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Abstract

The conditional indirect utility of many random utility maximiza-
tion (RUM) discrete choice models is specified as a sum of an index
V depending on observables and an independent random term e. In
general, the universe of RUM consistent models is much larger, even
fixing some specification of V due to theoretical and practical consid-
erations. In this paper we explore an alternative RUM model where
the summation of V and ¢ is replaced by multiplication. This is con-
sistent with the notion that choice makers may sometimes evaluate
relative differences in V between alternatives rather than absolute dif-
ferences. We develop some properties of this type of model and show
that in several cases the change from an additive to a multiplicative
formulation, maintaining a specification of V, may lead to a large im-
provement in fit, sometimes large than that gained from introducing
random coefficients in V.



1 Introduction

Discrete choice models are widely used. They have a firm theoretical foun-
dation in utility theory and can be adapted to a wide range of circum-
stances. Various very general and flexible nonparametric discrete choice
models exist, but they tend not to be used so often in applied research for
various reasons. Instead a more limited range of models is employed based
on a set of often applied assumptions. The objective of the present paper is
to show how a small modification of typical applied models may sometimes
lead to large improvements in fit without requiring additional parameters
to be estimated. The paper shows how these modified models fit into the
general framework of random utility maximization and derives some basic
results about the modified models that parallel established results for the
linear in parameters multinomial logit model and some of its generaliza-
tions. The results of this paper should thus be of interest for the applied
researcher.

McFadden and Train (2000), e.g., derive the general random utility max-
imization (RUM) discrete choice model from first principles. This model
specifies the conditional indirect utility (CIU) associated with an alterna-
tive j as a function of observed and unobserved attributes (z; and ¢;) of
the alternative, and of observed and unobserved individual characteristics
(s and v), that is

U*(z;, s, €, v). (1)

Further specification of this model is necessary before it can be applied to
data. In particular, we specify a subutility for each alternative j by

Vj :V(Zj,S,V), (2)

which does not depend on unobserved characteristics of the alternative.
We proceed under the assumption that the researcher desires to specify V
up to a number of parameters to be estimated. Now, the CIU becomes

U*(ijsj)) (3)

which embodies the assumption that the variables z;, s and v may be sum-
marized by Vj. This is often called an index assumption where Vj is the
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index. The corresponding choice model is
P(ilz,s) = JP(UZ, s,v)f(v)dv, (4)

where f(v) represents the distribution of v in the population, and
P(ilz,s,v) = Pr[U*(Vi, e1) > U*(Vj, &5) Vijl. (5)

Most applications of these models have used a specification with additive
independent error terms, that is

U*(Vj, &5) =V + ¢, (6)

where ¢; is independent of Vj. Some normalization is required for identi-
fication, since any strictly increasing transformation of utility will lead to
identical observations of choice. It is hence necessary at least to fix the
location and scale of utility.! This may be done by imposing constraints
on the distribution of the error term and on the specification of the Vi;.

Linear-in-parameter specifications of V; ignoring unobserved individual
heterogeneity are commonly used, that is

V; = V(z;,s,v) = B'x(z;, s), (7)
so that (4)—(5) simplifies to
P(ilz,s) = Pr(B'x(zi, s) + &1 > B'x(z5,8) + &5 Vj), (8)

and the mixing in (4) is avoided.

Operational models are based on specific assumptions about the dis-
tribution of ¢;. Assuming i.i.d. extreme value distributions leads to the
multinomial logit (MNL) model, which has been very successful due to
its computational and analytical tractability. Multivariate? extreme value

ICITE Honore & Lewbel, Fosgerau & Nielsen some cases this is all that is required,
then something else is identified and may be estimated consistently.

2These models are called Generalized Eztreme Value models by McFadden (1978).
However, the name GEV is also used for a family of univariate extreme value distributions
(see Jenkinson, 1955).



(MEV) models (McFadden, 1978) relax the assumption of mutual indepen-
dence. Mixtures of these models are derived to account for unobserved
heterogeneity, based on (4)—(5). These models have gained popularity due
to their flexibility (McFadden and Train, 2000), while retaining consistency
with RUM.

The applied researcher may have theoretical and practical reasons for
specifying V in certain ways. Omne concern is that the parameters of V
should have interpretations in terms of elasticities or marginal rates of sub-
stitution such as willingness-to-pay. In particular, the linear-in-parameters
specification (6)—(7) is very often used. In this paper we treat the specifi-
cation of V as fixed and focus on the specification of the error structure.
We do not require V to be linear-in-parameters.

Given some specification of V, the assumption of additive independent
errors (6) is not innocuous. It has strict implications for the range of
behavior that the model can describe. From (5), the additivity assumption
implies that choice probabilities are invariant with respect to addition of a
constant to all the Vs (Daly and Zachary, 1978). In contrast, multiplying
the Vs by a positive constant does affect the choice probabilities.

This may or may not be an adequate description of observed behavior.
It is quite conceivable that errors in (6) are heteroscedastic, violating the
independence assumption. One way that can happen is if choice makers
evaluate alternatives in terms of relative differences in V. Facing such is-
sues, if they are indeed detected, one may experiment with the specification
of V. Sometimes another quite straight-forward solution may sometimes
apply, which is simply to replace the V;’s by logs. Then choice probabilities
will no longer be invariant with respect to addition of a constant to all the
Vj’s, instead they will be invariant with respect to multiplication of all Vj’s
by a positive constant.

We shall show that under appropriate circumstances, this modified
model is still a RUM model. It may be considered a RUM model where
the assumption of additive independence of the error terms is replaced by
an assumption of multiplicative independence of the error terms. We are
thus exploring a second natural specification of (3)

A number of authors have relaxed the assumption of iid errors by ex-



plicitly specifying the variance of the additive error term as a function of
observed and unobserved individual characteristics (Bhat, 1997; Swait and
Adamowicz, 2001; De Shazo and Fermo, 2002; Caussade et al., 2005; Kop-
pelman and Sethi, 2005; Train and Weeks, 2005). Our model modifies the
assumption of iid errors in (6) by replacing the assumption by its multi-
plicative counterpart

U (Vj, &) = Viej. (9)

If we are able to assume that the signs of V; and ¢; are known, then we
are able to take logs without affecting choice probabilities, and the model
becomes an additive model, where V; is replaced by In V.

The realization that there are alternatives to the additive specification
of utility is not new. There is a recent literature about nonparametric
identification of econometric models, which includes discrete choice models
with nonadditive unobservables. This literature is reviewed in Matzkin
(2007). (MICHEL INSERT REF: bibtex code included in this doc).

The multiplicative formulation is set out in the next section, Section 3
derives some properties of the multiplicative formulation, while Section 4
provides illustrative examples and Section 5 concludes.

2 Model formulation

Assume a general multiplicative utility function over a finite set C of |
alternatives given by (9) where V; < 0 is the systematic part of the utility
function, and ¢; > 0 is a random variable, independent of V;.

We assume that the ¢; are 1.i.d. across individuals. The sign restriction
on Vj is a natural assumption in many applications, for example when it
is defined as a generalized cost, that is, a linear combination of attributes
with positive values such as travel time and cost and parameters that are
a priori known to be negative.

The choice probabilities (5) under this model are given by

P(i‘Z, S,\)) = Pr(ViEi Z VjEj, \V/]) (10)

The multiplicative specification is related to the classical specification with



additive independent error terms, as can be seen from the following deriva-
tion. The logarithm is a strictly increasing function. Consequently,

P(ilz,s,v) = Pr(Vie; > Vjej, Vj)
Pr(—In(—V;i) —In(&;) > —In(—V;) —1In(g;), Vj).

We define
—In(g;) = &;/A, (11)

where &; are random variables, and A > 0 is a scale parameter associated
with &;. We obtain

P(i’Z) S,\)) - Pr(\_/i + Evi Z \7] + Ev))) € C) (12)

= Pr(-Aln(—Vi) + & > —Aln(-V;) + &;,j € C).
Consequently, this model can also be written in the random utility frame-
work with an additive specification, where V is replaced by a logarithmic
form:

In the linear formulation V; = (3'x; with additive errors, identification
requires that x; does not contain a variable that is constant across alter-
natives. An equivalent normalization in the multiplicative case is to fix a
parameter to a either 1 or -1, since multiplying V by a positive constant is
equivalent to adding a constant to In(V). A useful practice is to normalize
the cost coefficient (if present) to 1 so that other coefficients can be readily
interpreted as willingness-to-pay indicators.

This specification is fairly general and can be used for all the discrete
choice models discussed in the introduction. We are free to make assump-
tions regarding the error terms &; and the parameters inside V; can be
random. Thus we may obtain MNL, MEV and mixtures of MEV models.
For instance, a MNL specification would be

_ e An(—Vi) —VA
P(ilz,s) = Y ece MV T Y VN (14)

If random parameters are involved, it is necessary to ensure that P(V; >

0) = 0. The sign of a parameter can be restricted using, e.g., an exponential.
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For instance, if 3 has a normal distribution then exp(f3) is positive and log-
normal. For deterministic parameters one may specify bounds as part of
the estimation or transformations such as the exponential may be used to
restrict the sign.

The use of (12) provides an equivalent specification with additive in-
dependent error terms, which fits into the classical modeling framework,
involving MNL and MEV models, and mixtures of these. However, even
when the V’s are linear-in-parameters, the equivalent additive specifica-
tion (12) is nonlinear. Therefore, estimation routines must be used, that
are capable of handling this. The results presented in this paper have
been generated using the software package Biogeme (biogeme.epfl.ch;
Bierlaire, 2003; Bierlaire, 2005), which allows for the estimation of mix-
tures of MEV models, with nonlinear utility functions.

3 Model properties

We discuss now some basic properties of the model with multiplicative error
terms. As we have noted, we may simply reinterpret the model to have CIU
defined by V;+ &, which is nonlinear when V; is linear. This reformulation
yields identical choice probabilities but has additive error terms, such that
standard theory may be applied.

Distribution From (11), we derive the CDF of ¢; as
Fe.(x) =1—TFg (—Alnx).

In the case where &; is extreme value distributed, the CDF of &; is

— X

Fe(x) =e ™€

and, therefore,
A

Fo(x)=1—e .

This is a generalization of an exponential distribution (obtained with
A =1). We note that the exponential distribution is the maximum
entropy distribution among continuous distributions on the positive
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half-axis of given mean, meaning that it embodies minimal informa-
tion in addition to the mean (that is to V;) and positivity. Thus, it
is seems to be an appropriate choice for an unknown error term.

Elasticities The direct elasticity of alternative i with respect to an at-

tribute of the ith alternative xy is defined as

e — aP(l) Xk aP(l) 6V1 Xk
7T % PA) 9V o P(Q)’

where 0V;/0x, = Py if V; is linear. We use (13) to obtain

e ap(l) 6\71 6V1 Xk A aP(l) 6V1 Xk
ik = = Ty, Av AL Dy

oV, oV;oxx P(i) Vi 0V; ox P(i)

where 0P(i)/0V; may be derived from the corresponding additive
model. For instance, if the additive model is MNL, we have
oP(i)

v, PH)(1 = P(1)),

and

A opapds

Vi anXk.

Cik =

Similarly, the cross-elasticity ej; of alternative i with respect to an
attribute xy of alternative j is given by

ek =" —— " or:
TV oV, o P(i)
where OP(1)/dV; can be derived from the corresponding additive model.

For instance, if the additive model is MNL, we have

oP(1)
oV,

=—P{A)P(j),

and
A aV;

ik = Vipma_xkxk'



Trade-offs The trade-offs are computed in the exact same way as for an
additive model, that is

ol;/Oxq o 0Vi/0xix
OU;i/0xi  OVi/Oxy’

as 0¢;/0xy = 0¢y/0xy = 0, because ¢; is independent of V.

Expected maximum utility The maximum utility under the definition
of utility in (9) is

U* = max U; = max Vi¢; = max Vie’%, (15)
iecC ieC ieC
where &; is defined by (11). We assume that (&;,...,&;) follows a
MEV distribution, that is

F(E],---,E]) _ efG(e*m ..... e*il)) (16)

where G is a o-homogeneous function with certain properties (see
McFadden, 1978 and Daly and Bierlaire, 2006 for details). Then the
expected maximum utility is given by (see derivation in Appendix

A):
= —(G") & 1
B = (6o (14 51 ). a7)
where
G = G((—Vi) .., (=), (18)

and I'(-) is the gamma function.

We can compare this to the expected maximum utility if utility is
taken to be —Aln(—V;)+&;. Using the well-known result (McFadden,
1978), the expected maximum utility is then %(InG* +v).

It is thus apparent that for the same definition of V, the multiplicative
and the additive specifications of the model lead to quite different ex-
pected utilities. But, essentially, the V; enter the expected maximum
utility through G* in both expressions. Hence the marginal expected
maximum utility of a change to some V; divided by the marginal
utility of income will be the same for either formulation.
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Marshallian consumer surplus The Marshallian consumer surplus can
be derived in the context where —V;, the negative of the subutility of
alternative 1i, is interpreted as a generalized cost. In this case, when
a small perturbation dV; is applied, the compensating variation is
simply —dV; if alternative i is chosen, and 0 otherwise. Therefore,
the compensating variation for a marginal change dV; in V; is

—P(1)dVi, (19)

and the compensating variation for changing V; from a to b is given
by

b
—J P(i)dVi. (20)

a
When P(1i) is given by a classical MNL model, this integral leads to the
well-known logsum formula®. When P(i) is given by the model with
multiplicative error (like (14)), the integral does not have a closed
form in general and numerical integration must be performed*. We
refer the reader to Dagsvik and Karlstrom (2005) for a discussion of
compensating variation in the context of discrete choice.

Heterogeneity of the scale of utility Assume that the utility can be de-
composed as
U (Vj, g5) = V(z;, s)uls, ve;. (21)

That is, individual observed and unobserved heterogeneity v affects
only the scale of the utility. Combining (5) and (6) under the additive
specification gives

P(ilz,s,v) = Pr(V(zy, s)uls,v) + &1 > V(z;, s)uls,v) + ¢ Vi), (22)

while combining (5) and (9) under the multiplicative specification
gives

P(ilz,s,v) = Pr(V(zi, s)u(s, v)es > \7(2,-, s)u(s,v)e;) Vi), (23)

3Anders Karlstrom has helped us find references for this result. The earliest reference
we could find is Neuburger (1971)

“Complicated closed form expressions can be derived for (14) with integer values of A.
But A is estimated and unlikely to be integer.



which simplifies to
P(ilz,s,v) = Pr(V(zi,s)e; > V(z;,5)e5) Vi). (24)

So the scale of utility is irrelevant for probabilities under the multi-
plicative formulation, also when the scale of utility is distributed in
the population.

4 Empirical applications

We analyze three stated choice panel data sets. We start with two data
sets for value of time estimation, from Denmark and Switzerland, where
the choice model is binomial. The third data set, a trinomial mode choice
in Switzerland, allows us to test the specification with a nested logit model.

4.1 Value of time in Denmark

We utilize data from the Danish value-of-time study. We have selected an
experiment that involves several attributes in addition to travel time and
cost. We report the analysis for the train segment in detail, and provide a
summary for the bus and car driver segments. The experiment is a binary
route choice with unlabeled alternatives.

The first model is a simple logit model with linear-in-parameters subu-
tility functions. The attributes are the cost, in-vehicle time, number of
changes, headway, waiting time and access-egress time (ae).

The subutility function is defined as

Vi=A( — cost +B; ae +3, changes

25
+ P3headway +f4inVehTime +f5 waiting ), (25)

where the cost coefficient is normalized to -1 and the parameter A is esti-
mated. The subutility function in log-form, used in the estimation software
for the multiplicative specification, is defined as

Vi = —A log( cost —p ae —[2 changes

26
— PB3headway —f4inVehTime —f35 waiting) (26)
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The estimation results are reported in Table 6 for the additive speci-
fication and in Table 7 for the multiplicative specification. We observe a
significant improvement in the log-likelihood (171.76) for the multiplicative
specification relative to the additive.

The second model captures unobserved taste heterogeneity. Its estima-
tion accounts for the panel nature of the data. The specification of the
subutility is

V; = A(—cost — ePsTPsty;) (27)

where
Y; = inVehTime + e’ ae + eP changes + e headway + eP* waiting, (28)

¢ is a random parameter distributed across individuals as N(0, 1), so that
ePsPe& is log-normally distributed. The exponentials guarantee the posi-
tivity of the parameters. The subutility function in log-form, used in the
estimation software for the multiplicative specification, is defined as

Vi = —Alog(cost + ePstPséy,), (29)

where Y; is defined by (28).

The estimation results are reported in Table 8 for the additive specifica-
tion and in Table 9 for the multiplicative specification. Again, the improve-
ment of the goodness-of-fit for the multiplicative is remarkable (225.45).

Finally, we present a model capturing both observed and unobserved
heterogeneity. The specification of the subutility is

V; = A(—cost — e™Y;)
where Y; is defined by (28),
W; = 35 highInc + B¢ log(inc) + 7 lowlnc + (g missingInc + Bo + (104,

and ¢ is a random parameter distributed across individuals as N(0, 1). The
subutility function in log form is

V; = —Alog(cost + e™Y;).
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Number of observations 3455

Number of individuals 523
Model Additive Multiplicative Difference
1 -1970.85 -1799.09 171.76
2 -1924.39 -1698.94 225.45
3 -1914.12 -1674.67 239.45

Table 1: Log-likelihood of the models for the train data set

Number of observations: 7751
Number of individuals: 1148
Model Additive Multiplicative Difference
1 -4255.55 -3958.35 297.2
2 -4134.56 -3817.49 317.07
3 -4124.21 -3804.9 319.31

Table 2: Log-likelihood of the models for the bus data set

The estimation results are reported in Table 10 for the additive specifi-
cation and in Table 11 for the multiplicative specification. We again obtain
a large improvement (239.45) of the goodness-of-fit for the multiplicative
model.

The log-likelihood of these three models are summarized in Table 1.
Similar models have been estimated on the bus and the car data set. The
summarized results are reported in Tables 2 and 3.

The multiplicative specification significantly and systematically outper-
forms the additive specification in these examples. Actually, the multiplica-
tive model where taste heterogeneity is not modeled (model 1) fits the data
much better than the additive model where both observed and unobserved
heterogeneity are modeled.
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Number of observations: 8589

Number of individuals: 1585
Model Additive Multiplicative Difference
1 -5070.42 -4304.01 766.41
2 -4667.05 -3808.22 858.83
3 -4620.56 -3761.57 858.99

Table 3: Log-Likelihood of the models for the car data set

4.2 Value of time in Switzerland

We have estimated the models without socio-economics, that is (25), (26),
(27) and (29), on the Swiss value-of-time data set (Koenig et al., 2003).
We have selected the data from the route choice experiment by rail for
actual rail users. As a difference from the models with the Danish data set,
we have omitted the attributes ae and waiting, not present in this data
set. The log-likelihood of the four models are reported in Table 4, and the
detailed results are reported in Tables 12-15.

The multiplicative specification does not outperform the additive one
for the fixed parameters model. Introducing random parameters in a panel
data specification improves the log-likelihood of both models, the fit of
the multiplicative specification being now clearly the best, although the
improvement is not as large as for the Danish data set.

‘ Additive Multiplicative Difference
Fixed parameters | -1668.070 -1676.032 -7.96
Random parameters | -1595.092 -1568.607 26.49

Table 4: Log-likelihood for the Swiss VOT data set

4.3 Swissmetro

We illustrate the model with a data set collected for the analysis of a future
high speed train in Switzerland (Bierlaire et al., 2001). The alternatives
are

13



1. Regular train (TRAIN),

2. Swissmetro (SM), the future high speed train,

3. Driving a car (CAR).

We specify a nested logit model with the following nesting structure.

TRAIN SM CAR
NESTA 1 0 1
NESTB 0 1 0

In the base model, the subutilities V; are defined as follows.

Alternatives
Param. TRAIN SM CAR
B_TRAIN_TIME travel time 0 0
B_SM_TIME 0 travel time 0
B_CAR_TIME 0 0 travel time
B_HEADWAY  frequency frequency 0

B_COST travel cost travel cost travel cost

We derive 16 variants of this model, each of them including or not the
following features:

1. Alternative Specific Socio-economic Characteristics (ASSEC): we add
the following terms to the subutility of alternatives SM and CAR:

B_GA_i railwayPass + B_MALE i male + B_PURP_i commuter

where 1 =SM,CAR;

2. Error component (EC): a normally distributed error component is
added to each of the three alternatives, with an alternative specific
standard error.

3. Segmented travel time coefficient (STTC): the coefficient of travel
time varies with socio-economic characteristics:

14



B SEGMENT TIME i = -exp(B_.i TIME + B_GA i railwayPass +
B_MALE.i male + B_PURP_i commuter)

where i={TRAIN,SM,CAR}.

4. Random coefficient (RC): the coefficients for travel time and headway
are distributed, with a log-normal distribution.

For each variant, we have estimated both an additive and a multiplica-
tive specification, using the panel dimension of the data when applicable.
The results are reported in Table 5.

RC EC STTC ASSEC Additive Multiplicative Difference

1 0 0 0 0 -5188.6 -4988.6 200.0
2 0 0 0 1 -4839.5 -4796.6 42.9
3 0 0 1 0 -4761.8 -4745.8 16.0
4 0 1 0 0 -3851.6 -3599.8 251.8
5 1 0 0 0 -3627.2 -3614.4 12.8
6 0 0 1 1 -4700.1 -4715.5 -15.4
7 0 1 0 1 -3688.5 -3532.6 155.9
8 0 1 1 0 -3574.8 -3872.1 -297.3
9 1 0 0 1 -3543.0 -3632.4 10.6
10 1 0 1 0 -3513.3 -3528.8 -15.5
11 1 1 0 0 -3617.4 -3590.0 27.3
12 0 1 1 1 -3545.4 -3508.1 37.2
13 1 0 1 1 -3497.2 -3519.6 -22.5
14 1 1 0 1 -3515.1 -3514.0 1.1
15 1 1 1 0 -3488.2 -3514.5 -26.2
16 1 1 1 1 -3465.9 -3497.2 -31.3

Table 5: Results for the 16 variants on the Swissmetro data

We observe that for simple models (1-5) the multiplicative specification
outperforms the additive one. However, this is not necessarily true for
more complex models. Overall, the multiplicative specification performs
better on 10 variants out of 16. We learn from this example that the
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multiplicative (as expected) is not universally better, and should not be
systematically preferred. However, it is definitely worth testing it, as it has
a great potential for explaining the data better.

5 Concluding remarks

It seems to be a common perception that discrete choice models based on
random utility maximization must have additive independent error terms.
This is not the case, as we have discussed in this paper. It may happen
that for some data and some specifications of the subutility, it is more
appropriate to assume a multiplicative form. We have indicated how the
multiplicative form may be estimated with existing software.

A priori, for a given specification of V, it is not possible to know whether
the multiplicative formulation will provide a better fit than the additive
formulation. However, in the majority of the cases we have looked at,
we find that the multiplicative formulation fits the data better. In quite
a few cases, the improvement is very large, sometimes even larger than
the improvement gained from allowing for unobserved heterogeneity. We
emphasize that we are reporting the complete list of results that we have
obtained, whatever they turned out to be. The choice of applications was
motivated only by data availability. As both formulations are equally well
grounded in theory, we conclude that the choice between formulations is
an empirical question and should be answered by the ability of models to
fit data.

Of course, given some specification of subutility, the universe of possi-
ble models is still larger than we have considered here. We have focused
on a multiplicative formulation as a clear cut alternative to the additive
formulation with an equally clear cut invariance property. For the multi-
plicative specification, we are able to derive analogues to some theoretical
properties of the additive specification. As an alternative one may redefine
the subutility by \7)- = —Aln(—V;) and use existing theory.
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A Derivation of the expected maximum util-
ity
From (15), the maximum utility is

&
U* = max Vie (30)

ieC

where &; is defined by (11). Note that U* < 0. We assume that (&;,...,&))
follows a MEV distribution (16). The CDF of U* is obtained as follows, for

t<0:
F(t) = Pr(U"<t)=Pr(U;<t, Vi

= Pr(&§ < —Aln(tvy'), Vi)
= exp(—G((tV; ..., (tVy )Y
= exp(—(—t)G((—=V)) ..., (—V])J\)

= exp(—(—t)"G")
using the o-homogeneity of G and the definition (18) of G*. The CDF can
be inverted as

Flx) = — (—lg") T (6 (111 C—()) " (31)

Denoting the pdf of U* by f(t) = F/(t) , we have

1 1 X
E[U] = JO tf(t)dt = J F'(x)dx = —(G*) or J <1n (J—()) dx
—o0 0 0

which leads to (17).
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Parameter estimates for the Danish Value

of Time data

Robust
Variable Coeff. Asympt.
number Description estimate std. error t-stat p-value
1 ae -2.00 0.211 -9.46 0.00
2 changes -36.1 6.89 -5.23  0.00
3 headway -0.656  0.0754 -8.71  0.00
4 in-veh. time -1.55 0.159 -9.76  0.00
5 waiting time -1.68 0.770 -2.18 0.03
6 A 0.0141 0.00144 9.82 0.00
Number of observations = 3455
L£(0) = —2394.824
L(B) = —1970.846
—2[L(0) - L(B)] = 847.954
p? = 0.177
p2 = 0.175

Table 6: Model with fixed parameters and additive error terms
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Robust

Variable Coefl. Asympt.

number Description estimate std. error t-stat p-value
1 ae -0.672 0.0605 -11.11 0.00

2 changes -5.22 1.54 -3.40 0.00

3 headway -0.224 0.0213 -10.53 0.00

4 in-veh. time -0.782 0.0706 -11.07 0.00

5 waiting time -1.06 0.206 -5.14 0.00

6 A 5.37 0.236 22.74 0.00
Number of observations = 3455
L(0) = -—2394.824
L(B) = =1799.086

—2[£(0) - L(B)] = 1191.476

pZ2 = 0.249

pZ = 0.246

Table 7: Model with fixed parameters and multiplicative error terms
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Robust

Variable Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ae 0.0639 0.357 0.18 0.86
2 changes 2.88 0.373 7.73 0.00
3 headway -0.999 0.193 -5.17  0.00
4 waiting time -0.274 0.433 -0.63 0.53
5 unobserved heterogeneity (mean)  0.331 0.178 1.86 0.06
6 unobserved heterogeneity (stderr) 0.934 0.130 7.19 0.00
T A 0.0187  0.00301 6.20 0.00

Number of observations = 3455
Number of individuals = 523
Number of draws for SMLE = 1000

L£(0) = —2394.824
L(B) = -1925.467
—2[£(0) - L(B)] = 938.713
02 = 0.9
p2 = 0.193

Table 8: Model unobserved heterogeneity — additive error terms
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Robust

Variable Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ae 0.0424  0.0946 0.45 0.65
2 changes 2.24 0.239 9.38 0.00
3 headway -1.03 0.0983 -10.48 0.00
4 waiting time 0.355 0.207 1.72 0.09
5 unobserved heterogeneity (mean) -0.252 0.106 -2.38 0.02
6 unobserved heterogeneity (stderr) 1.49 0.123 12.04 0.00
T A 7.04 0.370 19.02 0.00

Number of observations = 3455
Number of individuals = 523
Number of draws for SMLE = 1000
—2394.824

L(0)

—1700.060
1389.528
0.290
0.287

Table 9: Model with unobserved heterogeneity — multiplicative error terms
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Robust

Variable Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ae 0.0863 0.345 0.25 0.80
2 changes 2.91 0.387 7.61 0.00
3 headway -0.955 0.190 -5.02 0.00
4 waiting time -0.285 0.441 -0.65 0.52
5 high income 0.0744 0.321 0.23 0.82
6 log(income) 0.603 0.182 3.31 0.00
7 low income 0.420 0.321 1.31 0.19
8 missing income -0.542 0.315 -1.72  0.09
9 unobserved heterogeneity (mean)  0.341 0.170 2.01 0.04
10 unobserved heterogeneity (stderr) 0.845 0.0680 12.42 0.00
11 A 0.0193 0.00315 6.12 0.00

Number of observations = 3455
Number of individuals = 523
Number of draws for SMLE = 1000

L£0) = —2394.824

L(B) = —1914.180
—2[£(0) - L(B)] = 961.286

p2 = 0.201

p2 = 0.19

Table 10: Model with observed and unobserved heterogeneity — additive
error terms
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Robust

Variable Coeff. Asympt.
number Description estimate std. error t-stat p-value
1 ae 0.0366  0.0925 0.40 0.69
2 changes 2.22 0.239 9.32 0.00
3 headway -1.02 0.0962 -10.59 0.00
4 waiting time 0.366 0.199 1.84 0.07
5 high income 0.577 0.704 0.82 0.41
6 log(income) 1.21 0.272 4.47 0.00
7 low income 0.770 0.418 1.84 0.07
8 missing income -0.798 0.371 -2.15 0.03
9 unobserved heterogeneity (mean) -0.150 0.111 -1.34 0.18
10 unobserved heterogeneity (stderr) 1.28 0.108 11.87 0.00
11 A 7.13 0.371 19.25 0.00

Number of observations = 3455
Number of individuals = 523
Number of draws for SMLE = 1000

L£(0) = —2394.824

L(B) = -1675.412
—2[£(0) - L(B)] = 1438.822

p2 = 0.300

P2 = 0.29

Table 11: Model with observed and unobserved heterogeneity — multi-
plicative error terms
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C Parameter estimates for the Swiss Value
of Time data

Robust
Variable Coeff. Asympt.
number Description estimate std. error t-stat p-value
1 travel time -0.453 0.0383 -11.82 0.00
2 changes -8.74 1.22 -7.17 0.00
3 headway -0.284 0.0406 -7.01 0.00
4 A 0.132 0.0188 7.02 0.00

Number of observations = 3501
Number of individuals = 389

L£(0) = —2426.708

L(B) = -1668.070
—2[£(0) - L(B)] = 1517.276

p2 = 0313

p> = 0311

Table 12: Model with fixed parameters and additive error terms
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Robust

Variable Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 travel time -0.339 0.0285 -11.89 0.00
2 changes -3.91 0.789 -4.95 0.00
3 headway -0.140 0.0287 -4.90 0.00
4 A 8.55 0.907 9.42 0.00

Number of observations = 3501
Number of individuals = 389

L£(0)

—2426.708
—1676.032
1501.353
0.309
0.308

Table 13: Model with fixed parameters and multiplicative error terms

Robust
Variable Coefl. Asympt.
number Description estimate std. error t-stat p-value
1 unobserved heterogeneity (mean) -0.763 0.111 -6.86  0.00
2 unobserved heterogeneity (stderr) 0.668 0.0582 11.48 0.00
3 changes 2.67 0.108 24.78 0.00
4 headway -0.798 0.126 -6.34 0.00
5 A 0.202 0.0367 -5.561 0.00

Number of observations = 3501
Number of individuals = 389
Number of draws for SMLE = 1000

£(0) —2426.708

L(B) = —1595.092
—2[£(0) - L(B)] = 1663.233

p2 = 0.343

pZ = 0.341

Table 14: Model with unobserved heterogeneity — additive error terms
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Robust

Variable Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 unobserved heterogeneity (mean) -0.956 0.119 -8.04 0.00
2 unobserved heterogeneity (stderr) -1.18 0.140 -8.39  0.00
3 changes 2.44 0.116 20.93 0.00
4 headway -0.856 0.124 -6.90 0.00
5 A 11.5 1.13 10.16 0.00

Number of observations = 3501
Number of individuals = 389
Number of draws for SMLE = 1000

L£0) = —2426.708

L(B) = -1568.607
—2[£(0) - L(B)] = 1716.202

p? = 0.354

p?2 = 0.352

Table 15: Model with unobserved heterogeneity — multiplicative error
terms

29



	1 Introduction
	2 Model formulation
	3 Model properties
	4 Empirical applications
	4.1 Value of time in Denmark
	4.2 Value of time in Switzerland
	4.3 Swissmetro

	5 Concluding remarks
	6 Acknowledgments
	A Derivation of the expected maximum utility
	B Parameter estimates for the Danish Value of Time data
	C Parameter estimates for the Swiss Value of Time data

