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Abstract

A common finding in stated preference studies that measure the value of travel

time (VTT) is that the measured marginal VTT increases with the size of the time

change considered, in conflict with standard neoclassical economic theory. The

current paper tests a possible explanation for the phenomenon that builds on the

diminishing sensitivity of the value functions in prospect theory.

We use stated preference data with trade-offs between travel time and money

that provide identification of the degrees of diminishing sensitivity for time and

money gains and losses. This enables us to test and potentially falsify the prospect

theory explanation. We conclude that prospect theory remains a potential explana-

tion of the phenomenon.

Keywords: Value of travel time, stated preference data, prospect theory.

∗Corresponding author. E-mail: mf@transport.dtu.dk. Telephone: +45 45256521. Address: DTU

Transport, Bygningstorvet 116B, DK-2800 Lyngby, Denmark.

1



1 Introduction

An often encountered phenomenon in stated preference (SP) studies that measure the

value of travel time (VTT) is that the measured marginal VTT increases with the size of

the time change considered, in conflict with standard neoclassical theory (Gunn, 2001;

Hultkrantz and Mortazavi, 2001; Mackie et al., 2001, 2003; Fosgerau et al., 2007). The

effect is large enough to be of considerable economic significance (Mackie et al., 2003;

Fosgerau et al., 2007), and problematic because it is inappropriate for evaluations of

transport projects to apply a lower unit VTT for small time changes: This would cause

evaluation to depend in an illogical way on whether a project was evaluated as a whole

or as a series of smaller projects each resulting in smaller time savings (Fosgerau et al.,

2007).

Several explanations of the phenomenon have been proposed (Mackie et al., 2003;

Cantillo et al., 2006), but so far it remains a puzzle. Recently, De Borger and Fos-

gerau (2008) suggested prospect theory as a possible explanation, arguing that the phe-

nomenon could be generated by preferences being reference-dependent and exhibiting

diminishing sensitivity for gains and losses, with a stronger degree of diminishing sen-

sitivity for money than for travel time.

Until quite recently, stated preference studies measuring the VTT did not take reference-

dependence into account, meaning that such an effect could have been present without

being detected.1

For the explanation to be valid, two conditions must hold: First, the reference-

dependent model underlying the analysis in De Borger and Fosgerau (2008) must be

an adequate description of the behaviour observed in the SP surveys. Second, the ob-

served preferences should exhibit stronger diminishing sensitivity for money than for

travel time. De Borger and Fosgerau (2008) provide empirical support for the latter

condition, but only partly for the former, because they lack the data to separately iden-

tify the degrees of diminishing sensitivity for travel time and cost. The current paper

extends their analysis, using data that provide this identification, and thus presents an

empirical test with potential to falsify the prospect theory explanation.

Usually, the VTT is measured from SP data where respondents make choices be-

tween travel alternatives that differ with respect to travel time and cost. A common ex-

perimental setup is to use binary choices between a fast and expensive travel alternative

and a slower and cheaper one. In some recent studies, using electronic questionnaires,

the time and cost attributes of the alternatives are varied around individual-specific ref-

1Descriptive behavioural theories as prospect theory and rank-dependent utility theory have only re-

cently been applied in travel behaviour research (see, e.g. Van de Kaa, 2008; Avineri and Bovy, 2008).

To our knowledge, Van de Kaa (2005) was one of the first to argue that VTT studies should control for

reference-dependence, preceded by a discussion of the gap between willingness-to-pay and willingness-

to-accept in such studies. Recent VTT studies have allowed for reference-dependence in the form of loss

aversion, whereas diminishing sensitivity for gains and losses is generally not accommodated.
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erence values, corresponding to the normal or most recently experienced travel time

and cost of the journey of interest (Burge et al., 2004; Fosgerau et al., 2007; de Jong

et al., 2007; Ramjerdi et al., 2010). Table 1 presents four types of choices often applied

in such VTT studies, using the following notation: Let t1, t2,c1,c2 be the travel time

and cost attributes of the two alternatives, respectively, normalised by subtracting the

reference values, such that negative values correspond to gains (faster or cheaper than

reference) and positive values to losses (slower or more expensive than reference). As-

sume alternatives are sorted such that t1 < t2 and c1 > c2, and define ∆t := t2 − t1 and

∆c := c1 − c2. We use the notation from De Borger and Fosgerau (2008) and label the

choice types WTP (willingness-to-pay), WTA (willingness-to-accept), EG (equivalent

gain), and EL (equivalent loss). The choices are reference-based in the sense that they

always have one time attribute equal to the reference time (i.e. t1 = 0 or t2 = 0) and one

cost attribute equal to the reference cost (i.e. c1 = 0 or c2 = 0). 2

In such a setting, if the reference values represent the respondent’s perception of

the normal travel time and cost, prospect theory suggests that the indirectly observed

preferences may be reference-dependent (Kahneman and Tversky, 1979; Tversky and

Kahneman, 1991). In prospect theory, preferences are defined in terms of value func-

tions, which have three general characteristics: Reference-dependence: the carriers of

value are gains and losses relative to a reference point; Loss aversion: losses are valued

more heavily than gains; Diminishing sensitivity: the marginal value of both gains and

losses decreases with their size.

De Borger and Fosgerau (2008) analyse data of the type presented in Table 1, using

a choice model with reference-dependent preferences for travel time and money, based

on prospect theory. They use a flexible functional form for the value functions for time

and money, which permits the characteristics of prospect theory, but is more general.

However, the authors are unable to identify value function curvature empirically (they

can only identify the ratio of time and money curvature parameters) because their data

only contain reference-based choice situations, as defined above.

This paper extends their analysis by also using two types of non-reference-based

choices, shown in Table 2. Here, both time attributes are different from the reference

time. Using the modelling framework from De Borger and Fosgerau (2008), we for-

mulate a discrete choice model in which choice depends on the reference-free marginal

value of travel time and the value functions for time and cost. We test this parametric

model by comparing its predicted equi-probability curves to those of the data, estimated

using a semi-parametric local logit estimator (Fan et al., 1995; Fosgerau, 2007). Based

on this test, we conclude that our data do not reject the parametric model.

2These choice types are applied in the national British (1994-96), Dutch (1988, 1997-98, 2007-),

Danish (2004-2007) and Norwegian (2009) VTT studies (Burge et al., 2004; Fosgerau et al., 2007; de Jong

et al., 2007; Ramjerdi et al., 2010). In addition, the Dutch and Norwegian studies included choices that

were not reference-based. The national Swedish (1994) VTT study used a variation of the WTA and WTP

choices (Burge et al., 2004).
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Table 1: Reference-based choice types

Fast alternative Slow alternative

Choice type t1 c1 t2 c2

WTP −∆t ∆c 0 0

WTA 0 0 ∆t −∆c

EL 0 ∆c ∆t 0

EG −∆t 0 0 −∆c

Note: ∆t,∆c > 0 denote the time and cost differences between

alternatives.

Table 2: Non-reference-based (nrb) choice types

Fast alternative Slow alternative

Choice type t1 c1 t2 c2

EL-nrb t ′ ∆c t ′+∆t 0

EG-nrb −t ′−∆t 0 −t ′ −∆c

Note: ∆t,∆c > 0 denote the time and cost differences between

alternatives. t ′ > 0 denotes the shift off the reference.

The value functions are estimated from our parametric model, which is a mixed

logit model allowing for oindividual heterogeneity, and the results are consistent with

prospect theory. In general, the value functions exhibit loss aversion for both travel time

and cost, the value function for cost exhibits diminishing sensitivity for both gains and

losses, and the value function for time exhibits constant sensitivity for both gains and

losses. This means that the value function for cost ”bends” more than the value function

for time, i.e. there is stronger diminishing sensitivity for money than for travel time.

Our results thus support prospect theory as an explanation of the phenomenon that VTT

increases with the size of the time change.

The paper is organised as follows. Section 2 presents the model, section 3 our data,

section 4 our analysis, and section 5 concludes.

2 Model

This section presents our behavioural model and discusses some of its important pro-

porties. In section 2.1 we formulate a mixed logit model to explain behaviour in choice

situations as the ones defined in Tables 1 and 2. In the model, choices depend on the

reference-free marginal value of travel time and reference-dependent value functions for

time and cost.

In section 2.2, we show that using data from reference-based choices alone only
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allows us to identify the parameters of the mixed logit model up to a common scale.

However, when we also have data from non-reference-based choices, the parameters

are identified.

Section 2.3 shows that if the behavioural premises of the mixed logit model hold, the

equi-probability curves for reference-based choice types should be linear and parallel in

(log∆t, log∆c)-space. This is later used as a test of model fit.

Finally, we show in section 2.4 that if the behavioural premises of the mixed logit

model hold, such that preferences are indeed reference-dependent, but this reference-

dependence is not taken into account when estimating the VTT, the resulting estimates

of the marginal VTT depend on ∆t. Specifically, if the value function for cost always

bends more than the value function for time, we would observe a marginal VTT increas-

ing in ∆t, even if the reference-free marginal VTT were constant.

2.1 Mixed logit model

We consider binary choices between two travel alternatives that differ with respect to

travel time and cost, such that one alternative is faster but more expensive than the

other. Individuals have a reference travel time t0 and a reference cost c0, representing

their normal state. As above, t1, t2,c1,c2 denote the travel time and cost attributes of

the two alternatives, respectively, normalised by subtracting the reference values, and

alternatives are sorted such that t1 < t2 and c1 > c2.

Assume we observe the six different types of choices given in Tables 1 and 2. We

assume that individuals prefer the slow alternative (alternative 2) whenever 3

wvt(t1)+ vc(c1)< wvt(t2)+ vc(c2), (1)

where w is a reference-free marginal value of travel time (the absolute value of the

reference-free marginal rate of substitution between travel time and money), which

varies randomly in the population, and vt , vc are value functions for travel time and cost

that measure the values the individuals assign to the time and cost attributes.4 Like De

3Our formulation differs slightly from De Borger and Fosgerau (2008), who specify preference for the

slow alternative as vt(wt1)+vc(c1)< vt(wt2)+vc(c2). Since we do not put w inside the value function for

travel time, we assume that it is the time attribute itself that is subject to reference-dependence, whereas

the De Borger and Fosgerau (2008)formulation corresponds to assuming that is the monetary equivalence

of the time attribute that is subject to reference-dependence.
4The term ”value function” stems from prospect theory (Kahneman and Tversky, 1979).
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Borger and Fosgerau (2008), we assume the value functions have the following form:5

vt(t) =−|t|1−βt+γtS(t)S(t)eηtS(t), (2)

vc(c) =−|c|1−βc+γcS(c)S(c)eηcS(c). (3)

S(·) is the sign function, which takes the values 1, 0, and -1, when its argument is pos-

itive, zero, and negative, respectively. The parameters η , β , and γ determine the slope

and curvature of the value functions. Equations (2) and (3) are flexible formulations

that allow for a range of possible shapes. In order to make the derivations following

below, we require the value functions to be decreasing, such that higher travel time or

cost makes an alternative less attractive. This corresponds to β − 1 < γ < 1−β . The

value functions exhibit diminishing sensitivity to gains if −β < γ , and to losses if γ < β .

If γ > 0, the value function exhibits a higher degree of diminishing sensitivity to gains

than to losses (it ”bends” more in the gain region) – if γ < 0, the opposite is the case.

We say that the value functions exhibit loss aversion if the numerical value of a

loss exceeds the numerical value of a gain of the same size, i.e. if vt(−|t|) < |vt(|t|)|,
respectively vc(−|c|) < |vc(|c|)|. If γ = 0, loss aversion is equivalent to η > 0. If

γ > 0, the value function exhibits loss aversion for all time/cost changes larger than

exp(−η/γ), while if γ < 0, we have loss aversion for all time/cost changes smaller than

exp(−η/γ).
For the choice types in our data, it is always the case that

• either c1 = 0 or c2 = 0,

and

• either t1 = 0 or t2 = 0 or S(t1) = S(t2).

Applying this with the value functions in equations (2) and (3), and taking logs, we see

that eq. (1) is equivalent to

logw < ηcS(c1 + c2)−ηtS(t1 + t2)

+ log
[

S(c1 + c2)(|c1|
1−βc+γcS(c1+c2)−|c2|

1−βc+γcS(c1+c2))
]

− log
[

S(t1 + t2)(|t2|
1−βt+γtS(t1+t2)−|t1|

1−βt+γtS(t1+t2))
]

.

(4)

Note that the terms in square brackets are always positive, so that the logarithms are

well-defined. Let y= 1{slow alt chosen}, i.e. y takes the value 1 when the slow alternative is

5This is a two-part power function with separate slopes and exponents for gains and losses, as is

often applied in studies based on prospect theory, though parameterised slightly differently. The power

functional form has been criticized, because the measured degree of loss aversion depends on the scaling

of the attributes (see e.g. Wakker, 2010); it has however, in the few comparisons available, been found to

have empirical support in terms of better goodness-of-fit (Stott, 2006).
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chosen, and the value 0 otherwise. To take into account that individuals may make errors

when comparing alternatives in the questionnaire, we do not assume that individuals

choose the slow alternative whenever eq. (4) holds, but only that people do not deviate

systematically from this rule. More specifically, we assume that

y = 1

m (5)

logw+ ε< ηcS(c1 + c2)−ηtS(t1 + t2)

+ log
[

S(c1 + c2)(|c1|
1−βc+γcS(c1+c2)−|c2|

1−βc+γcS(c1+c2))
]

− log
[

S(t1 + t2)(|t2|
1−βt+γtS(t1+t2)−|t1|

1−βt+γtS(t1+t2))
]

,

where ε is a symmetric random error with mean zero, independently and identically

distributed across individuals and choices. Moreover, ε is assumed to be independent

of log w and the time and cost attributes. When we estimate the parameters of the

value functions in section 4.2, we shall assume that ε is logistic with scale parameter µ
(inversely proportional to the standard deviation), which corresponds to a mixed logit

model. Note however, that for the derivations in sections 2.3 and 2.4, we do not need to

assume logistic errors.

When we estimate the parameters of the value functions, we allow for both observed

and unobserved heterogeneity in the VTT by modelling log w as a function of observable

characteristics x and an individual-specific random effect:

logw =α ′x+σu, (6)

where u is an individual-specific random effect which follows a N(0,1)-distribution in

the population. The vector x contains a constant.

2.2 Identification with and without non-reference-based choices

Here, we look at identification in the mixed logit model, and so we assume logistic

errors. Let Γ be the cumulative distribution function (CDF) of the standardised logistic

distribution.

Consider first idenfication in the case where we only have data from reference-based

choices, i.e. the choice types in Table 1, where it is always the case that t1 = 0 or t2 = 0.

This implies that the probability of choosing the slow alternative can be written as a

function of ∆t, ∆c, and the sign of the non-zero attributes. Defining t = t1 + t2 and

c = c1 + c2, we can write the choice probability for the reference-based choices as

7



Pref-based(y = 1|∆t,S(t),∆c,S(c),x,u)

= Γ

(

µ

[

ηcS(c)−ηtS(t)+(1−βc) log∆c+ γcS(c) log∆c

− (1−βt) log∆t − γtS(t) log∆t −α ′x−σu

])

. (7)

The sign variables S(c) and S(t) vary independently of each other and independently

of ∆c, ∆t, x and u. Provided we have sufficient variation in ∆c, ∆t, x and u, it is therefore

easy to see that all but one parameter are identified. Hence, data from reference-based

choices allow us to identify ratios of parameters, as is the case in De Borger and Fos-

gerau (2008).

Consider then the additional information we get from observing the non-reference-

based choices EL-nrb and EG-nrb in Table 2. For EL-nrb choices, where 0 < t1 < t2,

the choice probability is

PEL-nrb(y = 1|t1, t2,c1,x,u) =Γ

(

µ

[

ηc −ηt +(1−βc + γc) logc1

− log
(

t
1−βt+γt

2 − t
1−βt+γt

1

)

−α ′x−σu

])

,

(8)

while for EG-nrb choices, where t1 < t2 < 0, the choice probability is

PEG-nrb(y = 1|t1, t2,c2,x,u) =Γ

(

µ

[

−ηc +ηt +(1−βc − γc) log(−c2)

− log
(

(−t1)
1−βt−γt − (−t2)

1−βt−γt

)

−α ′x−σu

])

.

(9)

Provided we have sufficient variation in t1 and t2, we can obtain (−βt + γt) as

−βt + γt =−

∂Γ−1(PEL-nrb(y=1|...))/∂ t2
∂Γ−1(PEL-nrb(y=1|...))/∂ t1

t2/t1
(10)

and (−βt − γt) as

−βt − γt =−

∂Γ−1(PEG-nrb(y=1|...))/∂ t2
∂Γ−1(PEG-nrb(y=1|...))/∂ t1

t2/t1
. (11)

Hence we can identify both βt and γt from the non-reference-based choices alone. Com-

bining reference-based and non-reference-based choices, we are therefore able to iden-

tify all parameters.
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Table 3: Slopes and intercepts of equi-probability

curves with prob. p in (log∆t, log∆c)-space.

Choice type Slope Intercept

WTP
1−βt−γt

1−βc+γc

F−1(p)−ηc−ηt

1−βc+γc

WTA
1−βt+γt

1−βc−γc

F−1(p)+ηc+ηt

1−βc−γc

EL
1−βt+γt

1−βc+γc

F−1(p)−ηc+ηt

1−βc+γc

EG
1−βt−γt

1−βc−γc

F−1(p)+ηc−ηt

1−βc−γc

Note that the choice of the logistic error term distribution does not affect identifi-

cation: The argument above holds for any standardised (i.e. without free parameters)

absolutely continuous error term distribution.

2.3 Equi-probability curves for the reference-based choices

In this section we derive the equi-probability curves for the choice model in (5), and

show that the curves for the reference-based choices are linear and parallel in (log∆t, log∆c)-

space. This is useful because it enables us to test how well the mixed logit model fits

our data by looking at the equi-probability curves in the data. We do not need to make

assumption (6) on the parameterisation of log w or assume logistic errors: All we re-

quire for the derivation is that logw+ ε is an absolutely continuous random variable,

such that its CDF F has an inverse.

For the reference-based choices, the choice probability can be written as a function

of ∆t, ∆c, and F . For WTP choices, where t2 = 0 and c2 = 0, we have that

p = P(y = 1|∆t,∆c)

= F (ηc +ηt +(1−βc + γc) log∆c− (1−βt − γt) log∆t)

m

log∆c =
F−1(p)−ηc −ηt

1−βc + γc

+
1−βt − γt

1−βc + γc

log∆t (12)

Hence the equi-probability curves in (log∆t, log∆c)-space, i.e. the sets {(log∆t, log∆c)∈
R

2| P(y= 1|∆t,∆c) = p} for different values of p∈]0,1[, are parallel straight lines. This

is also the case for WTA, EG, and EL choices. Table 3 lists the slopes and intercepts for

all four choice types.

Assume that the value functions are decreasing, i.e. that βt − 1 < γt < 1− βt and

βc −1 < γc < 1−βc. This implies that the equi-probability curves have positive slopes,
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cf. Table 3. If γt > 0, the equi-probability curves will be steeper for EL than WTP

choices, and steeper for WTA than EG choices. If γc > 0, the curves are steeper for EG

than WTP choices, and steeper for WTA than EL choices. Moreover, loss aversion in

the travel time dimension is equivalent to the equi-probability curve for EL being above

that for WTP for a given value of p, and to the equi-probability curve for WTA being

above that for EG.

2.4 Consequences of ignoring reference-dependence: A positive re-

lation between the marginal VTT and ∆t

Suppose we could observe choices without any measurement error, and that everybody

in the population had identical preferences and behaved according to equations (1), (2),

and (3). What would happen if we tried to measure the VTT from standard data as the

choice types in Table 1, but did not take reference-dependence into account? Let ∆t > 0

denote a given time change, and consider the elicitation measure WT P(∆t), defined

as the cost change ∆c > 0 that would make respondents indifferent between the two

alternatives in a WTP choice. The measure WT P(∆t)/∆t is one possible estimate of the

marginal VTT. From equations (1), (2), and (3), it follows that (cf. the results in De

Borger and Fosgerau, 2008)

WT P(∆t) =
(

we−ηt−ηc∆t1−βt−γt

)1/(1−βc+γc)
.

We see that the corresponding estimate of the marginal VTT, WT P(∆t)/∆t, would de-

pend on ∆t, even if w (the reference-free marginal VTT) were constant. More specifi-

cally, WT P(∆t)/∆t is increasing in ∆t if (1−βt − γt)/(1−βc+ γc)> 1, i.e. if the value

function for cost in the loss domain bends more than the value function for time in the

gain domain. We can define similar valuation measures for the other reference-based

choice types and see that

WTA(∆t) =
(

weηt+ηc∆t1−βt+γt

)1/(1−βc−γc)
,

EL(∆t) =
(

weηt−ηc∆t1−βt+γt

)1/(1−βc+γc)
,

EG(∆t) =
(

we−ηt+ηc∆t1−βt−γt

)1/(1−βc−γc)
.

Again, the corresponding estimates of the marginal VTT would depend on ∆t, even if

w were constant. These estimates are increasing in ∆t if (1−βt + γt)/(1−βc − γc)> 1,

(1−βt + γt)/(1−βc + γc)> 1, respectively (1−βt − γt)/(1−βc − γc)> 1.

In particular, if the value function for cost always bends more than the value function

for time, no matter which combination of time/cost gains/losses we consider, and we
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estimate the VTT using one or more of the four measures above, we would observe a

marginal VTT increasing in the size of the time change, even if w were constant.

3 Data

Our data stem from a Norwegian survey conducted to establish values of travel time,

variability, and traffic safety to be used in welfare-economic evaluations of transport

infrastructure policies (Samstad et al., 2010). The respondents were recruited from a

representative panel, and the survey was carried out on the Internet.

The survey covered both car trips, public transport (PT) trips and plane trips. In

our analysis, we consider five combinations of transport mode and distance, which we

analyse separately:

• Car short - car trips less than 100 km

• PT short - public transport trips less than 100 km

• Car long - car trips longer than 100 km

• PT long - public transport trips longer than 100 km

• Air - domestic plane trips

The survey contained several stated preference experiments, of which we use one:

This choice experiment consists of nine binary choices between travel alternatives that

differ with respect to cost and travel time, as illustrated in Figure 1. Always, one al-

ternative is faster and more expensive than the other. The time and cost attributes are

pivoted around the travel time (t0) and cost (c0) of a reference trip that the respondents

reported at the beginning of the survey. The reference trip is a one-way domestic trip for

private purpose, carried out within the last week (for short distance segments) or within

the last month (for long distance segments). Travel time is defined as in-vehicle time

without stops, except for air travellers, where travel time is measured from airport to

airport. The choices are of the types shown in Tables 1 and 2. Eight of the nine choices

are reference-based (two WTP choices, two WTA choices, two EG choices, two EL

choices), and one choice is non-reference-based (either EG-nrb or EL-nrb).

The time and cost differences between the two alternatives, ∆t and ∆c were defined

as follows: First, eight different ∆t were computed by multiplying t0 by eight random

values between 0.1 and 0.3, two from each of the intervals 0.1 – 0.15, 0.15 – 0.2, 0.2 –

0.25, and 0.25 – 0.3. Then, eight random values v were drawn. For the short distance

trips and long distance bus trips, two values were drawn from each of the intervals 10–50

NOK/h, 50–100 NOK/h, 100–250 NOK/h, and 250–500 NOK/h.6 For the long distance

61 NOK ≈ 0.12 Euro.
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Travel time: 15 min Travel time: 11 min

Travel cost: 18 NOK Travel cost: 24 NOK

Consider the following two bus trips

All other things being equal, which trip do you prefer?

Next

TRIP A TRIP B

Figure 1: Illustration of choice

train trips, two values were drawn from each of the intervals 10–100 NOK/h, 100–250

NOK/h, 250–450 NOK/h, and 450–750 NOK/h. For the long distance car trips, two

values were drawn from each of the intervals 10–100 NOK/h, 100–250 NOK/h, 250–

500 NOK/h, and 500–1000 NOK/h. For the air trips, two values were drawn from

each of the intervals 50–150 NOK/h, 150–300 NOK/h, 300–600 NOK/h, and 600–1000

NOK/h. Finally, the eight values v were randomly matched to the values of ∆t, and for

each pair ∆c was computed by multiplying ∆t and v (converted to NOK/minute). The

eight pairs (∆t,∆c) were then assigned randomly to the eight reference-based choices.

For the non-reference-based choice, the shift t ′ > 0 off the reference was computed

as t ′ = 0.2t0. The values of (∆t,∆c) were taken from one of the EL choices (in the case

of nrb-EL choices) or from one of the EG choices (in the case of nrb-EG choices).

In our analysis, we exclude respondents who answered side-lexographically (always

chose left or right alternative), dropped out during the survey, or gave unrealistic ref-

erence values.7 We also exclude air travellers with a reference travel time less than 80

minutes, because of an error in the questionnaire. These exclusions correspond to 7-9%

of the observations for the car short, car long and PT long segments, and around 16-18%

of the observations for air and PT short. Moreover, data are sparse for high values of

reference time and cost, so we restrict our analysis to the following samples:

• Car short: Cost ≤ 250 NOK, time ≤ 90 minutes.

• PT short: Cost ≤ 100 NOK, time ≤ 90 minutes.

• Car/PT long: Cost ≤ 1500 NOK, time ≤ 900 minutes.

• Air: Cost ≤ 5000 NOK, time ≤ 600 minutes, distance ≤ 3000 km.

7Unrealistic values are average speeds above 100 km per hour for land modes, average speeds above

1000 km per hour for air, costs less than 50 NOK for long distance modes, cost per kilometre less than

0.2 NOK or higher than 11 NOK for car modes.
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Table 4: Samples

Segment Individuals Obs Reference-based obs

Car short 3019 27163 24144

PT short 547 4923 4376

Car long 1130 10169 9039

PT long 940 8460 7520

Air 758 6822 6064

Table 4 lists the resulting sample sizes. The sample is close to being balanced, with only

5 individuals (in the car segments) missing a few observations each. As we explain in

section 4.3, our mixed logit analysis uses only a subsample, trimming data at the 5%

and 95% quantiles of ∆t and ∆c, which causes the samples to become more unbalanced.

Table 8 in the Appendix provides summary information of the subsample used in our

mixed logit analysis.

4 Analysis

This section presents our empirical analysis and results. Our analysis involves two steps:

First, as a check of the mixed logit model in eq. (5), we estimate the equi-probability

curves in the data and compare to those of the model. We do this separately for each data

segment and choice type. In section 4.1 we describe how the equi-probability curves

are estimated with few parametric assumptions, using a semi-parametric approach to

estimate the choice probabilities.

Second, we use the mixed logit model in eq. (5) to estimate the parameters of the

underlying value functions. Section 4.2 describes how this is done using maximum

likelihood estimation.

Finally, section 4.3 presents and discusses the results of both the semi-parametric

analysis (section 4.3.1) and the mixed logit analysis (section 4.3.2).

4.1 Semi-parametric model validation

To estimate the choice probabilities P(y = 1|∆t,∆c) as function of ∆t and ∆c, we use

the semi-parametric framework from Fosgerau (2007), which is based on Fan et al.

(1995): Let {(yi,∆ti,∆ci)}N
i=1 denote the sample of interest, and let Γ be the CDF of

the standardised logistic distribution (i.e. with scale parameter 1). For a given point

(∆t,∆c), the choice probability P(y = 1|∆t,∆c) is estimated by the Local Logit Kernel
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estimator Γ(α̂0), where

(α̂0, α̂t , α̂c) = arg max
(α0,αt ,αc)

N

∑
i=1

Kh(∆ti −∆t,∆ci −∆c) logPi(α0,αt ,αc), (13)

Pi is the logit choice probability

Pi(α0,αt ,αc) = (Γ(α0 +αt(∆ti −∆t)+αc(∆ci −∆c)))yi

· (1−Γ(α0 +αt(∆ti −∆t)+αc(∆ci −∆c)))1−yi ,

and Kh(·, ·) is a two-dimensional kernel with bandwidth h.

The estimations are carried out in Ox (Doornik, 2001), using a triangular kernel

and manually chosen bandwidths. In areas where the data are sparse, the bandwidth

is increased to ensure that at least 15 observations are used in each local estimation.

For computational convenience, we use the same bandwidths in both time and cost

dimensions.

4.2 Mixed logit model estimation

We estimate the parameters in our model using maximum likelihood mixed logit esti-

mation of eq. (5): The error term ε is assumed to be logistic with mean zero and scale

parameter µ (inversely proportional to the standard deviation). The covariate vector x is

assumed to contain a constant, the logarithms of the reference travel time and cost (c0,

t0) the logarithm of personal net income, a dummy for missing income information, and

a dummy for trips to/from work or school.

We estimate a model (MXL1) with γt ,γc fixed to zero, and another (MXL2) with

γt ,γc being free parameters. In the restricted model (MXL1), the value functions have

the same curvature for gains and losses, so the entire gain-loss discrepancy is captured

by the difference in levels (the η’s). As a robustness check, we also estimate plain logit

models, where u is assumed to be a constant.

We estimate a separate set of parameter values for each of the five data segments.

Estimations are carried out in Biogeme (Bierlaire, 2003, 2005), using 500 Halton draws

to simulate the individual-specific random effect (see e.g. Train, 2003, for a definition).

4.3 Results

4.3.1 Semi-parametric analysis

We first regress y on ∆t and ∆c (as described in section 4.1). The distributions of ∆t and

∆c in the data have rather long right tails, implying that estimates of P(y = 1|∆t,∆c) will

be very unreliable for high values of ∆t and ∆c. Initially, we therefore only use obser-

vations where ∆t and ∆c are below their 90% quantiles. Figure 2 shows the estimated

14
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Figure 2: Equi-probability curves (local logit estimates), estimated on (∆t,∆c). Car

short, excluding top 10% in both dimensions. The figures along the curves denote prob-

ability levels.
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Figure 3: Equi-probability curves (local logit estimates), estimated on (log∆t, log∆c).
Car short, excluding top 5% and bottom 5% in both dimensions. The figures along the

curves denote probability levels.
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equi-probability curves for the car short segment, depicted in (log∆t, log∆c)-space. The

bandwidth is chosen manually by graphical inspection of the estimates: Our criterion

is to find the smallest possible bandwidth yielding smooth, non-decreasing and non-

backward-bending equi-probability curves. For the car short segment, we find that a

bandwidth of 0.10 is suitable (for interpretation, note that the unit of ∆t and ∆c are

minutes and NOK, respectively).

Second, we regress y directly on log∆t and log∆c. This does not produce identical

results, because regressing in log space corresponds to applying smaller bandwidths

for low values of ∆t and ∆c and higher bandwidths for higher values. Regression in

log space therefore yields more uncertain estimates in the low range of ∆t and ∆c. To

account for this, we trim data both from below (at the 5% quantiles) and from above (at

the 95% quantiles). Figure 3 shows the results for the car short segment, where we find

that a bandwidth of 0.15 is suitable.

As shown, the equi-probability curves for the car short segment are roughly linear,

in the sense that they do not deviate systematically from linearity, except in the upper

left and lower right corners where data are sparse. We find similar results for the long

distance segments (not shown here): the curves are roughly linear, again excepting the

upper left and lower right corners. For PT short (not shown), the pattern is less clear:

Curves are not as close to linear as for the other segments, but on the other hand it is hard

to find a systematic deviation from linearity. Overall, we conclude that data between the

5% and 95% quantiles do not reject the parametric model in eq. (5).

4.3.2 Mixed logit analysis

Based on the semi-parametric results, we limit the analysis to data between the 5% and

95% quantiles. Tables 5 and 6 present the parameter estimates. The MXL1 and MXL2

models yield practically identical value functions, so we only show the estimated value

functions for the MXL2 models (Figures 4 – 6). The plain logit estimates are very

similar to the mixed logit results (see Tables 9 and 10 in the Appendix), except for air,

where the value function for cost bends more in the logit model than in the mixed logit

model.

There is some variation in estimates between segments. Roughly speaking, the pat-

tern seems to be that βc and γc are significantly positive at the 5% level (most also at

the 1% level), βt and γt are not significantly different from zero, and ηc and ηt are sig-

nificantly positive in MXL1 (5% level, most also at the 1% level), but tend to become

insignificant in MXL2.

From Figures 4 – 6 we see that the estimated value functions are decreasing, and that

they appear to be close to piece-wise linear in the considered ranges (i.e. close to linear

in the gain domain and close to linear in the loss domain). Though it appears close

to piece-wise linear, the value function for cost exhibits diminishing sensitivity with

respect to both gains and losses for all segments except PT short. This is significant in
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Table 5: Estimation Summary – Mixed Logit models (MXL1). Parameter estimates

with robust standard errors in parentheses.

Car short PT short Car long PT long Air

βc 0.125∗∗∗ 0.047 0.234∗∗∗ 0.218∗∗∗ 0.180∗∗∗

(0.030) (0.083) (0.039) (0.036) (0.049)
βt −0.015 −0.127∗∗ −0.026 −0.036 −0.062∗

(0.020) (0.057) (0.030) (0.027) (0.036)
ηc 0.053∗∗∗ 0.151∗∗∗ 0.091∗∗∗ 0.067∗∗∗ −0.006

(0.008) (0.026) (0.013) (0.012) (0.013)
ηt 0.059∗∗∗ 0.051∗∗ 0.089∗∗∗ 0.049∗∗∗ 0.031∗∗

(0.009) (0.021) (0.013) (0.011) (0.013)
αconst −5.497∗∗∗ −8.695∗∗∗ −5.384∗∗∗ −4.115∗∗∗ −6.121∗∗∗

(0.617) (1.387) (0.815) (0.572) (0.853)
αlogc0

0.463∗∗∗ 0.446∗∗∗ 0.439∗∗∗ 0.302∗∗∗ 0.441∗∗∗

(0.040) (0.098) (0.077) (0.055) (0.049)
αlog t0 −0.325∗∗∗ −0.167∗∗ −0.440∗∗∗ −0.295∗∗∗ −0.325∗∗∗

(0.055) (0.085) (0.081) (0.055) (0.079)
αlog inc 0.356∗∗∗ 0.564∗∗∗ 0.372∗∗∗ 0.277∗∗∗ 0.381∗∗∗

(0.047) (0.099) (0.060) (0.041) (0.059)
αmiss inc 4.419∗∗∗ 6.960∗∗∗ 4.422∗∗∗ 3.373∗∗∗ 4.666∗∗∗

(0.601) (1.232) (0.757) (0.517) (0.743)
αwork/school 0.094∗∗ 0.090 0.187 0.178∗∗ 0.128

(0.039) (0.078) (0.146) (0.073) (0.079)
σ 0.794∗∗∗ 0.730∗∗∗ 0.618∗∗∗ 0.528∗∗∗ 0.554∗∗∗

(0.032) (0.074) (0.038) (0.030) (0.040)
µ 2.842∗∗∗ 2.789∗∗∗ 3.013∗∗∗ 3.790∗∗∗ 3.378∗∗∗

(0.107) (0.259) (0.177) (0.196) (0.217)

Log likelihood value -9415.76 -1642.16 -3655.51 -2935.2 -2297.78

Number of est. parameters 12 12 12 12 12

Number of obs. 23892 4375 8514 7023 5739

*** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.
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Table 6: Estimation Summary – Mixed Logit models (MXL2). Parameter estimates

with robust standard errors in parentheses.

Car short PT short Car long PT long Air

βc 0.124∗∗∗ 0.042 0.230∗∗∗ 0.219∗∗∗ 0.180∗∗∗

(0.030) (0.084) (0.040) (0.036) (0.049)
βt −0.015 −0.126∗∗ −0.028 −0.039 −0.062∗

(0.020) (0.058) (0.030) (0.027) (0.036)
ηc 0.015 0.065 −0.133∗∗ −0.104 −0.006

(0.016) (0.047) (0.068) (0.064) (0.094)
ηt 0.081∗∗∗ 0.104∗ 0.023 −0.057 0.027

(0.021) (0.057) (0.072) (0.063) (0.097)
γc 0.023∗∗∗ 0.050∗∗ 0.051∗∗∗ 0.040∗∗∗ 0.000

(0.008) (0.025) (0.015) (0.014) (0.019)
γt −0.014 −0.030 0.019 0.028∗ 0.001

(0.013) (0.032) (0.020) (0.016) (0.026)
αconst −5.504∗∗∗ −8.675∗∗∗ −5.398∗∗∗ −4.127∗∗∗ −6.121∗∗∗

(0.618) (1.394) (0.820) (0.574) (0.854)
αlogc0

0.463∗∗∗ 0.445∗∗∗ 0.434∗∗∗ 0.293∗∗∗ 0.441∗∗∗

(0.040) (0.099) (0.077) (0.055) (0.049)
αlog t0 −0.324∗∗∗ −0.168∗∗ −0.441∗∗∗ −0.295∗∗∗ −0.325∗∗∗

(0.055) (0.085) (0.082) (0.055) (0.079)
αlog inc 0.356∗∗∗ 0.563∗∗∗ 0.377∗∗∗ 0.281∗∗∗ 0.381∗∗∗

(0.048) (0.099) (0.060) (0.042) (0.059)
αmiss inc 4.425∗∗∗ 6.954∗∗∗ 4.476∗∗∗ 3.414∗∗∗ 4.666∗∗∗

(0.602) (1.238) (0.761) (0.519) (0.743)
αwork/school 0.094∗∗ 0.092 0.188 0.179∗∗ 0.128

(0.039) (0.078) (0.148) (0.073) (0.079)
σ 0.795∗∗∗ 0.731∗∗∗ 0.623∗∗∗ 0.530∗∗∗ 0.554∗∗∗

(0.032) (0.074) (0.039) (0.031) (0.040)
µ 2.842∗∗∗ 2.787∗∗∗ 2.994∗∗∗ 3.771∗∗∗ 3.378∗∗∗

(0.108) (0.261) (0.178) (0.196) (0.217)

Log likelihood value -9411.41 -1639.09 -3648.49 -2929.53 -2297.78

Number of est. parameters 14 14 14 14 14

Number of obs. 23892 4375 8514 7023 5739

*** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.
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the sense that we can reject linearity of the value functions in both gain and loss domains

(LR tests, 5% level, cf. Table 11 in the Appendix). For PT short, the value function for

cost does not exhibit diminishing sensitivity for losses, but is not significantly different

from linear in this domain (LR test, 5% level, cf. Table 11).

The value function for time does not exhibit diminishing sensitivity in either direc-

tion. However, it is generally not significantly different from linear in neither gain nor

loss domain (LR tests, 5% level, cf. Table 11), the exception being PT long (loss do-

main), where the difference is significant at the 5% level, but not the 1% level, and PT

short (gain domain).

For the short distance segments, we have loss aversion (defined as vt(−|t|)< |vt(|t|)|
and vc(−|c|) < |vc(|c|)|) for the considered ranges of both time and cost. Loss aversion

is significant in the sense that LR tests of the hypotheses of no gain-loss asymmetry in

the time dimension (vt(−|t|) = |vt(|t|)| for all t, corresponding to ηt = γt = 0) and no

gain-loss asymmetry in the cost dimension (vc(−|c|) = |vc(|c|)| for all c, corresponding

to ηc = γc = 0) are both rejected at the 5% level, cf. Table 11. For the car long and PT

long segments, we have loss aversion in the time dimension for the considered range of

time changes, and loss aversion in the cost dimension, for cost changes larger than 14

NOK. Again the gain-loss asymmetry is significant in both dimensions (LR tests of the

hypotheses of no asymmetry are rejected at the 5% level, cf. Table 11).

For air, we have loss aversion in the time dimension for the considered range of

time changes, but the gain-loss asymmetry is only significant at the 6% level (cf. Table

11). We do not observe loss aversion in the cost dimension, where gains are valued

higher than losses for all cost changes. Here, however, the gain-loss asymmetry is not

significant (the LR test of the hypothesis of no asymmetry cannot be rejected, cf. Table

11).

Overall, these results are consistent with prospect theory: With few exceptions, the

estimated value functions either exhibit loss aversion and diminishing/constant sensitiv-

ity for gains and losses, or do not deviate significantly from this.

Moreover, the results support the De Borger and Fosgerau (2008) proposed explana-

tion of the positive relation between the VTT and the size of the time change, since we

have (1−βt − γt)/(1−βc + γc)> 1, (1−βt + γt)/(1−βc − γc)> 1, (1−βt + γt)/(1−
βc + γc) > 1, and (1− βt − γt)/(1− βc − γc) > 1.8 Hence the value function for cost

”bends” more than the value function for time, i.e. there is stronger diminishing sen-

sitivity for money than for travel time. This implies that we would observe a value

of travel time increasing in the size of the time change, if we did not take reference-

dependence into account.

As a final check, we compare our results to those of De Borger and Fosgerau

(2008)9. In Table 7, we compute the parameters p5 = γt

1−βt
, p6 = ηc

1−βt
, p7 = 1−βc

1−βt
,

8This is also the case for the plain logit estimates.
9The De Borger and Fosgerau (2008) sample consists of both short and long car trips, with a large
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and p8 = γc

1−βt
, which correspond to the estimated parameters in De Borger and Fos-

gerau (2008).10 The results from MXL1 should be compared to their M3R (γt ,γc fixed

to zero), and the results from MXL2 should be compared to their M4R.

Looking at Table 7, we see that the our estimates of the variable p7 are comparable

in size and sign to the De Borger and Fosgerau (2008) estimates, indicating that our

Norwegian data and the Danish data have in common the relative curvature of vc and vt .

Consider now our results from MXL1, where the value function has the same cur-

vature for gains as for losses, such that the entire gain-loss discrepancy is captured by

difference in levels. Here we find that our estimates of p6 are comparable in size and

sign to the De Borger and Fosgerau (2008) estimate, implying comparable levels of loss

aversion with respect to cost (note however, that the Norwegian sample exhibits a lower

degree of loss aversion than the Danish sample).

Consider then our results from MXL2: Here, our estimates of p6 do not show a clear

pattern regarding size or sign, and are not comparable to the De Borger and Fosgerau

(2008) estimate. However, p8 is comparable in size and sign (for all segments except

air), which can be interpreted as the two data sets having comparable levels of gain-loss

asymmetry in curvature of vc: The value function for cost ”bends” more in the gain

region than in the loss region, and the magnitude of this asymmetry is roughly the same

in the two data sets. The data sets differ with respect to the variable p5, which De

Borger and Fosgerau (2008) find to be significantly positive (corresponding to the value

function for time ”bending” more in the gain region than in the loss region), while our

estimate is generally not significantly different from zero (corresponding to no gain-loss

asymmetry in curvature).

majority of trips being shorter than 100 km.
10We cannot compare our estimate of ηt directly, since we apply a slightly different model: De Borger

and Fosgerau (2008) have w inside the value function for time in eq. (1).
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Figure 4: Value functions for car short and PT short. Value functions are depicted for

the range where they are supported by the data.
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Figure 5: Value functions for car long and PT long. Value functions are depicted for the

range where they are supported by the data (except for car long - cost, which has wider

support)
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Figure 6: Value functions for air. Value functions are depicted for the range where they

are supported by the data (except for cost, which has wider support)
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Table 7: Comparison to De Borger and Fosgerau (2008)’s results. MXL1 results should

be compared to their M3R, and MXL2 results to their M4R.

Segment Model p5 =
γt

1−βt
p6 =

ηc

1−βt
p7 =

1−βc

1−βt
p8 =

γc

1−βt

Car short MXL1 0.05∗∗∗ 0.86∗∗∗

PT short MXL1 0.13∗∗∗ 0.85∗∗∗

Car long MXL1 0.09∗∗∗ 0.75∗∗∗

PT long MXL1 0.06∗∗∗ 0.75∗∗∗

Air MXL1 −0.01 0.77∗∗∗

De Borger and Fosgerau M3R 0.15∗∗∗ 0.70∗∗∗

Car short MXL2 −0.01 0.01 0.86∗∗∗ 0.02∗∗∗

PT short MXL2 −0.03 0.06 0.85∗∗∗ 0.04∗∗

Car long MXL2 0.02 −0.13∗∗ 0.75∗∗∗ 0.05∗∗∗

PT long MXL2 0.03∗ −0.10 0.75∗∗∗ 0.04∗∗∗

Air MXL2 0.00 −0.01 0.77∗∗∗ 0.00

De Borger and Fosgerau M4R 0.035∗∗ 0.09∗∗∗ 0.70∗∗∗ 0.044∗∗∗

*** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

For our results, significance tests are based on the Delta method.
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5 Conclusion

The current paper extends the analysis in De Borger and Fosgerau (2008) and presents

an empirical test with potential to falsify their proposed explanation to the phenomenon

of the marginal VTT increasing with the size of the time change: That respondents

have reference-dependent preferences that exhibit diminishing sensitivity for gains and

losses, with a stronger degree of diminishing sensitivity for money than for travel time.

We used stated preference data with trade-offs between travel time and money that

provide identification of the degrees of diminishing sensitivity for time and money gains

and losses. Based on the modelling framework in De Borger and Fosgerau (2008) we

formulated a mixed logit model, in which choice depends on a reference-free value of

travel time and reference-dependent value functions for time and money. The functional

form of the value functions allows, but is not restricted to, loss aversion and diminishing

sensitivity for gains and losses.

As a test of the fit of the mixed logit model, we compared its predicted equi-

probability curves to those of the data, estimated using a semi-parametric local logit

estimator. Based on this comparison, we concluded that our data do not reject the mixed

logit model.

The results from our mixed logit analysis vary somewhat between the five consid-

ered data segments, but the overall picture is consistent with prospect theory: In general,

the value functions exhibit loss aversion for both travel time and cost (in the time di-

mension we have loss aversion for the entire range of considered time changes, while

in the cost dimension we only have loss aversion for part of the range of considered

cost changes), the value function for cost exhibits diminishing sensitivity for both gains

and losses, and the value function for time exhibits constant sensitivity for both gains

and losses. We found stronger diminishing sensitivity for money than for travel time,

consistent with prospect theory as the explanation of the positive relation between the

marginal VTT and the size of the time change.
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Table 8: Summary statistics of the sample applied in the parametric analysis (trimmed

at the 5% and 95% quantiles of ∆t and ∆c)

Car short PT short Car long PT long Air

Sample size

- individuals 3016 547 1128 939 756

- obs 23892 4375 8514 7023 5739

Reference travel time, t0
- min 10.0 10.0 60.0 60.0 80.0

- mean 23.4 27.3 164.8 237.0 181.2

- max 90.0 90.0 645.0 900.0 600.0

Reference cost, c0

- min 8.0 10.0 70.0 50.0 150.0

- mean 42.1 30.8 393.5 283.4 1144.3

- max 250.0 100.0 1464.0 1500.0 5000.0

Time attributes, t j

- min -23.0 -25.0 -169.0 -210.0 -143.0

- mean 0.0 0.0 0.2 -0.2 -0.2

- max 24.0 26.0 152.0 252.0 142.0

Time attributes, t j (gains)

- min -23.0 -25.0 -169.0 -210.0 -143.0

- mean -4.8 -5.6 -33.6 -48.9 -37.6

- max -1.0 -1.0 -9.0 -9.0 -12.0

Time attributes, t j (losses)

- min 2.0 2.0 9.0 9.0 12.0

- mean 4.8 5.6 34.3 47.9 37.3

- max 24.0 26.0 152.0 252.0 142.0

Cost attributes, c j

- min -41.0 -30.0 -455.0 -375.0 -605.0

- mean 0.1 0.3 4.9 4.3 1.7

- max 41.0 31.0 463.0 377.0 604.0

Cost attributes, c j (gains)

- min -41.0 -30.0 -455.0 -375.0 -605.0

- mean -9.0 -8.5 -119.9 -98.2 -196.0

- max -1.0 -1.0 -11.0 -11.0 -33.0

Cost attributes, c j (losses)

- min 1.0 1.0 11.0 11.0 33.0

- mean 9.8 10.4 146.5 121.6 209.7

- max 41.0 31.0 463.0 377.0 604.0

Choice variable (y)

- min 0.0 0.0 0.0 0.0 0.0

- mean 0.7 0.7 0.6 0.6 0.7

- max 1.0 1.0 1.0 1.0 1.0
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Table 9: Estimation Summary – Logit models (MNL1). Parameter estimates with robust

standard errors in parentheses.

Car short PT short Car long PT long Air

βc 0.13∗∗∗ 0.05 0.25∗∗∗ 0.24∗∗∗ 0.21∗∗∗

(0.04) (0.09) (0.04) (0.04) (0.05)
βt −0.02 −0.13∗ −0.03 −0.04 −0.04

(0.03) (0.07) (0.04) (0.03) (0.04)
ηc 0.06∗∗∗ 0.15∗∗∗ 0.09∗∗∗ 0.07∗∗∗ −0.01

(0.01) (0.03) (0.01) (0.01) (0.01)
ηt 0.06∗∗∗ 0.05∗∗ 0.09∗∗∗ 0.04∗∗∗ 0.03∗∗

(0.01) (0.02) (0.01) (0.01) (0.01)
αconst −5.46∗∗∗ −8.82∗∗∗ −5.22∗∗∗ −4.13∗∗∗ −6.39∗∗∗

(0.43) (1.19) (0.58) (0.42) (0.65)
αlogc0

0.45∗∗∗ 0.47∗∗∗ 0.44∗∗∗ 0.27∗∗∗ 0.42∗∗∗

(0.03) (0.07) (0.05) (0.03) (0.03)
αlog t0 −0.34∗∗∗ −0.19∗∗ −0.45∗∗∗ −0.30∗∗∗ −0.29∗∗∗

(0.04) (0.07) (0.05) (0.04) (0.06)
αlog inc 0.36∗∗∗ 0.57∗∗∗ 0.36∗∗∗ 0.28∗∗∗ 0.39∗∗∗

(0.03) (0.08) (0.04) (0.03) (0.04)
αmiss inc 4.42∗∗∗ 7.04∗∗∗ 4.23∗∗∗ 3.44∗∗∗ 4.77∗∗∗

(0.39) (0.98) (0.51) (0.35) (0.52)
αwork/school 0.09∗∗∗ 0.09∗ 0.18∗∗ 0.17∗∗∗ 0.14∗∗∗

(0.02) (0.05) (0.08) (0.04) (0.05)
µ 1.72∗∗∗ 1.78∗∗∗ 2.05∗∗∗ 2.49∗∗∗ 2.36∗∗∗

(0.07) (0.19) (0.12) (0.14) (0.16)

Log likelihood value -11429.9 -1921.2 -4206.5 -3422.5 -2634.0

Number of est. parameters 11 11 11 11 11

Number of obs. 23892 4375 8514 7023 5739

*** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.
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Table 10: Estimation Summary – Logit models (MNL2). Parameter estimates with

robust standard errors in parentheses.

Car short PT short Car long PT long Air

βc 0.13∗∗∗ 0.05 0.25∗∗∗ 0.24∗∗∗ 0.21∗∗∗

(0.04) (0.09) (0.04) (0.04) (0.05)
βt −0.02 −0.13∗ −0.03 −0.05 −0.04

(0.03) (0.07) (0.04) (0.03) (0.04)
ηc 0.03∗ 0.06 −0.15∗∗ −0.15∗∗ 0.03

(0.02) (0.05) (0.07) (0.07) (0.10)
ηt 0.09∗∗∗ 0.10 0.04 −0.03 0.09

(0.03) (0.07) (0.08) (0.07) (0.11)
γc 0.02∗ 0.06∗∗ 0.06∗∗∗ 0.05∗∗∗ −0.01

(0.01) (0.03) (0.02) (0.02) (0.02

γt −0.02 −0.03 0.01 0.02 −0.02

(0.02) (0.04) (0.02) (0.02) (0.03

αconst −5.46∗∗∗ −8.78∗∗∗ −5.23∗∗∗ −4.14∗∗∗ −6.39∗∗∗

(0.43) (1.19) (0.58) (0.42) (0.64)
αlogc0

0.45∗∗∗ 0.46∗∗∗ 0.44∗∗∗ 0.26∗∗∗ 0.42∗∗∗

(0.03) (0.07) (0.05) (0.03) (0.03)
αlog t0 −0.34∗∗∗ −0.19∗∗∗ −0.46∗∗∗ −0.29∗∗∗ −0.29∗∗∗

(0.04) (0.07) (0.05) (0.04) (0.06)
αlog inc 0.36∗∗∗ 0.57∗∗∗ 0.36∗∗∗ 0.29∗∗∗ 0.39∗∗∗

(0.03) (0.08) (0.04) (0.03) (0.04)
αmiss inc 4.42∗∗∗ 7.03∗∗∗ 4.29∗∗∗ 3.49∗∗∗ 4.77∗∗∗

(0.39) (0.98) (0.52) (0.36) (0.52)
αwork/school 0.09∗∗∗ 0.09∗ 0.18∗∗ 0.17∗∗∗ 0.14∗∗∗

(0.02) (0.05) (0.08) (0.04) (0.05)
µ 1.72∗∗∗ 1.78∗∗∗ 2.04∗∗∗ 2.48∗∗∗ 2.36∗∗∗

(0.07) (0.18) (0.12) (0.14) (0.16)

Log likelihood value -11427.0 -1918.4 -4200.2 -3416.9 -2633.7

Number of est. parameters 13 13 13 13 13

Number of obs. 23892 4375 8514 7023 5739

*** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.
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Table 11: Likelihood ratio tests (p-values)

Hypothesis p-values

Car short PT short Car long PT long Air

vt linear for gains: βt =−γt 0.22 < 0.01 0.79 0.72 0.15

vt linear for losses: βt = γt 0.97 0.11 0.20 0.04 0.14

vt piecewise linear: βt = γt = 0 0.40 0.02 0.42 0.08 0.19

vc linear for gains: βc =−γc < 0.01 0.25 < 0.01 < 0.01 < 0.01

vc linear for losses: βc = γc < 0.01 0.93 < 0.01 < 0.01 < 0.01

vc piecewise linear: βc = γc = 0 < 0.01 0.07 < 0.01 < 0.01 < 0.01

vt and vc piecewise linear:

βt = γt = βc = γc = 0

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01

No gain-loss asymmetry for time:

ηt = γt = 0

< 0.01 0.01 < 0.01 < 0.01 0.06

No gain-loss asymmetry for cost:

ηc = γc = 0

< 0.01 < 0.01 < 0.01 < 0.01 0.90

No gain-loss asymmetry:

ηt = γt = ηc = γc = 0

< 0.01 < 0.01 < 0.01 < 0.01 0.18

Note: The piecewiese linear formulations have separate slopes for gains and losses.
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