β
Embodied ψ λ

Table 1 summarizes how the technical change parameters relate to the form and

the source, respectively, of technical progress. The third dimension of technical

7If, as in Greenwood and Jovanovic (2001), Qt is assumed to be an isoelastic function of
cumulative investment in efficiency units, the upper bound on λ will be (1− α)(1− β) instead.
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change on which we focus relates to whether the vehicle of investment experience

is cumulative gross investment or net investment. As the model structure is rather

different in these two cases, we treat them separately, namely as the present “bench-

mark model” and the “alternative model” of Section 4, respectively.

We now embed the described technology in a market economy with perfect

competition where learning effects appear as externalities. That is, each firm is too

small to have any recognizable effect on the technology level variables At and Qt.
8

Let the output good be the numeraire. The representative firm chooses inputs

so as to maximize the profit Πt = Kα
t (AtLt)

1−α − RtKt − wtLt, where Rt is real

cost per unit of capital services (the rental rate) and wt is the real wage. Given

equilibrium in the factor markets, the rental rate must satisfy

Rt = αk̃t
α−1 = α

Yt
Kt

, (7)

where k̃t is the effective capital-labor ratio, kt/At ≡ Kt/(AtLt), as given from the

supply side. We assume labor supply is inelastic and grows at the constant rate

n ≥ 0.

Since Qt units of the capital good can be produced at the same minimum cost

as one unit of the consumption good, the equilibrium price of the capital good in

terms of the consumption good is

pt =
1

Qt

. (8)

Denoting the real interest rate in the market for loans, rt, we have the no-arbitrage

condition
Rt − (δpt − ṗt)

pt
= rt, (9)

where δpt − ṗt is the true economic depreciation of the capital good per time unit.

So, given the interest cost, ptrt, the rental rate (or user cost) of capital is higher,

the faster pt falls, that is, the faster the quality of investment goods rises.

8This view of learning as a pure externality is of course a simplification. In practice firms’ in-
vestment decisions bear in mind that adoption of new technology takes time and requires learning.
The productivity slowdown in the 1970s has by some been seen as reflecting not a slowdown in
the pace of technical progress but rather a speed-up in embodied technical change resulting in a
temporary productivity delay (see, e.g., Hornstein and Krusell, 1996).
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2.2 Dynamics of the production sector

From now the dating of the variables is suppressed when not needed for clarity. Let

the growth rate of an arbitrary variable x > 0 be denoted gx ≡ ẋ/x. Let z and

x denote the output-capital ratio and the consumption-capital ratio, respectively,

both in value terms, that is, z ≡ Y/(pK) and x ≡ C/(pK). Then, substituting (4)

into (5), the growth rate of capital can be written

gK = z − x− δ. (10)

In view of (8), gp = −gQ, and so, using (1), the growth rate of the output-capital

ratio in value terms can be written

gz = gY − gp − gK = (α− 1)gK + (1− α)(gA + n) + gQ,

where

gA = βgJ + γ, (11)

gQ = λgJ + ψ, (12)

and n ≥ 0 is the constant growth rate of the labor force (full employment is as-

sumed). By taking the time derivative on both sides of (3) we get J̇ = I so that

gJ =
I

J
≡ su, (13)

where s is the saving-output ratio, i.e., s ≡ I/Y ∈ [0, 1] , and u is the output-

experience ratio, i.e., u ≡ Y/J.

It follows that

gz = −(1− α)(z − x− δ) + [(1− α)β + λ] su+ (1− α)(γ + n) + ψ, (14)

and

gu = gY − gJ = α(z − x− δ)− [1− (1− α)β] su+ (1− α)(γ + n), (15)

where we have applied (1), (10), (11), (12), and (13). In these two equations we

can substitute s ≡ I/Y = 1−x/z, by (4) and the definitions of x and z. As a result

the dynamics of the production sector is described in terms of the three endogenous

variables z, x, and u. The role of the household sector is represented by x, which

depends on households’ consumption.
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2.3 A representative household

There is a representative household with Lt members, each supplying one unit of

labor inelastically per time unit. As indicated above, the growth rate of Lt is n.

The household has a constant rate of time preference ρ > 0 and an instantaneous

CRRA utility function with absolute elasticity of marginal utility of consumption

equal to θ > 0. Facing given market prices and equipped with perfect foresight the

household chooses a plan (ct)
∞
t=0 so as to

maxU0 =

∫ ∞

0

ct
1−θ

1− θ
Lte

−ρtdt s.t. (16)

V̇t = rtVt + wtLt − ctLt, V0 given, and (17)

lim
t→∞

Vte
−

∫ t
0 rsds ≥ 0, (18)

where c ≡ C/L is per capita consumption, V = pK is financial wealth, and (18)

is the No-Ponzi-Game condition.9 Again, letting the dating of the variables be

implicit, an interior solution satisfies the Keynes-Ramsey rule,

ċ

c
=

1

θ
(r − ρ) =

1

θ
(αz − δ − gQ − ρ) , (19)

and the transversality condition that the No-Ponzi-Game condition holds with strict

equality:

lim
t→∞

Vte
−

∫ t
0 rsds = 0. (20)

The last equality in (19) follows from (9), (8), and (7).

3 The implied dynamic system

Log-differentiating the consumption-capital ratio x = cL/(pK) w.r.t. t and apply-

ing (19) and (8) gives

gx =
1

θ
(αz − δ − gQ − ρ) + n+ gQ − gK

=
1

θ
(αz − δ − ρ)− (z − x− δ) + n+ (1− 1

θ
)(λsu+ ψ), (21)

where s ≡ 1− x/z.

9In case θ = 1, the instantaneous utility function in (16) should be interpreted as ln ct.
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The dynamics of the economy are described by the three differential equations,

(21), (14), and (15), in the endogenous variables, x, z, and u. There are two

predetermined variables, z and u, and one jump variable, x. A (non-trivial) steady

state of the system is a point (x∗, z∗, u∗), with all coordinates strictly positive, such

that (x, z, u) = (x∗, z∗, u∗) implies ẋ = ż = u̇ = 0.10 We now study existence and

properties of such a steady state.

3.1 Steady state

The economy will in steady state follow a balanced growth path (BGP for short),

defined as a path along which K,Q, Y, and c grow at constant rates, not necessarily

positive. To ensure positive growth we need the assumption

γ + ψ + n > 0. (A1)

This requires that at least one of these nonnegative exogenous parameters is strictly

positive. Moreover, it turns out that this is needed to ensure that a viable economy

(one with Y > 0) can be situated in a steady state.

In steady state we have gu = 0. So by definition of u we get g∗Y = g∗J = s∗u∗

from (13). By setting the right-hand sides of (14) and (15) equal to nil and solving

for g∗Y (= s∗u∗) and g∗K (= z∗ − x∗ − δ) we thus find

g∗Y = s∗u∗ =
αψ + (1− α)(γ + n)

(1− α)(1− β)− αλ
> 0, (22)

and

g∗K =
[1− (1− α)β]ψ + (1 + λ)(1− α)(γ + n)

(1− α)(1− β)− αλ
> 0. (23)

That the two growth rates are strictly positive is due to (A1) combined with the

restriction imposed in (6) on the embodied learning parameter λ. We see that

g∗K ≥ g∗Y always. Strict inequality holds if and only if ψ (embodied exogenous

technical change) or λ (embodied learning) is positive.11 Thus, when technical

progress has an embodied component, K grows faster than Y. This outcome is in

line with the empirical evidence presented in, e.g., Greenwood et al. (1997).

10Generally, steady state values of variables will be marked by an asterisk.
11We have 1− (1− α)β > α in view of α, β ∈ (0, 1).
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According to (12), (13), and (22),

g∗Q =
(1− α) [(1− β)ψ + λ(γ + n)]

(1− α)(1− β)− αλ
. (24)

Given (A1), we have g∗Q > 0 if and only if ψ (embodied exogenous technical change)

or λ (embodied learning) is positive. A mirror image of this is that the price p

(≡ 1/Q) of the capital good in terms of the consumption good is falling whenever

there is embodied technical progress. Indeed,

g∗p = −g∗Q = −(1− α) [(1− β)ψ + λ(γ + n)]

(1− α)(1− β)− αλ
. (25)

Whether or not Y/K is falling, the output-capital ratio in value terms, Y/(pK) = z∗,

stays constant along a BGP.

By constancy of x∗/z∗ = (cL/Y )∗ we conclude that cL is proportionate to Y in

steady state. Hence g∗c = g∗Y − n so that, combining (19) and (22), we find

g∗c =
1

θ
(αz∗ − δ − g∗Q − ρ) =

(1− α)γ + αψ + [(1− α)β + αλ]n

(1− α)(1− β)− αλ
> 0, (26)

where the inequality is due to (A1). The learning processes, whether in disembodied

or embodied form, represented by β and λ, respectively, create and diffuse a nonrival

good, technical knowledge. So learning by investing brings about a tendency to

increasing returns to scale in the system. The way n appears in (26) indicates that

the positive effect of β and λ on the growth rate of per capita consumption gets a

boost via interaction with an expanding labor force, which signifies a rising scale

of the economy.12 In contrast, the disembodied and embodied exogenous sources of

productivity growth, represented by γ and ψ, respectively, affect per capita growth

independently of growth in the labor force.

To ensure boundedness of the discounted utility integral we shall throughout

impose the parameter restriction

ρ− n > (1− θ)
(1− α)γ + αψ + [(1− α)β + αλ]n

(1− α)(1− β)− αλ
. (A2)

12In view of cross-border technology diffusion, the growth-enhancing role of labor force growth
inherent in knowledge-based growth models should not be seen as a prediction about individual
countries in an internationalized world, but rather as pertaining to larger regions, perhaps the
world economy.
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This condition is equivalent to ρ− n > (1− θ)g∗c .

From (26) and (24) we find

z∗ =
[(1− α)γ + αψ] θ + (1− α) [λγ + (1− β)ψ] + {[(1− α)β + αλ] θ + (1− α)λ}n

α [(1− α)(1− β)− αλ]

+
ρ+ δ

α
> 0. (27)

By (10), the steady state value of the consumption-capital ratio is x∗ = z∗ − g∗K −
δ; into this expression (27) and (23) can be substituted (the resulting formula is

huge, cf.Appendix A). The saving rate in steady state is s∗ = 1 − x∗/z∗ > 0 (see

Proposition 1 below). By substituting this into (22) we get the output-experience

ratio as u∗ = g∗Y /s
∗.

Finally, by (19) the real interest rate in steady state is

r∗ = αz∗ − δ − g∗Q = θg∗c + ρ = θ
(1− α)γ + αψ + [(1− α)β + αλ]n

(1− α)(1− β)− αλ
+ ρ. (28)

The parameter restriction (A2) ensures that the transversality condition of the

household is satisfied in the steady state. Indeed, from (A2) we have r∗ = θg∗c + ρ

> g∗c + n = g∗Y = g∗p + g∗K = g∗V since z ≡ Y/(pK) ≡ Y/V = z∗ in steady state. It

follows that the transversality condition of the household also holds along any path

converging to the steady state

The following proposition summarizes the steady state properties.

Proposition 1. Assume (A1) and (A2). Then a (non-trivial) steady state, (x∗, z∗, u∗),

exists, is unique, and satisfies the transversality condition (20). The steady state is

associated with a BGP with the properties:

(i) g∗Y > 0, g∗K > 0, and g∗c > 0; all three growth rates are increasing functions of

the technical change parameters, γ, β, ψ, and λ, and, when learning occurs (β or λ

positive), also of n;

(ii) g∗K ≥ g∗Y with strict inequality if and only if ψ > 0 or λ > 0;

(iii) g∗p < 0 when ψ > 0 or λ > 0;
∣∣g∗p∣∣ is an increasing function of ψ and λ; and of

γ if λ > 0; and of β if ψ > 0 or λ > 0;

(iv) the saving rate is s∗ = (g∗K + δ)/z∗ and satisfies 0 < s∗ < α;

(v) (1− α)z∗ < x∗ < z∗;
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(vi) 0 < u∗ < z∗/(1 + λ).

Proof. Existence and uniqueness was shown above, provided s∗ > 0, which we show

in connection with (iv). (i) follows immediately from (22), (23), and (26). (ii) was

shown above. (iii) follows immediately from (25). (iv) is an application of s ≡ I/Y

= (K̇ + δK)/(QY ) = (gK + δ)/z, which follows from (5) and the definition of z. In

steady state

s = s∗ =
g∗K + δ

z∗
= α

g∗K + δ

θg∗c + ρ+ g∗Q + δ
< α

g∗K + δ

g∗Y + g∗Q + δ
= α, (by (28))

where g∗Y + g∗Q = g∗K follows from constancy of z and the inequality is implied by

(A2), which in view of (26) is equivalent to θg∗c + ρ > g∗c + n = g∗Y . The inequality

s∗ > 0 in (iv) follows from (i), (iii), and δ > 0. (v) is implied by (iv) since s∗

= 1 − x∗/z∗ and 0 < α < 1. The first inequality in (vi) follows from u∗ = g∗Y /s
∗

together with (i) and (iv); in view of (22) and (10) we have u∗/z∗ = s∗u∗/(s∗z∗)

= g∗Y /(g
∗
K+δ) = (g∗K−ψ)/ [(1 + λ)(g∗K + δ)] , see Appendix A. As ψ ≥ 0 and δ > 0,

the second inequality in (vi) follows. We have already shown that θg∗c + ρ > g∗Y .

This inequality implies, by (28) and constancy of z ≡ Y/(pK) ≡ Y/V in steady

state, that r∗ > g∗V . The latter inequality ensures that the transversality condition

(20) holds in the steady state. �

Remark. As long as (A2) holds, all the formulas derived above for growth rates and

for x∗, z∗, u∗, s∗, and r∗ are valid for any combination of parameter values within

the allowed ranges, including the limiting case γ = β = λ = ψ = n = 0. But in the

absence of (A1), that is, when γ = ψ = n = 0, the steady state (x∗, z∗, u∗) is only

an asymptotic steady state. Indeed, it has 0 < x∗ < z∗, but u∗ = 0 because, while

Y is growing at a diminishing rate, the denominator in u ≡ Y/J goes to infinity

at a faster speed. So, a viable economy (one with Y > 0 and J < ∞) cannot be

situated in a steady state with u∗ = 0, but it can approach it for t → ∞ (and

will in fact do so when (A2) holds). Thus, when (A1) is not satisfied, the formulas

should be interpreted as pertaining to the asymptotic values of the corresponding

ratios. And in contrast to (i) of Proposition 1, we get g∗Y = g∗K = g∗c = 0. This

should not be interpreted as if stagnation is the ultimate outcome, however. It is an

example of less-than-exponential, but sustained quasi-arithmetic growth (see Groth
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et al., 2010). Since we are in this paper interested in the speed of convergence to a

balanced growth path, we shall concentrate on the case where both (A1) and (A2)

hold.

Note that violation of the upper bound on λ in (6) implies a growth potential

so enormous that a steady state of the system is infeasible and the growth rate

of the economy tends to be forever rising. To allow existence of a non-negative λ

satisfying the parameter inequality in (6) we need β < 1, as was assumed in (2).

3.2 Stability

The steady-state properties would of course be less interesting if stability could not

be established. We have, however:

Proposition 2. Assume (A1) and (A2). Let z0 = z̄0 and u0 = ū0, where z̄0 and

ū0 are given positive numbers. Then there is a neighborhood of (z∗, u∗) such that

for (z̄0, ū0) belonging to this neighborhood, there exists a unique equilibrium path

(xt, zt, ut)
∞
t=0. The equilibrium path has the property (xt, zt, ut) → (x∗, z∗, u∗) for

t→ ∞.

Proof. In Appendix B it is shown that the Jacobian matrix associated with the

dynamic system, evaluated in the steady state, has two eigenvalues with negative

real part and one positive eigenvalue. There are two predetermined variables, z and

u, and one jump variable, x. It is shown in Appendix C that the structure of the Ja-

cobian matrix implies that for (z̄0, ū0) belonging to a small neighborhood of (z∗, u∗)

there always is a unique x0 > 0 such that there exists a solution, (xt, zt, ut)
∞
t=0, of

the differential equations, (21), (14), and (15), starting from (x0, z̄0, ū0) at t = 0

and converging to the steady state for t → ∞. By (A2) and Proposition 1, the

transversality condition (20) holds in the steady state. Hence it also holds along

the converging path, which is thus an equilibrium path. All other solution paths

consistent with the given initial values, z̄0 and ū0, of the state variables diverge

from the steady-state point and violate the transversality condition of the house-

hold and/or the non-negativity constraint on K for t→ ∞. Hence they can be ruled

out as equilibrium paths of the economy. �
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In brief, the unique steady state is a saddle point and is saddle-point stable.

3.3 Speed of convergence

As implied by Proposition 2, two and just two eigenvalues have negative real part.

In general these eigenvalues can be either real or complex conjugate numbers. In

our simulations for a broad range of parameter values we never encountered complex

eigenvalues. Similarly, the simulations suggested that repeated real negative eigen-

values will never arise for parameter values within a reasonable range. Hence we

concentrate on the case of three real distinct eigenvalues two of which are negative.

We name the three eigenvalues such that η1 < η2 < 0 < η3.

Let the vector (xt, zt, ut) be denoted (x1t, x2t, x3t). The general formula for the

solution to the approximating linear system is xit = C1ie
η1t +C2ie

η2t +C3ie
η3t +x∗i ,

where C1i, C2i, and C3i are constants that depend on (x10, x20, x30). For the equi-

librium path of the economy we have C3i = 0, i = 1, 2, 3, so that

xit = C1ie
η1t + C2ie

η2t + x∗i , i = 1, 2, 3, (29)

where C1i and C2i are constants that depend on the given initial condition (x20, x30)

= (z̄0, ū0).

Let ∆it ≡ xit − x∗i , i = 1, 2, 3. Then the distance between the variable xi,

i = 1, 2, 3, at time t and its steady state value can be written |∆it|. At a given t for

which |∆it| ̸= 0 the instantaneous (proportionate) rate of decline of |∆it| is

−
d|∆it|
dt

|∆it|
= −

d∆it

dt

∆it

=

 −C1ie
η1tη1+C2ie

η2tη2
C1ieη1t+C2ieη2t

= −
C1i
C2i

e(η1−η2)tη1+η2
C1i
C2i

e(η1−η2)t+1
, if C2i ̸= 0,

−η1, if C2i = 0 and C1i ̸= 0.

In view of η1 < η2 < 0, for C2i ̸= 0 there exists a t1 large enough such that for

all t > t1, the absolute value of C1i

C2i
e(η1−η2)t is less than 1 and thereby ∆it ̸= 0.

Defining the asymptotic speed of convergence of xi, denoted σi, as the limit of the

proportionate rate of decline of |∆it| for t→ ∞, we thus have

σi =

{
−η2 if C2i ̸= 0,

−η1 if C2i = 0 and C1i ̸= 0.
(30)

When both C1i and C2i differ from zero, both negative eigenvalues enter the formula,

(29), for the asymptotic solution, but the negative eigenvalue which is smallest in

absolute value, here η2, is the dominant eigenvalue.
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The speed of convergence on which the empirical literature, reviewed in the

introduction, first and foremost has focused is the speed of convergence of per capita

output relative to trend, that is, the ratio yt/y
∗
t , where yt ≡ Yt/Lt. The asymptotic

speed of convergence of this ratio is the same as that for the output-capital ratio (in

value terms) in our model, namely σz (≡ σ2 as defined above).13 Indeed, defining

the trend level, y∗t , as the level yt would have if, given the capital-labor ratio (in

value terms) ptkt, the output-capital ratio were equal to its long-run value, z∗, we

have
yt
y∗t

=
yt

ptktz∗
=
zt
z∗
. (31)

It follows that the ratio yt/y
∗
t has the same asymptotic speed of convergence as zt

itself.

The asymptotic speed of convergence need not generally be a good approxi-

mation to the instantaneous rate of decline of the distance of a variable to its

steady-state value at a given point in time. Hence in the numerical simulations in

Section 5 we shall pay some attention also to the average speed of convergence, µi,

i = x, z, u, during certain time intervals. For a fixed ε ∈ (0, 1), the average speed

of convergence of, for instance, z during the time interval needed for the fraction

1− ε of the initial distance from the steady-state value to be made good forever, is

defined as the number µz satisfying

|ztε − z∗| = |z0 − z∗| e−µztε . (32)

where tε is the minimum real number such that |zt − z∗| < ε · |z0 − z∗| for all

t > tε.
14 Two circumstances tend to make the average speed of convergence different

from the asymptotic speed of convergence. First, in a finite distance from the

steady state, the nonlinearities of the dynamic system play a role. Second, even

the approximating linear dynamic system will have its average speed of convergence

affected by (i) the initial conditions, (ii) both negative eigenvalues, cf. (29), and

(iii) the allowed maximum proportionate distance ε. This ambiguity of µz explains

13As (x1, x2, x3) = (x, z, u), when convenient, we use the more concrete notation, σx, σz, and
σu, rather than σ1, σ2, and σ3, respectively.

14As the sign of zt − z∗ may change during the adjustment process, the definition refers to
absolute values.
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the popularity of the asymptotic speed of convergence as a benchmark indicator in

the literature.

A further complication arises because two alternative situations are possible: the

situation where the dynamic system, (21), (14), and (15), is indecomposable and the

situation where it is not. We say the dynamic system is indecomposable if all three

variables, x, z, and u, are mutually dependent. On the other hand the system is

decomposable if one or two of the three differential equations are uncoupled from the

remaining part of the system. By inspection of the right-hand sides of (21), (14), and

(15), we see that, apart from s ≡ 1−x/z, only four parameters enter the coefficients

of x, z, and u, namely λ, β, α, and θ. The values of these parameters govern whether

the dynamic system is indecomposable or decomposable. Two parameter value

combinations lead to decomposable situations, namely Case D1: λ = 0 = β, θ ̸= α;

and Case D2: λ = 0, β ≥ 0, θ = α (D for decomposability).15

When learning is operative (λ > 0 or β > 0), the dynamic system is indecom-

posable (at least when θ ̸= α). Consequently the key variables, x, z, and u, have

the same asymptotic speed of convergence. Indeed:

Proposition 3. Assume (A1) and (A2). Let xi0 ̸= x∗i , i = 1, 2, 3. If λ > 0 or (β > 0

and θ ̸= α), then generically C2i ̸= 0 , i = 1, 2, 3, and so the same asymptotic speed

of convergence, −η2, applies to all three variables in the dynamic system. This will

also be the asymptotic speed of convergence of yt/y
∗
t .

Proof. See Appendix D.

The explanation of this result is that as long as at least part of technical progress

is due to learning by investing, the laws of movement for the output-capital ratio,

z, and (at least when θ ̸= α) the consumption-capital ratio, x, are coupled to the

law of movement of the output-experience ratio, u. So the dominant eigenvalue for

the z and x dynamics is the same as that for the u dynamics, namely η2.

15In Appendix D the concepts of decomposability and indecomposability are formally defined
in terms of properties of the Jacobian matrix associated with the dynamic system.

19



3.4 Discontinuity of the asymptotic speed of convergence
for x and z when learning disappears

When the dynamic system is decomposable, however, the movement of x and z

is no longer linked to the slowly adjusting output-experience ratio and therefore,

as we shall see, x and z adjust considerably faster. To be specific, consider first

the Case D1. Here learning by investing is not operative, neither in embodied nor

in disembodied form. Then the differential equations for the consumption-capital

ratio, x, and the output-capital ratio, z, are uncoupled from the dynamics of the

output-experience ratio, u. The evolution of x and z is entirely independent of that

of u which in turn, however, depends on the evolution of x and z. In any event, x

and z are the two variables of primary economic interest, whereas u is of economic

interest only to the extent that its movement affects that of x and z; in Case D1 it

does not. As θ ̸= α, the (x, z) subsystem cannot be decomposed further.

Case D2 is the case where, due to the knife-edge condition θ = α, the dynamics

of the jump variable x become independent of the dynamics of both state variables,

z and u, when λ = 0, i.e., when embodied learning is absent. Indeed, with θ = α

and λ = 0, the differential equation for x reduces to ẋ = (x−(δ+ρ)/α+δ+n+(1−
1/α)ψ)x. Then the transversality condition of the household can only be satisfied if

x = x∗ for all t. A shift in a parameter affecting x∗ implies an instantaneous jump

of x to the new x∗. In this case we define the speed of convergence of x as infinite.

The state variables z and u will still adjust only sluggishly.

An interesting question is how the asymptotic speed of convergence of an en-

dogenous variable changes when a parameter value changes so that the system shifts

from being indecomposable to being decomposable. To spell this out we need more

notation. Consider again Case D1 where learning of any form is absent and θ ̸= α.

We let the eigenvalues associated with the subsystem for x and z in this case be

η1 = η̄1 and η3 = η̄3, where η̄1 < 0 < η̄3. The third eigenvalue, η2, belongs to the

total system but does not in this case influence the x and z dynamics; it is denoted

η̄2 and turns out to equal −g∗Y < 0 (see Appendix E). In the sub-case of D2 where

β = 0 in addition to θ = α and λ = 0, we let the values taken by the eigenvalues

be denoted η̃1, η̃2, and η̃3.
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As documented in Table 3 below and Appendix G, for realistic parameter values,

η̄2 and η̃2 are smaller in absolute value than η̄1 and η̃1, respectively. That is, from

an empirical point of view we can assume η̄1 < η̄2 < 0 < η̄3 as well as η̃1 < η̃2

< 0 < η̃3. Given these inequalities, the asymptotic speed of convergence of one

or more of the variables changes discontinuously as learning, embodied as well as

disembodied, tends to vanish:

Proposition 4. Assume (A1) and (A2). Let η̄1 < η̄2 < 0 < η̄3 and η̃1 < η̃2 < 0

< η̃3. We have:

(i) If θ ̸= α, then, for (β, λ) → (0, 0)+, in the limit where learning disappears, an

upward switch occurs in the asymptotic speed of convergence for x and z from the

value −η̄2 to −η̄1.
(ii) If θ = α, β = 0, and λ > 0, then, for λ → 0+, in the limit where learning

disappears, two upward switches occur. The asymptotic speed of convergence for x

shifts from the value −η̃2 to infinity. And the asymptotic speed of convergence for

z shifts from the value −η̃2 to −η̃1 > −η̃2.
(iii) If θ = α, λ = 0, and β ≥ 0, the asymptotic speed of convergence for x is always

infinite. But for β → 0+, in the limit where learning disappears, the asymptotic

speed of convergence for z switches from the value −η̃2 to −η̃1 > −η̃2.

Proof. See Appendix E. �

Result (i) is the generic result on which our numerical calculations concentrate.

The intuition behind result (i) is that as long as at least a part of technical progress

is due to learning by investing (either λ or β positive), the laws of movement for

x and z are generically coupled to the law of movement of the sluggish output-

experience ratio, u. Indeed, convergence is slow when physical capital accumulation

is coupled to a slow-moving second kind of “capital”, knowledge from investment

experience. When learning by investing disappears, however, the movement of x

and z is no longer hampered by this slow-adjusting factor and therefore x and z

adjust much faster. In for instance Figure 1 below, for β = ψ = 0 and with the

baseline parameter combination indicated in Table 2 below, this discontinuity in

the limit shows up as a jump in the convergence speed for x and z from 0.03 to

above 0.08 when λ→ 0+.
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The intuition behind result (ii) is similar, except that here the dynamics become

fully recursive in the limit. This has two implications. First, the jump variable,

x, ceases to be influenced by the movement of the state variables, z and u, and

can therefore adjust with infinite speed. Second, z ceases to be influenced by the

slow-adjusting u. Result (iii) refers to a situation where the asymptotic speed of

convergence of the jump variable x is infinite even for β > 0 (that is, when disem-

bodied learning is present) and remains so in the limit for β → 0+. Moreover, in

the limit z ceases to be influenced by the slow-adjusting u and so the asymptotic

speed of convergence of z jumps.

Most empirical evidence suggests θ ≥ 1 > α. So the results (ii) and (iii), relying

on the knife-edge case θ = α, are of limited interest. On the other hand, this

case allows an explicit solution for the time path of one or more of the variables.

Therefore at several occasions this case has received attention in the literature, for

example in connection with the Lucas (1988) human capital accumulation model

(see Xie (1994) and Boucekkine and Ruiz-Tamarit (2004)).

For mathematical convenience this section has talked about limiting values of

the asymptotic speed of convergence for the two forms of learning approaching zero.

We may turn the viewpoint round and end this section with the conclusion that as

soon as learning from gross investment becomes positive, and thereby part of the

growth engine, the asymptotic speed of convergence displays a discrete fall.

4 Alternative model: Learning from net invest-

ment

The benchmark model above assumes that learning stems from gross investment.

What difference does it make if instead the vehicle of learning, whether embodied

or disembodied, is net investment? To provide an answer, we now describe the

case where it is the experience originating in cumulative net investment that drives

productivity. This case seems less plausible, since presumably the total amount

of newly produced equipment provides new stimuli and experience from which to
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learn, whatever the depreciation on existing equipment.16 Yet the net investment

case is certainly the more popular case in the literature, probably because of its

mathematical simplicity.17

We replace (3) by Jt =
∫ t
−∞ Inτ dτ, where I

n
τ denotes net investment (measured in

efficiency units), QτIτ−δKτ , at time τ.18 So K̇τ = Inτ , and by integration follows that

Jt, the indicator of cumulative investment experience, now equals Kt. From this we

see a reason why the net investment approach appears less plausible than the gross

investment approach. If for some time interval capital depreciation should exceed

gross investment, so that net investment is negative, then the experience index

J goes down straight away in spite of the arrival of newly produced equipment

embodying up-to-date technology.

Now (11) and (12) become gA = βgK + γ and gQ = λgK + ψ, respectively. To

avoid growth explosion, we need that λ satisfies 0 ≤ λ < (1 − α)(1 − β), which

is sharper than the restriction in (6). Since J is no longer distinct from K, the

dynamic system reduces to two dimensions:

gx =
1

θ
(αz − δ − ρ)−

[
1− (1− 1

θ
)λ

]
(z − x− δ) + n+ (1− 1

θ
)ψ, (33)

gz = − [(1− α)(1− β)− λ] (z − x− δ) + (1− α)(γ + n) + ψ, (34)

where, as before, x ≡ C/(pK) and z ≡ Y/(pK).

Also this simpler model has a unique saddle-point stable steady state (see Ap-

pendix F). The long-run growth rate of per capita consumption is

g∗c =
(1− λ)(1− α)γ + [α + (1− α)β]ψ + [(1− α)β + αλ]n

(1− α)(1− β)− λ
.

To ensure that the discounted utility integral is bounded and the transversality

condition satisfied, we need that ρ−n > (1−θ)g∗c .We assume the parameter values

are such that this inequality is fulfilled.

16In Solow’s words “even the ’Titanic’ is still contributing to maritime productivity” (Solow,
1967, p. 39).

17As mentioned in the introduction, leading textbooks concentrate on this case and predomi-
nantly on learning in the disembodied form.

18We define net investment this way to get a framework nesting a series of available models in
the literature.
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Again, the relative price of capital equipment is falling if there is embodied

technical progress. Indeed,

g∗p = −g∗Q = −(1− α) [(1− β)ψ + λ(γ + n)]

(1− α)(1− β)− λ
< 0,

if ψ > 0 or λ > 0. Embodied technical progress also leads to a falling Y/K so that

ultimately the output-capital ratio in value terms, Y/(pK) ≡ z, stays constant.

This model subsumes several models in the literature as special cases:

1. The simple neoclassical growth model: γ > 0, β = λ = ψ = 0.

2. Arrow-Romer model, the “Arrow version”: 0 < β < 1, γ = λ = ψ = 0.

3. Arrow-Romer model, the “Romer version”: β = 1, n = γ = λ = ψ = 0.

4. Jovanovic and Rousseau (2002): 0 < λ < 1− α, δ = γ = β = ψ = θ = 0.19

5. Boucekkine et al. (2003): knife-edge link between λ and β: λ = (1 − α)(1 −
β), γ = ψ = 0.20

Number 2 and 3 in the list are the standard textbook models of learning by

investing referred to in the first paragraph of Section 2. The original contributions

in Arrow (1962) and Romer (1986) are more sophisticated than these popular models

from textbooks; moreover, Arrow (1962) in fact studied the case of learning from

gross investment. Going into detail with this would take us too far, however.

We now return to the general version of the net-investment based learning model,

summarized in (33) and (34). The case θ > α is the empirically plausible case to

be considered in the numerical simulations below. In this case (in fact whenever

θ ̸= α) the dynamic system is indecomposable even for λ = 0. The absolute value

of the unique negative eigenvalue is the common asymptotic speed of convergence

for x and z.

19The authors assume linear utility (θ = 0), so that r = ρ in equilibrium. On the other hand,
the authors extend the model by incorporating a second capital good (like structures), not taking
part in the embodied learning. And it is only in the theoretical analysis that the simplifying
assumption that learning comes from net investment is relied upon.

20Strictly speaking, this description of Boucekkine et al. (2003) only covers the case n = 0.
By letting the learning effects come from net investment per capita, the authors can allow n > 0
without growth explosion, unlike the “Romer version” above.
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Contrary to the benchmark model of the preceding sections, this model version

exhibits no discontinuity in the asymptotic speed of convergence in the limit as

(β, λ) → (0, 0)+, i.e., as learning disappears. Indeed, when learning originates in

net investment, the variable that drives productivity is cumulative net investment

and thereby simply the capital stock. The dynamics of the capital stock is part of

the dynamics of x and z whether or not any learning parameter is positive. It is

otherwise in the benchmark model where as soon as a learning parameter becomes

positive, the dynamics of x and z is coupled to the dynamics of an entirely new

variable, cumulative gross investment. In the limiting case of β = λ = 0, i.e., no

learning, the two models are of course identical.

We are now ready to consider numerical results for both the benchmark model

of the preceding sections and the present simpler, alternative model.

5 Results from simulations

Proposition 4 implies the qualitative result that as soon as learning from gross in-

vestment becomes part of the growth engine, the asymptotic speed of convergence

of x and z drops. Considering reasonable calibrations, four main quantitative ques-

tions suggest themselves. First, by how much does the introduction of learning lower

speed of convergence? Second, if more weight is put on learning and less weight on

unspecified exogenous sources of technical progress, by how much is the speed of

convergence affected? Third, how much does it matter whether learning is based

on gross or net investment? Fourth, when technical change is endogenous through

learning, does embodiment of this technical change then raise the speed of con-

vergence, as growth theory from the 1960s would predict? Numerical simulations,

addressing these questions, are presented in the following.

What we call baseline values of the background parameters are listed in Table

2. Tables and graphs below are based on these parameter values which may be

considered standard and noncontroversial. Appendix G contains sensitivity anal-

ysis, in particular with respect to the value of θ, since this parameter affects the

asymptotic speed of convergence considerably.
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TABLE 2

Baseline values of background parameters

Preference parameters ρ = 0.02, θ = 1.75
Production parameters α = 0.324, δ = 0.05
Population growth n = 0.01

Note. The time unit is one year.

The parameters of primary interest are the technical change parameters: β, γ, λ,

and ψ. The empirical literature does not provide firm conclusions as to the rela-

tive importance of learning by investing (including learning spillovers) versus other

sources of long-run growth and the relative importance of embodied learning vs.

disembodied learning. To clarify the potential quantitative role of these parameters

for the speed of convergence, we vary them in pairs in the simulations so as to hold

constant the growth rate of per capita consumption. Specifically, if one technical

change parameter is increased, another technical change parameter is decreased so

as to ensure g∗c = 0.02. In this way we can study the role of the composition of

technical progress without interference from the size of the growth rate.

5.1 The role of embodied learning

Panel A of Table 3 presents major results for the case where the strength, λ, of

embodied learning vis-a-vis the strength, γ, of disembodied exogenous progress is

in focus (at the same time as β = ψ = 0). The baseline combination of λ and γ

appears in the second row. With this combination together with the baseline values

of the background parameters, cf. Table 2, important stylized facts for a modern

industrialized economy are reproduced by the model. Per capita consumption grows

at a rate of 2% per year, 26% of output is devoted to investment,21 and the output-

capital ratio is 0.40. Moreover, embodied technical change accounts for 60% of

the growth in per capita output, leaving the remaining 40% as due to disembodied

technical change (γ/g∗c = 0.4). This corresponds to the estimates by Greenwood et

al. (1997). With g∗p = −0.03, the baseline case roughly captures the observation

21When taking investment in consumer durables into account in addition to fixed capital in-
vestment, an investment share of GDP of around one fourth is empirically realistic.
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that the relative price of capital equipment vis-a-vis consumption goods has in

the US declined at a yearly rate of 3% in the period 1950-1990 (Greenwood et al.

1997).22 The asymptotic speed of convergence, σi, i = x, z, u, amounts to about

1.6% per year, which in fact corresponds to estimates in the seminal studies by

Mankiw et al. (1992) and Barro and Sala-i-Martin (2004).

As argued in Section 3.3. the asymptotic speed of convergence need not generally

be a good approximation to the speed of convergence at a finite distance from the

steady state. Hence, Panels A, B, and C of Table 3 also report µi, i = x, z, u,

which are average speeds of convergence, in percentage points, during the first

half-life of the initial distance to the steady state when z and u initially are 10%

below their steady-state values.23 For this case the baseline row indicates average

speeds of convergence of x and z close to 4% per year and thus somewhat above the

asymptotic speed of convergence. For u, however, the average speed of convergence

is in this case slightly below the asymptotic speed of convergence.

Comparing the rows in Panel A of Table 3, we see the impact of raising embod-

ied learning as a source of technical change while lowering disembodied exogenous

technical change so as to hold constant the per capita consumption growth rate at

2% per year. For small λ the main source of technical progress is thus disembodied

exogenous technical change, while for large λ it is embodied learning from gross

investment.

22We only say “roughly captures” because in our model, p is the relative price of an aggregate
capital good, whereas the 3% from Greenwood et al. (1997) excludes structures from the price
index. On the other hand, studies by Jovanovic and Rousseau (2002) and Sakellaris and Wilson
(2004) suggest a speed up of the fall in the relative price of capital equipment due to the expanding
role of computers and IT-related technology.

23Because convergence may be non-monotonic, we define the half-life of the distance to the
steady state as the time needed for half of the initial distance to the steady state to be made good
forever.
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TABLE 3

Speed of convergence as the embodied learning parameter, λ, rises

λ γ g∗c r∗ s∗ z∗ g∗p γ/g∗c σx, σz σu µx µz µu

A. Adjustment of γ such that g∗c = 0.02

0.00 0.02 0.02 0.055 0.25 0.32 -0.00 1.00 8.77 3.00 8.11 8.07 1.94
BL 0.83 0.01 0.02 0.055 0.26 0.40 -0.03 0.40 1.57 1.57 3.87 4.28 1.12

1.39 0.00 0.02 0.055 0.27 0.45 -0.04 0.00 0.80 0.80 1.55 1.90 0.61

B. No adjustment of γ

0.00 0.02 0.02 0.055 0.25 0.32 -0.00 1.00 8.77 3.00 8.11 8.07 1.94
0.83 0.02 0.04 0.090 0.25 0.56 -0.04 0.50 2.60 2.60 4.57 4.95 1.97
1.39 0.02 0.08 0.160 0.26 1.03 -0.13 0.25 2.33 2.33 2.74 2.88 1.95

C. Learning from In; adjustment of γ such that g∗c = 0.02

0.00 0.02 0.02 0.055 0.25 0.32 -0.00 1.00 8.77 – 8.13 8.09 –
0.46 0.01 0.02 0.055 0.26 0.40 -0.03 0.40 2.75 – 2.54 2.54 –
0.58 0.00 0.02 0.055 0.27 0.45 -0.04 0.00 1.20 – 1.12 1.12 –

Notes. Baseline values of background parameters as given in Table 2; β=0, ψ=0; σi is the

asymptotic speed of convergence for i = x, z, u, and µi is the corresponding average speed of

convergence, during the first halflife of the distance to steady state when z and u are initially 10%

lower than their steady-state values; σi and µi shown in percentage points. BL = baseline case;

Panels A and B: embodied learning from gross investment; Panel C: embodied learning from net

investment.

Several features are worth mentioning. First, if λ = 0 (the standard neoclassical

growth model), the asymptotic speed of convergence for x and z equals 8.78% and

the average speed of convergence is at the same level. With the indicated baseline

value of λ, however, all the measures of convergence speed take on significantly

lower values. To obtain an asymptotic speed of convergence at the indicated level

of 2%, the standard neoclassical growth model requires an output elasticity with

respect to capital as high as α = 0.75 (interpreted as reflecting the productive

role of an expanded measure of capital including human capital, cf. Barro and

Sala-i-Martin, 2004, p. 110). Table 3 shows that with embodied learning from

investment accounting for 60% of the growth in per capita output (or consumption),

an asymptotic speed of convergence of around 2% is obtained without requiring the

output elasticity with respect to capital to exceed its “standard value” of one third.

Second, the impact of raising embodied learning further while lowering disem-

bodied exogenous technical change results in still lower speeds of convergence. The

explanation is that a higher relative weight of learning in the “growth engine” means
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a higher relative weight of the slow-adjusting cumulative investment experience that

feeds learning.

The reason that we adjust γ downwards when raising λ is that otherwise the

values of several key variables would not remain within ranges that seem empirically

relevant (from a historical perspective). To document this, Panel B of Table 3 leaves

γ fixed. The result is that the growth rate of per capita consumption rises to 8%;

the rate of interest rises to 16%; and the output-capital ratio rises to a value above

1. Since such values are far away from what we have observed in the data, the

associated speeds of convergence (higher than in Panel A) are of limited interest.

Of course, here we take a backward-looking perspective. It can not be ruled out

that the shift to a higher λ which seems associated with the computer revolution

will result in higher future per capita growth, as conjectured by, e.g., Jovanovic and

Rousseau (2002), thus speeding up the adjustment process.24

In Panel C of Table 3 learning stems from net investment rather than gross

investment as in the model of Section 4. The second row of Panel C shows that for

λ = 0.455 this model reproduces the same magnitudes of key endogenous variables

as the baseline row in Panel A. Again, along with a rise in the fraction of the given

g∗c that is due to embodied learning there is a decline in the different measures of

the speed of convergence.

With regard to the average speed of convergence, we have experimented with

other initial distances from the steady state and with larger values of the fraction,

1− ε, of the initial distance from the steady state to be made good forever (in the

last three columns of Table 3, we had ε = 1
2
).25

As Table 4 shows: a) the average speeds of convergence tend to be somewhat

larger than the asymptotic speeds of convergence, reflecting that in addition to the

24The last row in Panel B, including the sizeable −g∗p , is not far from the (informal) forecast
of growth “in the coming decades” suggested by Jovanovic and Rousseau (2002). For the case of
linear utility (i.e., θ = 0) and γ = β = ψ = 0, Jovanovic and Rousseau derive an explicit formula
showing the speed of convergence to be decreasing in β. But since the authors do not adjust any
other parameter, also growth is rising in the exercise.

25With regard to for example the variable z, let tε be the minimum real number such that
|zt − z∗| < ε · |z0 − z∗| for all t > tε. Then, simulating the dynamic system by the Relaxation
Algorithm, described in Trimborn et al. (2008), we estimate tε. Finally, we apply the formula µz

= −(ln ε)/tε, cf. (32).
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negative eigenvalue smallest in absolute value also the other negative eigenvalue is

operative; b) the average speeds of convergence tend to be closer to the asymptotic

speed of convergence when both predetermined variables, z and u, start out at the

same side of their respective steady-state values rather than at the opposite side and

when the required fraction, 1− ε, is large; and c) the pattern of dependency on the

relative strength of embodied learning is qualitatively the same (at least “roughly”)

for the average speed of convergence as for the asymptotic speed of convergence

(the more so the larger the required distance reduction).

TABLE 4.
Asymptotic and average speed of convergence as the embodied

learning parameter, λ, rises and γ is adjusted. Alternative initial
conditions and required distance reductions

1− ε = 0.90 1− ε = 0.99

λ γ g∗c σx, σz σu µx µz µu µx µz µu

A. z0/z
∗ = 0.9, u0/u

∗ = 0.9

0.00 0.02 0.02 8.77 3.00 8.42 8.39 2.51 8.56 8.56 2.73
0.83 0.01 0.02 1.57 1.57 2.01 2.10 1.38 1.76 1.78 1.49
1.39 0.00 0.02 0.80 0.80 0.91 0.94 0.72 0.84 0.86 0.76

B. z0/z
∗ = 1.1, u0/u

∗ = 1.1

0.00 0.02 0.02 8.77 3.00 9.12 9.15 2.72 8.97 8.97 2.87
0.83 0.01 0.02 1.57 1.57 2.22 2.32 1.50 1.85 1.89 1.54
1.39 0.00 0.02 0.80 0.80 0.99 1.03 0.78 0.89 0.91 0.79

C. z0/z
∗ = 0.9 u0/u

∗ = 1.1

0.00 0.02 0.02 8.77 3.00 8.42 8.39 4.06 8.56 8.56 3.48
0.83 0.01 0.02 1.57 1.57 15.30 14.36 2.67 2.45 2.60 1.98
1.39 0.00 0.02 0.80 0.80 2.01 2.68 1.45 1.15 1.24 1.03

D. z0/z
∗ = 1.1, u0/u

∗ = 0.9

0.00 0.02 0.02 8.77 3.00 9.12 9.15 3.61 8.97 8.97 3.29
0.83 0.01 0.02 1.57 1.57 3.79 17.30 2.20 2.19 2.35 1.83

1.39 0.00 0.02 0.80 0.80 1.48 1.91 1.17 1.03 1.12 0.95

Notes. Baseline values of background parameters as given in Table 2; β=0, ψ=0; σi is the

asymptotic speed of convergence for i = x, z, u, and µi is the corresponding average speed of con-

vergence in different situations; all speeds of convergence in percentage points. Learning is based

on gross investment.

Keeping this in mind, we shall from now on concentrate on the asymptotic speed

of convergence of x and z, henceforth abbreviated SOC. Figure 1 gives a detailed

portrait of the dependency of SOC on both the relative weight of embodied learning

30



basis of learning is gross investment
basis of learning is net investment
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Figure 1: Asymptotic speed of convergence as the normalized embodied learning
parameter, λ̃, rises and γ is adjusted so as to maintain g∗c = 0.02. Note: β = 0, ψ =
0;α = 0.324.

in the growth engine and the vehicle of learning. The solid curve shows SOC when

the vehicle of learning is gross investment. At a significantly higher position is the

dashed curve which shows SOC when the vehicle of learning is net investment. The

variable along the horizontal axis, named λ̃, is the learning parameter normalized

so as to ensure a common support, i.e., λ̃ ∈ [0, 1] , for the two cases. Specifically,

λ̃ ≡ λα/[(1 − α)(1 − β)] when learning is based on gross investment; and λ̃ ≡
λ/[(1−α)(1−β)] when learning is based on net investment. The range for λ̃ shown

in the figure does not go beyond 0.67 because higher values would require a negative

value of γ to maintain g∗c = 0.02.

The intuition behind that SOC is lower when the basis of learning is gross

investment than when it is net investment, is that the former basis involves more

overhang from the past. Thereby the transitional dynamics becomes more sluggish.

Figure 1 also displays the pronounced discontinuity in SOC for x and z as learn-

ing from gross investment becomes positive. This discontinuity, drawn attention

to in Proposition 4, appears as a conspicuous drop from the solid bullet on the

vertical axis in Figure 1 to the hollow bullet. The solid bullet is situated where the

dashed curve hits the vertical axis. This is because the two models are identical

in the special case of no learning. As we already know from Section 4, when the
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learning parameter in the “net-investment framework” shifts from nil to positive, no

discontinuity in SOC arises. In contrast, in the “gross-investment framework” such

a shift couples the dynamics of x and z to that of a variable not involved before,

namely the slow-adjusting cumulative gross investment.

basis of learning is gross investment
basis of learning is net investment
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Figure 2: Asymptotic speed of convergence as the normalized embodied learning
parameter, λ̃, rises and ψ is adjusted so as to maintain g∗c = 0.02. Note: β = 0, γ =
0;α = 0.324.

Figure 2 is analogue to Figure 1 except that it is not γ but the embodied exoge-

nous technical change parameter, ψ, that is adjusted when the normalized embodied

learning parameter rises (while γ = β = 0). The resulting pattern is rather similar

to that in Figure 1. SOC is quite sensitive to the fraction of embodied productiv-

ity increases coming from learning rather than from unspecified exogenous factors.

And the vertical distance between the two curves is again substantial, in fact even

larger than before. That is, when a combination of embodied learning and embod-

ied exogenous technical change drives productivity increases, SOC is very sensitive

to whether learning is based on net or gross investment.

5.2 The role of disembodied learning

Although, for example, Greenwood et al. (1997) found that disembodied technical

change accounts for only about 40% of the growth in output per hours worked, still
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the impact of whether its source is learning or exogenous, i.e., originating in factors

outside the model, is of interest. Figure 3 shows how SOC changes as the strength,

β, of disembodied learning is raised at the same time as disembodied exogenous

technical change is lowered so as to hold constant g∗c (while λ = ψ = 0).26 The

pattern is quite similar to that in Figure 1 for the embodied learning case: a) a rise

in the fraction of disembodied technical change coming from learning rather than

being exogenous lowers SOC; b) there is a substantial drop in SOC for x and z as

learning from gross investment becomes positive; and c) going from the stippled

“net-investment curve” to the solid “gross-investment curve” entails more than a

halving of SOC.

basis of learning is gross investment
basis of learning is net investment
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Figure 3: Asymptotic speed of convergence as the disembodied learning parameter,
β, rises and γ is adjusted so as to maintain g∗c = 0.02. Note: λ = 0, ψ = 0;α = 0.324.

In Figure 4 it is instead the strength, ψ, of embodied exogenous technical change

that is adjusted as β rises (while γ = λ = 0). Again we see: a) a falling SOC; b) a

significant discontinuity as learning becomes operative; and c) a persistent difference

in the level of the two curves.

The overall conclusion from this and the previous subsection is that the source

of technical change and the vehicle (basis) of learning matter a lot for SOC. That

learning slows down SOC reflects that the tendency of, say, a high output-capital

26Again the range of the abscissa is limited to values not requiring the adjusting variable to take
on a negative value to maintain g∗c = 0.02. This principle is also followed in the ensuing figures.
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Figure 4: Asymptotic speed of convergence as the disembodied learning parameter,
β, rises and ψ is adjusted so as to maintain g∗c = 0.02. Note: λ = 0, γ = 0;α = 0.324.

ratio to speed up capital deepening and thereby diminish itself is partly offset

through the concomitant speed up of the productivity advances generated by the

investment. That this offsetting influence is stronger when gross investment is the

vehicle of learning rather than net investment reflects that in the former case an

additional, slow-moving state variable, cumulative gross investment, interferes with

the dynamics. Moreover, these features go through whether technical change is of

embodied or disembodied form.

5.3 The role of embodiment as such

Empirical studies by, e.g., Jovanovic and Rousseau (2002) and Sakellaris and Wilson

(2004) find that ICT technologies result in faster decline in the relative price of

capital equipment vis-a-vis consumption goods than earlier technology revolutions.

This can be seen as reflecting a rising tendency for technical change to take the

embodied form.27

Is such a tendency likely to result in a higher speed of convergence for the

27Tables A, D, E, and F in the appendix show that g∗p is quite sensitive to a rise in the fraction
of technical change that is embodied. On the other hand, if embodied exogenous technical change,
ψ, is the adjusting parameter when embodied learning rises (Table B), g∗p is unaffected (but high
since all technical change is in this case embodied). Indeed, the constancy of g∗p in this case follows
analytically from the formula (25) with γ = β = 0 and ψ as a function of λ so that g∗c = 0.02.
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Figure 5: Asymptotic speed of convergence as the embodied exogenous change
parameter, ψ, rises and γ is adjusted so as to maintain g∗c = 0.02. Note: λ = 0, β =
0;α = 0.324.

economy? As mentioned in the introduction, the literature from the 1960s leads to

the presumption that the answer is yes. For Solow-style models with a constant

saving rate, Phelps (1962), Sato (1966), and Williams and Crouch (1972) showed

that when a higher fraction of exogenous productivity increases are embodied, a

higher SOC appears.

By disentangling the impact of the form of technical progress from that of its

source, we now examine whether embodiment generally has such an effect. Figure

5, where all technical progress is exogenous, is in accordance with the result from

the early literature. SOC is seen to be an increasing function of the fraction of

the exogenous productivity increases which are embodied. The intuition is that

a higher degree of embodiment of a given amount of exogenous technical progress

implies faster economic depreciation of the value of the capital stock and thereby

less overhang from the past. (As learning is absent in Figure 5, the distinction

as to the basis of learning from the earlier figures is irrelevant and only one curve

appears; the benchmark model and the alternative model coincide.)

When the source of technical progress is instead endogenous in the form of

learning, however, embodiment does not increase SOC. In Figure 6 all productivity

growth is due to learning by investing. Not only does this generate a low SOC for
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Figure 6: Asymptotic speed of convergence as the normalized embodied learning
parameter, λ̃, rises and β is adjusted so as to maintain g∗c = 0.02. Note: γ = 0, ψ =
0;α = 0.324.

the reason explained at the end of the previous subsection. It also neutralizes the

tendency of fast economic depreciation to raise SOC. Indeed, in Figure 6 SOC is

essentially independent of the fraction of the learning taking the embodied form

rather than the disembodied form.28This is so whether it is gross or net invest-

ment that drives learning (but the usual level difference between these two cases

is again visible). The intuition is that when the economic depreciation due to em-

bodiment of technical progress is linked to learning by investing, it is linked to a

slow-moving endogenous force which offsets the speeding up of SOC through the

boosted economic depreciation.

We conclude that a rising degree of embodiment of technical change in the wake

of the computer revolution does not seem likely to bring about a rising SOC, at

least not as long as the overall productivity growth rate is unaffected. If a rising

degree of embodiment is accompanied by higher growth, however, a rising SOC can

be expected, as witnessed by Table 3 above.

28See also Table E in Appendix G.
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5.4 Other aspects

It is well-known that a rise in the output elasticity with respect to capital, everything

else equal, tends to decrease the speed of convergence. A high output elasticity with

respect to capital makes the output-capital ratio and interest rate less sensitive

to changes in the capital intensity. Hence, if a disturbance for instance raises the

output-capital ratio and the interest rate temporarily above their steady state levels

and therefore induces a high saving and investment level, the adjustment will be

relatively slow if the output elasticity with respect to capital is high.

When the vehicle of learning is net investment, the effective output elasticity

with respect to capital is α+ (1− α) β rather than just α. This raises the question

whether the negative slope of the stippled curve in for example Figure 3 is due to the

capital-elasticity effect of a rising β on the effective output elasticity with respect

to capital rather than to the learning effect. The stippled curve in Figure 7 shows

that the answer is affirmative: along with the rising β, we here adjust not only γ

so as to maintain g∗c = 0.02, but also α so as to maintain α + (1 − α) β = 0.5; as

a result SOC is more or less constant, in fact slightly increasing. When the vehicle

of learning is gross investment, however, a similar adjustment of α does not change

the pattern qualitatively, but makes the slope less steep (compare the solid curve

in Figure 7 with that in Figure 3).29

It is also well-known that the speed of convergence in a growth model gener-

ally tends to slow down as the desire for consumption smoothing, θ, rises and the

population growth rate falls, respectively.30 As expected, this holds in the present

framework as well. At the same time, as documented in Appendix G, the qualitative

patterns displayed by the graphs above go through for alternative values of θ and

n, respectively. These patterns are also generally robust with respect to variation

in values of the other background parameters, as long as restrictions (A1) and (A2)

are observed.31 Moreover, both qualitatively and quantitatively similar results are

obtained when the household sector is instead described within a Blanchard-Yaari

type of overlapping generations framework.

29See also Table C in Appendix G.
30See, e.g., Barro and Sala-i-Martin (2004, p. 112) and Turnovsky (2002).
31Sensitivity analysis w.r.t. α, δ, ρ, and n is available from the authors upon request.
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Figure 7: Asymptotic speed of convergence as the disembodied learning parameter,
β, rises and γ is adjusted so as to maintain g∗c = 0.02, while α is adjusted so as to
maintain α+ (1− α) β = 0.5. Note: λ = 0, ψ = 0.

6 Conclusion

Based on a dynamic general equilibrium model we have studied how the composition

of technical progress, along three dimensions, affects transitional dynamics, with an

emphasis on the speed of convergence. The three dimensions are, first, the degree

to which technical change is embodied, second, the extent to which an endogenous

source, learning, drives productivity advances, and, third, the extent to which the

vehicle of learning is gross investment rather than net investment.

A theoretical accomplishment is the result, linked to the distinction between

decomposable and indecomposable dynamics, that as soon as learning from gross

investment becomes part of the growth engine, the asymptotic speed of convergence

displays a discrete fall. Such a succinct role for learning does not seem noticed within

New Growth theory which predominantly has treated learning as originating in net

investment so that it is cumulative net investment and thereby simply the capital

stock which drives productivity. Since the dynamics of the capital stock is part of

the overall economic dynamics whether or not any learning parameter is positive,

learning becomes less pithy in that setting.

Our numerical simulations point to an asymptotic speed of convergence in a
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closed economy on the small side of 2% per year and possibly tending to a lower

level in the future due to the rising importance of investment-specific learning in

the wake of the computer revolution as the empirical evidence suggests.

The analysis shows that the speed of convergence, both ultimately and in a finite

distance from the steady state, depends strongly and negatively on the importance

of learning in the growth engine and on gross investment being the vehicle of learn-

ing rather than net investment. Finally, in contrast to a presumption implied by

“old growth theory”, a rising degree of embodiment of learning in the wake of the

computer revolution is not likely to raise the speed of convergence.

7 Appendix

A. Steady state

By (10), the steady state value of the consumption-capital ratio is x∗ = z∗−g∗K− δ.
By substituting (27) and (23) into this expression, we get

x∗ =
[(1− α)γ + αψ] θ − {α [1− (1− α)β]− (1− α)(1− β)}ψ + (1− α)γ [(1− α)λ− α]

α [(1− α)(1− β)− αλ]

+
{[(1− α)β + αλ] θ + (1− α) [(1− α)λ− α]}n

α [(1− α)(1− β)− αλ]
+
ρ+ (1− α)δ

α
.

For the proof of (vi) of Proposition 1 we need:

Lemma A1. Assume (A1) and (A2). Then g∗K = (1 + λ)g∗Y + ψ.

Proof. From (23) follows

g∗K − ψ =
[1− (1− α)β]ψ + (1 + λ)(1− α)(γ + n)− [(1− α)(1− β)− αλ]ψ

(1− α)(1− β)− αλ

=
(1 + λ)αψ + (1 + λ)(1− α)(γ + n)

(1− α)(1− β)− αλ
= (1 + λ)g∗Y ,

by (22). �

B. Eigenvalues

Assume (A1) and (A2). Then, by Proposition 1, s∗x∗z∗u∗ > 0. The Jacobian matrix

associated with the system (21), (14), and (15) evaluated in the steady state, is A = x∗(1− θ−1
θ
λu

∗

z∗
) x∗

(
α
θ
− 1 + θ−1

θ
λx

∗u∗

z∗2

)
x∗ θ−1

θ
λs∗

z∗
[
1− α− ((1− α)β + λ) u

∗

z∗

]
z∗

[
α− 1 + ((1− α)β + λ) x

∗u∗

z∗2

]
z∗ ((1− α)β + λ) s∗

u∗
[
−α+ (1− (1− α)β) u

∗

z∗

]
u∗

[
α− (1− (1− α)β) x

∗u∗

z∗2

]
−u∗ (1− (1− α)β) s∗

 ,
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where s∗ ≡ 1− x∗/z∗. The expression for the determinant can be reduced to

detA =
α

θ
[(1− α)(1− β)− αλ] s∗x∗z∗u∗ > 0,

where the inequality follows from the parameter restriction in (6) and the positivity

of s∗x∗z∗u∗. Thus either there are two eigenvalues with negative real part and one

positive eigenvalue or all three eigenvalues, η1, η2, and η3, have positive real part.

Since the dynamic system has two pre-determined variables, z and u, and one jump

variable, x, saddle-point stability requires that the latter possibility can be ruled

out. And indeed it can. Consider

b ≡
∑
j>i

∣∣∣∣ aii aij
aji ajj

∣∣∣∣ ,
where aij is the element in the i’th row and j’th column of A. From matrix algebra

we know that b = η1η2 + η1η3 + η2η3. By Lemma B1 below, b < 0, and so the

possibility that all three eigenvalues have positive real part can be ruled out.32

Lemma B1. Assume (A1) and (A2). Then b < 0.

Proof. From the definition of A follows∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ =

{
−α
θ
(1− α)−

[
(1− α)β +

λ

θ

]
s∗
u∗

z∗
+ [(1− α)β + λ]

α

θ

u∗

z∗

+(
1

θ
− 1)αλs∗

u∗

z∗

}
x∗z∗,∣∣∣∣ a11 a13

a31 a33

∣∣∣∣ =

[
(1− α)β − 1 + (

1

θ
− 1)α

]
s∗x∗u∗,∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ = [(1− α)(1− β)− αλ] s∗z∗u∗.

32Lemma B1 is a slight generalization of a similar result in Groth (2010).
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By summation and ordering,

b =

{
−α
θ
(1− α)x∗ +

1

θ
[λ(α− s∗) + α(1− α)β]

u∗

z∗
x∗

−s∗u
∗

z∗
x∗ + [(1− α)(1− β)− αλ] s∗u∗

}
z∗

=

{
1

θ

[
−α(1− α) + (λ(α− s∗) + α(1− α)β)

u∗

z∗

]
x∗

−
[
x∗

z∗
− (1− α)(1− β) + αλ

]
s∗u∗

}
z∗

<

{
1

θ(1 + λ)
[−α(1− α)(1 + λ) + λ(α− s∗) + α(1− α)β]x∗

−
[
x∗

z∗
− (1− α)(1− β) + αλ

]
s∗u∗

}
z∗

<

{
− 1

θ(1 + λ)
[α((1− α)(1− β)− αλ) + λs∗] x∗

− [1− α− (1− α)(1− β) + αλ] s∗u∗} z∗

=

{
− 1

θ(1 + λ)
[α((1− α)(1− β)− αλ) + λs∗] x∗ − [(1− α)β + αλ] s∗u∗

}
z∗ < 0,

where the first inequality is due to s∗ < α and (1 + λ)u∗/z∗ < 1 by (iv) and (vi) of

Proposition 1, respectively, the second inequality to x∗/z∗ = 1− s∗ > 1−α, by (iv)

of Proposition 1, and the last inequality to the restriction on λ in (6). �

C. Local existence and uniqueness of a convergent solution

From Appendix B follows that the steady state has a two-dimensional stable mani-

fold. Our numerical simulations suggest that the cases of repeated real eigenvalues

or complex conjugate eigenvalues never arise for parameter values within a rea-

sonable range. Hence we concentrate on the case of two distinct real negative

eigenvalues, η1 and η2, where η1 < η2 < 0. Then any convergent solution is, in

a neighborhood of (x∗, z∗, u∗), approximately of the form given in (29) which we

repeat here for convenience:

xit = C1ie
η1t + C2ie

η2t + x∗i , i = 1, 2, 3, (35)

where the constants C1i and C2i depend on initial conditions. Let v1 = (v11, v
1
2, v

1
3)
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be an eigenvector associated with η1. That is, v
1 ̸= (0, 0, 0) satisfies

(a11 − η1)v
1
1 + a12v

1
2 + a13v

1
3 = 0,

a21v
1
1 + (a22 − η1)v

1
2 + a23v

1
3 = 0, (36)

a31v
1
1 + a32v

1
2 + (a33 − η1)v

1
3 = 0,

where one of the equations is redundant. Similarly, let v2 = (v21, v
2
2, v

2
3) be an

eigenvector associated with η2. Then, with η1 replaced by η2 in (36), these equations

hold for (v11, v
1
2, v

1
3) replaced by (v21, v

2
2, v

2
3). Moreover, as η1 ̸= η2, v

1 and v2 are

linearly independent. The Ci’s in (35) are related to this in the following way:

Cji = cjv
j
i , j = 1, 2, i = 1, 2, 3, (37)

where cj, j = 1, 2, are constants to be determined by the given initial condition

(x20, x30) = (z̄0, ū0).

Returning to our original variable notation (x1t = xt, x2t = zt, and x3t = ut),

(35) together with (37) implies, for t = 0 and (z0, u0) = (z̄0, ū0),

v11c1 + v21c2 − x0 = −x∗,

v12c1 + v22c2 + 0 = z̄0 − z∗, (38)

v13c1 + v23c2 + 0 = ū0 − u∗,

where z̄0 and ū0 are given whereas c1, c2, and x0 are the unknowns. For the steady

state to be saddle-point stable the structure of A must be such that this system

has a unique solution (c1, c2, x0). This is the case if and only if the vector h =

(−1, 0, 0) does not belong to the linear subspace, Sp(v1,v2), spanned by the linearly

independent eigenvectors v1 and v2. Our claim is that this condition is satisfied.

We prove this by showing that the opposite leads to a contradiction.

Suppose that, contrary to our claim, there exist constants α1 and α2 such that

α1v
1 + α2v

2 = h =

 −1
0
0

 . (39)

Multiplying from the left by A gives

α1Av1 + α2Av2 = α1η1v
1 + α2η2v

2 = Ah =

 −a11
−a21
−a31

 , (40)
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where we have used the definition of eigenvalues. By (39) follow α2v
2
2 = −α1v

1
2 and

α2v
2
3 = −α1v

1
3. Substituting into (40) yields

α1v
1
2η1 − α1v

1
2η2 = −a21,

α1v
1
3η1 − α1v

1
3η2 = −a31,

so that

α1v
1
2 = −α2v

2
2 =

a21
η2 − η1

, (41)

α1v
1
3 = −α2v

2
3 =

a31
η2 − η1

, (42)

where η2 − η1 > 0.

Lemma C1. Assume (A1) and (A2). Then a11 > 0, a21 > 0, a22 < 0, a33 < 0, and

a31 + a32 > 0.

Proof. Assume (A1) and (A2). Then, by Proposition 1, s∗x∗z∗u∗ > 0. From the

definition of A in Appendix B we have, first, a11 = x∗ [1− (1− θ−1)λu∗/z∗] >

x∗(1−λu∗/z∗)> 0, where the last inequality follows from u∗/z∗ < 1/(1+λ), cf. (v) of

Proposition 1; second, a21 = z∗ [1− α− ((1− α)β + λ)u∗/z∗]> 0 by (v) of Proposi-

tion 1 and the restriction on λ in (6); third, a22 = z∗ [α− 1 + ((1− α)β + λ) (1− s∗)u∗/z∗]

= −a21 − z∗((1− α)β + λ)s∗u∗/z∗ < 0, since a21 > 0; fourth, we immediately have

a33 < 0; finally, a31 + a32 = u∗ [1− (1− α)β] s∗u∗/z∗ > 0. �

By Lemma C1, a21 ̸= 0 and so (42) together with (41) implies that

v13 = a31v
1
2/a21, (43)

and that v12 ̸= 0 (and v22 ̸= 0). Multiplying the second equation in (36) by a31 and

the third by a21 and subtracting yields

[a31(a22 − η1)− a21a32] v
1
2 + [a31a23 − a21(a33 − η1)] v

1
3 = 0.

Substituting (43) into this, v12 cancels out. Ordering gives

a32a
2
21 − a23a

2
31 − a21a31(a22 − a33) = 0. (44)

It remains to show that (44) implies a contradiction.
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Let k1 ≡ 1− (1− α)β > 0 and k2 ≡ (1− α)β + λ ≥ 0. Insert the elements of A

into the left-hand side of (44) to get a32a
2
21 −a23a231 −a21a31(a22 − a33)

= z∗u∗
{
(α− k1

x∗u∗

z∗2
)z∗(1− α− k2

u∗

z∗
)2

−k2s∗u∗(k1
u∗

z∗
− α)2 − (1− α− k2

u∗

z∗
)(k1

u∗

z∗
− α)

[
(α− 1)z∗ + k1s

∗u∗ + k2
x∗u∗

z∗

]}
= s∗z∗u∗2k1

{
(1− α)

[
1− (1 + λ)

u∗

z∗

]
+ αk2

u∗

z∗

}
> s∗z∗u∗2k1αk2

u∗

z∗
≥ 0,

where the first inequality is implied by α < 1 and (v) of Proposition 1. Having

hereby falsified (44), we conclude that h ̸∈ Sp(v1,v2), implying existence of a

unique convergent solution.

D. When A is indecomposable, generically the same asymptotic speed of

convergence applies to all three variables in the dynamic system

Consider an n × n matrix M, n ≥ 2. Let the element in the i’th row and j’th

column of M be denoted aij. Let S be a subset of the row (and column) indices

N = {1, 2, . . . , n} and let Sc be the complement of S. Then M is defined as

decomposable if there exists a subset S of N such that aij = 0 for i ∈ S, j ∈ Sc.

Thus, when the matrix M is decomposable, then by interchanging some rows as

well as the corresponding columns it is possible to obtain a lower block-triangular

matrix, that is, a matrix with a null submatrix in the upper right corner. A special

case of a decomposable matrix M is the case where by interchanging some rows as

well as the corresponding columns it is possible to obtain a lower triangular matrix,

that is, a matrix with zeros everywhere above the main diagonal.

IfM is decomposable, any subset S of the row indices such that aij = 0 for i ∈ S,

j ∈ Sc, is called an independent subset. If a quadratic matrix is not decomposable,

it is called indecomposable.

By inspection of the Jacobian matrix A defined in Appendix B we check under

what circumstances A is decomposable. We have N = {1, 2, 3} . Using Lemma C1

we first see that the only row number that can by itself be an independent subset

is {1} , which requires a12 = a13 = 0. This will hold if and only if λ = 0 and θ = α.

Next we check when a pair of rows constitutes an independent subset. If {1, 2} is
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an independent subset, we must have a13 = a23 = 0. This will hold if and only if

λ = β = 0. The pair {2, 3} can not be an independent subset since a21 ̸= 0, by

Lemma C1. Finally, if {1, 3} should be an independent subset, we should have a12

= a32 = 0. It is easily shown that necessary (but not sufficient) for a12 = 0 is that

θ ≤ α. And a32 = 0 is only possible for very special combinations of parameter

values involving all parameters of the system. So from a generic point of view we

can rule out this case, which is not of much interest anyway because θ ≤ α is not

empirically plausible.

We are left with two decomposable cases: Case D1: λ = 0 = β, θ ̸= α; and

Case D2: λ = 0, β ≥ 0, θ = α. These cases are treated in Appendix E.

Here we consider the complement of the union of these cases, that is, the case

where λ > 0 or (β > 0 and θ ̸= α), implying that the Jacobian matrix A is

generically indecomposable.

Regarding the eigenvalues of A, as above we concentrate on the case of two

distinct real negative eigenvalues, η1 and η2, where η1 < η2 < 0, and one positive

eigenvalue, η3.

Lemma D1. Assume (A1) and (A2). Let v2 = (v21, v
2
2, v

2
3) be an eigenvector

associated with η2, where η1 < η2 < 0. If λ > 0 or (β > 0 and θ ̸= α), then v22 ̸= 0,

and, generically, v2i ̸= 0, for i = 1, 3.

Proof. Assume (A1) and (A2) and that λ > 0 or (β > 0 and θ ̸= α). It immediately

follows that a23 > 0. By definition of η2 and v2,

(a11 − η2)v
2
1 + a12v

2
2 + a13v

2
3 = 0 , (45)

a21v
2
1 + (a22 − η2)v

2
2 + a23v

2
3 = 0 , (46)

a31v
2
1 + a32v

2
2 + (a33 − η2)v

2
3 = 0 . (47)

That v22 ̸= 0 is shown by contradiction. Suppose v22 = 0. Then, by (45) and (46),[
a11 − η2 a13
a21 a23

](
v21
v23

)
=

(
0
0

)
,

where v21 ̸= 0 or v23 ̸= 0, since v2 is an eigenvector. Consequently, the determinant of

the 2×2 matrix must be vanishing, i.e., (a11−η2)a23−a21a13 = 0. But, considering
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matrix A we have, after ordering,

(a11 − η2)a23 − a21a13 =
s∗z∗

θ
{(1− α)βθ(x∗ − η2) + λ[(1− α + αθ)x∗ − θη2]} > 0,

where the inequality follows from η2 < 0 and the assumption that λ > 0 or β > 0.

From this contradiction we conclude that v22 ̸= 0.

Now suppose v21 = 0. Then, by (45) and (46),[
a12 a13

a22 − η2 a23

](
v22
v23

)
=

(
0
0

)
.

Since v22 ̸= 0, the determinant of the 2× 2 matrix must be vanishing:

a12a23 − a13(a22 − η2) = 0. (48)

But, as noted above, a23 > 0; and since by assumption, if λ = 0, we have θ ̸= α, a12

and a13 cannot be nil at the same time. Consequently, in no dense open subset in

the relevant parameter space does (48) hold. This proves the genericity of v21 ̸= 0.

Finally, suppose v23 = 0. Then, by (45) and (47),[
a11 − η2 a12
a31 a32

](
v21
v22

)
=

(
0
0

)
.

Since v22 ̸= 0, the determinant of the 2× 2 matrix must be vanishing:

(a11 − η2)a32 − a31a12 = 0. (49)

But a11 − η2 > 0 and, by Lemma C1, a31 and a32 cannot be nil at the same time.

Consequently, in no dense open subset in the relevant parameter space does (49)

hold. This proves the genericity of v23 ̸= 0. �

Lemma D2. Assume (A1) and (A2). Let xi0 ̸= x∗i , i = 1, 2, 3. If λ > 0 or (β > 0

and θ ̸= α), then c2 in (37) differs generically from 0.

Proof. In Appendix C we showed that (38) has a unique solution (c1, c2, x0). By

Cramer’s rule

c2 = −(z0 − z∗)v13 − (u0 − u∗)v12
v12v

2
3 − v22v

1
3

,

where v12v
2
3 − v22v

1
3 ̸= 0, that is, (v12, v

1
3) ̸= (0, 0) and (v22, v

2
3) ̸= (0, 0). Let z0 ̸= z∗

and u0 ̸= u∗. Suppose c2 = 0. Then (z0− z∗)v13 = (u0−u∗)v12, which is possible only
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if v12 ̸= 0, v13 ̸= 0, and the pair (z0, u0) satisfies (z0 − z∗)/(u0 − u∗) = v12/v
1
3. Such

pairs, however, do not constitute a dense open subset in the (z, u)-plane, as was to

be shown. �

Combining Lemma D1 and D2 we have that when (A1) and (A2) hold together

with λ > 0 or (β > 0 and θ ̸= α), then generically C2i = c2v
2
i ̸= 0, i = 1, 2, 3. In the

light of (30) it follows that in this case the same asymptotic speed of convergence,

−η2, applies to all three variables in the dynamic system. That this will also be the

asymptotic speed of convergence of yt/y
∗
t follows by (31). This proves Proposition

3.

E. Discontinuity of the dominant eigenvalue for the x and z dynamics

when learning disappears

We assume throughout that (A1) and (A2) hold so that, by Proposition 1, x∗,

z∗, u∗, and s∗ are all strictly positive.

Decomposable case D1: λ = 0 = β, θ ̸= α. In this case a13 = 0 = a23. So the

Jacobian matrix A is lower block-triangular, implying that its eigenvalues coincide

with the eigenvalues of the upper left 2 x 2 submatrix on the main diagonal of A

and the lower right diagonal element, a33 < 0. Let A11 denote the upper left 2 x 2

submatrix.

Decomposable case D2: λ = 0, β ≥ 0, θ = α. In this case (and only in this

case) a12 = 0 = a13. So A is again lower block-triangular, but this time with the

positive eigenvalue equal to a11 = x∗ > 0, whereas the two negative eigenvalues

are associated with the lower right 2 x 2 submatrix of A. Let this submatrix be

denoted A22. As long as β > 0, a23 ̸= 0 and A is not further decomposable. In

case β = 0, also a23 = 0. Then A22, hence also A, is lower triangular with the

eigenvalues appearing on the main diagonal.

As a preparation for the proof of Proposition 4, which involves both case D1

and D2, we need three lemmas concerning case D1. For case D1 we have

A=

 A11
0
0

a31 a32 a33

=

 x∗
(
α
θ
− 1

)
x∗ 0

(1− α)z∗ (α− 1)z∗ 0(
u∗

z∗
− α

)
u∗

(
α− x∗u∗

z∗2

)
u∗ −s∗u∗

 (50)
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The submatrix A11 has determinant detA11 = −(1−α)α
θ
x∗z∗ < 0. The eigenvalues

are η̄1 and η̄3, where η̄1 < 0 < η̄3. The third eigenvalue of A is η̄2 = −s∗u∗ = −g∗Y <
0. For realistic parameter values we have η̄1 < η̄2 < 0.

Lemma E1. Let λ = 0 = β and θ ̸= α. Let z0 = z̄0 > 0 be given. Then the unique

convergent approximating solution for the (x, z) subsystem is

xt = cv11e
η̄1t + x∗, (51)

zt = cv12e
η̄1t + z∗, (52)

where η̄1 is the negative eigenvalue of A11, v
1
1 = 1, v12 = −(x∗ − η̄1)/a12 ̸= 0, and

c = (z̄0 − z∗)/v12.

Proof. From Lemma C1 we know that a21 ̸= 0 and since λ = 0 is combined with

θ ̸= α, a12 ̸= 0. So A11 is not decomposable. As x∗ > 0 and η̄1 < 0, we have

a12v
1
2 = −(x∗ − η̄1) < 0, which implies v12 ̸= 0. So c = (z̄0 − z∗)/v12 is well-defined

and ensures, when combined with (52), that z0 = z̄0. Finally, since x
∗ = a11, by

construction (v11, v
1
2) satisfies the equation (a11 − η̄1)v

1
1 + a12v

1
2 = 0. Thus, (v11, v

1
2)

̸= (0, 0) is an eigenvector of A11 associated with η̄1; and (51)-(52) thereby constitutes

the unique convergent approximating solution for the (x, z) subsystem. �

Lemma E2. Let λ = 0 = β and θ ̸= α. Let the two negative eigenvalues of

A, η̄1 and η̄2, satisfy η̄1 < η̄2 < 0. Define v1 = (v11, v
1
2, v

1
3), where (v11, v

1
2) is as

given in Lemma E1, and v13 = (a31v
1
1 + a32v

1
2)/(η̄1 − a33). Then v1 is an eigenvector

of A associated with the eigenvalue η̄1. Further, v
2 = (v21, v

2
2, v

2
3) = (0, 0, 1) is an

eigenvector of A associated with the eigenvalue η̄2.

Proof. Since a33 = η̄2 > η̄1, η̄1−a33 < 0. Then v13 is well-defined and by construction

v1 satisfies (36) with η1 = η̄1 in view of a13 = a23 = 0. Let w = (w1, w2, w3) be an

arbitrary eigenvector of A associated with the eigenvalue η̄2 :

(a11 − η̄2)w1 + a12w2 + 0 = 0,

a21w1 + (a22 − η̄2)w2 + 0 = 0,

a31w1 + a32w2 + (a33 − η̄2)w3 = 0.

The eigenvalues of A11 are η̄1 < 0 and η̄3 > 0, and since η̄1 < η̄2 < 0, η̄2 cannot be
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an eigenvalue of A11. Hence, w1 = 0 = w2. As η̄2 = a33, this implies that w3 ̸= 0 is

arbitrary and can be set equal to 1. Thereby v2 = w. �

Lemma E3. Let λ = 0 = β and θ ̸= α. Let z0 = z̄0 > 0 and u0 = ū0 > 0 be given.

Let c be defined as in Lemma E1 and v1 and v2 as in Lemma E2. Then the unique

convergent approximating solution for the total system is given by (51), (52), and

ut = c1v
1
3e
η̄1t + c2v

2
3e
η̄2t + u∗, (53)

with c1 = c = (z̄0 − z∗)/v12 and c2 = ū0 − u∗ − c1v
1
3. The speed of convergence of x

and z is −η̄1, whereas that of u is −η̄2.

Proof. In Lemma E2 it was shown that v1 and v2 are eigenvectors of A associated

with the eigenvalues η̄1 and η̄2, respectively. We show that the solution formula

(35) with η1 = η̄1, η2 = η̄2, and Cji = cjv
j
i , j = 1, 2, i = 1, 2, 3, for all t ≥ 0 implies

the proposed solution. In view of c1 = c = (z̄0 − z∗)/v12 and v21 = 0, (35) for i = 1

is the same as (51). In view of c1 = c and v22 = 0, (35) for i = 2 is the same as (52).

It follows that x and z share the same speed of convergence, −η̄1. Finally, in view

of c2 = ū0 − u∗ − c1v
1
3 and v23 = 1, (35) for i = 3 is the same as (53). It remains to

show that η̄2 is the dominant eigenvalue for the dynamics of u. Since η̄1 < η̄2 < 0,

this is so if C23 ≡ c2v
2
3 ̸= 0 generically. As v23 = 1,

c2v
2
3 = c2 = ū0 − u∗ − c1v

1
3 = ū0 − u∗ − (z̄0 − z∗)v13/v

1
2,

by the definition of c1. Let ū0 ̸= u∗ and z̄0 ̸= z∗. Suppose c2 = 0. Then (z̄0 −
z∗)v13/v

1
2 = ū0−u∗. Pairs (z̄0, ū0) satisfying this do not, however, constitute a dense

open subset in the (z, u)-plane. Hence c2v
2
3 (= c2) ̸= 0 generically, as was to be

shown. �

Proof of Proposition 4 of Section 3.4. It is given that when λ = 0 = β and

θ ̸= α, the eigenvalues of A are real numbers, η̄1, η̄2, and η̄3, that satisfy η̄1 < η̄2

< 0 < η̄3. Similarly, when λ = 0 = β together with θ = α, the eigenvalues of A are

real numbers, η̃1, η̃2, and η̃3, that satisfy η̃1 < η̃2 < 0 < η̃3.

(i): Suppose θ ̸= α and that λ or β (or both) are strictly positive but close to

zero. By hyperbolicity of the steady state, the eigenvalues of A, η1, η2, and η3, are
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still real and, by continuity, close to η̄1, η̄2, and η̄3. Thus, maintaining numbering

in accordance with size, we have η1 ≈ η̄1 < η2 ≈ η̄2 < 0 < η3 ≈ η̄3. In view of

θ ̸= α, as long as λ > 0 or β > 0, Proposition 3 applies. So the same asymptotic

speed of convergence, −η2, applies to all three variables. Let (β, λ) → (0, 0)+. Then

−η2 → −η̄2. In the limit Lemma E3 applies, that is, the equilibrium path for x and

z is given by (51) and (52), respectively. Consequently, in the limit the speed of

convergence of x and z shifts from the value −η̄2 to the value −η̄1.
(ii): Let θ = α and β = 0. As long as λ > 0, A is indecomposable. Let λ→ 0+.

In the limit A takes the form given in (50) with a12 = 0, that is, A becomes lower

triangular with eigenvalues η̃3 = x∗ > 0, η̃1 = (α − 1)z∗ < 0, and η̃2 = −g∗Y < 0

where, by assumption, η̃1 < η̃2. As long as λ > 0, but close to zero, an argument

analogue to that under (i) applies, except that in the limit it is only z that shifts

to a higher finite speed of convergence. The jump variable x becomes in the limit

independent of both z and u. Thus x becomes free to adjust instantaneously to its

steady state value; that is, in the limit the speed of convergence of x is infinite.

(iii): Let θ = α and λ = 0. Then, a12 = a13 = 0. Even for β > 0 the dynamic

system belongs to the decomposable caseD2 described above, and the jump variable

x is independent of the dynamics of z and u. So the speed of convergence of x is

infinite even for β > 0 and remains so in the limit for β → 0+. But the (z, u)

dynamics is governed jointly by η1 ≈ η̃1 and η2 ≈ η̃2 as long as β is strictly positive

but close to zero, where η̃1 < η̃2 < 0. In the limit for β → 0+, however, A becomes

lower triangular and so the movement of z ceases to be influenced by the slow

adjustment of u and is governed only by the eigenvalue η̃1 = (α− 1)z∗. The speed

of convergence of z thus jumps from −η̃2 to the higher value −η̃1. �

F. Saddle-point stability when learning is based on net investment

When learning is based on net investment, the dynamic system becomes two-

dimensional, cf. the formulas for gx and gz in Section 4. To avoid explosive growth

the parameter values are restricted as follows:

0 ≤ λ < (1− α)(1− β) . (*)

50



The Jacobian matrix evaluated in steady state is

B =

[
x∗(1− θ−1

θ
λ) x∗(α

θ
+ θ−1

θ
λ− 1)

z∗[(1− α)(1− β)− λ] −z∗[(1− α)(1− β)− λ]

]
.

We find detB = −α
θ
[(1−α)(1−β)−λ]x∗z∗ < 0, where the inequality is implied by

the parameter restriction (*). Thus the eigenvalues, η1 and η2, differ in sign, and

the steady state is saddle-point stable.

The non-trivial steady state, (x∗, z∗), has consumption-capital ratio

x∗ = z∗ − δ − (1− α)(γ + n) + ψ

(1− α)(1− β)− λ

and output-capital ratio

z∗ =
θ [(1− α)γ + αψ] + (1− α) [λγ + (1− β)ψ + θ(βψ − λγ)]

α [(1− α)(1− β)− λ]

+
{θ [(1− α)β + αλ] + (1− α)λ}n

α [(1− α)(1− β)− λ]
+
δ + ρ

α
.

G. Simulations

The numerical results in this appendix refer to the benchmark model with learning

based on gross investment. “Speed of convergence” refers to the common asymptotic

speed of convergence of x and z, i.e., σx = σz. By Proposition 4, in the absence

of learning, σu ̸= σi, i ∈ {x, z}. In the tables, numbers in parentheses indicate the

speed of convergence, in percentage points, of u in the absence of learning. Unless

otherwise specified, values of the background parameters are the baseline values

specified in Table 2 of the text. The range of the parameter appearing in the first

column of the tables is limited to values not requiring the adjusting variable to take

on a negative value to maintain g∗c = 0.02.
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TABLE A
Asymptotic speed of convergence as the embodied learning

parameter, λ, rises and γ is adjusted so as to maintain g∗c = 0.02.

Speed of Convergence in % r∗ s∗ (Y/(pK))∗ g∗p
θ = 1 θ = 1.75 θ = 3 θ = 4 .................. θ = 1.75 ..................

Panel A. n = 0.01

λ γ α

0.00 0.020 0.324 10.48 8.78 7.52 6.96 0.055 0.25 0.32 0.000
(3.00) (3.00) (3.00) (3.00)

0.28 0.016 0.324 2.55 2.49 2.42 2.37 0.055 0.25 0.35 -0.008
0.56 0.012 0.324 2.10 2.01 1.91 1.85 0.055 0.26 0.38 -0.017
0.84 0.008 0.324 1.66 1.57 1.47 1.41 0.055 0.26 0.40 -0.025
1.11 0.004 0.324 1.25 1.17 1.08 1.03 0.055 0.27 0.43 -0.033
1.39 0.000 0.324 0.86 0.80 0.73 0.70 0.055 0.27 0.45 -0.042

Panel B. n = 0.005

λ γ α

0.00 0.020 0.324 10.38 8.67 7.40 6.85 0.055 0.23 0.32 0.000
(2.50) (2.50) (2.50) (2.50)

0.32 0.016 0.324 2.10 2.05 2.00 1.97 0.055 0.24 0.32 -0.008
0.63 0.012 0.324 1.68 1.62 1.54 1.50 0.055 0.24 0.35 -0.016
0.95 0.009 0.324 1.27 1.21 1.14 1.13 0.055 0.25 0.37 -0.024
1.27 0.005 0.324 0.89 0.84 0.78 0.75 0.055 0.25 0.40 -0.032
1.58 0.000 0.324 0.53 0.49 0.45 0.43 0.055 0.26 0.45 -0.040

Panel C. n = 0.001

λ γ α

0.00 0.020 0.324 10.31 8.57 7.32 6.77 0.055 0.22 0.32 0.000
(2.10) (2.10) (2.10) (2.10)

0.40 0.016 0.324 1.69 1.65 1.61 1.59 0.055 0.23 0.35 -0.008
0.79 0.012 0.324 1.26 1.21 1.16 1.13 0.055 0.23 0.38 -0.017
1.19 0.008 0.324 0.84 0.80 0.76 0.73 0.055 0.24 0.40 -0.025
1.59 0.004 0.324 0.46 0.43 0.40 0.38 0.055 0.24 0.43 -0.033
1.98 0.000 0.324 0.09 0.08 0.08 0.07 0.055 0.25 0.45 -0.042

Note: β = 0, ψ = 0. When λ = 0, u converges with a lower speed than (x, z). This lower speed

is shown in brackets.
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TABLE B
Asymptotic speed of convergence as the embodied learning

parameter, λ, rises and ψ is adjusted so as to maintain g∗c = 0.02

Speed of Convergence in % r∗ s∗ (Y/(pK))∗ g∗p
θ = 1 θ = 1.75 θ = 3 θ = 4 .................. θ = 1.75 ..................

λ ψ α

0.00 0.042 0.324 15.43 12.51 10.32 9.33 0.055 0.27 0.45 -0.042
(3.00) (3.00) (3.00) (3.00)

0.28 0.033 0.324 2.54 2.49 2.42 2.38 0.055 0.27 0.45 -0.042
0.56 0.025 0.324 2.09 2.01 1.92 1.86 0.055 0.27 0.45 -0.042
0.84 0.017 0.324 1.66 1.58 1.48 1.42 0.055 0.27 0.45 -0.042
1.11 0.008 0.324 1.25 1.17 1.08 1.03 0.055 0.27 0.45 -0.042
1.39 0.000 0.324 0.86 0.80 0.73 0.70 0.055 0.27 0.45 -0.042

Note: β = 0, γ = 0.

TABLE C
Asymptotic speed of convergence as the disembodied learning
parameter, β, rises and γ is adjusted so as to maintain g∗c = 0.02

Speed of Convergence in % r∗ s∗ (Y/(pK))∗ g∗p
θ = 1 θ = 1.75 θ = 3 θ = 4 .................. θ = 1.75 ..................

Panel A.

β γ α

0.00 0.020 0.324 10.48 8.78 7.52 6.96 0.055 0.25 0.32 0.0
(3.00) (3.00) (3.00) (3.00)

0.13 0.016 0.324 2.59 2.51 2.42 2.36 0.055 0.25 0.32 0.0
0.27 0.012 0.324 2.17 2.05 1.90 1.82 0.055 0.25 0.32 0.0
0.40 0.008 0.324 1.76 1.61 1.45 1.37 0.055 0.25 0.32 0.0
0.53 0.004 0.324 1.35 1.20 1.06 0.99 0.055 0.25 0.32 0.0
0.67 0.000 0.324 0.95 0.82 0.71 0.66 0.055 0.25 0.32 0.0

Panel B. [α+ (1− α)β] = 0.5

β γ α

0.00 0.020 0.500 6.23 5.12 4.23 3.81 0.055 0.38 0.21 0.0
(3.00) (3.00) (3.00) (3.00)

0.14 0.016 0.420 2.53 2.42 2.29 2.21 0.055 0.32 0.25 0.0
0.24 0.013 0.340 2.24 2.12 1.97 1.89 0.055 0.26 0.31 0.0
0.32 0.010 0.260 2.03 1.90 1.77 1.69 0.055 0.20 0.40 0.0
0.39 0.008 0.180 1.86 1.74 1.61 1.54 0.055 0.14 0.58 0.0
0.44 0.007 0.100 1.73 1.61 1.49 1.43 0.055 0.08 1.05 0.0

Note: λ = 0, ψ = 0.
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TABLE D
Asymptotic speed of convergence as the disembodied learning
parameter, β, rises and ψ is adjusted so as to maintain g∗c = 0.02

Speed of Convergence in % r∗ s∗ (Y/(pK))∗ g∗p
θ = 1 θ = 1.75 θ = 3 θ = 4 .................. θ = 1.75 ..................

Panel A.

β ψ α

0.00 0.042 0.324 15.4 12.5 10.3 9.33 0.055 0.27 0.45 -0.042
(3.00) (3.00) (3.00) (3.00)

0.13 0.033 0.324 2.58 2.52 2.43 2.38 0.055 0.27 0.43 -0.033
0.27 0.025 0.324 2.16 2.05 1.92 1.85 0.055 0.26 0.40 -0.025
0.40 0.017 0.324 1.75 1.62 1.47 1.39 0.055 0.26 0.38 -0.017
0.53 0.008 0.324 1.34 1.20 1.06 1.00 0.055 0.25 0.35 -0.008
0.67 0.000 0.324 0.95 0.82 0.71 0.66 0.055 0.25 0.32 0.000

Panel B. [α+ (1− α)β] = 0.5

β ψ α

0.00 0.020 0.500 7.64 6.18 5.00 4.45 0.055 0.40 0.25 -0.020
(3.00) (3.00) (3.00) (3.00)

0.14 0.022 0.420 2.54 2.45 2.33 2.25 0.055 0.34 0.30 -0.022
0.24 0.025 0.340 2.23 2.13 2.00 1.92 0.055 0.28 0.38 -0.025
0.32 0.029 0.260 2.01 1.90 1.78 1.71 0.055 0.21 0.52 -0.029
0.39 0.038 0.180 1.83 1.73 1.62 1.55 0.055 0.15 0.79 -0.038
0.44 0.060 0.100 1.68 1.59 1.49 1.43 0.055 0.09 0.65 -0.060

Note: λ = 0, γ = 0.

TABLE E
Asymptotic speed of convergence as the disembodied learning
parameter, β, rises and λ is adjusted so as to maintain g∗c = 0.02

Speed of Convergence in % r∗ s∗ (Y/(pK))∗ g∗p
θ = 1 θ = 1.75 θ = 3 θ = 4 .................. θ = 1.75 ..................

β λ α

0.00 1.39 0.324 0.86 0.80 0.73 0.70 0.055 0.27 0.45 -0.042
0.13 1.11 0.324 0.87 0.80 0.73 0.69 0.055 0.27 0.43 -0.033
0.27 0.84 0.324 0.89 0.81 0.73 0.69 0.055 0.26 0.40 -0.025
0.40 0.56 0.324 0.91 0.81 0.72 0.68 0.055 0.26 0.38 -0.017
0.53 0.28 0.324 0.92 0.82 0.72 0.67 0.055 0.25 0.35 -0.008
0.67 0.00 0.324 0.95 0.82 0.71 0.66 0.055 0.25 0.32 0.000

Note: γ = 0, ψ = 0.
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TABLE F
Asymptotic speed of convergence as the exogenous embodied
change parameter, ψ, rises and γ is adjusted so as to maintain

g∗c = 0.02

Speed of Convergence of (x, z) in % r∗ s∗ (Y/(pK))∗ g∗p
θ = 1 θ = 1.75 θ = 3 θ = 4 .................. θ = 1.75 ..................

ψ γ α

0.000 0.020 0.324 10.48 8.78 7.52 6.96 0.055 0.25 0.32 0.000
0.008 0.016 0.324 11.47 9.52 8.08 7.43 0.055 0.25 0.35 -0.008
0.017 0.012 0.324 12.46 10.27 8.63 7.90 0.055 0.26 0.38 -0.017
0.025 0.008 0.324 13.45 11.01 9.19 8.37 0.055 0.26 0.40 -0.025
0.033 0.004 0.324 14.44 11.76 9.75 8.85 0.055 0.27 0.43 -0.033
0.042 0.000 0.324 15.43 12.51 10.32 9.33 0.055 0.27 0.45 -0.042

Note: β = 0, λ = 0. In the decomposable case, the SOC of u equals the constant g∗Y = 3.00%.
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