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Abstract

In many stated choice experiments researchers observe the random variables Vt,

Xt, and Yt = 1{U + δ⊤Xt + ǫt < Vt}, t ≤ T , where δ is an unknown parameter, and

U and ǫt are unobservable random variables. We show that under weak assumptions

the distributions of U and ǫt as well as the unknown parameter δ can be consistently

estimated using a sieved maximum likelihood estimation procedure.

KEYWORDS: semi-nonparametric, nonparametric, method of sieves, binomial panel, dis-
crete choice, consistent estimation
JEL codes: C14, C23, C25, D12, Q51, R41

1 INTRODUCTION

Observe a sequence Yi = {Yi,t}t=1,...,T of binary choices for individual i = 1, . . . , N gener-
ated by the model

Yi,t = 1{δ⊤Xi,t + Ui + ǫi,t < Vi,t} t = 0, . . . , T, i = 1, . . . , N (1)

where δ⊤Xi,t + Ui is a preference parameter consisting of a systematic part δ⊤Xi,t which
may vary over choices and a random effect Ui representing individual heterogeneity, con-
sidered to be constant across the choices of each individual; Yi,t, Xi,t and Vi,t are observed
and ǫi,t is an observation specific error. We are interested in the situation where T > 1
is fixed and N → ∞. The objective of this paper is to show that the distributions of Ui

and ǫi,t along with the parameter δ are identified from the data (Yi,t, Xi,t, Vi,t)i,t and can
be consistently estimated under weak assumptions.

∗We are grateful to Bo Honoré, the referees and the co-editor Jinyong Hahn for helpful comments.
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A number of approaches are available for the binary model without the panel data
dimension, i.e. Yi = 1{δ⊤Xi + Ui < Vi}, see the review in Li and Racine (2007). E.g.,
Lewbel (2000) shows identification of δ and the distribution of Ui. Honoré and Lewbel
(2002) show identifiability of the Euclidean parameter δ in the binary model (1) and give
a root-N consistent estimator for this. They do not, however, consider identifiability nor
estimation of the unknown distributions of Ui and ǫi,t. Relative to their paper, we make
stronger independence assumptions in order to obtain our results. On the other hand, we
are able to relax their support condition for the range of the independent variables, and
we do not need instruments.

The paper is structured as follows. The model specification is set out in section 2 and
identification of the model is shown in section 3. Consistency of the sieved (seminonpara-
metric) maximum likelihood estimator is established in section 4 with some additional
restrictions on the parameter space. Longer proofs are deferred to the appendix. A work-
ing paper version of this paper (Fosgerau and Nielsen, 2007) presents some applications
of the model to simulated and actual data and the estimator seems to work well.

2 MODEL SPECIFICATION

We parametrise the model in terms of the unknown parameter (δ, f, h) with true values
(δ∗, f∗, h∗), where f is the density of ǫi,t and h is the density of Ui. We make the following
assumptions:

a) (Xi,t, Vi,t) ∈ R
d+1 are i.i.d., independent of the unobservable random variables

(ǫi,t, Ui), and with E[‖Xi,t‖] < ∞ and E[|Vi,t|] < ∞.

b) ǫi,t ∈ R are i.i.d. with bounded support and E[ǫi,t] = 0. When T = 2, the ǫi,ts are
also required to be symmetric.

c) The Ui ∈ R are i.i.d., independent of ǫi,t and with bounded support.

d) The support of Ui + ǫi,t is contained in the support of Vi,t − δ∗⊤Xi,t.

e) There exists a point (x, v) in the support of (Xi,t, Vi,t) such that the distribution
function of Ui + ǫi,t is strictly increasing in an open interval containing v + δ∗⊤x and
such that the set of vectors of the form x−x′, where x′ is such that (x, v)+(w, δ∗⊤w)
is contained in the support of (Xi,t, Vi,t), spans R

d.

Assumption c) is a random effects assumption. Assumption d) is weaker than the as-
sumption in Honoré and Lewbel (2002), who require that the support of Ui + δ∗⊤Xi,t + ǫi,t

is contained in the support of Vi,t. Their requirement may be hard to satisfy in practice
and it may hence be important to only have the present weaker requirement. Assumption
e) is fulfilled if the joint distribution of (Xi,t, Vi,t) has a strictly positive density in a neigh-
bourhood of (x, v) with respect to lebesgue measure but also allows for the case where
some components of Xi,t are discrete (as when dummy regressors are used). It ensures
that Xi,t does not contain an intercept term which is necessary for the identifiability of δ
and the support of Ui.

The unknown parameters lie in the parameter space ∆×Φ×Γ where ∆ is a subset of
R

d, Φ is a set of densities with bounded support and mean zero, and Γ is a set of density
functions with bounded support. In the case T = 2, Φ is a set of symmetric densities
with bounded support.
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Using (1) the conditional distribution for one individual can be expressed as

P (Yi|Vi, Xi, δ, f, h) =

∫

h(u)
T
∏

t=1

[

(2Yi,t − 1)F (Vi,t − δ⊤Xi,t − u) + (1 − Yt)

]

du, (2)

where F is the distribution function corresponding to the density f .

3 IDENTIFICATION

We start by showing that the model is identified.

Theorem 1. Under assumptions a)-e), the parameters of the model are identified: If
P (Y |V, X, δ, f, h) = P (Y |V, X, δ∗, f∗, h∗) then δ = δ∗, and (h, f) = (h∗, f∗) almost every-
where.

Proof Letting y = (1, . . . , 1) in (2) we obtain

P (U + ǫt ≤ vt − δ⊤xt, t = 1, . . . , T ) = P (U∗ + ǫ∗t ≤ vt − δ∗⊤xt, t = 1, . . . , T ) for all v, x

where U ∼ h, U∗ ∼ h∗ and ǫt ∼ f , ǫ∗t ∼ f ∗. Let G denote the distribution function of
U + ǫt and G∗ the distribution function of U∗ + ǫ∗t . Then we have

G(v − δ⊤x) = G∗(v − δ∗⊤x) for all v, x.

Now apply assumption e) to pick v and x such that G∗ is strictly increasing in an open
interval containing v−δ∗⊤x. Then G is strictly increasing around v−δ⊤x. For any vector
w ∈ R

d, we put vw = v + δ∗⊤w. Then

G(v−δ⊤x) = G∗(v−δ∗⊤x) = G∗(vw−δ∗⊤(x+w)) = G(vw−δ⊤(x+w)) = G(v−δ⊤x−(δ−δ∗)⊤w)

which implies that (δ − δ∗)⊤w = 0. By assumption e), this implies that δ = δ∗.
Identifiability of f ∗ and h∗ then follows from Horowitz and Markatou (1996). Fosgerau

and Nielsen (2007) present a simpler proof of the latter assertion by showing that Eǫ∗1
k =

Eǫk
1 for all k, which implies that f ∗ = f , as the distributions have bounded support.

4 CONSISTENCY

A standard argument based on Jensen’s inequality (see Fosgerau and Nielsen (2007))
shows that (δ∗, f∗, h∗) is the unique maximiser of the expected log-likelihood. In this
section we will show that the parameters (δ, f, h) can be consistently estimated by a sieved
maximum likelihood estimation procedure, i.e. by maximising the observed conditional
log-likelihood

lN(δ, f, h) =
1

N

N
∑

i=1

log P (yi|vi, xi, δ, f, h) (3)

over the set ∆ × ΦN × ΓN where ΦN ⊂ Φ is chosen so that the closure in L1-norm of
∪NΦN is Φ and similarly ΓN ⊂ Γ is chosen so that the closure in L1-norm of ∪NΓN is Γ.
See Chen (2006) for an overview of the method of sieves.

For proving consistency, it is useful to fix the supports of the unknown distributions
of Ui and ǫi,t. Multiplying Vi,t by a scale parameter γ we can ensure that the smallest
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interval of the form [−c; c] containing the support of f is the interval [-1;1]; in the case
when f is assumed to be a symmetric density we may thus assume that the convex hull
of its support is [−1; 1]. We include a constant term in the covariate Xi,t in order to fix
the infimum of the support of h to 0 and introduce a parameter ζ for the maximum of
the support such that the convex hull of the support of h is the interval [0;ζ]. Finally, we
replace Ui by ζUi such that the convex hull of the support of Ui is the unit interval. In
summary we have

Yi,t = 1{θ⊤Zi,t > ζUi + ǫi,t} t = 1, . . . , T, i = 1, . . . , N

where Zi,t = (1, X⊤
i,t, Vi,t)

⊤ and θ = (θ1,−δ,⊤ γ)⊤.
We let Θ ⊂ R

d+3 denote the parameter set for the Euclidean parameter (θ, ζ). We
restrict Γ to consist of densities h with the convex hull of the support equal to the unit
interval [0; 1]. Similarly, Φ is restricted to densities with convex hull of the support
contained in the interval [−1; 1], but not in any shorter interval of the form [−c; c]. We
equip Θ with the Euclidian norm, while Φ and Γ are equipped with L1-norms. The whole
parameter space Σ = Θ × Γ × Φ is equipped with the norm given by the sum of these
norms. We let σ = (θ, f, h) denote an element of this parameter space with σ∗ denoting
the true value and put

P (y|z, σ) =

∫

h(u)
T
∏

t=1

(

(2yt − 1)F (θ⊤zt − ρu) + (1 − yt)
)

du.

We introduce two new assumptions:

f) f ∗, h∗ are bounded by a given constant K.

g) Θ is a compact subset of R
d+2.

Assumption f) bounds the unknown densities to avoid estimators of h and f that are
functions of spikes, regardless of the true form. We note that L1 is a complete metric
space and that Γ is closed by construction. As Γ is totally bounded, it is compact. The
same argument applies to Φ, in the case T = 2 upon noting that the set of symmetric
densities is closed. It follows that Σ is compact.

A convenient choice of sieve spaces is obtained by dividing [0; 1] and [−1; 1] into
intervals and use densities that are constant on each interval and let the number of
intervals increase as N → ∞.

Lemma 1. There exists a sequence σN ∈ ΣN and a constant C > 1 such that σN → σ∗

and
P (y|z, σ∗)

P (y|z, σN)
≤ C p-a.e. z and every y for N sufficiently large.

See appendix A.1 for a proof. We can now prove consistency.

Theorem 2. Under assumptions a)-g) the sieved maximum likelihood estimator found by
maximising

lN(σ) =
1

N

N
∑

i=1

log P (yi|zi, σ)

over ΣN = Θ × ΓN × ΦN is consistent.
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Proof Using Lemma 1 we obtain1

| log P (y|z, σ∗) − log P (y|z, σN)| ≤ C
|P (y|z, σ∗) − P (y|z, σN)|

P (y|z, σ∗)
.

The likelihood σ → P (Yi|Zi, σ) is Lipschitz continuous by Lemma 2 in appendix A.2.
Combining these facts and assumption a) we find that

E

∣

∣

∣

∣

∣

1

N

N
∑

i=1

log P (Yi|Zi, σN) −
1

N

N
∑

i=1

log P (Yi|Zi, σ
∗)

∣

∣

∣

∣

∣

→ 0 (4)

as σN → σ∗. As σ̂N maximises the conditional log-likelihood over ΣN we have

0 ≤
1

N

N
∑

i=1

log P (Yi|Zi, σ̂N) −
1

N

N
∑

i=1

log P (Yi|Zi, σN) =
1

N

N
∑

i=1

log
P (Yi|Zi, σ̂N)

P (Yi|Zi, σ∗)
+ oP (1)

by (4). By the concavity of the logarithm

1

N

N
∑

i=1

log
P (Yi|Zi, σ̂N)

P (Yi|Zi, σ∗)
≤

2

N

N
∑

i=1

log
P (Yi|Zi, σ̂N) + P (Yi|Zi, σ

∗)

2P (Yi|Zi, σ∗)
(5)

= 2E

[

log
P (Y |Z, σ) + P (Y |Z, σ∗)

2P (Y |Z, σ∗)

]

∣

∣σ=σ̂N

+ oP (1)

by the uniform law of large numbers; the proof of this is somewhat involved and we defer
it to Appendix A.3. Furthermore,

E

[

log
P (Y |Z, σ) + P (Y |Z, σ∗)

2P (Y |Z, σ∗)

]

∣

∣σ=σ̂N

≤ 2E

[
√

P (Y |Z, σ) + P (Y |Z, σ∗)

2P (Y |Z, σ∗)
− 1

]

∣

∣σ=σ̂N

= −h2(σ̂N , σ∗)

where

h2(σ, σ∗) =

∫

∑

y∈{0,1}T

(

(

P (y|z, σ) + P (y|z, σ∗)

2

)1/2

− P (y|z, σ∗)1/2

)2

p(z)dz.

Thus 0 ≤ h2(σ̂N , σ∗) ≤ oP (1). Hence

1

N

N
∑

i=1

log P (Yi|Zi, σN) ≤
1

N

N
∑

i=1

log P (Yi|Zi, σ̂N) ≤
1

N

N
∑

i=1

log P (Yi|Zi, σ
∗) + oP (1)

which by (4) and the law of large numbers implies that

1

N

N
∑

i=1

log P (Yi|Zi, σ̂N) → E[log P (Y |Z, σ∗)].

1For 0 < x < C | log x| ≤ C|1− 1

x
| when C > 1: For x > 1 this follows since log x < x− 1 and x < C.

For x ≤ 1 the inequality follows since log 1

x
≤ 1

x
− 1.
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Now by compactness of Σ, every subsequence of (σ̂N)N has a further subsequence (σ̂Nj
)j

which converges; let σ̃ denote the limit of this subsequence. Then, as (a1/2−b1/2)2 ≤ |a−b|
for a, b ≥ 0,

h2(σ̂Nj
, σ∗) ≤

∫

∑

y∈{0,1}T

∣

∣

∣

∣

P (y|z, σ) + P (y|z, σ∗)

2
− P (y|z, σ∗)

∣

∣

∣

∣

p(z)dz∣
∣σ=σ̂Nj

→ 0

by lemma 2. Hence we get

h2(σ̃, σ∗) ≤ 2h2(σ̃, σ̂Nj
) + 2h2(σ̂Nj

, σ∗) = oP (1).

By the identifiability (Theorem 1) this implies that σ̃ = σ∗. Hence σ̂N is consistent in the
norm on Σ.

A Appendix

A.1 Proof of Lemma 1

Start by choosing θN = θ∗. Recall that FN is a piecewise linear function. We choose
it so that it is at least as large as F ∗ when F ∗(x) is small and no larger than F ∗ when
F ∗(x) is large. To be precise, for some 0 < α < 1/2 let qα = inf{x : F ∗(x) = α} and
q1−α = sup{x : F ∗(x) = 1 − α} and choose FN such that FN(x) ≥ F ∗(x) for x ≤ qα and
FN(x) ≤ F ∗(x) for x ≥ q1−α. Then FN(x) ≥ F ∗(x)α and 1 − FN(x) ≥ (1 − F ∗(x))α for
all x. Hence

P (y|z, σN) ≥ αT · P
(

y
∣

∣z, σ = (θ∗, f∗, hN)
)

Next choose hN such that hN(u) ≥ bh∗(u) for some constant b. Letting IN,k denote
intervals where hN is constant, we put

hN(u) =
maxIN,k

h∗(u) + minIN,k
h∗(u)

2cN

u ∈ IN,k

Here cN is a constant ensuring that hN is a density; it is the value of an approximating
sum to the integral of h∗ and hence converges to 1. It now follows that

h∗(u) ≤ max
IN,k

h∗(u) = hN(u) ·
maxIN,k

h∗(u)

maxIN,k
h∗(u) + minIN,k

h∗(u)
· 2cN ≤ hN(u) · 2 max

N
cN

Hence

P (y|z, σN) ≥ αT · P
(

y
∣

∣z, σ = (θ∗, f∗, hN)
)

≥ αT 2 max
N

cN · P (y|z, σ∗).

Hence Lemma 1 holds with C = 1/(αT 2 maxN cN).

A.2 Continuity

Lemma 2. The likelihood σ → P (Yi|Zi, σ) is Lipschitz continuous.
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Proof We start by noting that for any density f ∈ Φ, the corresponding distribution
function F is Lipschitz with parameter K. Hence we have

|F (z) − F̃ (z̃)| ≤K|z − z̃| + sup
z∈R

|F (z) − F̃ (z)| ≤ K|z − z̃| + ‖f − f̃‖1.

Putting ai,t = (2Yi,t − 1)F (θ⊤Zi,t − ζUi)+ (1−Yi,t) and ãi,t = (2Yi,t − 1)F̃ (θ̃⊤Zi,t − ζ̃Ui)+
(1 − Yi,t) we see that

∣

∣P (Yi|Zi, σ) − P (Yi|Zi, σ̃)
∣

∣ ≤

∫

|h(u) − h̃(u)|
T
∏

t=1

ãi,tdu +

∫

∣

∣

∣

∣

∣

T
∏

t=1

ai,t −
T
∏

t=1

ãi,t

∣

∣

∣

∣

∣

h(u)du

≤‖h − h̃‖1 +
T
∑

t=1

∫

|ai,t − ãi,t|h(u)du

≤‖h − h̃‖1 + T‖f − f̃‖1 + TK|ζ − ζ̃| + K

T
∑

t=1

|(θ − θ̃)⊤Zi,t|

as 0 ≤ ai,t, ãi,t ≤ 1 and E[Ui] ≤ 1. ✷

A.3 Uniform law of large numbers

We wish to show a uniform (in σ ∈ Σ) law of large number for the right hand side of (5).
We will do this by applying Theorem 2.4.3 in van der Vaart and Wellner (1996).

Γ is by construction a subset of a VC-hull class (van der Vaart and Wellner, 1996,
Corollary 2.6.12), and it follows from Problem 2.6.14, Lemma 2.6.19 and Lemma 2.6.20
in van der Vaart and Wellner (1996) that the class

{

(y, z, u) → h(u)
[

(2y − 1)F (θ⊤z − ζu) + (1 − y)
]

: (θ, ζ) ∈ Θ, F ∈ Φ, h ∈ Γ
}

(6)

is a subset of a VC-hull class. In particular, its covering number is bounded by a constant
times a power of 1/ε. Repeated use of Lemma 2.6.20 of van der Vaart and Wellner (1996)
allows us to extend this class of functions to reflect the fact that T > 1 in our model.
However, to keep notation simple we do not do this here.

Now consider the function class

G =

{

(y, z) →

∫

h(u)F (θ⊤z − ζu)du : (θ, ζ) ∈ Θ, F ∈ Φ, h ∈ Γ

}

(7)

Let g1, . . . , gk be centres for the class (6) corresponding to the L1-norm with respect to
the product of an arbitrary probability measure µ and the Lebesgue measure on [0; 1] for
a chosen ǫ > 0. Then for any choice of h ∈ Γ, F ∈ Φ and (θ, ζ) ∈ Θ we have

∫

∣

∣

∫

h(u)F (θ⊤z − ζu)du −

∫

gj(v, x, u)du
∣

∣dµ(v, x)

≤

∫∫

|h(u)F (θ⊤z − ζu) − gj(v, x, u)|dudµ(v, x)

Hence the covering number of the class G (7) is at most as large as the covering number
of the class (6).

7



Let Pj(y|z) denote the centres for G corresponding to the covering of size ε for the
norm

‖g‖ =

1

N

∑N
i=1

|g(Yi, Zi)|

P (Yi|Zi, σ∗)
1

N

∑N
i=1

1/P (Yi|Zi, σ∗)
.

and consider the class

G ′ =

{

(y, z) → log

(

P (y|z, σ) + P (y|z, σ∗)

2P (y|z, σ∗)

)

: σ ∈ Σ

}

(8)

Now
∣

∣

∣

∣

log

(

P (y|z, σ) + P (y|z, σ∗)

2P (y|z, σ∗)

)

− log

(

Pj(y|z) + P (y|z, σ∗)

2P (y|z, σ∗)

)∣

∣

∣

∣

≤
|P (y|z, σ) − Pj(y|z)|

P (y|z, σ∗)

To show that the covering number for (8) is polynomial in ε, we bound the relevant
distance by:

1

N

N
∑

i=1

|P (Yi|Zi, σ) − Pj(Yi|Zi, σ
∗)|

P (Yi|Zi, σ∗)
≤ ε ·

1

N

N
∑

i=1

1

P (Yi|Zi, σ∗)

Noting that

1

N

N
∑

i=1

1

P (Yi|Zi, σ∗)
→

∫

∑

y∈{0,1}T

P (y|z, σ∗)

P (y|z, σ∗)
p(z)dz = 2T almost surely

it follows that random entropy condition of Theorem 2.4.3 of van der Vaart and Wellner
(1996) is satisfied.

To verify the required envelope condition, we note that

log
1

2
≤ log

(

P (y|z, σ) + P (y|z, σ∗)

2P (y|z, σ∗)

)

≤ − log P (y|z, σ∗)

which provides us with the integrable envelope G(y, z) = log 2− log P (y|z, σ∗) for G ′ given
by (8) as

E[| log P (Y |V, X, σ∗)|] ≤ E[1/P (Y |V, X, σ∗)] = 2T < ∞.

What now remains for the application of Theorem 2.4.3 in van der Vaart and Wellner
(1996) is to argue that the class G is measurable (van der Vaart and Wellner, 1996, Defi-
nition 2.3.3). However this follows from the fact that functions in G may be approximated
pointwise by functions from a countable subset of G constructed by considering functions
obtained when (θ, ζ) lies in a countable dense subset of Θ, h and f are given by piecewise
constant densities with rational values and rational discontinuity points.
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