
Munich Personal RePEc Archive

The Non-Zero Lower Bound Lending

Rate and the Liquidity Trap

Khemraj, Tarron

New College of Florida

1 September 2011

Online at https://mpra.ub.uni-muenchen.de/42030/

MPRA Paper No. 42030, posted 18 Oct 2012 14:57 UTC



1 

 

The Non-Zero Lower Bound Lending Rate and the Liquidity Trap 

 

Tarron Khemraj, New College of Florida 

Abstract 

Most studies of the liquidity trap emphasize the zero bound benchmark policy rate. This paper 
integrates a non-zero lower bound lending rate and the traditional zero bound policy rate in a 
dynamic structural macroeconomic model that takes into consideration aggregate bank liquidity 
preference as a financial friction. The approach allows for analyzing the dynamic effects of 
quantitative easing and an interest rate policy. Once the non-zero lower limit is reached, 
increasing the benchmark policy rate marginally can have a positive effect on output. Expanding 
quantitative easing at the non-zero lower limit results in a negative effect on output. Increasing 
marginally the zero bound policy rate is better at stimulating inflation than quantitative easing. 
However, excessive tightening in a normal regime would result in the opposite effect.   

Key Words: liquidity trap, quantitative easing, financial friction, excess liquidity  

 

1. Introduction 

The literature often recognizes the zero bound policy interest rate as an important feature 

of the liquidity trap (Murota and Ono, 2012; Eggertsson, 2010; Krugman, 1998). This work 

argues that there is also a non-zero minimum threshold lending rate existing along with the zero 

bound benchmark funds rate. The paper integrates these two interest rates into a dynamic 

structural macroeconomic model, which will allow us to analyze inflation and output dynamics 

when the zero bound and non-zero bound rates are simultaneously binding1. The model 

presented herein has the following features. First, it has an augmented IS equation in keeping 

with the empirical findings of Goodhart and Hofmann (2005). Second, it proposes a bank 

reserves-loan equation (hereafter RL equation) similar in spirit to Khemraj and Proaño (2011). 

These two equations allow us to solve for two endogenous variables – aggregate output and the 

bank lending rate. Third, a recursive Phillips curve is added for the purpose of solving for the 

time path of inflation.  

                                                           
1
 Examples of structural macroeconomic models include Ono (2011) and Bernanke and Blinder (1988). 
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Fundamental to RL equation is the idea of an aggregate bank liquidity preference curve. 

Bank liquidity preference is introduced as a financial friction because the curve becomes flat at a 

non-zero minimum threshold lending rate, signaling that bank loans and excess reserves are 

perfect substitutes (Khemraj, 2010). This substitution takes place at an interest rate above zero 

instead of the often emphasized substitution between government bonds and money at the zero 

bond rate of the classic liquidity trap (Eggertsson and Ostry, 2005)2. At this stage the money 

multiplier declines indicating that bank credit does not grow concomitantly with the expansion of 

excess bank reserves, which have increased to unprecedented levels following three rounds of 

quantitative easing. Introducing bank liquidity preference as a financial friction in a dynamic 

macroeconomic model has not been done in the literature. The idea of a financial friction, as 

introduced in this paper, has to do with the fact that a flat bank liquidity preference curve is 

associated with bank disintermediation during the period when there is a binding minimum 

threshold lending interest rate. Moreover, the minimum rate indicates that the market lending 

rate is equal to the marginal cost of making new loans adjusted for the risk of borrower default. 

This work models the minimum threshold lending rate as a mark-up over the marginal cost of 

making loans and a probability of borrower default. Therefore, for the rest of the paper the terms 

minimum mark-up threshold lending rate and non-zero lower bound lending rate will be used 

interchangeably.  

 The paper proposes a reserve-loan equation (RL equation), which embeds a reciprocal 

aggregate bank liquidity preference function. By introducing the RL equation the paper 

integrates the proposed financial friction with the bank loanable funds market; and it embeds the 

friction in a dynamic model which allows for studying output and inflation fluctuations given a 

policy of monetary easing versus a policy of a marginal increase in the zero bound policy interest 

rate. The rest of the paper is organized as follows. Using diagrams, section 2 illustrates the idea 

of how the financial friction influences the bank loanable funds market. The name bank liquidity 

                                                           
2
 In an earlier work, Frost (1971) proposed a stable bank excess reserves curve that is kinked at a Treasury bill rate 

close to zero (between 0.3 and 0.5 percent). According to Frost, profit-maximizing banks incur brokerage fees (or 
transaction costs) which are higher than the market rate earned on Treasury bills – thus the curve is kinked at this 
point to signal a more elastic accumulation of excess reserves. Using an econometric procedure, Ogawa (2007) 
identified two factors accounting for Japanese banks’ demand for excess reserves: (i) a near-zero short-term interest 
rate and (ii) fragile bank balance sheet. In an opinion piece, Keister and McAndrews (2009) argued that the 
unprecedented excess reserves result purely from quantitative easing. In the context of this paper, the excess 
reserves phenomenon reflects a binding minimum mark-up lending rate at which point banks view loans and excess 
reserves as perfect substitutes.   
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trap (hereafter BLT) is used to represent this phenomenon. This section is followed by section 3 

that derives the dynamic equations for output and inflation. Section 4 provides several stylized 

facts pertinent to the discussion. Section 5 simulates the dynamic multipliers and section 6 

concludes. An appendix is given in which the non-zero lower bound lending rate lending rate is 

derived.  

2. Diagrammatic Explanation of the Bank Liquidity Trap 

Krugman (1998, p.148) defines the liquidity trap as: “a situation in which conventional 

monetary policies have become impotent, because nominal interest rates are at or near zero: 

injecting monetary base into the economy has no effect, because base and bonds are viewed by 

the private sector as perfect substitutes.” This work extends this idea by including aggregate 

bank liquidity preference in the narrative of the liquidity trap. The BLT has the following 

features: (i) the trigger is a fall in asset prices that reduces banks’ net worth; (ii) the diminished 

net worth negatively shocks banks’ liquidity preference; (iii) central bank liquidity injection 

pushes the market lending rate down towards the risk-adjusted marginal cost of loans (the mark-

up lending rate); and (iv) the loan market is pushed into disequilibrium where the supply of loans 

is less than the demand for loans.  Richard Koo’s (2009) balance sheet recession thesis also 

underscores the collapse of asset prices. Koo’s analysis focuses on household and firms repaying 

old debt and therefore reducing their consumption and investment. The thesis of this paper is that 

the crash in asset prices and intervention by the central bank pushes the lending rate towards the 

minimum mark-up threshold interest rate that makes excess reserves and loans perfect substitutes 

since the market lending rate is equal to the risk-adjusted marginal cost of lending.  

The diagrammatic analysis would be made clearer once we consider the following 

equations. The first equation is the banks’ demand for excess liquidity  D
R  or the liquidity 

preference function. The supply of reserves is determined by the central bank independently of 

the loan rate L
r . Given the empirical liquidity preference in section 4, the liquidity demand 

function is modeled as a reciprocal function. Hence the interest rate enters the equation as1/
L

r . 

The reciprocal of the inverse liquidity preference curve is the non-zero lower-bound loan interest 

rate threshold, at which point the curve is flat (equation 7). The other interest rate is the rate 

banks earn for holding excess reserves, E
r . The net worth ( B

N ) is included in the liquidity 
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preference function because when asset prices fall bank reserves come under strain even when 

the bank is using some off balance sheet conduit (see Gorton and Metrick, 2010).  

(1/ , , )
D L E B

R r r N          (1) 

The following partial derivatives / 0
D L

R r   , / 0
D E

R r   and / 0
D B

R N   are 

assumed to exist. The negative relationship between 
D

R and 
L

r is obvious from a reciprocal 

liquidity preference function. An increase in the interest rate on excess liquidity (
E

r ) encourages 

banks to hoard more reserves above the required level. The positive relationship between 
D

R and

B
N needs some explanation. In good times banks need liquidity to fund loans and asset 

purchases. In bad times liquidity will tend to fall – assuming no central bank intervention – as 

asset prices decline and banks have to settle transactions with those withdrawing funds in 

traditional deposits or money market accounts. Therefore, a positive relationship is assumed to 

hold between net worth and reserves. The second equation specifies the demand for loans and the 

third the supply of loans.  

( , )
D L FH

L r N           (3) 

( , , )
S L E

L r r            (4) 

FH
N is the net worth of firms and households.  is the probability that borrowers will default on 

loans. The following partial derivatives are assumed to hold: / 0
D L

L r   , / 0
S L

L r   ,

/ 0
D FH

L N   , / 0
S E

L r   and / 0
S

L    .   

 As noted earlier, equation 1 notes that the bank liquidity preference curve is modeled as a 

reciprocal function with an asymptote being the minimum threshold interest rate. Following 

Khemraj (2010), this paper assumes that the threshold rate or non-zero lower-bound rate is a 

mark-up interest rate. Moreover, the threshold ( T
r ) determines the flat segment of the liquidity 

preference curve. In a regime of a binding threshold, we assume that banks take excess reserve 

and loans as perfect substitutes – hence the flat segment of the curve. The mark-up rate can be 

expressed by the following equation, which is derived in the appendix of the paper.  
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(1 ) ( )

(1 )(1 1/ )
F S

T

r R mc
r

aN




 


 
        (5) 

The equation includes several parameters that may cause the lower-bound threshold or 

asymptote to shift. The first is the marginal cost of lending (mc) that would include a team of 

analysts and workers who are originating new loans and managing portfolios of old ones.  was 

defined earlier – it is the probability borrowers will default.  is the percentage of reserves held 

as special deposits at the Federal Reserve, while 1  is the percentage of reserves traded in the 

overnight funds market. As1  approaches 1 the money market is again functioning as in 

normal times.  
F

r is the federal funds rate that is subjected to liquidity effects – hence the reason 

for writing it as ( )
F S

r R . The liquidity effect can be expressed symbolically as the following 

derivative ( ) 0
F S

r R  where
S

R is the level of reserves supplied by the central bank as it buys up 

various financial assets to ease the strain in the money and capital markets. The negative 

relationship is based on the idea that if the Fed wants to lower the funds rate target it would need 

to supply reserves; and if it wishes to increase the target it must tighten liquidity3. The loan 

elasticity of demand is given by the term a and N expresses the number of banks in the system.  

Figure 1 summarizes the core thesis of the bank liquidity trap. The decline in the price of 

assets cause the liquidity preference curve to shift from 1D
R to 2D

R , thereby decreasing the level 

(for the given loan rate) of liquidity in the banking system from 1R to 2R . The central bank is now 

forced to intervene by pumping excess reserves into the system4. The loan rate declines as the 

funds rate falls through the liquidity effect. There is no shift in the demand for and supply of 

loans. As liquidity is injected the market loan rate falls towards the threshold mark-up rate. At 

this point, the rate reaches the non-zero lower bound and the differential between desired loan 

demand and actual supply is farthest apart. The desired demand for loans is *D but *L is 

supplied by the banking system. The economy has now entered a bank liquidity trap. 

 

                                                           
3 Open mouth operations would also tend to influence the funds rate in the very short run. Eventually the liquidity 
effect takes over in longer period observations with which this paper is mainly devoted. 
 
4 As at end May 2012, the level of excess reserves of the US banking system exceeded $1.5 trillion.  
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Figure 1. The Bank Liquidity Trap 

 

 

 

 

 

 

 

 

 

 

 Figure 2 develops the idea further by showing that an outward shift in loan supply 

beyond *D cannot occur because it will drive the market rate below the threshold mark-up 

lending rate. It implies that the market interest rate 2L
r is lower than the risk adjusted marginal 

cost of lending; hence banks will be lending to make a loss. This is logically impossible because 

banks will not want to drive the market interest rate below marginal cost adjusted for risk of 

borrower default. To understand this point further, consider that the Fed has injected enough 

liquidity such that the supply of reserves is given by the vertical line
S

R , which intersects the flat 

segment of the liquidity preference curve. Once we are in the regime of the BLT, banks will not 

extend loans by shifting outwards supply because this causes the market loan rate to fall further 

to 2L
r .  Therefore, the BLT can only be characterized by a situation where the non-zero lower 

bound lending rate is reached and the desired demand for loans is greater than the actual supply.  

On the other hand, excessive monetary tightening can stifle credit demand should it 

pressure the market interest rate above equilibrium. This could occur at a market rate such as 3L
r
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in figure 2. If liquidity is drained from the system until it gives rise to 3L
r (as shown by equation 

5), then the desired supply of loans will now be less than the actual demand for loans. At this 

point the economy exited the BLT and entered into a regime in which investment demand is 

constrained. Here the  parameter would be negative to signal a downward pressure in the 

lending rate5. It would appear therefore that monetary policy has to walk a balancing act between 

tightening and easing such that the rate
L

r is attained. 

Figure 2. In a BLT Banks will not Shift Loan Supply Outwards 

 

 

 

 

 

 

 

 

   

  

One of the developments after the 2007-08 financial crisis was the payment of interest 

rate on excess reserves that banks hold at the Fed. In order to understand how this affects the 

model, consider equations 3 and 4. There we see the interest on excess reserves enter both the 

liquidity preference equation and the loan supply equation. Given the assumed partial 

derivatives, the loan supply function will shift inward and the liquidity preference curve will 

                                                           
5
 Oligopolistic banks would tend to quicker to adjust lending rate upward than downward; hence the parameter value 

will be different in the two regimes. The study of an investment demand constrained regime is beyond the scope of 
this paper. For an analysis of the investment demand constraint in developing economies, and in an open economy 
context, see Rodrik and Subramanian (2009).    
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shift outward for an increase in
E

r (see figure 3). The effect is that it reduces the intermediation of 

loans and increases the level of liquidity. In other words, the policy shifts banks’ preference in 

favor of excess liquidity. However, the policy would tend to increase the lending rate owing to 

its effect on loan supply. In light of the significant decline in the prime lending rate it appears 

that the effect of interest on excess reserves has not had this effect to date. The lending rate, 

however, could increase as part of an exit strategy if such a strategy involves increasing
E

r .  

Figure 3. Increase in Interest on Excess Reserves 

 

 

 

 

 

 

 

 

 

 

3. Output and Inflation Dynamics in a BLT 

The model presented above needs to be embodied in a macroeconomic framework in 

order to analyze how aggregate output and prices behave when the economy is in a BLT. The 

framework is based on three equations similar to Khemraj and Proaño (2011). The first equation 

is a reserve-loan equation (RL equation) that embeds a reciprocal liquidity preference function, 

the second an augmented IS equation, and the third a recursive equation of the Phillips curve. 

The IS equation is augmented to take into consideration loan supply of banks. Goodhart and 
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Hofmann (2005) noted that the IS equation should be augmented to include asset prices and 

monetary aggregates. This work does not include asset price in the equation because it is not 

needed for the problem we seek to address. However, the IS equation can easily be augmented 

with borrower net worth so as to analyze how a net worth crash affects output and prices over 

time. Including loan supply into the IS equation provides a specification that addresses the 

problem this paper sets itself addressing.   

The RL equation 

Assume the lending rate adjusts according to the following specification

1 [ ( , ) ( , , )]
Lt Lt D L FH S L E

r r L r N L r r    . However, for the purpose of the analysis at hand we do 

not need the shifts in supply and demand for loans. The study will focus only on changes in 

interest rate owing to movements along the supply and demand curves. Therefore, the 

specification we need for the analysis is given by equation 6. It should be noted that the 

framework is general enough for studying output and price dynamics owing to the shift variables 

in equations 3 and 4.  

1 ( )
Lt Lt D S

r r L L            (6) 

Assume also that the aggregate bank liquidity preference curve takes the shape of a reciprocal 

function with the asymptote representing the minimum mark-up interest rate T
r . The parameter l

indicates the liquidity effect ( 0 1l  ). For the remainder of this paper assume that 1l  . The 

stylized facts will show later that this assumption is consistent with an empirical chart of bank 

liquidity preference.  

l

L T St
r r R             (7) 

As noted earlier, in the BLT the supply of loans is the main constraint as the desired demand is 

unfulfilled at a specific lending interest rate. Therefore, equation 6 can be rewritten as

1Lt Lt S
r r L  . Note that 0 1  since in the BLT regime interest rate adjustment will be 

upward given no intervention by the central bank. Substituting equation 6 into 7 and expressing 

St
L as the subject gives the RL model (equation 8).  
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1

1

1
( )

St T Lt St
L r r R


 


           (8) 

Output dynamics 

The augmented IS equation is given by equation 9, while the recursive Phillips curve is 

denoted by equation 10. 
t

Y = aggregate level of output, 
t

 = inflation rate, and *
Y = trend output. 

r
 = the interest elasticity of output, 

L
 = the loan elasticity of output,  = a measurement of 

inflation persistence, and  = a measurement of the responsiveness of inflation to the output gap. 

Note that
r

 is a negative coefficient as the empirical finding of Goodhart and Hofmann (2005) 

found. 

1( )
t r L t L S

Y r L             (9) 

*

1 ( )
t t t

Y Y              (10) 

We now have the basic equations to derive the structural equation which gives the motion of 

output over time. The relationship between the federal funds rate and excess liquidity also 

follows a reciprocal function, which becomes flat at the zero bound benchmark interest rate. This 

relationship will be made obvious in the stylized facts section. Therefore, the expression ( )
F S

r R in 

equation 5 can be rewritten as a model given by equation 11.  

1

F Z St
r r R             (11) 

 Substituting equation 11 into equation 5 allows us to rewrite the threshold as 

1(1 )( )

(1 )(1 1/ )
Z St

T

r R mc
r

aN

 


  


 
 

Note that 0
Z

r  as is often noted in the case in a liquidity trap. This is the policy interest rate 

which the Federal Reserve can increase by policy actions. It is the threshold in equation 11 

because the benchmark policy rate has reached its zero bound. This rate must be distinguished 

from T
r that is determined by the mark-up rule of the banks. While Z

r gives the zero bound 
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benchmark interest rate,
T

r gives the non-zero lower bound lending rate. Substituting for
St

L into 

the IS equation gives  

1

1 1( ) ( )L L
t r Lt t T Lt St

Y r r r R
   
 


            (12)   

Note that from the Phillips curve equation we obtain 1 2 1t t t
Y      assuming stable 

parameters. If we substitute this dynamic equation into equation 12 it will give us the following 

model that shows how output evolves over time. 

1

1 1( )L L
t r t T Lt St

Y Y r r R
   
 


            (13) 

 Equation 13 suppresses the term 2( )
r Lt t

r   which will be reintroduced later when we 

analyze the inflation dynamics. We now need to substitute equations 11 and 5 into equation 13. 

Rearranging and suppressing the expressions 1( / )
L Lt

r   and [ / (1 )(1 1/ )]
L

aN mc    will 

give us the final equation (and taking into consideration the negative
r

 ) that we can use to 

analyze QE and an interest rate policy in a BLT.  

1

1

(1 ) (1 )

(1 )(1 1/ ) (1 )(1 1/ )
L L

t r t Z St
Y Y r R

aN aN

      
   




  
        

  (14)  

Equation 14 allows us to derive and simulate dynamic multipliers for both policies (see 

Appendix 1). The interest rate policy would involve increasing
Z

r since the benchmark policy rate 

is close to zero. Quantitative easing policy would involve increasing
St

R . The term
r

 

determines the stability of the equation. It would be necessary to solve for the time path of the 

model in order to analyze how the model parameters ( , , , , , , , , )
L r

a N       influence the 

relative effectiveness of the two policies. The degree of responsiveness of aggregate output to 

loans (measured by L
 ) is critical in determining a positive response in period 0t  .  and 

affect only the effectiveness of QE, while the percentage of reserves ( ) held in the Fed is 

critical for both policies. The speed of lending rate adjustment is crucial for both policies. 

However, a slower adjustment or stickier loan rate (measured by ) would lead to a bigger output 
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response in 0t  . One result that might seem counterintuitive is the probability of loan default (

 ). An increase leads to a bigger response in 0t  . This feature only occurs in a BLT. If the 

market rate is above equilibrium we would have the opposite result where  reduces supply of 

credit. Since the lending rate is at its threshold, the higher risk would signal a higher interest rate 

and therefore tend to stimulate intermediation by causing an upward movement along the loan 

supply curve (see figure 1).  

Price Dynamics 

In order to obtain the dynamic price equation, substitute the output solution into the 

Phillips curve. This results in the following model in which the term 2

1r t
Y   is suppressed. For 

the purpose of this work assume that the two roots are real, distinct and less than one. 

1

1 2

(1 ) (1 )

(1 )(1 1/ ) (1 )(1 1/ )
L L

t t r t Zt St
r R

aN aN

          
   


 

  
         

  (15) 

Using the method of lag operator, the inverse characteristic equation is given as the following.  

2

1 2(1 ) (1 )(1 )
r

L L L L         ; 1 1  and 2 1   

This allows us to rewrite Equation 15 as  

 
1 1 1

1 2

(1 ) (1 )
(1 ) (1 )

(1 )(1 1/ ) (1 )(1 1/ )
L L

t Zt St
L L r R

aN aN

         
   

     
           

  (16) 

4. Stylized Facts 

Let us now take a look at the empirical evidence for the existence of a non-zero lower 

bound loan interest rate and a zero bound policy rate in a bank liquidity preference framework. 

Figure 4 presents a scatter plot of the prime loan interest rate and excess reserves. The plot tends 

to confirm a reciprocal shape of the bank liquidity preference curve for the loan rate-excess 

reserves space. The reciprocal or the non-zero lower bound rate before the subprime crisis occurs 

at approximately 6%. The post-subprime crisis liquidity preference curve also shows a similar 
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behavior; this time the lower bound threshold declines to approximately 3.25%. The zero bound 

benchmark policy rate is an important component of the theoretical model proposed in this work. 

Therefore, we must establish this zero bound with a liquidity preference in the space of excess 

reserves and the effective federal funds rate. Figure 5 presents the second liquidity preference 

curve. Prior to the subprime crisis the lower bound threshold of the effective federal funds rate 

was well above zero. However, the threshold fell towards zero, approximately 0.16%, in the 

post-crisis period.  

Figure 4. Bank liquidity preference vis-à-vis loan rate – monthly data 1980:1–2006:12 (left 

panel); 2007:1-2012:5 (right panel) 

  

The liquidity preference curves were all extracted from scatter plots using the method of 

locally weighted regressions with a smoothing parameter of 0.3 (see Cleveland, 1993; 1979). 

Two outliers were removed – those are September 2001 and August 2003. Removing the outliers 

does not affect the pre-2007 interest thresholds. Including the outliers makes the threshold rate 

more conspicuous. Data for the Loess fit and figure 6 came from the Federal Reserve Economic 

Data (FRED). Figure 6 shows the money multiplier over the period 2004 to 2012: Q1, total loans 

and leases and excess reserves. The multiplier has declined significantly as excess reserves 
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expand. As excess reserves rise aggregate loans and leases remain flat, hence being consistent 

with the thesis herein that excess reserves and loans are substitutes in a BLT. However, this 

substitute relationship would tend to switch to a complement one outside of the regime of a BLT. 

 

Figure 5. Bank liquidity preference vis-à-vis the effective federal funds rate – monthly data 

1980:1 – 2006:12 (left panel); 2007:1 to 2012:5 (right panel) 

  

Figure 6. M1 money multiplier (right axis) for quarterly data 2004: Q1 to 2012: Q1 
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5. Model Simulation 

The simulations attach numerical values for the derived multipliers in Appendix 1. The 

following parameter values are used in the model simulation: 0.8
r

  , 0.9  , 0.6
L

  , 0.3  ,

0.2  , 0.05  , 1 0.9  , 2 0.4   , 6.52  , 6.36  and1 1/ 1aN  . In the case of the latter 

we assume N is so large that the expression representing market power is equal to one. Figure 7 

graphs the dynamic multipliers for output change given the change in QE and the policy rate 

over sixteen periods after time t = 0. The left panel shows the response of output given an 

expansion of monetary easing. Three hypothetical levels of excess reserves are used. The 

dynamic multipliers shift inward as the level of reserves increase (RS = 2, RS = 3 and RS = 4) at 

the binding minimum mark-up lending rate. Overall, the response is negative and tends to move 

back to the zero equilibrium. The right panel shows the response of output given a marginal 

increase in the zero bound benchmark policy rate. According to the model presented here, the 

increase in the interest rate has a positive impact coefficient and eventually dampens towards 

equilibrium.  

 

Figure 7. Dynamic response of output to a change in RS and rZ; left panel shows /
S

Y R  and right 

panel shows /
Z

Y r  for sixteen future periods 

 

Figure 8 graphs the multipliers showing the response of inflation given a monetary 

expansion (left panel) and an increase in the zero bound policy (right panel). The results suggest 
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that monetary easing is deflationary in a BLT regime. The impact multiplier gets less 

deflationary as the level of excess reserves increase at the minimum lending rate (RS = 2, RS = 3 

and RS = 4). This result is different from other approaches that suggest that the central bank 

needs to commit to quantitative easing in order to drive the real interest rate into the negative 

territory.  However, the liquidity preference of banks means that pursuing QE would be 

consistent with a falling money multiplier. The derived dynamic multipliers suggest that prices 

have to be stimulated through lending (
L

 ) given the responsiveness of inflation to the output 

gap ( ). It also suggests that liquidity preference of banks must decline (or the percentage 1 

must rise). The output response is positive with an impact multiplier of just over 1.5%. 

Subsequent multipliers increase until period 4 and dampen towards equilibrium.  

 

Figure 8. Dynamic response of inflation to a change in RS and rZ: left panel shows /
S

R  and 

right panel shows /
Z

r  for sixteen future periods 

 

 

6. Conclusion 

This work proposed a model that integrates excess liquidity and imperfect bank 

competition into a dynamic structural macroeconomic framework in order to study how 

quantitative easing and an interest rate policy affect output and prices in a liquidity trap, which 
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this paper labels a bank liquidity trap. In this study the non-zero lower bound lending rate was 

combined with the conventional zero bound rate through the liquidity preference of banks. The 

BLT is precipitated by a shock to bank liquidity preference because of the collapse of financial 

asset prices. Subsequent central bank intervention, beyond easing the short-term liquidity freeze, 

serves to push the market lending rate towards the risk-adjusted marginal cost of lending, at 

which point excess reserves and loans are perfect substitutes. Hence, the excess liquidity 

phenomenon reflects the idea that the market lending rate is equal to the risk-adjusted marginal 

cost of lending. This is different from Murota and Ono (2012) who proposed a model in which 

the excess bank liquidity signals that households’ marginal utility of cash is greater than that of 

consumption. The thesis is also different from the explanation given by Keister and McAndrews 

(2009) who argued that excess liquidity is merely a passive feature of the Fed’s quantitative 

easing.  

The paper proposed the RL equation that is combined with an augmented IS equation and 

a traditional Phillips curve. Embedded in the RL equation is a reciprocal function of aggregate 

bank liquidity preference, which was then included as a financial friction in a broad 

macroeconomic model. This work limited itself to analyzing the implication of bank liquidity 

preference for an interest rate policy versus a quantitative easing policy during a bank liquidity 

trap in a dynamic setting. However, the framework is general enough that the IS equation can be 

expanded to include borrower net worth. The framework can also be extended to study output 

and price dynamics in an investment demand constrained regime where the minimum threshold 

lending rate is above the equilibrium loanable funds rate. This regime – a subject of future 

research – is more likely to prevail in developing economies.  
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Appendix 1 

Derivation of the Minimum Mark-Up Rate 

Equation 1A is the representative bank’s profit function (for the ith bank) that is assumed 

to be concave in loans to private agents (
i

L ), deposits (
i

D ), excess reserves held in special 

deposits at the Federal Reserve (
Si

R ), and excess reserves lent out in the interbank federal funds 

market (
Fi

R ) at the rate of interest
F

r . Equation 2A is the bank’s balance sheet constraint. 

represents the probability of borrower default; therefore as  increases there is a penalty on the 

profit the bank can make. ( )
i

c L denotes the costs of monitoring existing loans and making new 

loans. This derivation follows the procedure of Freixas and Rochet (2008) and Khemraj (2010). 

i (1 ) ( ) (1 ) ( ) ( ) ( )
L i F Fi S S Si D i i

r L L r R r R R r D D c L              (1A) 

i Fi Si i i
zD R R L D            (2A) 

The interest rate earned on special deposits at the fed is
S

r . The percent of excess reserves held in 

special deposits is  and 1  percent is loaned out in the funds market. This is obviously a 

simplification since the profit function does not penalize the bank for having a shortage of 

reserves. Omitting the latter feature will not affect the derived threshold lending interest rate. The 

level of required reserves is represented by i
zD where z = required reserve ratio. Except the funds 

rate, the key interest rates in the model are written in inverse function forms. ( )
L

r L = loan rate; 

( )
D

r D  = deposit rate; and ( )
S S

r R = interest earned on depositing excess reserves at the fed. 

Solving the balance sheet constraint for Fi
R and substituting into equation 1A gives the 

following profit function from which we obtain the first order condition to derive the threshold 

equation.  

i [(1 ) ( ) (1 ) ] [ ( ) (1 ) ] [ ( ) (1 )(1 )] ( )
L F i S S F Si D F i i

r L r L r R r R r D r z D c L                  

A Cournot equilibrium is assumed for the purpose of the derivation. In this equilibrium, the ith 

bank maximizes profit by taking the volume of loans and deposits of other banks as given. In 
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other words, for the ith bank * * *( , , )i Si iL R D  solves the profit-maximization problem. The aggregate 

quantity of loans, deposits and reserves at the Fed, respectively, demanded by the entire banking 

sector are described in equation 3A. 

i j

i j

L L L


  ; S Si Sj

i j

R R R


  ; 
i j

i j

D D D


       (3A) 

 The first-order condition after maximizing the profit function is described by equation 

4A. mc = the marginal cost of monitoring existing loans and screening new ones (or ( )imc c L ). 

The market demand curve the bank faces is downward sloping, hence the elasticity of demand 

denoted by the following expression: ( ) /
L L

a r L r L  . The symbol a  is the elasticity of demand 

for loans. There is a unique equilibrium in which bank i assumes * * /
i

L L N , where N denotes 

the number of commercial banks that makes up the banking sector. The use of N weighs each bank 

equally. This is clearly an unrealistic assumption for the purpose of making the mathematics 

tractable. Nevertheless, the simplification does not change the conclusion of the model.   The 

expression ( )Lr L represents the first derivative of the loan rate with respect to L and it is simply 

the inverse of ( )LL r . This allows us to obtain ( ) 1/ ( )
L L

r L L r  . If we substitute this expression 

and the elasticity into equation 4 we obtain the equation showing the mark-up over marginal cost 

and the funds rate adjusted for the probability of default. This is given by equation 5A.    

(1 ) ( ) (1 ) ( ) (1 ) 0i
L L i F

i

d
r L r L L r mc

dL
               (4A) 

(1 )
(1 1/ )

(1 )
F

L

r mc
r aN




 
 


        (5A) 

Rearranging equation 5A gives the minimum mark-up rate that we call the threshold 

interest rate,
 T
r (equation 6A). The mark-up is dependent on the inverse of the product of N and 

the market elasticity of demand ( a ) for loans.  N=1 describes the case of a monopoly where the 

mark-up is highest, while as N   one bank has an infinitesimal share of the market; the 

equilibrium approaches the purely competitive state in which the mark-up approaches zero. In 

the lower bound loan rate equation, F
r

 
is subjected to the well know liquidity effect and 
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therefore can be written as *( )Fr R
 
with the effect being measured by the derivative ( )

F
r R , which 

is negative thus capturing the trade-off between high liquidity and low interest rate or low 

liquidity and high interest rate.  This mechanism allows the market interest rate to rise above the 

threshold at which point the banks’ liquidity preference curve is flat, thus indicating that liquidity 

effect is zero. Therefore, the threshold loan rate occurs when all funds market liquidity effects 

have evaporated. When this occurs the market loan rate is equal to the risk-adjusted marginal 

cost of lending. Banks therefore become neutral between hoarding excess reserves and making 

loans.  

*(1 ) ( )

(1 )(1 1/ )
F

T

r R mc
r

aN




 


 
        (6A)  

Derivation of the Output Multipliers 

Equation 14 presented the dynamic structural output equation. Assume an initial value for 

output ( 0Y ) and 1
r

   . Using a recursive method given the initial value would result in a 

solution. Enders (2010) provided a detailed discussion of the solution methods for these types of 

dynamic equations. From equation 14 let 

1

(1 )

(1 )(1 1/ )
Lb

aN

 
 




 
  

and  

2

(1 )

(1 )(1 1/ )
Lb

aN

   
 
 

    
 

A solution to equation 14 is 

1 1
1

0 1 2

0 0

( ) ( ) ( )
t t

t i i

t r r Zt i r St i

i i

Y Y b r b R     
 


 

 

          (7A) 

7A allows us to obtain the following dynamic multipliers for i future periods given a change in Z
r

in the present period. The impact multiplier for period i = 0 is 0 1/
Z

Y r b   . 
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1( )it i
r

Zt

Y
b

r
 




 

The dynamic multipliers showing the response in output over time for i future periods given a 

change in
St

R in the present period are given as follows. The impact multiplier for period i = 0 is

0 2/
S

Y R b   . Note that the term can easily be 2

S
R

 eliminated from the expression. However, this 

term is kept so as to analyze the impact of quantitative easing when there is a minimum mark-up 

lending rate. 

2

2 ( )it i
r S

St

Y
b R

R
  

 


 

Derivation of the Inflation Multipliers 

Equation 15 presented the dynamic structural inflation model. From equations 15 let  

3

(1 )

(1 )(1 1/ )
Lb

aN

  
 




 
 

and  

4

(1 )

(1 )(1 1/ )
Lb

aN

    
 

 
    

 

We can rewrite equation  16 as 

 1 1 1

1 2 3 4(1 ) (1 )
t Zt St

L L b r b R              (8A)
 

For the purpose of this work, we will assume that the roots are distinct, real and less than one.  

Let us assume that the factor of the inverse characteristic equation can be expressed as follows 

2

1 2(1 ) (1 )(1 )
r

L L L L         ; 1 1  and 2 1   

Where 

1 2 2 3 3

1 1 1 1(1 ) 1 ...L L L L          
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1 2 2 3 3

2 2 2 2(1 ) 1 ...L L L L          

Using the method outlined in Hamilton (1994) where 1 2  and applying the method of partial 

fractions will result in the following operator:   

1 1 2
1 2

1 2 1 2

1
( )

1 1 (1 )(1 )L L L L

  
   

  
       

 

 Therefore, we can rewrite equation 8A as  

 
1 1 11 2 1 2

1 2 3 1 2 4

1 2 1 2 1 2 1 2

( ) ( )
t Zt St

b r b R
L L L L

       
       

     
              

        (9A) 

Let 1 1 1 2/ ( )c     ; 2 2 1 2/ ( )c        

This allows for rewriting equation 9A as 

2 2 3 3

1 2 3 1 1 2 2 3 1 1 1 2 2 3 2 1 1 2 2 3 3

1 1 2 2 1 3 3

1 2 4 1 1 2 2 4 1 1 1 2 2 4 2 1 1 2 2 4 3

( ) ( ) ( ) ( ) ...

( ) ( ) ( ) ( ) ...

t Zt Zt Zt Zt

St St St Tt

c c b r c c b r c c b r c c b r

c c b R c c b R c c b R c c b r

      

     
  

  
  

        

        
       (10A) 

Or taking the sum gives a solution: 

1 1
1

3 1 1 2 2 4 1 1 2 2

0 0

( ) ( )
t t

i i i i

t Zt i St i

i i

b c c r b c c R    
 


 

 

                                (11A) 

From Equation 11A we can obtain the following dynamic multipliers 

3 1 1 2 2( )i it i

Zt

b c c
r

  
 


 

2

4 1 1 2 2( )i it i
S

St

b c c R
R

   
  


 

The impact multipliers are as follows 0 3 1 2/ ( )
Z

r b c c    and 2

0 4 1 2/ ( )
St S

R b c c R      . 

 

 


