
Munich Personal RePEc Archive

Neuro-dynamic programming for the

efficient management of reservoir

networks

de Rigo, Daniele and Rizzoli, Andrea Emilio and

Soncini-Sessa, Rodolfo and Weber, Enrico and Zenesi, Pietro

Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Italy, IDSIA, Manno, Switzerland

December 2001

Online at https://mpra.ub.uni-muenchen.de/42233/

MPRA Paper No. 42233, posted 06 Nov 2012 16:47 UTC



 

 

 

 

 

 

 

 

Copyright © 2001 The Modelling and Simulation Society of Australia and New 
Zealand Inc. (MSSANZ). This is the author's version of the work.  
See: http://www.mssanz.org.au/documents/MODSIMPapersToJournalPapers-
MSSANZGuidelines.pdf  
 
The definitive version was published in the proceedings of MODSIM 2001 

International Congress on Modelling and Simulation. “Integrating Models for 
Natural Resources Managment Across Disciplines, Issues and Scales”. Modelling 
and Simulation Society of Australia and New Zealand, December 2001  
http://www.mssanz.org.au/MODSIM01/MODSIM01.htm  
 
Cite as: 
 
de Rigo, D., Rizzoli, A.E., Soncini-Sessa, R., Weber, E., Zenesi, P. (2001). Neuro-

dynamic programming for the efficient management of reservoir networks. 
Proceedings of MODSIM 2001 International Congress on Modelling and 

Simulation. Modelling and Simulation Society of Australia and New Zealand. 
December 2001, Vol. 4, pp. 1949–1954. ISBN: 0-867405252. 
http://www.mssanz.org.au/MODSIM01/Vol%204/Rigo.pdf 

http://www.mssanz.org.au/documents/MODSIMPapersToJournalPapers-MSSANZGuidelines.pdf
http://www.mssanz.org.au/documents/MODSIMPapersToJournalPapers-MSSANZGuidelines.pdf
http://www.mssanz.org.au/MODSIM01/MODSIM01.htm
http://www.mssanz.org.au/MODSIM01/Vol%204/Rigo.pdf


Neuro-Dynamic Programming for the Efficient

Management of Reservoir Networks

D. de Rigo
a
, A. E. Rizzoli

b
, R. Soncini-Sessa

a
, E. Weber

a
, P. Zenesi

a

a
 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

b
 IDSIA, Manno, Switzerland (andrea@idsia.ch)

Abstract: The management of a water reservoir can be improved thanks to the use of stochastic dynamic
programming (SDP) to generate management policies which are efficient with respect to the management
objectives (flood protection, water supply for irrigation and hydropower generation, respect of minimum envi-
ronmental flows, etc.).  The improvement in efficiency is even more remarkable when the problem involves a
reservoir network, that is a set of reservoirs which are interconnected.  Unfortunately, SDP is affected by the
“curse of dimensionality” and computing time and computer memory occupation can quickly become unbear-
able.  Neuro-dynamic programming (NDP) can sensibly reduce the demands on computer time and memory
thanks to the approximation of Bellman functions with Artificial Neural Networks (ANNs).  In this paper an
application of neuro-dynamic programming to the problem of the management of reservoir networks is pre-
sented.

Keywords: Water reservoir management; Stochastic dynamic programming; Neuro-dynamic programming.

1. INTRODUCTION

The management of water quantity has considera-
bly profited from the advent of computers and the
application of Operations Research and Systems
Analysis methodologies to solve the problem of
finding the optimal release of water in order to
satisfy demand for hydropower generation, agri-
cultural and urban use, and to satisfy environ-
mental constraints.  One of the most successful
techniques has been Dynamic Programming [Bell-
man and Dreyfus, 1959] and various authors have
applied the methodology to water management.
Unfortunately, from the very beginning it was ap-
parent that an increase of the dimensionality of the
problem, i.e. an addition of reservoirs, caused an
exponential increase in the time required to find a
solution.  This problem was named the “curse of
dimensionality” by Bellman and prevented the ap-
plication of the methodology to real world water
systems consisting of more than two or three reser-
voirs.  Recently, Bertsekas and Tsitsiklis (1996)
have proposed a methodology, named neuro-

dynamic programming, based on the functional
approximation of the Bellman function using Arti-
ficial Neural Networks (ANNs).  The ANN-based
approximation can be obtained exploring thedis-

cretisation grid of the search space with a lower
resolution, thus reducing the time required to solve
one step of the Bellman equation.

In this paper we present an application of this
methodology to the solution of the problem of op-
timal water management.  We have implemented
an extension to the Successive Approximation Al-
gorithm which has been already adapted to the case
of reservoir management policy design [Piccardi
and Soncini, 1991].

We finally report some preliminary experimental
tests

2. THE PROBLEM

Since the first pioneering works by Maas (1962),
the problem of the management of a regulated lake
has been represented with a feedback control
scheme with feedforward compensation (Figure 1).

The control policy, which is the key element of the
scheme, returns the volume u

t
 to be released from

the reservoir, once the current storage value s
t
 is

known.  When feedforward compensation is pres-
ent the policy also depends upon the vector I

t
,

which represents the meteorological information



and the catchment state.  Both these systems are
affected by a stochastic disturbance εt.

Control
Policy

Reservoir
Network

Catchment
and Meteo

εt

It

ut

at+1

st

Figure 1. Closed loop control scheme with feed-
forward compensation.

According to the chosen modelling representation,
the components of the vector I

t
 can be, e.g., the

piezometric head of groundwater, the reservoir
inflow during the 24 hours preceding the release
decision (a

t+1
); the stochastic disturbance ε

t
 can be,

e.g., the atmospheric pressure, the solar radiation,
the rainfall.

The control policy can be determined as the solu-
tion of an optimal control problem defined as fol-
lows.  The reservoir is represented by the mass
conservation equation:

),,( 1111 ++++ −+= ttttttt ausrass (1)

where r
t+1

 is the actual release in the interval

[t, t+1).

The meteorological system and the catchment are
the most difficult component to model, because of
the complexity of the meteorological and hydro-
logical processes.  Very often only the catchment is
considered and the reservoir inflow a

t+1
 is repre-

sented by simple stochastic autoregressive models
of order q.

),,...,,( 21 tqttttt aaaa εχ −−−= (2)

where εt is a white gaussian noise.  Here

|,...,,| 21 qtttt aaaI −−−= .

The model of the whole dynamic system, com-
posed of the meteorological system, the catchment
and the reservoir, can thus be represented in the
compact vectorial equation:

),,( 11 ++ = ttttt uxfx ε (3)

where x
t
 is the state vector, composed by the state

variables in s
t
, and I

t
. Because of climate periodic-

ity, the function ),,( ⋅⋅⋅tf is periodic of period T

equal to one year.

During the system evolution, the state transition
from xt to xt+1  can produce an instantaneous cost,
expressing the lack of fulfillment of management
objectives, computed as the weighted sum of the
costs associated with the k objectives:

t
t

k

j

j
t gwg ∑=

=1
(4)

where w
j
 is the weight of the j-th objective. Also

the step costs are periodic of period T.

We define as policy the infinite sequence

},,{ 10 Kmmp = of periodic functions of period T

where:

)( ttt xmu = (5)

The optimal control problem is to find the policy
that minimises a functional of the costs in the fu-
ture, over an infinite horizon.  Using the Laplace
criterion (use of the expected value operator on the
disturbance ε), given an initial state x0 and a dis-
count rate α for the future costs, the cost functional
of a given policy p is defined as:

)],,([lim),( 1
0 ...

0
11

+
=∞→
∑=

+
tttt

t
h

th
uxgEpxJ

h

εα
εε

The optimal control problem is therefore solved
when we find the policy p

o
 which minimises:

),(min)( 00 pxJxJ
p

= (6a)

subject to:

),,( 11 ++ = ttttt uxfx ε (6b)

),|( 1 ttttt ux+Φ∼ εε (6c)

tt Sx ∈   )( ttt xUu ∈   tt D∈ε (6d)

)( ttt xmu = (6e)

where ttt DUS ,, are the discretised domains of the

state, control and disturbance.

3. THE SOLUTION BASED ON

STOCHASTIC DYNAMIC

PROGRAMMING

The solution of the optimal control problem (6a-
6e) by SDP is based on the evaluation of the opti-
mal cost-to-go, which is defined as the cost that
one would have to pay if the system would be ini-
tially in state xt+1 and the system’s future trajectory
would be obtained applying optimal control deci-
sions in every state transition.  We name this cost

)( 11 ++ t
o
t xH .  If the optimal cost-to-go would be

known for every value of xt+1 , the optimal decision



)( t
o
t xm at time t would be easily found minimising

the expected value of the present cost and the dis-
counted optimal cost-to-go:

( )

( )]

,,[Eminarg)(

11

1
1

++

+

+

=
+

t
o
t

tttt
u

t
o
t

xH

uxgxm
tt

α

ε
ε (7)

The optimal cost-to-go associated with the present
state is therefore given by the following recursive
equation:

( ) ( )],,[Emin)( 111
1

+++ +=
+

t
o
ttttt

u
t

o
t xHuxgxH

tt

αε
ε

(8)

which is known as the Bellman equation and its
solution is the Bellman function.

Under the previous hypotheses, it can be shown
that the Bellman function is a periodic function, of
period T, which can be obtained using the Succes-
sive Approximations Algorithm (SAA) [Bertsekas,
1995] that, proceeding backwards in time from T to
1, solves the recursive equation (8) verifying the
constraints (6b-6e).

To determine the right hand side of equation (8),
the algorithm, for each value of xt, must explore all
the possible values of ut and of εt.  Since this algo-
rithm operates on a discrete search space, we have
always implicitly assumed that the domains of u, x
and ε were discrete.  Actually, it is up to the system
analyst to find a satisfactory discretisation of the
continuous domains of these variables.  The choice
of the discretisation is fundamental since it reflects
on the algorithm complexity which is combinato-
rial in the number of states, controls and in their
discretisations.  If we assume to have n states, each
one discretised into N classes, the computational
cost of SDP is proportional to:

TN n × (9)

where T is the number of time steps.

In other words, if we increase the resolution of the
discretisation, thus enhancing the adherence of our
model to the real world, or if we consider more
controls and states, to describe more complex res-
ervoir networks, it may happen that the time re-
quired to compute a policy becomes excessively
long.

Many methods have been devised to overcome this
limitation.  Georgakakos and Marks (1987, 1989)
proposed the Extended Linear Quadratic Gaussian
method, an approach based on the Pontriagyn’s
Maximum principle which does not resent of the
dimensionality problem, but requires the cost func-
tional to be a quadratic function.  Another approach
is the one proposed by Nardini and Soncini-Sessa
(1994). They developed an heuristic control
scheme, named Partial Open Loop Feedback Con-

trol, based on the substitution of the off-line control
problem with a succession of simpler problems,
which is effective in presence of a detailed de-
scription of the stochastic part of the water system.

In the following, we introduce a new approach
based on neuro-dynamic programming [Bertsekas
and Tsitsiklis, 1996] which has the advantage of
retaining the ability of SDP to deal with highly
non-linear problems, while reducing the algorithm
complexity thanks to the approximation of the
Bellman functions via ANNs.

3. THE SOLUTION BASED ON NEURO-

DYNAMIC PROGRAMMING

As previously seen, the main problem with SDP
lies in the dimensions of the search space, if it is
too big, it is nearly impossible to find a solution in
a reasonable time.  Unfortunately water systems
with three or more reservoirs are quite common
and each reservoir is modelled with one state vari-
able.  It is therefore very easy to come to a point
where the discretisation grid of the state variables
must be so loose in order to have a computationally
solvable problem that the resulting policy is practi-
cally unusable.

Another critical factor is the requirement of mem-
ory space: for a network with three reservoirs, each
state discretised on a grid with 1000 points, under
the simplifying assumption that the reservoir in-
flows are described by gaussian noise (which does
not add to the state dimensions), one would need
1.14 Terabytes of memory space to store the Bell-
man function values in single precision only.

A solution to overcome these limitations is to use

an approximation H
~

 of the Bellman Function

)(⋅⋅
oH  to represent the behaviour of the original

function interpolating from a limited subset tS of

points extracted from discretisation grid tS , so that

ttt SSx ⊂∈ .  Since computing a point of )(⋅⋅
oH

is computationally very expensive, in terms of both
CPU time and memory space, reducing the number
of computed points will be extremely beneficial.

In the next sections, first we introduce Artificial
Neural Networks as function approximators, then
we explain how the Bellman function approxima-
tions can be used in an algorithm that differs only
slightly from the original SAA.

3.1. Approximating the Bellman Function

Among various function approximation schemes
we are particularly interested in the nice property
of multilayer feedforward networks which have
been shown to be universal approximators [Hornik



1989, Kreinovich 1991].  This means that an ANN
can approximate any function to any desired de-
gree of accuracy provided that a sufficient number
of hidden units are used, and thus we can approxi-
mate an highly nonlinear map H(x), such as the
Bellman function, where x is a vector, with a feed-

forward network ),(
~ ϑxH , where ϑ is the vector of

weights on the arcs connecting the network layers.

The objective is to find a network structure (num-
ber of hidden layers, number of neurons) so that
the vector ϑ can be efficiently computed, while
retaining a “good” approximation ability, thus ena-

bling ),(
~ ϑxH  to be a compact representation of

H(x).

Note that the dimension of vector ϑ  is equal to r =

s(n+2)+1 where s is the number of neurons and n
the dimension of the state.  Thus, to store T ap-
proximations of a Bellman function, we only need
to store rT values.  In the case of the network with
three reservoirs, using a feedforward ANN with 3
neurons in the hidden layer (which are enough to
approximate the Bellman functions in our experi-
mental cases), leads to the requirement of only 216
Kilobytes of memory space, as opposed to the 1.14
Tb with traditional SDP.

The improvement is not so remarkable when we
deal with CPU time, since ANNs must be trained.

Input
Layer Hidden

Layer

Output
Layer

x1

x2

x3

y1

y2

y3

Figure 2. A typical feedforward network.

3.2. Training the Bellman function approxi-
mations

In a feedforward ANN neurons are organised in
layers: the input layer is directly connected with
the inputs, the output layer takes the outputs of the
hidden layer (one, or more) and produces the net-
work output.

In Figure 2 we have represented a network with
three inputs and three outputs, but the Bellman
function approximators will always have n inputs,
where n is the number of state variables, and a sin-
gle output (the cost-to-go value).

The input layer (the empty token in Figure 2) sim-
ply distributes the input values to the hidden layer
weighting the importance of the connections.  The
weighted inputs are then processed by each node in
the hidden layer thanks to an activation function.
The output of the hidden layer is either passed on
to a next hidden layer or sent to the output nodes
where it is weighted and processed by a (usually)
linear activation function.  When all the activation
functions are linear, also in the hidden layers, the
ANN can be reduced to a linear filter and can be
trained using a standard least squares algorithm.
ANN show their ability to approximate highly non-
linear functions when the activation functions are
non-linear.  We have chosen to use an hyperbolic
tangent as activation function.  Unfortunately the
least squares algorithm does not work anymore and
therefore the backpropagation algorithm has been
invented by [Rumelhart et al. 1986].  It minimises
the output error of the network (10), given by the
sum of squared errors between the target t

o
 and the

network output y
o
:

∑ −=
o

oo
P

ytE
2)(

2

1
(10)

The error is minimised computing its derivative
with respect to the weights and then applying the
forward and backward passes of the backpropaga-
tion algorithm to express the weight gradient as a
function of the network inputs for each layer.

In the backpropagation algorithm the main prob-
lem is the descent of the weight gradient and re-
search has focused on the development of gradient
descent algorithms which would converge quickly
and avoiding local minima.  Most of the time re-
quired training a network is spent in these compu-
tation, where the trade-off is between accuracy and
computational complexity, since most accurate
algorithms require the inversion of the Jacobian
and the Hessian of the weight matrices of consider-
able dimensions.  Currently we have implemented
the Levenberg-Marquardt algorithm [Hagan and
Menhaj, 1996] which has been designed to ap-
proach the speed of second-order methods without
having to compute the Hessian.

3.3. The NDP algorithm

Once an approximation architecture ),(
~ ϑxH of

H(x) has been found, the sub-optimal policy

)(~
tt xm is given by [Bertsekas and Tsitsiklis,

1996]:

( )

( ) ttttt

tttt
u

tt

SSxx

uxgxm
tt

⊂∈∀+

=

+++

+
+

],H
~

,,[Eminarg)(~

111t

1
1

ϑα

ε
ε (11)



Comparing equation (11) with (7), it appears that

( )11tH
~

++ tx  must be trained using ( )1
o

1tH ++ tx  as

target and the vector 1+tx  as pattern. We remark

that the original Bellman function is not available,
but we can exploit the recursive nature of the
Bellman equation to generate the Bellman func-
tions needed to train their approximations thanks to
the approximate DP formula:

( )

( )],H
~

,,[Emin)(ˆ

111t

1
1

+++

+ +=
+

tt

tttt
u

tt

x

uxgxH
tt

ϑα

ε
ε (12)

The left-hand side of (11) is an approximate cost-
to-go function, which can be used to train

),(
~

ttt xH ϑ , which, in turn, will be used in (11) to

obtain )(ˆ
11 −− tt

xH .  It can be proven formally that

if the approximation architecture is “good enough”,

then tH
~

is a close approximation of the optimal

cost-to-go function o
tH .  Bertsekas and Tsitsiklis

also show that in some particular cases, for some
values of the discount rate α, there is still possibil-
ity for algorithm divergence.  Such a situation can
be avoided limiting the class of approximators, but
also limiting their power and ease of use.

The algorithm is therefore a simple rewriting of the
orginal SAA:

Step 0) Initialisation.  The current algorithm itera-

tion index j is set to 0.  Initialise 0)(0
0 =⋅><

H  for

each state value.  Train an ANN ),(
~

TTT xH ϑ  us-

ing the discretisation grid of xt+1  as pattern and the

identically null function )(0
0 ⋅><

H  as target.

Step 2) Main loop.  For each algorithm iteration j
compute backwards in time, for t from T-1 down to

0, T functions )(ˆ ⋅>< j
tH using equation (11). At

each time step, after having obtained )(ˆ ⋅>< j
tH ,

compute its approximation ),(
~

t
j

tH ϑ⋅><  training

the ANN. When t = 0, check if an appropriate
convergency criterion, measuring the distance be-
tween two Bellman functions at successive itera-
tions, has been satisfied, if not, increment the it-
eration index j and go back to the beginning of

Step 2 after having set )()(1
0 ⋅=⋅ ><>+< j

T
j

HH .

4. PRELIMINARY RESULTS

Currently, the algorithm we have presented in this
paper has been applied only to some test cases to
verify its correct functioning and get some first

results to understand how to extend its application
to real world cases.

A first test was designed to verify the convergence
of the algorithm and obtain some data on its theo-
retical performance.  The test case was a reservoir
network with a single reservoir, fed by a catchment
described as a white gaussian noise, and with an
agricultural district with a give water demand, con-
stant over the optimisation period.  One step of the
SDP algorithm, that is, the evaluation of the right
hand side of equation (8) for all the possible values
of xt, given the cardinality of Ut, card(Ut) = 7,
card(Dt) = 10, card(St) = 17, took 0.97 seconds.
One step of the NDP algorithm took 12.41 sec-
onds, of which 0.29 seconds were spent to evaluate
the right hand side of (8) for a given xt, while in the
SDP case, the required time was only 0.058 sec-
onds.  Another 0.45 seconds were needed for each
xt to train the ANN which approximated the Bell-
man function obtained in the SDP case with an
error less than 10-2.  Note that NDP was applied
using the same discretisation of the state space of
the SDP case.  The tests were performed on a
Pentium II at 350 Mhz, running under Linux.

We then performed some tests to understand how
the training time for an ANN varies with the pat-
tern dimension, which depends on the number of
state variables (the dimension of the independent
variable vector x in a function y = f(x)) and the
number of points in the discretisation classes of
each component of the vector. These results are
reported in Table 1.

Table 1. Training times and approximation errors
measured in the training of the functions y = ln(x)-
sin(x) (1 state variable), y = ln(x) – sin(y) (2 vari-
ables), y = ln(x) – sin(y+z) (3 variables), y =

ln(x+y)-sin(z+w) (4 variables).

Pattern size Training

time

Approximation

error
number of

state variables
number of

discretisation
classes

(seconds)

1 10 1.3 1.00E-05

1 20 2.06 1.00E-02

1 40 3.39 1.00E-02

1 80 6.2 1.00E-03

2 40 5.01 1.00E-02

3 40 8.01 1.00E-03

4 40 9.89 1.00E-02

The results show that NDP becomes especially
interesting only when the number of states in-
creases and the discretisation grid is coarser. We
have therefore applied NDP to a test case with two
reservoirs, where the state discretisation of each
storage was 17 classes.  While it was still a scaled-
down test case, the gap between NDP and SDP



was closing down, thanks to the reduction of the
state grid to 8 discretisation classes in the NDP
case. We measured each an average time per itera-
tion of 8 seconds in the SDP case, against 47.36
seconds for the NDP case. We are currently ex-
perimenting NDP on a real world case, the synthe-
sis of management policies for the Piave water
system. No results are yet available as we write,
since we are still setting up the experimental
framework, but we expect to notice a considerable
reduction in computing time, given that there are
three state variables, with their discretisation
classes equal to 102, 41 and 96 points.  Sampling
those classes, taking one point out of four, will
allow to browse a search space of 6000 points in
the NDP case against the 401472 points of the SDP
case.

5. CONCLUSIONS

An approach to the management of reservoir net-
works based on neuro-dynamic programming has
been presented.  Neuro-dynamic programming
allows to reduce the amount of memory needed to
store the Bellman functions during the solution of
an optimal control problem.  It also reduces the
computation time when the state space, used as
training pattern, is sampled with a coarser grid,
while the ANN, which approximates the Bellman
function, still manages to maintain a good ap-
proximation performance.

The first results are promising, but there is space
for more research, especially on the efficient sam-
pling of the discretised state space, in order to ob-
tain the most efficient approximation of the Bell-
man function.

6. REFERENCES

Bellman, R.E., and Dreyfus, S.E., Functional ap-
proximations and dynamic programming, Mathe-

matical Tables and Other Aids to Computation, 13,
pp. 247–251, 1959.

Bertsekas, D.P., and J.N. Tsitsiklis, Neuro-

Dynamic Programming, Athena Scientific,
Belmont, MA, 1996.

Georgakakos, A.P., and Marks, D.H., A new
method for real-time operation of reservoir sys-
tems, Water Resour. Res., 23(7), pp. 1376–1390.
1987.

Georgakakos, A.P., Extended Linear Quadratic
Gaussian Control for the real-time operation of
reservoir systems, in Dynamic Programming for

Optimal Water Resources Systems Analysis, A.
Esogbue, ed., Prentice Hall Publishing Company,
NJ, pp. 329–360, 1989.

Hagan, M.T., and M. Menhaj, Training feedfor-
ward networks with the Marquardt algorithm,
IEEE Transactions on Neural Networks, 5(6), pp.
989–993, 1994.

Hornik, K., Multilayer feedforward networks are
universal approximators, Neural Networks, 2, pp.
359–366, 1989.

Kreinovich, V., Arbitrary nonlinearity is sufficient
to represent all functions by neural networks: a
theorem, Neural Networks, vol.4, pp. 381–383,
1991.

Nardini, A, C. Piccardi and R. Soncini-Sessa, A
decomposition approach to suboptimal control of
discrete-time systems, Optimal Control Applica-

tions and Methods, 15, pp. 1–12, 1994.

Piccardi, C. and R. Soncini-Sessa, Stochastic dy-
namic programming for reservoir optimal control:
dense discretization and inflow correlation as-
sumption made possible by parallel computing.
Water Resour. Res., 27(2), pp. 729–741, 1991.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams,
Learning internal representations by error back-
propagation, in Parallel Data Processing, D.E.
Rumelhart and J.L. McClelland, eds., vol 1, Cam-
bridge, MA: The MIT Press, pp. 318–362, 1986.


