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In this paper we set up an oligopolistic market model, where firms invest in pollution 

abatement in order to increase the whole market size via an increase in the consumers’ 

reservation price. Moreover, we suppose that the demand function is not a linear one 

and the resulting game is not a usual linear quadratic one. In the considered model we 

investigate the open loop, the memory less closed,loop and the collusive patterns 

equilibrium. Additionally, we examine the social planning perspective. In the case of 

a convex demand we found the surprising result that the control and state variables 

have higher values in the open,loop steady state equilibrium than in the closed loop, 

while in a linear demand case the equilibrium is undetermined. In all cases we find 

that only if the market demand has concave curvature are the conclusions clear. A 

number of propositions and remarks are provided. 
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 Broadly speaking, the main difference between the open,loop equilibrium, on 

the one hand, and the feedback and closed,loop equilibrium, on the other hand, is that 

the former does not take into account strategic interaction between players through the 

evolution of state variables over time and the associated adjustment in controls. 

According to the open,loop rule, players choose their respective plans at the initial 

date and commit to them forever. Therefore, in general, open,loop equilibrium is not 

sub,game perfect, in that it is only weakly time consistent, since players make their 

action ‘by the clock’ only. However, there are classes of games where open,loop 

equilibrium is sub,game perfect (Clemhout and Wan, 1974; Dockner, Feichtinger and 

Jorgensen, 1985; Reinganum, 1982; Mehlmann, 1988). 

 A further distinction can be made between the closed,loop equilibrium and the 

feedback equilibrium, which are both strongly time consistent, therefore sub,game 

perfect since, at any date τ , players decide ‘by the stock’ of all state variables. While 

the closed,loop memory less takes into account the initial and current levels of all the 

states, the feedback equilibrium takes into account the accumulated stock of each state 

variable at the current date. If one player decides according to the feedback rule, then 

it is optimal for the others to do so as well. Hence, the feedback equilibrium is closed,

loop equilibrium, while the opposite is not generally true. 

The aim of this paper is to assess comparatively the properties of open–loop 

and closed,loop memory less equilibrium in a dynamic oligopolistic pollution model 

for which, firstly, the oligopolists face a non,linear market demand and, secondly, 

they attempt to increase the whole market size via an increase in the consumers’ 

reservation price investing in pollution abatement. 
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 The existing literature in the field of dynamic games devotes a considerable 

amount of attention to identifying classes of games where the feedback equilibrium 

degenerates into the open,loop equilibrium. Degeneration means that the Nash 

equilibrium time path of the control variables coincides under the different strategy 

concepts. In particular, it entails that the resulting open,loop solution is independent 

of the vector of the states.  

The interest in the coincidence between the equilibrium paths under the 

different solution concepts is motivated by the following reason: Whenever open,loop 

equilibrium is degenerate feedback equilibrium, then the former is strongly time 

consistent. Therefore, one can rely upon the open,loop equilibrium which is, in 

general, much easier to derive than the closed,loop or feedback ones.  

Classes of games where the coincidence arises are illustrated by a number of 

authors (Fershtman, 1987; Seierstad and Sydsaeter, 1977; Reinganum, 1982). As a 

whole, the games where open,loop equilibriums are strongly time consistent are 

known as ‘perfect or state redundant’, precisely because optimal controls derived 

from open,loop first order conditions depend only upon time and not upon states. A 

class of games where this clearly applies is that of linear state games, where the 

Hamiltonian function is linear in the state variables. 

 From the pollution point of view, it is well known that production process 

accumulates pollution as a by product, and this external economy must be corrected. 

Nowadays, the meaning of external diseconomies is essentially synonymous with 

externality or external effects in the sphere of production and consumption. External 

effects in production are unpaid side effects of one producer's output or input on other 

producers. At an earlier stage, external diseconomies in the meaning now given were 

called technological external diseconomies, reflecting the fact that the effects were 
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transmitted outside the market mechanism and altered the technological relationship 

between the recipient firms output and the inputs under its control.  

 The most commonly used methods of correction found in economic literature 

are pollution permits and Pigouvian taxes on polluting firms. Specifically, the standard 

economic approach to externalities is typically ascribed to Pigou (1920), who devised a 

system of taxes and subsidies to allow for the social costs which are not included in 

private decision,making. In simple terms, a tax is placed on the polluter to bring his cost 

function into line with the true social cost of production. This approach to externalities 

has been challenged by pro,market theorists such as Coase (1960). The free,market 

approach identifies the problem of externalities as the absence of markets and the 

associated property rights. The assignment of property rights to non,marketed goods, 

such as air and water, provides a framework in which the parties are encouraged to 

resolve the problem of negative externalities rather than do nothing (Halkos, 1993, 1994, 

1996).  

In this paper we consider the basic implications of the pollution in the entire 

market where firms compete under the assumption that they understand and attempt to 

endogenize the externalities of the pollution occurrences. As pollution is very 

important for environmental policy modeling and analysis, an emerging research 

takes place in the last decades. In our study we adopt a number of sometimes strict 

assumptions made in other research areas. 

First of all, we make the assumption that firms are oligopolistic rather than 

perfect competitors. The first justification is that perfect competition is not applicable 

to major polluting generating firms which are oligopolistic in their output markets. 

Second, we make the assumption that firms undertake the load of abatement, in 

contrast to the usual assumption where the abatement is undertaken by the 
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government. Forster (1980) makes clear that abatement is a government policy or 

task.  

There are a lot of endogenized variables that firms could take into account. For 

example, in the recent literature an endogenized variable could be the capital 

accumulation as an investment decision. Here the proposed model doesn’t take the 

position of the capital accumulation as an investment decision, but rather takes the 

perspective that pollution abatement is an investment decision variable (Halkos and 

Papageorgiou, 2012). 

The third assumption is that demand in the entire oligopolistic market is not a 

usual linear demand function but a more flexible one. Specifically, we accept a more 

general demand function affecting the consumers’ reservation price, for which the 

curvature is determined by a factor α, to allow varying forms of concavity, linearity 

and convexity. As it is shown in the rest of the paper, the demand function employed 

affects demand elasticity, consumer surplus and also social welfare. 

A last assumption for the proposed model is the dynamic environment within 

which the game evolves. Former models of Cournot oligopolistic markets are static 

and with or without linear demand functions. But dynamic modeling is the more 

general modern perspective that extracts several results depending on the 

informational structure employed by the game. For this reason we study the two main 

structures, open and closed loop, and draw the final conclusions. 

The structure of the paper is as follows: Section 2 reviews the existing relative 

literature. In section 3 the basic model with the system dynamics is presented. 

Sections 4 and 5 describe the Open and Feedback Nash Equilibria. In section 6 we 

investigate the closed,loop memory less Nash equilibrium, while in section 7 the 

steady states of open and closed,loop memory less types of equilibriums are 
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compared. Section 8 studies the resulting equilibrium in a firm’s collusion proposing 

the social planning (under the collusion assumption). The last section concludes the 

paper. 

�
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Nagurney and Dhanda (2000) investigate the modeling analysis and 

computation of solutions to models of multiproduct, multi,pollutant non compliant 

oligopolists who are engaged in a market of pollution permits. In order to compute the 

profit maximized quantities of emissions, they propose and apply an algorithm, along 

with the equilibrium allocation of licenses and their prices.  

Taxing polluting firms or subsiding firms may be considered as an incentive to 

engage in pollution abatement. The general conclusion produced from a taxing policy, 

found in literature, is that an optimum tax rule must send to firms the message that the 

more they pollute now, the higher their future liability will be. The literature on taxing 

firms in a dynamic context arises from the static oligopoly framework used in 

Katsoulacos and Xepapadeas (1992) and Kennedy (1994).  

The taxing literature consists mainly of two streams. The first one focuses on 

informational issues without paying much attention to the problem of stock 

accumulation, while the second one concerns the stock dynamics and assumes perfect 

information. In the second stream of taxing, studying the two types of equilibrium 

(open and closed loop) in a dynamic context Benchekroun and Long (1998) found 

that the optimal tax rules announced from the outset takes similar forms, but with 

different parameters. 

This mode of regulation is exogenous to the market system and needs both 

social planning and optimal tax rules imposed by the government. One important 
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reason for the firms to endogenize the pollution externality is that firms not engaged 

in abatement activities may see their profits and possibly the market size shrink due to 

pollution as well as due to the fall in the consumers’ reservation price. 

In this paper we consider a dynamic oligopolistic model where demand is not 

a usual linear function and firms undertake antipollution activities in order to increase 

the market size. The choice of the non linear demand function is tractable because it 

implicitly affects consumer surplus and also gives the possibility to increase the 

market size. 

The recent literature in the case where firms compete under the demand 

constraint and or about demand linearity found is easy to classify in categories. In the 

first one, the non linear, Naimzada and Sbragia (2005) make the assumption of 

demand and quadratic costs in the form of 1 2� � ��= −  and 2

0 1 2� � � � � �� � � � � �= + + , 

0, 0,1,2�	� 	≥ =  respectively. Using the “Gradient Dynamics” (GD) adjustment 

process, they adjust the firms’ production in the direction indicated by their (correct) 

estimate of the marginal profit. Second, Leonard and Nishimura (1999) employ an 

arbitrary non linear demand without full information. Firms in a Cournot model do 

not observe their rival’s actions, making mistaken beliefs. The above assumptions 

destroy the stability of equilibrium and create cycles, so the dynamics of the Cournot 

model are also affected.  

In a different approach given by Bylka et al. (2000) the situation where 

oligopolistic firms compete with a global demand constraint is explored. The 

evolution of firms’ market demand is determined by all firms’ price decisions. Their 

interest focuses on the analysis of some simple classes of strategies and on finding the 

best responses to them. To that end, Huck 
���
� (2002) report results of the Cournot 

best reply process. In a Cournot oligopoly with four firms, linear demand and linear 
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cost functions, the best reply process explode. They also investigate the power of 

several learning dynamics to explain the unpredicted stability. 

To that end, the concept of consumers’ valuation of a product or reservation 

price is used by Giridharan in a Bertrand like model for a new product introduction. In 

his model, each consumer makes his choice from among the available brands based 

both on the reservation price and actual prices. He shows, in equilibrium, that the 

price of the new product is equal to its mean(average) reservation price and those of 

the old ones are strictly greater than the respective mean reservation prices, denoting 

the importance of the consumers’ valuation (reservation price) for a product market. 

Finally, in the proposed model, the induced dynamic game for an oligopolistic 

market with nonlinear demand function and pollution abatement undertaken by firms 

is a non quadratic differential game for which the several informational equilibrium 

structures will be discussed. 
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Let us assume that there are �  firms in an oligopoly market that produce and sell a 

homogenous product. The market demand function is a non linear one, as in Anderson 

and Engers (1992, 1994)
[1]

 which is used in the static Stackelberg hierarchical model 

in order to compare the results with the Cournot corresponding static model and is 

expressed as: 

                           ( ) ( ) ( )( )
�

� � � � � �= −        0� >                     ( )1  

                                                 
[1]

 To be precise, the market demand used by Anderson and Engers is in the form 1 �� �= − , 0� > , 

where parameter �  stands as the curvature of the market demand, and no reference is made about 

consumers’ reservation prices. 
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with ( )� �  denoting the aggregate demand 
1

�

�

�

�
=

∑  and ��  the individual firm’s demand. 

The positive parameter �  shows the curvature of the demand function, so it is convex 

if  ( )0,1�∈ , it is concave if 1� >  and it is linear if 1� = . The �  parameter also 

measures the reservation price
(2)

, �� , of each �  consumer, aggregating across all 

consumers. The ��  variable is implicitly an index to the consumer surplus and, 

consequently, to social welfare; that is, the higher the reservation price, the higher the 

consumer surplus. With the last observation, the reservation price �  clearly affects 

aggregate demand in the sense that aggregate demand is the number of the consumers 

whose reservation price is at least � for one unit of the homogenous product.   

The inverse demand function of the industry, then, is easily obtained as 

                                       ( ) ( ) ( )( )
1 �

� � � � � �= −             ( )2  

and the price �  is always positive, i.e. ( ) 0� � >  

The price elasticity of demand, in absolute terms, equals to 

                             
( )

,

�

� � �

�

� � �� ��

� � � �

�

ε

∂
−∂

= = =
−

  �

and the consumer surplus (��) is evaluated at the reservation price � �= , which also 

measures the social welfare, that is, 

                                ( )
( )1

1

0
1

� � �
� ��

� � ��
�

+

= − =
+∫��  

with the above relations verifying that elasticity, consumer surplus and reservation 

price depend on the curvature of demand � .  

                                                 
(2)

 For more details on consumers’ reservation price, see Varian (1992). 
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Firms in the industry seek to increase the aggregate reservation price ( )� �  and 

consequently the affected market factors, through investment in pollution abatement 

(e.g. recycling). Every abatement undertaken at time �  by firm �  is formally denoted 

by ( )�� � . This implies that firm �  is able to increase the market size as a result of the 

firm’s overall abatement. The reservation price is also subject to a constant 

depreciation rateδ . 

Then the following differential equation could describe the dynamics of the 

system  

                                 
( )

( ) ( ) ( )
1

d

d

�

�

�

� �
� � � � � �

�
δ

=

= = −∑ɺ              ( )3  

where the differential ( )d d� � � �= ɺ  represents the evolution of the reservation price 

(aggregating across consumers) in the industry and with 
1

�

�

�

�
=

∑  we denote the sum of 

the pollution abatement undertaken by all involved firms. 

Every firm engaged in abatement faces a quadratic cost of the form 

                  ( )( ) ( )( )2 , 0� � �� � � � � � �= >                                       ( )4  

In the dynamic problem, then, firms seek to maximize the present value of the future 

profits, i.e. total revenues minus total costs incurred from the investment in 

abatement. So, firm’s �  profits are: 

                     ( )( ) ( )( )1 2�

� � � � �� � � � � � � �π −= − − −  

and firm’s �  problem can be expressed as the maximization of the present value 

function: 

( ) ( ) ( ) ( )( )21

0

max
��

� � � � �� 
 � � � � � � � � � � ��ρ

∞
−

−
  = − − −   ∫               ( )5  
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subject to         
( )

( ) ( ) ( ) ( )
d

d
� �

� �
� � � � � � � �

�
δ−= = + −ɺ  

where we have set ��−  as the quantity produced by all other firms (players) except �  

firm (player) and ( )�� �−  the abatement of all other players except � . In this setting, 

the decision variables are the quantities ��  and the investment decisions �� , while the 

state variable is the reservation price, ( )� � . 

If we decide to work with the current value Hamiltonian function denoting by 

( )� ��  the co–state variable, then player’s �  Hamiltonian is the following function:  

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )1 2� �

� � � � � � � �� � � � � � � � � � � � � � � � � 
 ρλ δ −
− −

 = − − − + + −  
  ( )6  

where ( ) �

� �� 
ρλ �=  is the current value of the co–state variable. 

Let us next consider the Open,loopNash Equilibrium, that is, the Nash 

equilibrium in which every firm draws the time paths of the control variables 

independently of the states of the game. The only knowledge of the state is its value at 

the initial time 0� = , that is, the informational structure of this type of equilibrium is 

the singleton of the initial value of the state. The Closed,loop Nash Equilibrium is by 

definition the concept of equilibrium in which the choice of player’s �  current action 

is conditioned on current time �  and on the state vector, too. Imposing this 

assumption on the informational structure of the game, the history of the game clearly 

becomes important and is reflected in the current value of the state vector.  

Consequently, player '� �  optimal time paths take into account the control 

variables of the other players at any point of time. This type of equilibrium affects the 

state variables, requiring a revision of the player’s �  controls at any time instant. Here 
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we apply the so–called “memory less”
(3)

 closed,loop equilibrium, according to which 

every player needs to know only the current value instead of the whole history of the 

state variable. The basic difference between the two type of equilibriums is that the 

first one, the open loop, is weakly time consistent, while the closed,loop is a strongly 

time consistent one. Here the time consistent property is in the sense of sub–game 

perfectness
 (4)

.  
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The OLNE is obtained by the following system of FOC equations 

            

( )
( )
( )
( )

( )

( )
( )

( ) ( )

0

0                                                     

d

d

�

�

�

�

� �

�

� �

� �

� �

� �

� � �
�

� � �

λ
ρλ

∂
=

∂

∂
=

∂

∂
− = −
∂

�  

and the transversality condition  ( ) ( )lim 0�

�
�

� � � 
 ρλ −

→∞
= . The first equation of system 

( )7  can be expressed as  

( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )
1 1

1

0

�

�� � ��

� �

�

� � � � � � �� �
� � � � � �

� �

−

−
−

− −∂
=− + − − =

∂
 

Making use of the symmetry of firms, by setting ( ) ( )�� � � �=  and ( )1�� � �− = − , the 

above first order condition (FOC) is simplified to  

( ) ( ) ( ) ( ) ( )( )( ) ( )
( ) ( ) ( ) ( )( )

1 1

11
1 0

�

��

�

� � � � � � � �� �� �
� � � � � � �

� �

−
− − −∂

=− + − − − =
∂

 

                                                 
(3)

 The memoryless perfect state information pattern is defined by Olsder and  Basar (1999) as the 

informational set whicht has two elements; one is the initial value of the state and the other element is 

the current value of the state variable. 
(4)

 See Dockner 
���
� (2000) for more details about the sub–game perfectness and the time consistency 

equilibrium strategies. 
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and the solution with respect to ( )� �  is 

                                        
( )

1

�� �
�

��
=
+

      ( )8  

The second equation of  ( )7  after the appropriate algebraic manipulations gives  

                            
( )
( )

( ) ( )2 0
�

� �

�

� �
�� � �

� �
λ

∂
=− + =

∂
 

or                                  ( ) ( )2� �� �� �λ =  

Differentiation of the last with respect to time �  yields 

                                       
( ) ( )d d1

d 2 d

� �� � �

� � �

λ
=         ( )9  

The third equation of system ( )7  gives 

 
( )

( ) ( ) ( )( )( ) ( )
( )

( )
1 1 d

d

�� �

� � � �

� � �
� � � � � � � �

� �

λ
δλ ρλ

−

−− − − + = −  

or   
( ) ( )

( ) ( ) ( )( )( ) ( ) ( )
1 1d

d

�� �

� � �

� � �
� � � � � � �

� �

λ
δ ρ λ

−

−=− − − + +              ( )10  

Combining equations (9),(10) we have 

     
( ) ( )

( ) ( ) ( )( )( ) ( ) ( )
1 1d

d

�� �

� � �

� � � �
� � � � � � �

� �
δ ρ λ

−

−=− − − + +              ( )11  

Having the system of the two differential equations described by  

                   

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( )( ) ( ) ( )

1 1

d

d

d

d

� �

�� �

� � �

� �
� � � � � � � �

�

� � � �
� � � � � � �

� �

δ

δ ρ λ

−

−

−

= = + −

=− − − + +

ɺ

            

and making use of the symmetry of firms that is: ( ) ( )�� � � �= , ( ) ( )�� � � �=  and the 

relation ( )8 , the system finally turns out to be 
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( )
( ) ( )

( )

( )
( ) ( )

( )
1

d

d

12

d 1

d 2 1

�

� �
�� � � �

�

� � � �
� �

� � ��

δ

δ ρ

= −

  = + −    + 

 

System ( )12  in the steady states is defined as 
d

0
d

�

�
=  and  

d
0

d

�

�
= . The steady state 

solution of system ( )12  is then given by:                            

                                

( )

( )

( ) ( )

*

1

*

1 1

1

2 1

� �

�

�
�

�

�
�

� ��

δ

δ δ ρ

−

−

=

  =   +  +

                   ( )13  

and the production level at the steady state is given by expression ( )8 . Now we are 

able to analyze the stability properties of equilibrium. 
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In order to determine the stability of the dynamic system ( )12  we linearize 

this around the steady states, i.e. 

                                
( )
( )

d

d

d

d

�

� ��

� ��

�

 
      =Φ         

 

where we have set 

                   ( )

( )

1

1
2 1

� �

�

� � �

� �
�

� �
�� ��

� �

δ

δ ρ
−

−

 ∂ ∂  −    ∂ ∂  Φ= =   − +∂ ∂     +   ∂ ∂ 

 

and 
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( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
1

d
,

d

d 1
,

d 2 1

�

� �
� � � �� � � �

�

� � � �
� � � � �

� � ��

δ

δ ρ

= = −

  = = + −    + 

 

The trace and the determinant of the Jacobian matrix Φ , evaluated at the steady state 

level, have the following values 

                          ( )tr
� �

� �
δ δ ρ ρ

∂ ∂
Φ = + =− + + =

∂ ∂
 

In order to compute the determinant of the Jacobian matrix Φwe make use of the 

value of  *�  previously found from system ( )12 . 

So the determinant is: 

( ) ( )
( )

( )

1

1
det

2 1

� �

�

� � � � �
�

� � � � �� ��
δ δ ρ

−

−

∂ ∂ ∂ ∂
Φ = − =− + +

∂ ∂ ∂ ∂ +
 

Substituting back the value of  �  into the latter and making the rest of the algebraic 

manipulations, the final result of the determinant is: 

                                ( ) ( )
( )1

det
�

�

δ
ρ δ

−
Φ = +  

For the saddle point path existence, it suffices the determinant of Jacobian matrix to 

be less than zero, that is, the following inequality to hold: 

                                   ( )
( )1

0
�

�

δ
ρ δ

−
+ <    

This is clearly verified when the market demand is concave, that is, when 1� >  as 

already mentioned. From the previous reasoning the following proposition is obvious. 
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In the other two cases where the market demand is convex or linear the equilibrium is 

unstable and degenerated respectively. In the first case of convex demand, both the 

trace and the determinant of the Jacobian matrix are positive, so equilibrium is 

unstable. Similarly, in the second case where the value of the state variable is an 

undetermined magnitude or the determinant of the Jacobian matrix is zero, we have a 

degenerated equilibrium. In other words, the solution of the dynamical system ( )12  is 

a collection of parallel lines.    

The phase diagrams for the three curvatures of the demand function are shown 

in the following panels of the figure 1 at steady state.  
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0������#���Phase diagrams for the three curvatures of the demand function. 

 

In panel (c) the dotted line identifies the saddle path. 
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In this section we study equilibrium under the hypothesis that firms collude in 

order to maximize the present value of the joint profits. Moreover, we assume 

symmetry of firms. Then the dynamic problem is defined as follows.  

( ) ( )( ) ( ) ( )( )

( )

( ) ( )

1 2

0

max

24

d

d

��� 
 � � � �� � � � �� � � ��

�
�� � � �

�

ρ

δ

∞
−  = − −  

= −

∫
 

This is a standard optimal control problem and it can be solved using control theoretic 

methods. 

Working with the current value Hamiltonian, this function is expressed as   

       ( ) ( ) ( ) ( )( ) ( ) ( )
21 �� �� � � �� � �� � �� � � �� � � � 
 ρλ δ −    = − − + −     

    ( )25  



 �	�

Where ��  represents the collusive Hamiltonian function. The first order conditions 

of ( )25  according to Pontryagin maximum principle give the following conditions 

( )
( )

( )
( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )

( )
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( )
( )

2 1 1
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λ

λ
ρλ

−∂    = ⇒− − + − =   ∂

∂
= ⇒ =

∂

∂
− = −
∂

 

and the transversality condition ( ) ( )lim 0�

�
� � � 
 ρλ −

→∞
=  

Solving the first condition of system ( )26  with respect to ( )� � , the solution is 

                                           ( )
( )

( )1
�� �

� �
� �

=
+

                       ( )27  

which, compared with the open,loop solution ( )8  , is smaller. 

From the two remaining conditions of system ( )26  we obtain the evolution 

equation of the reservation price as   

                     
( )

( ) ( ) ( )( )
1

1d 1 1

d 2 1

�
�� �

� � � �
� � �

ρ δ
 = + −   +

             ( )28  

The dynamic system of the collusive firms is characterized, in the steady states, by the 

following equations 

                                           
( )d

0
d

� �

�
=  

                                          
( )d

0
d

� �

�
=  

where the solution of  the first is 

                                
�

�
�

δ
=  

and the solution of the second is 
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( )

( )( )( )

1

1
2 1

�

�

�
�

� �ρ δ
=

+ +
 

The optimal investment in abatement effort corresponds to a curve, which may be 

convex ( )( )0,1�∈ , concave ( )( )1,�∈ +∞  or linear ( )1� =  depending again on the 

curvature parameter � . As a consequence, the collusive solution exists at the steady 

states and its dynamic properties are the same as in the Cournot cases, i.e. this steady 

state is a saddle point in the case of ( )1,�∈ +∞ , i.e. the demand function is concave. 

From the previous reasoning the following result is easily obtained. 
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At this point we can compare the collusive solutions with the decentralized 

ones. In the steady state equilibrium, the reservation price in both open and closed,

loop is lower than in the collusive steady state equilibrium. This result is subject to the 

free riding problem. The economic interpretation of this result is straightforward: 

Since firms enjoy utility from the higher market reservation price ( )� � , and ,as 

already mentioned, affects the basic market factors i.e. market size, they have no 

incentive to invest in abatement but to benefit from the investment of the other firms. 

1�#��2*������	�����������

We adopt a similar procedure to find the present value of the social welfare 

flows. The social welfare at time �  is defined as the sum of the consumer surplus plus 



 ���

the firm’s net profits. Taking into account the symmetry hypothesis, the consumer 

surplus and total profits at time �  are respectively: 

( ) ( ) ( )
( )

( ) ( )( )( ) ( ) ( )( )( )1 11

0
1

� �
� � � �� �

� � � � � �� � � � � � � �
�

+ +  = − = − −    −∫��   ( )29  

( ) ( ) ( ) ( ) ( )( )21 �

� � �� � � � � � �� � �π  = − −                                              ( )30  

Supposing that the social planner uses the same discount factor ρ  for the social 

welfare (��) flows, the dynamic problem is then expressed as: 

( )( )( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )1 1 21

0
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1

� � � � �� �

 � � � � � � �� � � � � � �� � � ��
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∞
+ +−      = − − + − −     − 

∫��  

subject to  
( )

( ) ( )
d

d

� �
�� � � �

�
δ= −

      
( )31  

The solution of problem ( )26  at the steady states, 
( )d

0
d

� �

�
= , is  

                                  
( )

1

2

��
�

� ρ δ
=

+
                      ( )32  

This is the curve that lays above all its counterparts in the previous regimes for a 

concave curvature of the demand function. Then the following result is obvious: 
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In the case of a convex demand function ( )0,1�∈ , the steady states values of  the 

reservation price, ,�  and abatement, ,�  are both smaller than the respective variables 

of the Cournot game and the steady state of  a linear demand, 1,� =  does not exist.   
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In this paper we set up an oligopolistic model where firms are engaged in 

abatement in order to increase the whole market size via an increase in the consumers’ 

reservation price. We additionally assumed that the demand function is not a linear 

one and the resulting game is not a usual linear quadratic one. In the considered model 

we investigated the open,loop, the memory less closed,loop and the collusive patterns 

equilibrium, while in the feedback case only the linear demand  is investigated 

making use of the dynamic programming Hamilton – Jacobi – Bellman equation. 

Moreover, we examined the social planning perspective.  

In the model formulation and in the case of a convex demand we found as result 

that the control and state variables have higher values in the open,loop steady state 

equilibrium compared to the memory less closed,loop steady states, while in a linear 

demand case the equilibrium is undetermined. In all cases, we found that only if the 

market demand has a concave curvature, the conclusions are clear. Specifically, we 

found that the social planning case has all the values of the control variables higher 

than in all the other cases.  

In the model presented we considered the reservation price as a kind of a public 

good. This means that every firm inside the market has access to this price and 

benefits from its higher value. As it is shown, comparing the collusive steady state 

equilibrium values of the reservation price ( )� �  to the open and closed,loop values, 

the outcome is that an individual firm has no incentive to invest in antipollution effort, 

but benefits from the investment of the other firms. That is, an implication among the 

players of the game is the well known free,riding problem. 
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