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Abstract  

 
Once upon a t im e there was a classical financial wor ld in which all the Libors were 

equal. Standard textbooks taught  that  sim ple relat ions held, such that , for example, a 6 

m onths Libor Deposit  was replicable with a 3 m onths Libor Deposits plus a 3x6 m onths 

Forward Rate Agreem ent  (FRA) , and that  Libor was a good proxy of the r isk free rate 

required as basic building block of no-arbit rage pricing theory. 

Nowadays, in the modern financial world after the credit  crunch, some Libors are 

more equal than others, depending on their rate tenor, and classical formulas are history. 

Banks are not  anymore “ too big to fail” , Libors are fixed by panels of r isky banks, and 

they are r isky rates themselves.  

These sim ple em pir ical facts carry very important  consequences in derivat ive’s 

t rading and r isk management , such as, for exam ple, basis r isk, collateralizat ion and 

regulatory pressure in favour of Cent ral Counterpart ies. Something that  should be 

carefully considered by anyone managing even a single plain vanilla Swap.  

I n this qualitat ive note we review the problem t rying to shed some light  on this 

m odern anim al farm , recurr ing to an analogy with quantum  physics, the Zeem an effect . 
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1 . The Zeem an effect  in physics 

Once upon a t ime in Leiden, in summer 

1896, an unknown 31 years old Dutch 

physicist , Pieter Zeeman (see Figure 1 and 

ref. [ 1] ) , disobeyed his director and used 

the university laboratory equipm ent  to 

study the effect  of m agnet ic fields on light  

sources, such as common salt  in a flame. 

He was punished for his indiscipline, but  

just  six years later he was rewarded, joint ly 

with Hendrik Lorentz, with the 1902 Nobel 

Prize in Physics for the discovery of what  is 

universally known as the Zeem an effect .  

 

W hat  is it  ? Atoms and molecules absorb 

and em it  light  at  discrete frequencies, called 

spect ral lines, which are unique and dist inct ive characterist ic of 

the chem ical composit ion of that  atom or molecule. Common salt , 

for instance, contains Sodium which is character ized by two 

dist inct  yellow spect ral lines, convent ionally called D1 and D2,  at  

589.00 nm and 589.59 nm , respect ively (see Figure 2, upper 

half 2 ) , that  anyone can observe in sodium lamps, or just  

throwing a pitch of salt  on a flame. I f an atom or a  molecule is 

exposed to a stat ic magnet ic field, its spect ral lines are observed 

to split  into groups, called Zeem an m ult iplets (Figure 2, lower 

half) . Spect roscopic data of atoms and molecules were among 

the m ost  com prehensive and accurate experimental observat ions 

available in Zeem an’s t im es, thanks to the relat ive sim plicity of 

the required technology. 

Figure 1 : Pieter Zeeman ( left )  and  

Hendr ik A. Lorentz ( r ight ) . 

Figure 2 : or iginal 

Zeeman's picture of the 

Zeem an effect  in Sodium . 

 

W hy? A few years after the discovery of Zeem an’s effect , physicists discovered that  

atom ic and molecular elect rons occupy quant ized states, each characterized by a unique 

dist inct ive set  of quantum  numbers and by a discrete energy. Spect ral lines of light  

em ission and absorpt ion correspond to elect ronic t ransit ions between different  discrete 

energy states, thus occurr ing at  discrete wavelengths. When such a quantum system 

displays certain m athem at ical sym m etry propert ies (e.g. rotat ional invariance) , som e 

dist inct  elect ronic states with different  quantum  num bers m ay have the sam e energy, a 

situat ion called quantum  degeneracy .  Hence, the corresponding spect ral lines have the 

same wavelength, and are experim entally observed as single lines. The external 

magnet ic field, imposing a preferred direct ion, breaks the symmetry of the elect ronic 

states, because of the different  interact ion with atom ic elect rons characterised by 

different  quantum numbers, thus breaking the quantum degeneracy and split t ing the 

states’ energy up and down. The corresponding spect ral lines split  as well,  and are 

experimentally observed as mult iple lines. See Appendix A and ref. [ 2]  for more details.  

 

 

2 . The Zeem an effect  in finance 

Both Zeem an and Lorentz would be, probably, quite surprised to know that  in another 

summer, 111 years later, a sim ilar effect  has been observed in finance. I n fact , at  the 

beginning of the credit  crunch cr isis in August  2007, significant  splits suddenly appeared 

between Libor rates with different  tenors quoted on the m arket . 

 

W hat  is it  ? I n Figure 1 we show the histor ical series of the m arket  fix ings of two 

interest  rates, Euribor and Eonia, over a three-m onths (3M) period. The Euribor 3M quote 

is the interest  rate associated with a Deposit  start ing at  spot  date ( today +  2 business 

                                                 
2 1 nm (nanometer) = 10-9 m (meters). 



days)  and maturing three months later (see eq. (29)  and Figure 5 in Appendix B) . The 

Eonia 3M quote is the swap rate of an Overnight  I ndexed Swap (OI S)  with the sam e start  

and m aturity dates, a fixed leg versus an Eonia indexed leg daily com pounded over three 

m onths, both with a single final paym ent  (see eq. (31)  and Figure 6 in Appendix B) . The 

difference between these two rates is called Euribor-Eonia 3M basis. We observe in 

Figure 1 that  the two rates were essent ially coincident  unt il August  2007, when they 

suddenly diverged, reaching a peak of 200 basis points at  the Lehm an default  on 

September 2008. This is the reason why August  2007 is convent ionally indicated as the 

beginning of the credit  crunch crisis, at  least  in the interest  rate market . The rate 

correlat ion is usually very highly posit ive, but  it  breaks down, even below zero, in the 

m ost  turbulent  periods. 

 

Euribor3M vs OIS 3M vs additive basis
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Figure 1 : divergence between Euribor 3 m onths and OI S 3 m onths rates,  

and their  correlat ion (1 year window, r ight  scale) .  

 

Another example is reported in Figure 2, where we compare the term  st ructures ( from  

1Y to 30Y m aturity)  of the Basis Swaps with all the possible combinat ions of the most  

common Euribor tenors (1d or over night , 1M, 3M, 6M, 12M)  quoted on the m arket  as of 

30 June 2011 (see eq. (32)  and Figure 7 in Appendix B) .  

Overall,  a com m on pat tern is observable:  the larger the tenor difference, the larger 

the basis spread. For instance, looking at  the Eonia series in Figure 2 (solid lines) , we 

observe that  the basis spread, for each m aturity, increases with increasing Euribor tenor. 

Also these basis spreads were close to zero before the credit  crunch in August  2007. 

Sim ilar pat terns are observed for other Libor derivat ives and currencies. We have called 

this effect  “m arket  segm entat ion”  [ 16] . Pushing the analogy with physics, we may refer 

to these empir ical observat ions as “Libor spect roscopy” .  

 

W hy ? Libor, Euribor and Eonia rates are associated with Deposit  cont racts,  unsecured 

loans with different  m aturit ies (called tenors)  used by pr im ary banks to borrow funds on 

the interbank m oney m arket  in different  currencies (see Appendix B) . Before the credit  

crunch, pr imary banks were considered, for a variety of reasons, to carry a negligible 

default  and liquidity r isk, as reflected, for example, in their small Credit  Default  Swap 

(CDS)  spreads3,  able to raise infinite liquidity on the market . This is called the classical 

“ too big to fail”  paradigm . 

                                                 
3 Credit Default Swaps (CDS) are Swaps constituted by a protection leg paying the receiver upon default of a 

given reference entity (e.g. a corporate, a bank or a sovereign), versus a floating Libor leg plus a spread (called 

CDS spread). The larger the default probability of the reference entity, the larger the equilibrium CDS spread. 



 

Basis Swaps Eonia and Euribor
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Figure 2 : EUR Basis Swap term  st ructures as of 30 June 2011.  

Solid lines:  Eonia-Eur ibor Basis Swaps spreads. Dashed lines:  Eur ibor-Euribor Basis Swaps spread.  

 

As a consequence, Libor/ Euribor were seen as good market  proxies for r isk free rates, 

and used as the basic building block of no-arbit rage pricing theory, as described in pre-

crisis textbooks on interest  rate modelling (see e.g. [ 21] , [ 22] ) . Following these 

assumpt ions, one easily obtained that  all st ream s of float ing Libor paym ents with equal 

m aturity and different  rate tenors, as those shown in Figure 3, had equivalent  values and 

could be replicated one with each others.  
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Figure 3 : picture of float ing Swap legs with equal m atur it ies ( )  and 

different  Libor tenors (12M, 6M, 3M, 1M, 1d from  top to bot tom ) . 

 

 



I n m athemat ical term s, using notat ion and eq. (33)  in Appendix B, one obtained the 

equalit ies given in the following eq. (1) .  

 

  (1)  

 

As a consequence, the corresponding Basis Swaps, being const ructed by two float ing 

Libor legs with different  tenors, displayed negligible basis spreads. Within this context , 

we call this effect  Libor tenor symmetry  or replicat ion invariance.  

The credit  crunch cr isis has begun precisely with the explosion of the credit  and 

liquidity r isk of pr imary banks, even those included in the Libor panels. The assum pt ion 

of “ too big to fail”  has been definitely abandoned after the Lehm an default . Thus, 

nowadays, after the crunch, banks are r isky, interbank unsecured Deposits are r isky as 

well,  and the market  value of this r isk is embedded into Libor quotes. The longer the 

m aturity of the Deposit  cont ract  ( the Libor tenor) , the higher the credit  and liquidity r isk 

embedded in the associated Libor rate. Hence float ing Libor paym ents with equal 

m aturity and different  rate tenors as in Figure 3 have not  longer equivalent  values as in 

eq. (1) , cannot  be replicated with each other, and the corresponding Basis Swaps display 

huge basis spreads, as shown in Figure 1 and Figure 2 above. We call this effect  Libor 

tenor or  replicat ion sym m etry breaking.  

Furthermore, also the market  fix ing mechanism  makes an important  difference. On 

one side, Libor is based, by definit ion, on banks’ percept ions of their own cost  of funding 

in the OTC interbank market , not  on actual t ransact ions on an exchange m arket  visible to 

other part ies. Thus, in difficult  t imes, when the money market  may be very illiquid, Libor 

m ay be m isrepresented, because just  a few Libor cont ributors have actually t raded in 

size at  a given day, maturity and currency, and the others are forced to cont r ibute a 

guess. Furtherm ore, Libor m ay be biased by those cont r ibutors not  willing to show their  

funding t roubles, as reported in [ 3]  and argued e.g. in [ 4] . On the other hand, overnight  

rates, like Eonia (Euro OverNight  I ndex Average)  or US Federal fund effect ive rate, are 

based on volume-weighted averages of actual t ransact ions during the day, and thus they 

reflect  the t rue (over night )  cost  of funding realised on the m arket . 

From the considerat ions above it  is clear why overnight  rates are nowadays the best  

available m arket  proxy to r isk- free rates. Thanks to their  safe fix ing m echanism  and 

shortest  possible tenor, they incorporate the smallest  possible am ount  of counterparty 

default  r isk:  precisely, the r isk of default  during the night  (or the week end) , given the 

market  informat ion available in the afternoon at  close of business t ime. Hence eqs. (1)  

above must  be modified, denot ing with  the r isk free Zero Coupon Bond for 

m aturity Ti,  and with  the FRA rate fixed at  Tj -1 and payed at  Tj,  thus obtaining 

that  all the float ing Libor paym ent  st ream s differ from  each other, as in the following eq. 

(2) . 

 



  (2)  

 

We refer to Appendix B for a br ief summary of the quant it ies used above and to ref. 

[ 5]  for a detailed explanat ion and a m athem at ical t reatm ent  of this problem . 

 

We conclude our analogy by observing that  the credit  crunch has forced a symm etry 

breaking in the money market :  from  a “classical”  situat ion characterized by negligible 

credit  and liquidity r isk in which “all the Libors were equal” , showing replicat ion 

invariance under Libor tenor t ransform at ions and negligible basis spreads, towards a new 

“modern”  market  hierarchy (or segmentat ion)  characterized by non-negligible credit  and 

liquidity r isk in which “some Libors are more equal than others” , showing broken Libor 

tenor sym m etry, no replicat ion invariance and large basis spreads. We st ress that  such 

Libor spect roscopy was already present  and well known to m arket  players before the 

credit  crunch, as discussed e.g. in ref. [ 6] , but  not  effect ive due to negligible basis 

spreads. 

This is what  we call the Zeem an effect  in finance,  as depicted in Figure 4 and 

summarized in Table 1, in which we show the one- to-one correspondences between 

physical and financial concepts. 
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Figure 4 : qualitat ive picture of the Zeem an effects in physics and finance. Left  panel:  under the m agnet ic 

field, three Sodium  sp atom ic states and two D1 , D2 spect ral lines ( left  side)  split  into three m ult iplets of 

2+ 2+ 4 states at  different  energies and two mult iplets of 4+ 6 spect ral lines (2 lines in gray in D1 are not  

observable due to quantum  suppression)  at  different  wavelengths, respect ively ( r ight  side) . Right  panel:  

under credit  and liquidity r isk, Libor ( left  side)  splits into its components with different  tenors ( r ight  side) , 

and the corresponding Basis Swap spread diverge from  zero. I n part icular, the Overnight  1D-Libor m ult iplet  

(4 full vert ical lines)  and the three Libor-Libor mult iplets (3+ 2+ 1 dashed vert ical lines)  correspond exact ly to 

the Eonia-Euribor and Euribor-Eur ibor Basis Swaps in Figure 2. More details in Appendices A and B. 

 

 

 



  The Zeem an effect  in Physics The Zeem an effect  in finance  

Discovery Pieter Zeem an, Leyden, Aug. 1896. Global m arkets, Aug. 2007. 

Observat ion 

Atom ic spect ral lines in a magnet ic 

field split  into groups, called 

Zeeman mult iplets (Zeeman, 1896) . 

Basis Swaps with different  tenors 

show, after the credit  crunch, large 

gaps, called basis spreads. 

Technology 
Light  spect roscopy, spect rom eter. Libor spect roscopy, global m arkets, 

m arket  data providers. 

I n norm al condit ions ( i.e. zero 

m agnet ic field) :  

o dist inct  atom ic states displaying 

sym m etry propert ies (e.g. 

rotat ional invariance)  have the 

sam e energy;  

o the corresponding spect ral lines 

overlaps. 

I n pre-credit  crunch condit ions ( i.e. 

negligible credit / liquidit y r isk) , 

o dist inct  Libor float ing paym ents 

with equal m aturity and 

different  tenors have sim ilar 

values ( replicat ion invariance) ;  

o the corresponding Basis Swaps 

display negligible basis spread. 

The external m agnet ic field breaks 

the atom ic rotat ional sym m etry and 

splits the atom ic states at  different  

energies. 

The credit  and liquidity r isk breaks 

the Libor tenor sym m etry and splits 

equivalent  Libor float ing legs at  

different  values. 

I nterpretat ion 

The corresponding spect ral lines 

split  into observable m ult iplets. 

The corresponding Basis Swaps split  

into non-negligible basis spreads. 

The m agnet ic field m ay be set  by 

the experimenter at  a fixed and 

constant  magnitude. 

The credit / liquidity r isk is decided 

by the market  and is int r insically 

stochast ic. 

Differences The zero magnet ic field lim it  with 

perfect  rotat ional sym m etry and no 

Zeeman split t ing is possible and 

observable. 

The zero credit / liquidit y r isk with 

perfect  replicat ion and zero basis 

spreads is an idealized case not  

observable in pract ice. 

Consequences 

Elect ron discovery, atom ic 

st ructure, quantum  m echanics. 

Risky interest  rates, m ult iple yield 

curves, CSA-discount ing, mult iple-

curve pricing m odels. 

Table 1 : sim ilar it ies and differences between the Zeem an effects in physics and finance. 

 

 

3 . Consequences 

The discovery of the Zeeman effect  and its interpretat ion by Lorentz t r iggered deep 

and far consequences in physics 4 ,  cont r ibut ing to the developm ent  of quantum  

m echanics and, ult im ately, to the m odern science. Analogously, after the credit  crunch, 

the m arket  segm entat ion into r isky Libors with huge Basis Swap spreads has induced 

deep and far consequences in finance, contr ibut ing to the developm ent  of a m odern 

market  in which credit  and liquidit y are recognized sources of r isk and play a crucial role. 

I n what  follows we briefly int roduce and discuss these news. 

 

3 .1 . Market  quotat ions 

A first  main consequence has been the large diffusion of Collateral Agreements (CSA, 

or “Credit  Support  Annex”  in the ISDA standard documentat ion)  as the main inst rument 

to reduce the counterparty r isk. According to the I SDA Margin Survey 2011 [ 7] , m ost  of 

the interbank counterpart ies and OTC derivat ives’ t ransact ions are (bilateral, cash)  

collateralised. This fact  has the important  consequence that  one is allowed to look at  

derivat ives’ pr ices quoted on the interbank m arket  as referr ing to t ransact ions under CSA. 

I t  is worth to st ress at  this point  a frequent  m isunderstanding:  thinking to interest  rate 

                                                 
4 By the way, Zeeman and Lorentz were also able to m easure the rat io e/ m  between the elect r ical charge and 

the m ass of the elect ron, one of the m ost  important  constants in physics, one year before the experim ental 

discovery of the elect ron by J. J. Thom son in 1897. 



derivat ives (Swaps for instance) , the CSA reduces the component  of credit  and liquidity 

r isk associated to the specific counterpart ies involved in the financial cont ract , but  it  does 

not  affect  the com ponent  of credit  and liquidity r isk int r insically carr ied by the underlying 

Libor rate, which is linked to the average credit  and liquidity r isk of the interbank m oney 

m arket , or, m ore precisely, of the Libor panel banks. Thus we arr ive at  the counter-

intuit ive, but  correct , idea that  Swaps under CSA are not  counterparty r isk free. The 

proof is essent ially empir ic:  Basis Swap spreads quoted on the interbank market  are both 

collateralised and far from  zero at  the sam e t ime. Not  surprisingly, r isks walk out  of the 

door and return back from  the window. 

 

3 .2 . Cost  of funding and CSA- discount ing  

The CSA diffusion in the OTC m arket  has led to a second very important  consequence, 

called CSA-discount ing. Prior to the cr isis, there was a general consensus on using Libor 

to discount  future cash flows generated by OTC derivat ives, because Libor represented 

the average funding rate in the interbank m arket  and was considered a good proxy to a 

r isk free rate, as required by the standard no-arbit rage m athem at ical fram ework for 

pr icing derivat ives. Nowadays Libor is ruled out  as discount ing rate because it  is r isky, 

and even tenor dependent . Which Libor should be used ? Libor 6M ? Libor 3M ? Libor 

overnight  ?  

The answer is that , by no arbit rage, the discount ing rate is the funding rate. Thus, in 

presence of CSA, the discount ing and funding rate is precisely the collateral rate, which is 

norm ally overnight  (e.g. Eonia, Sonia, Fed Funds, etc.) , as implied by m arket  OI S 

(Overnight  I ndexed Swaps) . This is very welcom e for no-arbit rage theory, because, as 

discussed above, overnight  rates are present ly the best  proxy of r isk free rates available 

on the m arket . Thus Libor has been abandoned as discount ing rate in favour of the t rue 

funding rate set  by the CSA.  

I n case of t ransact ions without  CSA, no-arbit rage st ill requires a discount ing rate that  

reflects the bank’s cost  of funding on the market . The const ruct ion of such a funding 

curve is a difficult  task because the bank has typically m any sources of liquidity:  the 

m oney and repo m arkets, the bond m arket , corporates’ credit  lines, retail bank accounts 

and mortgages’ prepayment , etc. All these sources are characterized by their own 

interest  rates, maturit ies and volum es that  evolve over t im e in a non-determ inist ic 

(stochast ic)  way. Furtherm ore, the t radit ional m oney m arket  funding m ay be just  a 

m inor fract ion of the Bank’s total funding capabilit y, in part icular for large internat ional 

retail banks.  

We st ress that  if each bank actualises future cash flows using its own market  cost  of 

funding, there is no more price agreement  between counterpart ies. This is a quest ion 

current ly under theoret ical invest igat ion (see e.g. refs [ 8] - [ 12] ) . Further complicat ions 

arise in case of non-standard CSA, e.g. one-way (asym m etr ical)  CSA, or in case the 

opt ion to switch the collateral currency can be exercised ( “CSA chaos” , see e.g. ref. [ 13] ) . 

 

3 .3 . Mult iple curve w orld 

A third consequence of the credit  crunch is the mult iple curve world. Prior to the crisis a 

single yield curve was sufficient  for comput ing both discount  and forward rates for 

m arket -coherent  pr icing of interest  rate derivat ives. Nowadays the sam e operat ion 

requires a m ult iplicity of yield curves. First , discount  rates must  be computed from  (at  

least )  two different  curves:  the OI S curve or the funding curve, depending weather the 

deal is under CSA or not . Then, FRA rates with different  tenors must  be com puted from  

the corresponding tenor-dependent  yield curves, const ructed coherent ly from  market  

quotes of inst rum ents with the sam e tenor, and with the chosen discount ing curve. Thus 

the classical exercise of yield curve const ruct ion (even discarded in som e financial 

t raining)  is nowadays at  the heart  of m odern pricing theory and pract ice (see e.g. refs. 

[ 14] - [ 20] ) .  

I t  is worth to st ress that  mult iple curves const ruct ion implies the usage of mult iple 

m arket  data, often illiquid or even absent  on the market . Furthermore, mult iple curves 

implies also mult iple delta sensit iv it ies, or, in other words, mult iple basis r isk. Hence, 



hedging the r isk of even plain vanilla interest  rate derivat ives (e.g. Swaps)  becom e a 

very com plex task in the post  credit  crunch world. 

The t ransit ion to the m ult iple curve world has t r iggered a revival of theoret ical 

research about  mult iple-curve pricing models for interest  rate derivat ives. Prior to the 

crisis a single fundamental stochast ic variable, e.g. a short  rate, and a single dynam ical 

process (Hull-White, for instance)  was sufficient  to model the term  st ructure of interest  

rates. Nowadays, the m arket  segm entat ion implies that  mult iple correlated dynam ical 

processes are required to model the mult iple interest  rate term  st ructures observed on 

the market . Clearly this is not  an easy task, and the research is at  the very beginning 

(see for example ref. [ 20] ) . I n part icular, the calibrat ion of such models to the market  is 

very difficult , because part  of the m odel parameters are related to non-quoted 

inst ruments (opt ions on the basis, for instance) . A technique frequent ly used by m arket  

pract it ioners is to freeze the dynam ical evolut ion of the basis term  st ructure at  its 

present  value (basis freezing) . Clearly this is equivalent  to discard the cont r ibut ion of the 

basis volat ilit y and correlat ions to the pr ice of derivat ives, an approximat ion that  should 

be kept  under cont rol. 

 

3 .4 . Sw itching to CSA- discount ing in pract ice 

A fourth, very important  point  is how to switch financial inst itut ions to CSA-

discount ing in pract ice. This is not  an easy task at  all because of a variety of issues, 

discussed below. 

 

3 .4 .1 . Market  issues 

To date, som e m ajor clearing houses (e.g. LCH.Clearnet )  have adopted the new 

m ethodology for interest  rate Swaps. Som e major broker (e.g. I CAP)  has declared the 

adopt ion for interest  rate derivat ives (Swaps and opt ions) , and has changed the 

quotat ion pages consistent ly. The swapt ion market , in part icular, has switched to forward 

prem ium quotat ion (as in the fx opt ion market )  precisely to reduce the impact  of 

discount ing. These changes can be occasionally checked on the market , in part icular 

when in/ out  of the m oney interest  rate derivat ives are t raded. Swaps, for instance, show 

a negligible sensit iv ity to the discount  rate when their value is close to zero, as usual in 

standard t rades at  par, because the two legs have sim ilar but  opposite values and 

sensit iv it ies. On the other side, the discount  sensit iv ity may be important  when the Swap 

is t raded not  at  par (out  of the money) , e.g. in case of unwinding, because the net t ing 

between the two legs is only part ial.  I nterest  rate Cap/ Floor/ Swap opt ions, instead, 

generally show smaller effects, because, once the market  prem ium is fixed by supply and 

dem and, the different  discount ing tends to be balanced by the different  implicit  volat ilit y.  

The cancellat ion is perfect , by definit ion, for market  opt ions, and part ial for off market  

opt ions and legacy t rades. Sim ilar argum ents apply to other m arket  derivat ives on 

different  asset  classes ( inflat ion, fx, equity, credit ) , with the difference that  the 

discount ing effect  m ay be further obscured by other sources of uncertainty, such as the 

inflat ion/ fx curves/ volat ilit ies, the equity dividends and repo rates, the default  probabilit y 

curves, etc.  

I n conclusion, disentangling the effect  of CSA-discount ing into m arket  or counterparty 

pr ices is not  an easy task, especially for non- interest  rate derivat ives and for non-CSA 

counterpart ies. 

 

3 .4 .2 . Collateral and liquidity issues 

Evidence of CSA-discount ing from  collateral m anagem ent  m ay be cont roversial. 

Besides the int r insic difficult ies cited above, collateral marginat ion is usually managed by 

collateral desks at  port folio level for each counterparty under CSA, and not  at  t rade level,  

thus hiding the discount ing effects even m ore. On the other hand, in case of disputat ion 

pricing details are shared between the two counterpart ies in order to m atch the m ark to 

market  of the collateralised t rades, thus allowing much more market  intelligence than 

usual. Another bias m ay be int roduced by opportunist ic counterpart ies post ing or asking 

collateral using the most  convenient  discount ing m ethodology. Further com plicat ions 



arise because of the typical variety of clauses and details of collateral agreements, such 

as haircuts, m arginat ion frequency, rate spreads, currency, one-way m arginat ion, etc. 

that  require, in principle, more sophist icated and CSA-dependent  pr icing m ethodologies. 

The new I SDA standardised CSA [ 18]  should address and sim plify these issues. 

A very important  challenge is the front - to-back integrat ion of Banks’ internal credit  

and funding m anagem ent , from  t rading to t reasury, collateral and back office, in order to 

benefit  of cent ralised credit  and liquidity charges at  single t rade level. Such a re-

organisat ion of t radit ionally separated areas may result  to be very difficult  in large 

internat ional banking groups characterised by an holding with mult iple subsidiaries and 

locat ions. I n part icular, the yield curves used for pr icing internal deals ( t rades between 

different  legal ent it ies inside the group)  should reflect  the t rue cost  of internal funding 

within the group. 

 

3 .4 .3 . Account ing issues 

I nternat ional Account ing Standards ( I AS)  affirm  that , “ in determ ining the valuat ion of 

OTC derivat ive “a valuat ion technique (a)  incorporates all factors that  market  part icipants 

would consider in set t ing a price and (b)  is consistent  with accepted econom ic 

methodologies for pr icing financial inst ruments”  (AG76) . Thus there is a j udgem ental 

area where the est im at ion of fair  value is based on market  (mult ilateral)  consensus. CSA-

discount ing is a typical case of evolut ion of the market  consensus regarding the meaning 

of CSA:  from  a sim ple accessory guarantee to a determ inant  of the fair  value. 

Hedge account ing, in part icular, is an accountancy pract ice allowed by I AS39 to 

m it igate the Profit  & Loss volat ilit y due to derivat ives used for hedging. A typical situat ion 

arises when the interest  rate r isk of a liabilit y (a bond issued by the bank for instance)  is 

hedged using a Swap. Hedge account ing requires that  the profit  & loss of the package 

remains confined in the 80% -125%  window with respect  to the init ial NPV. The pricing of 

the package is based on ad hoc m ethodologies (e.g. the liability cash flows are 

discounted using the float ing rate of the Swap, for instance) , that  m ay part ially account  

for the basis r isk exist ing between the liabilit y and the derivat ive. As a consequence the 

adopt ion of CSA-discount ing m ay realize the basis r isk, result ing in significant  NPV jumps 

and even breaks of the hedge account ing 80-125 const rain. Hence, either the 

m ethodology m ust  be revised to account  for the basis r isk, or hedges m ust  be 

renegot iated. 

 

3 .4 .4 . I T issues 

The adopt ion of CSA-discount ing is a big issue from  an I T point  of view that  requires 

huge resources to be properly addressed. Here are som e crit ical points. 

o Booking of t rades in pricing systems must  be reviewed such that  the informat ion 

regarding the collateral is recovered.  

o Pricing systems configurat ions must  be reviewed for CSA-compliance, allowing 

proper assignm ents to each t rade of different  yield curves depending on the CSA. 

o Mult iple yield curves and volat ilit ies bootst rapping must  be properly implemented 

and configured in all pr icing systems. 

o Price and r isk computat ions m ust  be reviewed in order to avoid hidden 

assum pt ions regarding discount ing, e.g. autom at ic default  yield curve usage 

without  explicit  assignment . 

o Commercial systems require new releases able to manage CSA-discount ing. 

Vendors must  be typically fed with appropriate specs and the new releases 

carefully tested. 

o Proprietary financial libraries must  be reviewed and re-engineered to make them 

mult iple-curve compliant . Previous poor library design is likely to require much 

more re- im plementat ion effort .  

o Systems integrat ion and alignment  must  be carefully checked to avoid the classical 

“ two system s two prices”  problem . 

I n general, we can say that  the switch to CSA-discount ing is a kind of st ress test  for the 

I T architecture of a bank. The most  confused I T situat ions typically imply much more 

effort  to switch, and vice versa. 



 

3 .4 .5 . Risk Managem ent  issues 

The main r isk management  issues involved into CSA-discount ing are below. 

o Market  r isk :  the most  im portant  source of market  r isk involved in CSA-

discount ing is the basis r isk in the mult iple-curve world, in which even plain vanilla 

interest  rate derivat ives (e.g. Swaps)  display com plex delta exposures dist r ibuted 

across mult iple Libors with different  tenors and OI S rates. This kind of r isk may be 

not  fully captured or represented in standard, old style pr icing frameworks 

grounded on Libor discount ing. Basis r isk is also expensive to hedge, requir ing 

m arket  Swaps, OI S and Basis Swaps. I n pract ice, it  is often part ially hedged in the 

classical fashion, using standard Libor Swaps, thus leaving an open exposure to 

the Libor-OI S basis. The lat ter may be huge (Fig. 4)  and volat ile (Fig.3) . The 

corresponding (un)expected profit  & loss is typically realized in case of unwindings 

or in case of adopt ion of CSA-discount ing, for instance when t rades are m igrated 

to Cent ral Counterpart ies. 

o Model r isk :  this source of r isk regards the usage of interest  rate models (e.g. 

Hull-White, Libor Market  Model, HJM, etc.)  for pr icing and hedging derivat ives in a 

mult iple-curve world. On the one hand, classical single-curve models imply st rong 

approxim at ions and do not  capture the basis r isk, that  will be revealed once the 

models are updated in the form  of an unexpected NPV jum p. On the other hand, 

modern mult iple-curve models may be able to give a bet ter descript ion of the basis 

r isk but , to date, they are m ore com plex, st ill under development , and there is no 

standard on the m arket . 

o Counterparty r isk :  this source of r isk is captured in CSA-discount ing in the sense 

that , for t rades under CSA, the collateral reduces the counterparty r isk and the 

OI S-discount ing ensures no-arbit rage between the collateral rate and the 

discount ing rate. A residual source of counterparty r isk is left  behind by re-

hypothecat ion issues and by the mechanics of marginat ion [ 19] . I n case of 

absence of CSA, Credit  Value Adjustm ent  (CVA)  and Debt  Value Adjustm ent  (DVA)  

m ust  be calculated. We st ress that  a consistent  t reatm ent  of DVA and funding is an 

open topic st ill under invest igat ion (see e.g. [ 9] - [ 11] ) . 

o Funding liquidity r isk :  with funding liquidity r isk we m ean the r isk of changing 

m arket  funding rate. Funding liquidity r isk m anagem ent  under CSA-discount ing is 

com plicated by the fact  that  derivat ives have a funding impact  that  depends on the 

CSA. Hence a cent ralised liquidit y management , integrat ing t reasury, collateral 

m anagem ent  and sales/ t rading desks, would allow both a full v iew of all the 

expected cash flows generated by the bank’s act ivity by derivat ives in part icular,  

and a correct  pr icing of funding costs at  single t rade level.  

o Operat ional r isk :  the main source of operat ional r isk ( the r isk of loss result ing 

from  failed internal processes, people, systems, or external events)  generated by 

CSA-discount ing is related to the increasing complicat ion of pr icing systems and 

liquidity management  discussed above. A typical example may be a wrong 

assignment  between a deal or a group of deals and their CSA, result ing in a wrong 

pricing. An unexpected Profit  & Loss is revealed when the m istake is fixed. 

We conclude with the observat ion that  the main driver of the switch to CSA-

discount ing is the evolut ion of pr icing and r isk m ethodologies, under the pressure of 

market  evolut ion after the credit  crunch. This a typical situat ion in which a solid Risk 

Managem ent  with st rong quant itat ive resources m ay serve as the pivot  of the innovat ion. 

 

3 .4 .6 . Managem ent  issues 

Management  is called to lead the change, and the corresponding fr ict ions, taking 

business opportunit ies and cont rolling r isks and costs. The m ain m anagem ent  decisions 

required for switching to CSA-discount ing, as discussed in the points above, regard:  

o t im ing:  when to switch 

o how to switch:  all together or piecewise, depending on currency, asset  classes, 

desks, subsidiar ies, t im e-zone, main t rading markets, etc. 



o a clear view about  the m ult iple funding sources of the Bank ( the funding curve)  

and re-organisat ion for cent ralised credit  and liquidity management  

o review and cleaning of collateral agreem ents with counterpart ies  

o how to m anage the basis r isk and the Profit  & Loss generated by the switch 

o how to m anage the hedge account ing 

o I T upgrade:  booking, pricing, report ing, etc. 

o communicat ion and explanat ion of the switch to markets, custom ers, auditors and 

regulators. 

 

3 .4 .7 . The role of Quants 

I t  is clear from  the discussion above that  CSA-discount ing is a typical complex 

problem in which a simple no-arbit rage pricing issue (choosing the correct  discount ing 

curve)  generates m any consequences that  propagate all around in the market  and inside 

the banks. I n such a situat ion quant  people have the responsibilit y of extending the 

modern no-arbit rage pricing framework into other areas of the bank, t radit ionally not  

fam iliar with pricing issues, in order to reach a bet ter fair  value and r isk m anagem ent  at  

Bank’s level. 

 

 

4 . Conclusions 

Once upon a t im e…  

there was a classical financial world in which all the Libors were equal. Nowadays credit , 

liquidity and basis r isk plays a crucial role. The I nterbank market  has developed an high 

degree of collateralisat ion, such that  we may look at  derivat ives’ quotat ions as referr ing 

to t ransact ions under CSA. The cost  of funding OTC derivat ives has becom e a cent ral 

topic in derivat ives pr icing. Mult iple yield curves must  be bootst rapped from mult iple 

m arket  data, and even plain vanilla interest  rate Swaps display com plex r isk exposures 

dist r ibuted across mult iple Libors and funding rates with different  tenors. Mult iple-curve 

interest  rate models must  be developed for pr icing both plain vanilla and exot ic 

derivat ives. Switching to CSA discount ing is not  only a pricing issue of changing discount  

factors, but  implies mult iple issues invest ing all areas of the Bank, and a change of 

paradigm  towards a m ore integrated m anagem ent  of Bank’s funding across t rading, 

t reasury and collateral.  

. . . and they all lived happily ever after …?  

 

 

 

 

Appendix A: Quantum  m echanics and Zeem an effect  in a  nutshell 

I n this Appendix we report  a short  descript ion of the concepts and quant it ies cited in 

sect ion 1 above. For more details see e.g. ref. [ 2] . 

The physics of atoms and molecules is described by one of the best  scient ific theories 

ever conceived by m ankind:  quantum  m echanics.  I t  is based on the experimentally 

observed dual part icle-wave nature of m at ter and energy, and it  is form alised into a set  

of postulates, known as the Copenhagen interpretat ion,  prescribing the mathemat ical 

rules to describe a quantum system  and to compute its physical propert ies. I n a nutshell,  

any physical system   is associated with an appropriate Hilbert  space .  Any physical 

state of  is described by an appropriate elem ent  , where x  is a generic vector 

containing all the fundam ental variables (e.g. posit ions of the system ’s part icles in the 3D 

space) , called wavefunct ion or state vector ,  that  contains all the possible informat ions on 

. The dynam ics of the state is governed by the Schrödinger equat ion  

 



  (3)  

 

where  is the Ham iltonian operator represent ing the total (kinet ic +  potent ial)  energy of 

the system,  Joule x second is the reduced Planck’s constant , 

and i is the imaginary unit . The t im e- independent  version of the Schrödinger equat ion, 

suitable for stat ionary systems ( like atoms) , is 

 

  (4)  

 

where E is the energy (eigenvalue of )  of the state  (eigenvector of ) .   

Any physically observable quant ity Q (e.g. energy, posit ion, m om entum , m agnet ic 

field, etc.)  is considered as a stochast ic variable associated with a probability measure 

and with an operator  in  , whose eigenvalues and eigenvectors  

 

  (5)  

 

const itute, under appropriate m athem at ical condit ions, the spect rum of any possible 

value for Q and an orthonormal basis in , respect ively. The probabilit y that  an 

observat ion of Q at  t ime t  provides the value  is given by the Born rule 

 

  (6)  

 

while the expected value and the variance of Q at  t im e t  are given by  

 

  (7)  

 

Given any two physically observables quant it ies , the Jordan’s theorem  

 

  (8)  

 

holds, where  is called com m utator .  I f  then  cannot  be measured 

together with any precision and are called incompat ible observables.  For exam ple, 

posit ion x  and m om entum  p of a one dimensional single free part icle are incompat ible 

because 

 

  (9)  

 

This is the famous Heisenberg’s uncertainty pr inciple.  On the other side if  

com m ute, , they are said to be com pat ible observables,  and can be physically 

m easured together with any precision. I n part icular, any observable  such that  

 is said a constant  of m ot ion because 

 

  (10)  



 

Moreover,  commute if and only if they have a common orthonormal basis of 

eigenvectors 

 

  (11)  

 

There are further postulates that  incorporate into the theory all the experimental 

observat ions, e.g. the Pauli exclusion principle, the correspondence principle with 

classical m echanics, etc. Thus all that  one m ust  do to com pute the physical propert ies of 

quantum  system  is to:  

o characterise the Hilbert  space  and the physical operators  associated with the 

system  ;  

o model the Hamiltonian ,  describing the energy of the system  ;  

o choose the appropriate constants of m ot ion and find the com plete orthonormal 

basis in com m on with ;  

o find the solut ion  of the t ime-dependent  Schrödinger equat ion (3)  as linear 

com binat ion of the eigenvectors of ;  

o compute the physically observable propert ies Q of  using eq. (6) . 

 

We may now apply the formalism  above to the case of the Zeem an effect . The 

Hamiltonian for an atom in a magnet ic field is given by 

 

  (12)  

 

where  is the unperturbed Ham iltonian of the atom without  magnet ic field,  is the 

perturbat ion of the magnet ic field ,  is the magnet ic moment  operator of the atom, 

 are the orbital,  spin and total elect ronic angular m om entum operators, 

respect ively,  is the Bohr’s m agneton ( represent ing the m inimum dipole magnet ic 

m om ent  of an atom ic elect ron) , and  are the L, S gyrom agnet ic rat ios,  respect ively. 

Taking a m agnet ic field constant  over the atom ic dimension and choosing our z axis 

parallel to  we have 

 

  (13)  

 

Denot ing the unperturbed spect rum com m on to  with  

 

  (14)  

 



where n, l, j ,  m j are the quantum numbers associated with the four physical operators in 

eq. (14) , one obtains, using perturbat ion theory, the total spect rum  com m on to 

 as  

 

  (15)  

 

where  is called Landé g- factor . This is the final theoret ical formula for the energy of 

elect ronic states in a magnet ic field. We see that  for non-null magnet ic field B0 the m j 

degeneracy – due to the conservat ion of angular m om entum  J and Jz by eq. (13)  -  is 

broken, and there is an energy split t ing, equal to the term  , of the original atom ic 

states with energy  depending linearly on B0 and on the quantum numbers 

associated with the states. I n part icular, any elect ronic state with given n, l,  j  numbers is 

split  into 2j+ 1 states corresponding to m j values. 

The result  above apply to any atom ic system. I n part icular, we m ay explain the 

Zeeman effect  in Sodium (Figure ) . The atom ic st ructure of Sodium, sim ilar ly to the other 

alkaline m etals, is characterised by a core of t ight ly bounded atom ic elect rons plus one 

single elect ron occupying the outermost , less bounded, elect ronic state. The two D1 and 

D2 spect ral lines of Sodium  correspond to t ransit ions of this single elect ron between the 

ground state and the first  two excited states, 

 

  (16)  

 

where we have used the standard spect roscopic notat ion for atom ic states 

 

  (17)  

 

The magnet ic field breaks the  states into two states each, corresponding to 

, and the  state into four states, corresponding to . Hence the two 

D1 , D2 spect ral lines split  into two mult iplets of lines, differ ing from the mother lines of 

wavelengths given by  

 

  (18)  

 

There are in principle 4 +  8 spect ral lines, but  only 4 +  6 lines are observable, as shown 

in Figure 4, according with the elect romagnet ic select ion rules 

 

  (19)  



 

that  suppress the two lines  with , in 

perfect  agreem ent  with the experimental evidence in Figure . 

 

 

Appendix B: No- arbit rage pricing and interest  rate derivat ives in a  nutshell 

I n this Appendix we report  a short  descript ion of the concepts and quant it ies cited in 

sect ions 2-3 above. For m ore details see e.g. refs. [ 5] , [ 16] - [ 22] . 

 

Nowadays the m ost  important  fundam ental variables for interest  rate derivat ives are 

the basic interest  rates underlying these cont racts, Libor, Euribor and Eonia in part icular.  

Libor  (London I nterbank Offered Rate) , sponsored by the Brit ish Bankers Associat ion 

(BBA)  and first  published in 1986, is the reference rate for m oney m arket  and over- the-

counter (OTC)  swap t ransact ions. Libor is exchanged on the London m oney m arket  

through unsecured loans called Cert ificates of Deposit  (see below)  for 15 different  

m aturit ies (or Libor tenors, from  1 day to 12 m onths) , and for all the m ajor world’s 

currencies. Every business day it  is fixed as the t r immed average (excluding the highest  

and the lowest  25% )  of the cont r ibut ions of a panel of pr imary dealers, answering to the 

quest ion "At  what  rate could you borrow funds, were you to do so by asking for and then 

accept ing inter-bank offers in a reasonable market  size just  pr ior to 11 a.m . London 

t im e?". The Cont r ibut ion Panels are com posed by 8-12-16 banks per currency, selected 

according to scale of m arket  act ivity and reputat ion, reviewed twice a year. Thus Libor 

reflects the average perceived cost  of funding of banks in the London interbank m oney 

m arket  for each given tenor and currency. 

Euribor  (Euro I nterbank Offered Rate) , sponsored by the European Banking 

Federat ion (EBF)  and first  published on 30 December 1998, is the reference rate for Euro 

m oney m arket  and OTC swap t ransact ions. I t  is defined as “ the rate at  which Euro 

interbank Deposits are being offered within the EMU zone by one prim e bank to another 

at  11: 00 a.m . Brussels t im e". The rate fix ing mechanics is sim ilar to Libor, except  for the 

averaging ( the highest  and lowest  15%  are excluded)  and for the panel, that  gathers 

m ore than 40 banks selected according to their business volume and reputat ion in the 

Euro zone m oney m arkets, plus som e large internat ional bank from  non-EU count r ies 

with important  euro zone operat ions. Thus Euribor reflects the average perceived cost  of 

funding of banks in the Euro interbank m oney m arket  for each given tenor. 

Eonia  (Euro OverNight  I ndex Average rate) , sponsored by the EBF and first  published 

on 4 January 1999, is the reference rate for Euro OTC overnight  Deposits. Eonia is fixed 

every business day as the average rate (without exclusions)  of the overnight  t ransact ions 

(one day tenor)  executed during that  day by the banks in the Euribor panel. Eonia is 

used by the European Cent ral Bank (ECB)  as a tool of effect ing and observing the 

t ransm ission of it s m onetary policy act ions. Thus Eonia rate reflects the actual overnight  

cost  of liquidity expectat ions of banks and the m onetary policy effects in the Euro m oney 

m arket . Sim ilar discussions apply to overnight  rates in other currencies, such as Fed 

Fund rate (USD) , Sonia (Ster ling OverNight  I ndex Average) , etc. 

 

The no- arbit rage pricing fram ew ork  of financial derivat ives is based on the 

fundamental pr icing theorem:  given a generic financial inst rument  Π and a reference 

asset  N,  called num eraire, with payoffs  at  t ime T,  respect ively, under 

appropriate condit ions there exist  a unique mart ingale probabilit y measure QN associated 

to N,  such that  

 

  (20)  

 

where  are the prices of Π and N at  t ime t< T and  denotes the 

expectat ion of a stochast ic variable X at  t ime T condit ioned to the informat ion set  

available at  t ime t  under the probability m easure QN.  Two measures are part icular ly 

useful for pr icing derivat ives, because they are associated to the two simplest  

numeraires:  the r isk free Bank Account  and the Zero Coupon Bond. The Bank Account  



is an ideal financial inst rument  represent ing an abst ract  loan that  rewards its holder with 

the r isk free rate, such that  

 

  (21)  

 

where rd( t )  is a r isk free spot  instantaneous short  rate over the t im e interval ,  

 is the r isk free stochast ic discount  factor and  is the risk neut ral m easure 

associated to Bd.  Thus the price  at  t ime t  of any derivat ive is the expectat ion of the 

discounted payoff  at  t ime T> t  under the r isk neut ral m easure ( last  eq. above) . The 

r isk free Zero Coupon Bond is a cont ract  in which one party guarantees to the other 

party the paym ent  of one unit  of currency at  m aturity date T, with no other paym ents, 

such that   

 

  (22)  

 

where  is the T- forward measure associated to Pd( t ; T) .  Thus the price at  t ime t  of the 

r isk free zero coupon bond is the expectat ion of the stochast ic discount  factor at  t ime T> t  

under the r isk neut ral m easure (second line above) , and the derivat ive’s pr ice  can be 

writ ten as the expectat ion of the payoff discounted with Pd( t ; T) .  

For interest  rates, in part icular, the FRA rate   associated to the Libor with tenor 

x  plays a cent ral role. I t  is defined as the expectat ion at  t ime t  of the Libor fix ing with 

tenor x  at  t ime  

 

  (23)  

 

under the Ti- forward probability m easure  associated to the Zero Coupon Bond , 

has the following interest ing propert ies:  

 

1. At  fix ing date Ti-1 it  coincides with the Libor rate  

 

  (24)  

 

2. At  any t im e t  <  Ti-1 it  is a mart ingale under the probabilit y measure  such that  

 

  (25)  

 

 following the stochast ic different ial equat ion 

 

  (26)  

 

where W(t)  is a standard Brownian m ot ion with zero mean and unit  variance and 

 is the FRA rate ( lognorm al)  instantaneous volat ilit y, such that   

 



  (27)  

 

3. I n the lim it  of negligible counterparty/ liquidity r isk (no Libor segmentat ion)  it  

recovers the classical single-curve value 

 

  (28)  

 

We will use the results above to derive the pr icing formulas for the simplest  interest  rate 

derivat ives. 

I nterest  rate Cert ificates of Deposit ,  or sim ply Deposits (Figure 5) , are standard 

zero coupon unsecured loans, exchanged on the m oney m arket  between banks and 

major financial inst itut ions, such that , at  start  date T0, counterparty A ( the Lender)  pays 

a nom inal am ount  N to counterparty B ( the Borrower)  and at  m aturity date Ti ( i= 1,…,N)  

the Borrower, if not  defaulted, pays back to the Lender the nom inal am ount  N plus the 

interest  accrued over the t ime interval  (called Deposit  or rate tenor  x)  at  the 

annual sim ply compounded Libor rate  (or Euribor, Eonia, or any other rate) , 

fixed just  pr ior T0 ( two working days in the EUR m arket ) . 

 

  

Figure 5 : schemat ic picture of a Deposit  cont ract .

Depo( t  ,T i ) Depo(T i ,T i )

t iT

L x (T 0 ,T i  )

0T

 

 

 

 

 

 

 

 

Thus the payoff and the price of the Deposit  at  t im es Ti and t  such that  T0 <  t  <  Ti (when 

the Libor is already known) , respect ively, are given by  

 

  (29)  

  

where  is the year fract ion over , with the appropriate day count  convent ion, 

and we have assumed the existence of a r isk free Zero Coupon Bond with payoff 

 at  maturity Ti and price  at  t ime t  <  Ti act ing as discount  factor. 

I nterest  rate Sw aps (Figure 6)  are OTC cont racts in which two counterpart ies agree to 

exchange two st ream s of cash flows, typically t ied to a fixed rate K against  float ing rate 

Lx with tenor x .  These paym ent  st ream s are called fixed and float ing leg of the Swap, 

respect ively, and they are characterized by two schedules S, T and coupon payoffs 

 

  (30)  
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Figure 6 : schem at ic picture of a fixed vs float ing Swap.  

Vert ical full/ dashed lines denote fixed/ float ing cash flows. 



 

 

 

 

 

 

 

where  and  are the year fract ions with the fixed and float ing rate convent ions, 

respect ively. The price of the Swap, using eq. (23) , is given by 

 

  (31)  

 

where  are the swap side ( receiver/ payer of the fixed 

rate) , the swap rate, the annuity, and the FRA rate, respect ively, of the Swap.  

Forw ard Rate Agreem ents (FRA)  are elem entary Swaps with a single cash flow on 

both legs. 

I nterest  rate Basis Sw aps (Figure 7)  are float ing vs float ing Swaps t ied to two Libors 

with different  tenors. The Basis Swap schedule and price in terms of basis swap spread 

are given, using eq. (31) , by 

 

  (32)  
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 Figure 7 : schem at ic picture of a Basis Swap cont ract , with tenor y= 2x, e.g. Libor 6M vs Libor 3M. 

 

The basis spread is defined as the difference between the swap rates of two fixed vs 

float ing Swaps with equal fixed legs (annual payment  frequency)  and with float ing legs 

indexed to the two Libors with different  tenors (and corresponding paym ent  frequencies) . 

FRA and Swap cont racts for different  currencies, tenors and m aturit ies are quoted in real 

t im e on the financial m arket . Using the form ulas above, writ ten in terms of the FRA rates 

, the corresponding FRA rate term  st ructures can be ext racted from  such quotat ions 

and used, by interpolat ion, to price sim ilar FRAs/ Swaps not  direct ly quoted on the market . 

 



I n the lim it  of negligible counterparty/ liquidit y r isk, eq. (28) , we return to a single-

curve fram ework ( the indexes d, x  drops)  and we obtain the classical Swap pricing 

expression cited in pre-crisis textbooks on interest  rate modelling (e.g. [ 21] , [ 22] ) :  

 

  (33)  
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