Ranking Multidimensional Alternatives and Uncertain Prospects

Philippe Mongin and Marcus Pivato

Centre National de la Recherche Scientifique and HEC Paris,
Department of Mathematics, Trent University

7 November 2012

Online at https://mpra.ub.uni-muenchen.de/42515/
MPRA Paper No. 42515, posted 12 November 2012 10:51 UTC
Abstract

We introduce a two-stage ranking of multidimensional alternatives, including uncertain prospects as particular case, when these objects can be given a suitable matrix form. The first stage defines a ranking of rows and a ranking of columns, and the second stage ranks matrices by applying natural monotonicity conditions to these auxiliary rankings. Owing to the Debreu-Gorman theory of additive separability, this framework is sufficient to generate very precise numerical representations. We apply them to three main types of multidimensional objects: streams of commodity baskets through time, monetary input-output matrices, and most extensively, uncertain prospects either in a social or an individual context of decision. Among other applications, the new approach delivers the strongest existing form of Harsanyi’s (1955) Aggregation Theorem and casts light on the classic comparison between the ex ante and ex post Pareto principle. It also provides a novel derivation of subjective probability from preferences, in the style of Anscombe and Aumann (1963).

1 Introduction and overview

Consider the classic intertemporal choice problem in consumer theory, i.e., to choose among intertemporal consumption plans ranging over several goods. A convenient way to tackle this problem would be to construct a preference ranking of consumption plans from two sets of preference rankings that are easier to define. First, rank streams of consumption through time for each good in isolation, and also rank complete good baskets for each time in isolation. Then, rank consumption plans by aggregating the information contained in these two auxiliary rankings.

Now suppose that a social observer makes a decision about social prospects, which consist in distributing money across both individuals and states of the world. This can be dealt with as before, by starting with two kinds of simpler
preference rankings. Here, one kind of preference is obtained by fixing the individuals and letting the states vary, and the other by fixing the state and letting the individual vary. Put differently, the observer will judge the social prospects both from an \textit{ex ante} individual perspective and from an \textit{ex post} social perspective, and his final preferences will result from aggregating these two sets of judgments.

In the previous examples, a decision had to be made between practical alternatives, and this involved defining preferences, but in related settings, multidimensional quantities are compared more abstractly. Suppose that a statistician aims at comparing national economies in terms of the extent to which they integrate their different sectors, and for this purpose, she relies on their monetary input-output tables. We assume that the tables involve the same list of sectors for all economies, and the transactions of a larger economy are commensurable with those of a smaller one (for instance, the raw figures have been changed by a size factor). Taking the problem as before, the statistician would define two sets of integration rankings, one in which sectors stand as sellers and the other in which they stand as purchasers. Her final integration ranking would synthetize these partial comparisons. Thus, the previous method works for information processing as well as preference construction.

In this article, we develop an aggregative theory which accounts for all three of these examples. Initially, the theory was meant only for the second example, having been motivated by earlier work by the first author on social choice under uncertainty,1 but it proved easy and rewarding to state it in fuller generality, so as to cover the (classic) first example, the (non-conventional) third one, and quite a few others that come to the mind once the formalism is place. A fourth major example, which relates to individual decision making and subjective probability, will be introduced in due course. However, social choice under uncertainty still looms large in what follows, being an area to which the theory applies especially well.

Before proceeding, we will briefly sketch the main technical ideas of the paper. In general, the alternatives to be compared are multidimensional, and take the form of \textit{matrices of real numbers}, with the indexes of rows and columns representing two qualitatively different types of attributes. To take more than two types of attributes into consideration, it is enough to increase the number of rows, columns, or both; thus, states of nature may be introduced in the first example, and multiple commodities or time periods in the second one. More subtly, it could happen that the attributes exhibit some kind of logical interdependency. In this case, the matricial form of the alternatives would be inappropriate.2

We assume that alternatives are ranked as follows. Each row index generates a ranking of those rows which are feasible given that index. Likewise, each column index generates a ranking of the feasible columns for that index. The overall ranking of feasible matrices takes these auxiliary rankings into account.

1See the unpublished paper by Blackorby et al. (2004). A comparison follows Theorem 3.2 However, it is possible that a finer description of the attributes make them suitably independent. For a discussion, see Keeney (1981).
by monotonically increasing with them, i.e., if two matrices differ only in one row, and one matrix has this row ranked above the corresponding row of the other, then the first matrix is higher than the second in the overall ranking. The same holds for columns instead of rows. By a further monotonicity condition, two matrices that differ in only one coordinate (i.e., row-column pair), are ranked as the numbers in that coordinate; this fixes the direction of the overall ranking in another way. The three axioms — called Row Preferences, Column Preferences and Coordinate Monotonicity — often become familiar once the application context is fixed. In the intertemporal choice problem, with the matrix components representing dated quantities of goods, the axioms are standard dominance or monotonicity conditions. In the uncertain social choice problem, with the matrix components representing state-dependent utility values, they translate into dominance conditions at the individual level and unanimity-preservation (Pareto) conditions at the social level. We also impose Continuity on the overall ranking.

Under plausible technical assumptions, the four conditions together deliver a representation theorem of a classic format: the overall ranking of matrices can be represented by a fully additively separable value function, i.e., a sum of value functions defined for each coordinate (Proposition 2). This representation was axiomatized by Debreu (1960) and Gorman (1968b), given earlier work by Leontief (1947) and Nataf (1948), and it has since then pervaded microeconomic theory (see Blackorby, Primont, and Russell, 1978) and multiattribute decision theory (see Fishburn, 1970, Keeney and Raiffa, 1976, Wakker, 1989). However, it is not derived here in exactly the standard way. The existing theorems assume that the ranking of vector-valued alternatives is totally separable — roughly speaking, defined componentwise — but we must deduce this property from our primitives. Also, we take account of feasibility constraints, by relaxing the assumption (made by Debreu, Gorman, and many others) that the set of alternatives is a full Cartesian product.

As it reexpresses the two-stage analysis of the three examples, Proposition 2 shows that, for all its naturalness, this analysis is constraining and sometimes undesirable. Depending on the applications, it can be seen to deliver either as a positive characterization or as an impossibility theorem. The same ambivalence underlies our two main results, Theorems 3 and 5, to be described now.

These results need more axioms, and in particular, require the overall ranking to be invariant between rows (Row Invariance), or between columns (Column Invariance), or both at the same time. With these additional assumptions, Theorem 3 strengthens the additively separable representation of Proposition 2 into a weighted sum of value functions, where the value functions may differ only across columns, or only among columns, or not at all, depending on the invariance conditions just described. We apply Theorem 3 to uncertain social choice, taking the numbers in the matrices to be utility values rather than physical quantities: then our formalism reexpresses a problem of normative economics that we can attack afresh. As is well-known, when social alternatives are uncertain, the Pareto principle can have two forms, either ex ante or ex post, and the question arises whether they can be made compatible. This has been de-
bated in welfare economics Hammond (1981), moral philosophy Broome (1991), and axiomatic decision theory Mongin (1995). The widespread answer is that the two forms of the Pareto principle are compatible only if the individuals' and the social observer’s *ex ante* preferences obey stringent restrictions. However, this conclusion depends on the prior assumption that the individuals and the social observer satisfy the axioms of expected utility theory, and little is known on the compatibility problem when this major assumption is relaxed. Because the decision-theoretic properties encapsulated in our axioms are so weak, Theorem 3 shows what happens in this case. The conclusion remains gloomy: despite the weaker premises, the same stringent conditions are necessary to achieve *ex ante* and *ex post* compatibility.

A related connection is with Harsanyi’s (1955) Aggregation Theorem, which states that a Paretian and von Neumann-Morgenstern aggregate of individual von Neumann-Morgenstern utility functions is a weighted sum of these utility functions. Viewed in this light, Theorem 3 is a generalization that replaces Harsanyi’s von Neumann-Morgenstern assumptions by mere dominance conditions. In the end, we do not dispense with von Neumann-Morgenstern theory, because *we deduce* it at the same time as we obtain the weighted sum rule, so this is another ambivalent finding. On the one hand, we reinforce Harsanyi’s intriguing argument for utilitarianism; on the other, we establish once and for all that his argument cannot live outside of the narrow framework of some form of expected utility decision theory.

The other main result, Theorem 5, is in the same vein, but relies on a different trade-off in assumptions. It weakens the domain assumptions of Proposition 2 and Theorem 3, and in exchange, it reinforces the ranking conditions by combining dominance with betweenness. This condition emerged in the early discussions of non-expected utility theory as an attractive stopping place, because, like von Neumann-Morgenstern theory, it entails linear indifference curves, and unlike it, permits these curves not to be parallel (see Chew, 1983, and Dekel, 1986). In the conclusions of Theorem 5, the ranking of matrices is represented by a *twice weighted sum* of numbers, with one set of weights holding for rows and the other for columns. At this stage, value functions have vanished and straight linearity has replaced the additively separable representations. Theorem 5 completes the discussion of *ex ante* and *ex post* forms of the Pareto principle by reconciling them at an even higher price than before, and when compared with Harsanyi’s Aggregation Theorem, it provides another generalization, in which the von Neumann-Morgenstern assumptions are now replaced with dominance plus betweenness.

Theorem 5 can also cast light on classical axiomatic decision theory, through yet another interpretation of the rows and columns of alternatives: this the fourth major example of the paper. Matrices now become *mixed prospects* in the sense of Anscombe and Aumann (1963) — i.e., prospects that associate states of nature with von Neumann-Morgenstern lotteries. Theorem 5 then amounts to a new derivation of the subjective probability that underlies the individual’s preferences among prospects. The novelty lies with the weak assumptions. We require the induced preference over lotteries to satisfy only dominance and be-
tweenness, not the whole of von Neumann-Morgenstern theory, as Anscombe and Aumann do. Furthermore, our derivation of subjective probability takes feasibility constraints into account by working for smaller sets of prospects than the Cartesian product they only consider. This application pushes the analysis into another direction than the three basic examples, thus confirming its wide expressive power.

The final result of the paper is a variant of Proposition 2 that is specially devised to tackle the problem of economic integration. As the statistician of this example is likely to renormalize the monetary input-output data, we face a mathematical constraint that is not present in the other applications. While these applications call for a set of alternatives of full algebraic dimension, this is not the case here. However, the problem can be circumvented, and we eventually analyze the economic integration case along the same line as the others.

2 The framework and a preliminary result with application to intertemporal choice

We fix two sets of indexes, \(N := \{1, \ldots, i, \ldots, n\} \) and \(M := \{1, \ldots, j, \ldots, m\} \), with \(n, m \geq 2 \), in order to represent the relevant attributes of the objects to be ranked. These are identified with bundles of quantities \(x_{ij} \) for all \((i, j) \in N \times M\), which we analyze as follows. First, taking \(\mathcal{R}_i^j \subseteq \mathbb{R} \) to be open intervals for all \(i \in N \) and \(j \in M \), we define an alternative \(X \) to be an element of their Cartesian product:

\[
X \in \mathcal{R}_M^N := \prod_{i \in N} \prod_{j \in M} \mathcal{R}_i^j.
\]

We will usually write \(X \) in matrix form, i.e., \(X = [x_{ij}]_{i \in N, j \in M} \), but sometimes also as a vector of rows or as a vector columns, i.e.,

\[
X = (x^1, x^2, \ldots, x^n) \quad \text{and} \quad X = (x_1, x_2, \ldots, x_m),
\]

where, for each \(j \in M \), \(x_j := [x_{ij}]_{i \in N} \), an element of \(\prod_{i \in N} \mathcal{R}_i^j \), and for each \(i \in N \), \(x^i := [x_{ij}]_{j \in M} \), an element of \(\prod_{j \in M} \mathcal{R}_i^j \).

Second, we assume that feasibility constraints restrict the set \(\mathcal{R}_M^N \). For technological reasons, it may be impossible to realize all and every distribution of goods through time periods or amongst individuals; for economic reasons, some distributions of money among individuals may be excluded in some states of the world, and so on. To cover many cases at once, we propose to take the set of feasible alternatives to be an open, connected subset \(\mathcal{X} \subseteq \mathcal{R}_M^N \). This is in line with some advanced utility-theoretic literature Segal (1992); Chateauneuf and Wakker (1993). The next sections will introduce more restrictions on the set of alternatives \(\mathcal{X} \). We assume that only the feasible alternatives can be compared

\(^3\)We restrict the exposition to this case for mathematical simplicity. Our results carry through to the case where each \(\mathcal{R}_i^j \) is a weakly ordered, path-connected topological space.
or need comparing, and thus introduce an order \(\succeq \) on \(\mathcal{X} \) rather than \(\mathcal{R}_N^M \).

Define \(\mathcal{X}^i := \{ x^i ; \ X \in \mathcal{X} \} \), for all \(i \in N \). Define \(\mathcal{X}_j := \{ x_j ; \ X \in \mathcal{X} \} \), for all \(j \in M \). The following axioms will be maintained throughout on \(\succeq \).

Continuity: The order \(\succeq \) is *continuous*, i.e., its upper and lower contour sets are closed subsets of \(\mathcal{X} \).

Row Preferences: For all \(i \in N \), there is an order \(\succeq^i \) on \(\mathcal{X}^i \) such that, for all \(X, Y \in \mathcal{X} \), and all \(i \in N \), if \(x^h \approx^i \ y^h \) for all \(h \in N \setminus \{ i \} \), then \(X \succeq Y \) if and only if \(x^i \succeq^i y^i \).

Column Preferences: For all \(j \in M \), there is an order \(\succeq_j \) on \(\mathcal{X}_j \) such that, for all \(X, Y \in \mathcal{X} \), and all \(j \in M \), if \(x_k \approx_k y_k \) for all \(k \in M \setminus \{ j \} \), then \(X \succeq Y \) if and only if \(x_j \succeq_j y_j \).

Coordinate Monotonicity: For all \(i \in N \) and \(j \in M \), and all \(X, Y \in \mathcal{X} \) with \(x^h = y^h \) for all \((h, k) \in N \times M \setminus \{(i, j)\} \), we have \(X \succeq Y \) if and only if \(x^j \succeq^j y^j \).

The last axiom is best understood in terms of two sufficient conditions stated in the following lemma. Here and below, vector inequalities have the usual componentwise definition.\(^4\)

Lemma 1 Let \(\mathcal{X} \subseteq \mathbb{R}^{N \times M} \) be an open set, and let \(\succeq \) be an order on \(\mathcal{X} \) that has Column Preferences and Row Preferences. If \(\succeq \) satisfies either of the following conditions, then \(\succeq \) satisfies Coordinate Monotonicity.

Row Monotonicity: For all \(i \in N \) and \(j \in M \), and any \(x, y \in \mathcal{X}^i \) with \(x_k = y_k \) for all \(k \in M \setminus \{ j \} \), we have \(x \succeq^i y \) if and only if \(x_j \geq y_j \).

Column Monotonicity: For all \(j \in M \) and \(i \in N \), and any \(x, y \in \mathcal{X}_j \), with \(x^h = y^h \) for all \(h \in N \setminus \{ i \} \), we have \(x \succeq_j y \) if and only if \(x^j \geq y^j \).

Conversely, if \(\mathcal{X} \) is convex, then Coordinate Monotonicity is equivalent to each of Row Monotonicity and Column Monotonicity.

The proofs of Lemma 1 and all other results are in the Appendix.

In the intertemporal choice problem, we will conventionally decide that \(N \) and \(M \) represent time periods and goods, respectively. Thus, with the numbers \(x^j \) measuring physical quantities, Row Preferences says that, for each given time, \(\succeq \) is increasing with respect to the instantaneous preferences over baskets of goods, and Column Preferences says that, for each given good, the overall preference \(\succeq \) is increasing with respect to the preferences over consumption streams. These are dominance properties in the sense considered by multiattribute preference theory (see, e.g., Keeney and Raiffa, 1976, ch. 3).

\(^4\)If \(v = (v_1, ..., v_q) \) and \(v' = (v'_1, ..., v'_q) \), we write \(v \geq v' \) if \(v_p \geq v'_p \) for all \(p \in \{1, ..., q\} \), and \(v > v' \) if the same holds with \(v \neq v' \). We say that \(v \) is *non-negative (strictly positive)* if \(v \geq 0 \) (resp. \(v > 0 \)).
Coordinate Monotonicity, Row Monotonicity and Column Monotonicity are familiar monotonicity conditions from consumer theory, saying in effect that all the goods, at all times, are valuable.

In the uncertain social choice problem, we will conventionally decide that \(N \) and \(M \) represent individuals and states of nature, respectively. We can take the \(x^j_i \) to be physical quantities, as in the previous case, or to be utility values, which conceptually amounts to endorsing a welfaristic position in normative economics.\(^5\) We consider the latter interpretation, both because it illustrates another use of the formalism, and because it connects with the theoretical issues highlighted in the introduction. Thus, what the social preference \(\succeq \) ranks are \(ex \; ante \) social allocations viewed in utility terms, and Row Preferences has two implications: (a) if all individuals are indifferent between two social prospects, then so is the social preference; (b) if an individual ranks a social prospect above another, and all others are indifferent, then the social preference ranks the former above the latter. Statement (a) is the \(ex \; ante \) Pareto Indifference condition. Statement (b) is not quite the \(ex \; ante \) Strict Pareto condition, since it must be applied iteratively to deliver this condition, and the domain must be rich enough for the iteration to take place. Given our basic domain assumption, we can only conclude that \(ex \; ante \) Strict Pareto holds locally, i.e., for any \(X \in \mathcal{X} \), there is an open neighbourhood \(\mathcal{Y}_X \subseteq \mathcal{X} \) with \(X \in \mathcal{Y}_X \) such that, for any \(Y \in \mathcal{Y}_X \) with \(x^i_j \succeq^i y^i_j \) for all individuals \(i \in N \), and \(x^i_j \succ^i y^i_j \) for some \(i \in N \), we have \(X \succeq Y \).\(^6\) Thus, the \(ex \; ante \) Pareto Principle holds in a somewhat weakened way.

Now, Column Preferences means that the \(ex \; ante \) social preference \(\succeq \) is increasing with respect to each social preference obtained by conditioning on some state. Since the \(x^j_i \) are utility numbers, Row Monotonicity makes the same claim for the \(\succeq^i \) vis-à-vis their own conditionals. This is a classic dominance property, which is satisfied not only by expected utility, but also by rank-dependent utility and most received non-expected utility construals. Column Monotonicity means that in every realized state, the \(ex \; post \) social preference satisfies both Pareto Indifference (trivially) and an individual-by-individual version of Strict Pareto (nontrivially). This is the \(ex \; post \) Pareto Principle, though in the same weaker form as the \(ex \; ante \) principle. As before, this interpretation relies on taking the \(x^j_i \) to be utility numbers.

In the assessment of economic integration, Coordinate Monotonicity is natural, but Row and Column Preferences are somewhat questionable. However, if the statistician manages to establish the integration rankings associated with \(\succeq^i \) and \(\succeq_j \), then it is natural to assume that her overall integration ranking \(\succeq \) varies monotonically with them.

We now move to more technical assumptions, which are essential to the proofs. For all \(Y \in \mathcal{X} \), and all \(i \in N \) and \(j \in M \), the \((i,j)\)-section of \(\mathcal{X} \) through \(Y \) is the set \(\{ X \in \mathcal{X} : x^j_i = y^j_i \} \), an \((N \cdot M - 1)\)-dimensional subset of \(\mathbb{R}^N \).

\(^5\)In normative economics, welfarism is the claim that individual utility values capture all the information on alternatives that may be relevant to the social evaluation.

\(^6\)If \(\mathcal{X} \) is convex, one can take \(\mathcal{Y}_X = \mathcal{X} \) for all \(X \in \mathcal{X} \).
say \mathcal{X} is sectionally connected if each (i, j)-section is connected. This condition is neither stronger nor weaker than ordinary connectedness; see the examples by Segal (1992), Wakker (1993), and Chateauneuf and Wakker (1993), which also illustrate why this is an important restriction. In words, to say that \mathcal{X} is (path-)connected means that, given any two feasible alternatives \mathbf{X} and \mathbf{Y}, it is possible continuously to transform \mathbf{X} into \mathbf{Y} by moving along a continuous path of feasible alternatives.\footnote{Any open subset of a Euclidean space is connected if and only if it is path-connected, so that we may identify the two notions here.} Sectional connectedness resembles connectedness, except that it requires one to transform \mathbf{X} into \mathbf{Y} while holding constant the value of one coordinate. The set $\mathcal{X} \subseteq \mathbb{R}^{N \times M}$ is both connected and sectionally connected if it is convex or (an even more restrictive condition) if it is a box—i.e. $\mathcal{X} = \prod_{i \in N} \prod_{j \in M} B_{i,j}$, where $B_{i,j} \subseteq \mathbb{R}^{i,j}$ is an interval for all $i \in N$ and $j \in M$.

Finally, we say that \mathcal{X} is \succeq-indifference connected if, for all $\mathbf{Y} \in \mathcal{X}$, the indifference set $\{ \mathbf{X} \in \mathcal{X}; \mathbf{Y} \approx \mathbf{X} \}$ is a connected subset of \mathcal{X}. The above papers also illustrate why this restriction matters to additive separability. Here are two cases in which it holds.

(a) If \mathcal{X} is an open box in $\mathbb{R}^{N \times M}$, then \mathcal{X} is \succeq-indifference connected. (See Appendix for proof.)

(b) Suppose \mathcal{X} is a convex and comprehensive subset of $\mathbb{R}^{N \times M}$. If \succeq is quasi-concave, then \mathcal{X} is \succeq-indifference connected.\footnote{The set $\mathcal{X} \subseteq \mathbb{R}^{N \times M}$ is comprehensive if for all $\mathbf{X} \in \mathcal{X}$, and all $\mathbf{X}' \in \mathbb{R}^{N \times M}$, if $\mathbf{X}' \preceq \mathbf{X}$ then $\mathbf{X}' \in \mathcal{X}$. The order \succeq is quasi-concave if all of its upper contour sets are convex.}

For all $i \in N$ and $j \in M$, let $\mathcal{X}_i^j := \{ x_i^j; \mathbf{X} \in \mathcal{X} \} \subseteq \mathcal{R}_i^j$. Now to our first result.

Proposition 2 Let $\mathcal{X} \subseteq \mathcal{R}_N^M$ be open. Let \succeq be an order on \mathcal{X} that has Row Preferences and Column Preferences, and which satisfies Continuity and Coordinate Monotonicity. Then:

(a) For all $\mathbf{X} \in \mathcal{X}$, there is an open neighbourhood $\mathcal{Y} \subseteq \mathcal{X}$ with $\mathbf{X} \in \mathcal{Y}$, and for all $i \in N$ and $j \in M$, there are continuous increasing functions $u_{i,j}^j : \mathcal{X}_i \rightarrow \mathbb{R}$ such that \succeq is represented on \mathcal{Y} by the additive function $U : \mathcal{Y} \rightarrow \mathbb{R}$ defined by

$$U(\mathbf{Y}) := \sum_{i \in N} \sum_{j \in M} u_{i,j}^j(y_{i,j}), \quad \text{for all } \mathbf{Y} \in \mathcal{Y}.$$

Furthermore, in this representation, the $u_{i,j}^j$ are unique up to positive affine transformations with a common multiplier.\footnote{That is, if the functions $\bar{u}_{i,j}^j : \mathcal{X}_i \rightarrow \mathbb{R}$ are such that \succeq is represented on \mathcal{Y} by the function \bar{U} defined by

$$\bar{U}(\mathbf{Y}) := \sum_{i \in N} \sum_{j \in M} \bar{u}_{i,j}^j(y_{i,j}), \quad \text{for all } \mathbf{Y} \in \mathcal{Y},$$

then there exist $a > 0$ and $b_j \in \mathbb{R}$ such that, for all $i \in N$ and $j \in M$, $\bar{u}_{i,j}^j(y_{i,j}) = au_{i,j}^j(y_{i,j}) + b_j$ for all $\mathbf{Y} \in \mathcal{Y}$.}
(b) Suppose \(\mathcal{X} \) is also connected, sectionally connected, and \(\succeq \)-indifference connected. Then we can take \(\mathcal{Y} = \mathcal{X} \) in part (a).

(c) In this case, for all \(i \in N \), the order \(\succeq^i \) is represented by the function \(U^i : \mathcal{X}^i \to \mathbb{R} \) defined by

\[
U^i(x) := \sum_{j \in M} u^i_j(x_j), \quad \text{for all } x \in \mathcal{X}^i.
\]

(d) Likewise, for all \(j \in M \), the order \(\succeq_j \) is represented by the function \(U_j : \mathcal{X}_j \to \mathbb{R} \) defined by

\[
U_j(x) := \sum_{i \in N} u^j_i(x^i), \quad \text{for all } x \in \mathcal{X}_j.
\]

Proposition 2 is closely related to Debreu (1960)’s theorem on additively separable representations, but unlike this classic result, it does not explicitly assume that the preference order is totally separable. Indeed, the proof first establishes total separability via the theory developed in Gorman (1968b). Then, using Debreu (1960), it concludes that there exists a local additively separable representation around any given alternative and it finishes by gluing these local representations together.

In general, the functions \(u^i_j \) are all different, and to obtain a relationship between them will be the object of the following sections and their more advanced results. Our applications to uncertain social choice and economic integration require these later results, but Proposition 2 offers a relevant perspective on the application to intertemporal choice, as we now discuss. In this case, \(u^i_j \) is a utility function for consumption of good \(j \) at time \(i \), \(U^i \) is a utility function over consumption bundles at time \(i \), \(U_j \) is a utility function over streams of good \(j \), and \(U \) is a utility function for consumption plans.

Jevons and Walras discussed the “equation of exchange” —today’s textbook equality between marginal utility ratios and marginal rates of substitution —in terms of separable, and even additively separable, utility functions for consumption goods, and they also stated their demand theory in this way. Edgeworth pointed out that this was unnecessary for the purpose, still a mild point, but later neo-classicals found more distressing objections. Implying as it does that the marginal rate of substitution of \(a \) for \(b \) only depends on the quantities of \(a \) and \(b \), separability (more generally than additive separability) makes the law of demand automatic under diminishing marginal utilities, thus wiping out the possibility of a prevailing income effect. Moreover, separability hinders demand theory by making it impossible to classify consumer goods into complements and substitutes. These critical messages were taken aboard long ago, and it comes to no surprise that postwar theorist Gorman\(^{10}\) expressed doubts about the very assumptions that he was exploring mathematically.

\(^{10}\)More obviously in Gorman (1968a) than in the other papers.
Additively separable representations have on the whole been more successful when they represent time preferences. Ramsey may have been the first to employ such a functional form in his saving model, and it has persisted in the neoclassical literature on intertemporal choices of consumption, investment or money balances. This can be explained by analytical convenience, but no doubt also by the fact that the objections to separability are not so strong here as they are in the static case. Still, some are worrying, in particular that for some goods, the quantity of today’s consumption influences the utility of tomorrow’s consumption through habit formation.11

Given this controversial pedigree, Proposition 2 sounds like a mixed blessing. On the one hand, it gives some warrant to old style neo-classical economics by connecting it with a seemingly natural construction of preference; on the other, the exceedingly strong functional forms testify against the construction. The same conceptual ambivalence will appear in the next section, where we state our first main result and apply it to the uncertain social choice problem.

3 A first theorem with application to uncertain social choice

Although too strong in one sense, the conclusion of Proposition 2 is too weak in another, because the additively separable representation does not impose any relation between the utility functions defined coordinatewise. This section will make the representation more informative by introducing both more axiomatic conditions and more structural assumptions. In the former group, we will require that there be a single preference order on rows, or a single preference order on columns, or both. Define

\[
X_M := \bigcup_{j \in M} X_j \quad \text{and} \quad X^N := \bigcup_{i \in N} X^i.
\]

Our two additional axioms read as follows.

Row Invariance: There is a single preference order \succeq^N defined on X^N, such that for all $i \in N$, the order \succeq^i is the restriction of \succeq^N to X^i.

Column Invariance: There is a single preference order \succeq_M defined on X_M, such that for all $j \in M$, the order \succeq_j is the restriction of \succeq_M to X_j.

Since our framework treats rows and columns symmetrically, and their meaning can be fixed at will, there is no point in considering both conditions unless they apply at the same time. When only one of them applies, we will conventionally select Column Invariance.

We will also sometimes require X' to satisfy one or both of the following structural conditions.

11This by now classic objection is discussed in detail by Browning (1991). The problems raised by additive separability also appear in some management applications of the multiattribute preference literature (see in particular Keeney and Raiffa, 1976).
Identical Row Spaces: $X^1 = X^2 = \cdots = X^n = X^N$.

Identical Column Spaces: $X_1 = X_2 = \cdots = X_m = X_M$.

Under the first condition, for any $i \in N$ and $j \in M$, the projection of X^i on $j \in M$ does not depend on i. Call this common projection X^*_j. We then have $X^N \subseteq \prod_{j \in M} X^*_j$. Under the second condition, for any $j \in M$ and $i \in N$, the projection of X^*_j on $i \in N$ does not depend on j. Call this common projection X^i_\ast. We then have $X^*_M \subseteq \prod_{i \in N} X^i_\ast$. Here are two formal examples in which these domain assumptions hold.

Examples. (a) If X is an open box in \mathcal{R}^N_M, then X satisfies both Identical Row Spaces and Identical Column Spaces.

(b) Suppose that, for all $y \in X_M$, there exists $X \in X$ such that $x_j = y$ for all $j \in M$. Then X satisfies Identical Column Spaces. ♦

Note that Row and Column Invariance are so formulated that no logical implication holds between them and Identical Row Spaces or Identical Column Spaces. However, the two sets of restrictions are related, and they are often acceptable or rejectable together. In the intertemporal choice problem, with the already fixed interpretation for N and M, Row Invariance and Identical Row Spaces are implausible, while Column Invariance and Identical Column Spaces are stringent without being absurd. The former says that one time ranks commodity baskets like another when they are available at both times, and the latter adds that exactly the same baskets are available at each time. This excludes habit formation and technical interdependencies that may arise between periods, but existing time-separable representations of consumer theory often dispense with these subtleties.

In the uncertain social choice problem, with x^i_j representing utility, Row Invariance becomes the implausible claim that the individuals have the same preferences. But Identical Row Spaces is not so easy to discard. It says that the set of utility vectors is common to all individuals, which makes sense if some interpersonal utility comparisons have already taken place. Meanwhile, Column Invariance says that ex post social preferences are state-independent, while Identical Column Spaces says that the same social outcomes exist in each state. These two state-independence assumptions are made by classical Bayesian theorists such as Savage (1972) or Anscombe and Aumann (1963), when they derive a subjective probability from preferences under uncertainty, and they have generally prevailed in the theoretical discussion of ex ante versus ex post Paretianism that concern us.\footnote{The papers by Mongin (1998), Chambers and Hayashi (2006), and Gajdos et al. (2008) are exceptions.} Furthermore, they are compatible with the individual agents having state-dependent preferences (as explained below).

Now to our first main result. Given a set $L = \{1, 2, \ldots, \ell\}$ and a vector $p = (p_1, \ldots, p_\ell) \in \mathbb{R}^L$, we say that p is a weight vector on L if $p_k \geq 0$ for all $k \in L$, and $\sum_{k \in L} p_k = 1$. The expression probability vector would be mathematically
appropriate, but we reserve it for those cases in which elements of L represent states of nature. The set of weight vectors on L is denoted by Δ_L.

Theorem 3 Suppose $X \subseteq \mathbb{R}^N_M$ is open, connected, sectionally connected, \succeq-indifference connected, and satisfies Identical Column Spaces. Then \succeq has Row Preferences and Column Preferences and satisfies Coordinate Monotonicity, Continuity, and Column invariance if and only if:

(a) For all $i \in N$, there is an increasing, continuous function $u^i : X_M \rightarrow \mathbb{R}$, such that the order \succeq_M is represented by the function $W_M : X_M \rightarrow \mathbb{R}$ defined by

$$W_M(x) := \sum_{i \in N} u^i(x^i), \quad \text{for all } x \in X_M. \quad (1)$$

(b) There is a strictly positive weight vector $p \in \Delta_M$, such that for all $i \in N$, the order \succeq^i is represented by the function $U^i_p : X^i \rightarrow \mathbb{R}$ yielding the p-weighted value of u^i. That is:

$$U^i_p(x) := \sum_{j \in M} p_j u^i(x_j), \quad \text{for all } x \in X^i. \quad (2)$$

(c) The order \succeq is represented by the function $W : X \rightarrow \mathbb{R}$ which computes the p-weighted value of the function W_M from part (a). That is:

$$W(x) := \sum_{j \in M} p_j W_M(x_j) = \sum_{j \in M} \sum_{i \in N} p_j u^i(x^i_j) = \sum_{i \in N} U^i_p(x^i), \quad \text{for all } x \in X. \quad (3)$$

(d) In this representation, the weight vector p is unique, and the functions u^1, \ldots, u^n are unique up to positive affine transformations with a common multiplier.

In terms of intertemporal choice, Theorem 3 says that time j does not influence the shape of the utility functions u^i defined for each commodity i, its role being channelled through the weights p_j, which should be viewed as discounting factors.

In terms of uncertain social choice, the functions U^i_p and W of Theorem 3(b,c) are the individuals’ and the social observer’s ex ante utility functions. If p is regarded as a probability vector, then these functions are shown to be of the expected utility type. This is a striking result compared with the non-committal decision theory we started with. To obtain it, we required only two things: first, that both the individuals and social observer satisfy dominance (a property that most non-expected utility models fulfill), and second, that the social observer has Paretian and state-independent preferences. Note that Theorem 3(b) does not impose state-independent preferences on the individual agents, because the x^i_j are taken to be preexisting utility values which may come from some state-dependent utility functions, exogenous to our model.
Theorem 3(a,c) gives another description of the social observer’s preferences, this time in terms of social welfare functions. The \textit{ex post} welfare functions \(W_M \) and the \textit{ex ante} welfare function \(W \) are sums of the corresponding individual utility functions, i.e. have the mathematical form of a weighted utilitarian rule. This is another striking result, given that the axioms are stated in a purely ordinal way.\(^\text{13}\)

Finally, Theorem 3(d) confers uniqueness to the representations discussed here, under the usual proviso that their mathematical pattern be respected.\(^\text{14}\) Without this addition, the functional forms in the earlier parts would have no conceptual bearing at all, and it would not be sensible to view \(p \) as representing a probability.

With these interpretations, Theorem 3 states that the \textit{ex ante} and \textit{ex post} Pareto principles are compatible only if (1) the individuals and the social observer are all expected utility maximizers, and (2) they compute their expected utilities by using the \textit{same} subjective probabilities. Hammond’s (1981) welfare economics paper is the classic source for both the compatibility problem and the answer that (2) is necessary for its solution. When investigating the aggregation of Savage preferences, Mongin (1995) implicitly raised the compatibility problem. His axiomatic treatment enlarges the set of possibilities somewhat. If the individuals’ and the social observer’s utility functions are all alike up to positive affine transformations, then the \textit{ex ante} and \textit{ex post} principles are compatible, and more subtly, they can be so when weaker Pareto conditions than the Pareto principle apply. These other possibilities lie outside the present framework, so it is consistent that only condition (2) survives. The real news concerns the necessary condition (1). The above papers (and others as well) unexceptionally assume that both the individuals and the social observer satisfy the axioms of subjective expected utility, whereas we now prove this in the representation theorem. To appreciate the step forward, take \textit{probabilistically sophisticated agents}, i.e., agents who have well-defined subjective probabilities despite obeying more general axioms than those of subjective expected utility. They automatically satisfy our decision-theoretic conditions; thus, if they insisted on respecting both the \textit{ex ante} and \textit{ex post} Pareto principle, they would inexorably become subjective expected utility maximizers!

It is unclear whether (2) signals an impossibility or just a severe, but implementable restriction. Among the interpreters, Broome (1991) seems to take the latter view, whereas Mongin and d’Aspremont (1998) favour the former. The answer seems to us to depend on one’s underlying philosophy of probability, and on the further issue of when exactly probabilities are computed: is it at the completely \textit{ex ante} stage, or rather at some \textit{interim} stage? On one interpretation, probabilities are subjective in the sense promoted by Savage, and moreover, they are priors, i.e., embody no outside information at all; this would make their interpersonal agreement very unlikely. On another interpretation,\(^\text{13}\)Whether the derived representation bears more than a formal analogy with classical utilitarianism is a complex question that we do not discuss here.\(^\text{14}\)Non-affine monotonic transforms of the \(u^i \) would represent the \(\succeq^i \) equally well, but destroy the expected utility form of the representations in Theorem 3(b,c).
they are still subjective in the same sense, but count as posteriors, because they embody some outside information; this would make their interpersonal agreement less unlikely. Finally, they could be objective probabilities in one of the senses that philosophers of probability have argued for. This interpretation would make (2) unproblematic. However, it does not fit in with the present frame of analysis, which is exclusively preference-based, like Savage’s. For the weight function to represent an objective probability, at least some probabilistic information would have to be included into the assumptions.

Numerous solutions have been proposed to escape from (2) when it is interpreted as an impossibility, some of which prioritize the \textit{ex post} form of the Pareto principle over the \textit{ex ante} form,\footnote{An interesting recent option is \textit{objective Bayesianism} (see Williamson, 2010) } while others defend the opposite priority, and still others reach compatibility by relaxing some decision-theoretic component of the framework. We will not evaluate these theoretical possibilities here, but Theorem 3 has a clear bearing on them, especially on the last group.\footnote{This is the most common solution (already in Hammond, 1981, and now much refined by Fleurbaey, 2011).}

By the same token, Theorem 3 is closely related in spirit to Harsanyi’s (1955) Aggregation Theorem. According to this classic result, if the individuals have von Neumann-Morgenstern preferences on a lottery set, and if the social observer satisfies the Pareto principle and herself entertains von Neumann-Morgenstern preferences on the lottery set, then her preferences can be represented by a positively weighted sum of the von Neumann-Morgenstern representations of the individual preferences. Harsanyi interpreted this piece of formal reasoning as constituting an argument for utilitarian ethics. Our framework does not contain lotteries, so in order to bridge the gap with Harsanyi, we should replace his theorem by one of the variants that were devised for state-contingent prospects instead of lotteries.\footnote{Mongin and d’Aspremont (1998) evaluate the solutions proposed at the time. More recently, Gilboa et al. (2004), Chambers and Hayashi (2006), and Keeney and Nau (2011) have taken up the challenge.} When this is done, Theorem 3 appears to be a \textit{stronger} form of the classic result: expected utility theory now belongs to the conclusions, and the utilitarian-looking social welfare functions follow from much weaker assumptions than before.

Two previous works suppressed the expected utility assumptions in Harsanyi’s theorem, and they call for a brief technical comparison. In the unpublished paper that the present one supersedes, Blackorby et al. (2004) started from a Cartesian product set of state-contingent prospects, expressed conditions related to the present ones but stated in utility terms directly, and eventually derived an additively separable representation for social preference. At a closer look, this representation boils down to expected utility, so that this early result can be swept under Theorem 3 as a particular case. Not so for the theorem by Gajdos et al. (2008), which requires a specialized framework in the style of Anscombe and Aumann (1963). The individual and social preferences there obey weaker forms of von Neumann-Morgenstern independence and the sure-thing principle,\footnote{Mongin (1995) provides a state-contingent version for Savage’s framework, and Blackorby et al. (1999) provides another for Anscombe and Aumann’s.}
and they can be state-dependent. Under an appropriate Pareto condition, the
stringent conclusion (2) of a unique subjective probability emerges in more gen-
eral form, and the social utility representation can be expressed as a weighted
sum the individual ones. This result is closer to Harsanyi’s original than ours
by its choice of framework and assumptions.\footnote{The aggregative results of Crès et al. (2011) concerning Min-Max utility can also be seen as non-expected utility variants of Harsanyi’s Aggregation Theorem. However, unlike our results and those of Gajdos et al. (2008), they rely on identical utility functions.}

Note that \(M \) could also be interpreted as a set of moments in time, rather
than a set of states of nature. Then Theorem 3 becomes a statement about in-
tertemporal social choice. Coordinate Monotonicity, Row Preferences
and Column Preferences all have natural interpretations as Pareto or domi-
nance conditions, while Row Invariance says that the social observer’s prefer-
ences are unchanging over time. The weight vector \(p \) now describes a sequence
of discount factors, which are \textit{common to all agents}. This conclusion reveals
a tension between applying the Pareto principle at each moment of time, and
applying it to entire social histories, granting the mild decision-theoretic condi-
tions. As before, it may be interpreted as either a sheer impossibility or only a
restriction; we lean towards the former view.

It remains to investigate the case in which the four conditions defined by this
section jointly apply. Note that if \(X \) has both \textit{Identical Column Spaces} and
\textit{Identical Row Spaces}, then there is a single open subset \(X^*_i = X^*_j \)
for all \((i,j) \in N \times M\).

\textbf{Corollary 4} Suppose \(X \subseteq \mathbb{R}^N_M \) is open, connected, sectionally connected, \(\geq \)
indifference connected, and has both Identical Row Spaces and Identical Column
Spaces. Then \(\geq \) has Row Preferences and Column Preferences and
satisfies Coordinate Monotonicity, Continuity, Row Invariance and
Column Invariance if and only if there is a single increasing, continuous
function \(u : X^*_i \rightarrow \mathbb{R} \), and two strictly positive weight vectors \(q = (q^1, \ldots, q^n) \in \Delta_N \) and \(p = (p_1, \ldots, p_m) \in \Delta_M \), such that:

\begin{enumerate}[(a)]
\item The order \(\geq_M \) is represented by the function \(W_M : X^*_i \rightarrow \mathbb{R} \) defined by
\[W_M(x) := \sum_{i \in N} q^i u(x^i), \quad \text{for all } x \in X^*_i. \]
\item The order \(\geq_N \) is represented by the function \(W_N : X^*_i \rightarrow \mathbb{R} \) defined by
\[W_N(x) := \sum_{j \in M} p_j u(x_j), \quad \text{for all } x \in X^*_i. \]
\item The order \(\geq \) is represented by the function \(W : X \rightarrow \mathbb{R} \) defined by
\[W(X) := \sum_{j \in M} \sum_{i \in N} q^i p_j u(x^i_j), \quad \text{for all } X \in X. \]
\end{enumerate}
(d) In this representation, the weight vectors \(q \) and \(p \) are unique, and the function \(u \) is unique up to a positive affine transformation.

Since Row (Column) Invariance is unacceptable when the rows (columns) refer to individuals, we must shift away from social-choice-theoretic interpretation. Here is one from individual decision theory. Take \(N \) to be a set of moments in time, while keeping \(M \) to be a set of states of nature. Thus, \(\succeq \) represents intertemporal preferences under uncertainty. Elements of \(X^N \) represent instantaneous prospects (which by Identical Row Spaces could be realized at any moment in time), while elements of \(X_M \) represent ex post consumption streams (which by Identical Column Spaces could be realized in any state of nature). Now, by Row Invariance and Column Invariance, respectively, preferences are state-independent over ex post consumption streams, and time-independent over instantaneous prospects. The conclusion is that the agent maximizes the expected value of a discounted utility sum. The next section will pursue the two groups of applications at the same time.

4 A second theorem with application to subjective probability

We will now consider a variation of Theorem 3, which drops the requirements that \(\mathcal{X} \) be sectionally connected, indifference connected, and have identical column spaces. In exchange, we will need to impose a stronger condition on \(\succeq \).

Let \(Y \subseteq \mathbb{R}^M \) be an open set. A subset \(Z \subseteq Y \) will be said to be flat if \(Z = Y \cap H \), where \(H \) is an affine hyperplane in \(\mathbb{R}^M \). We also call flat a preference order \(\succeq \) on \(Y \) all indifference sets of which are flat. This is obviously the case if \(\succeq \) is represented by a linear utility function \(u(y) = \sum_{j \in M} c_j y_j \). But the converse is false, because flatness does not force the indifference hyperplanes to be parallel. Suppose \(Y \) is convex; then \(\succeq \) is flat only if its indifference sets are convex. More specifically, if \(Y \) is a convex set of probability vectors, then \(\succeq \) is flat if and only if it satisfies the betweenness property. The latter is a restriction of von Neumann-Morgenstern independence to indifferent lotteries, and it implies linear, but not necessarily parallel indifference curves. The derived representation replaces the expected utility form by a weighted utility form (see Chew, 1983, and Dekel, 1986). It has sometimes been suggested that betweenness offers a plausible middle ground between empirical and normative validity.\(^{20}\)

Theorem 5 Suppose \(X \subseteq \mathbb{R}^N \) is open and connected, and \(X_M \) is also connected. Suppose that either \(\succeq_M \) is flat, or \(\succeq^i \) is flat for every \(i \in N \). Then \(\succeq \) has Row Preferences and Column Preferences and satisfies Continuity, Coordinate Monotonicity, and Column Invariance if and only if there is a strictly positive weight vector \(q \in \Delta_N \), and a strictly positive weight vector \(p \in \Delta_M \), such that:

\(^{20}\)See Epstein (1992) and Sarin and Wakker (1998) for a discussion roughly along this line.
(a) \succeq_M is represented by the linear function $W_M : \mathcal{X}_M \rightarrow \mathbb{R}$ defined by

$$W_M(x) := \sum_{i \in N} q^i x^i, \quad \text{for all } x \in \mathcal{X}_M.$$

(b) For all $i \in N$, the order \succeq^i is represented by the linear function $W^N : \mathcal{X}^i \rightarrow \mathbb{R}$ defined by

$$W^N(x) := \sum_{j \in M} p_j x_j, \quad \text{for all } x \in \mathcal{X}^i.$$

(Thus, \succeq also satisfies Row Invariance.)

(c) \succeq is represented by the linear function $W : \mathcal{X} \rightarrow \mathbb{R}$ defined by

$$W(X) := \sum_{i \in N} \sum_{j \in M} q^i p_j x^i_j, \quad \text{for all } X \in \mathcal{X}.$$

(d) Furthermore, q and p are unique in this representation.

The flatness restriction, hence Theorem 5, are relevant to the uncertain social choice problem. Here, $x \in \mathcal{X}^i$ is a personal prospect for i, x_j is the utility this individual receives if state j is realized, and flatness of \succeq^i is a generalized form of betweenness, as applied to state-contingent alternatives X instead of lotteries, and furthermore without \mathcal{X} being necessarily convex. The two weight vectors obtained in the conclusions have a clear meaning: q compares the individuals and p (a probability vector) compares the states. Thus, Theorem 5 reinforces the message of Theorem 3 dramatically. As part (b) indicates, the individual ex ante functions obey the expected utility form with the same subjective probability p, and moreover — this is the new implication — their preferences are essentially the same. Adding Identical Row Spaces to the assumptions of Theorem 5 would make these preferences exactly identical.\(^{21}\) In parts (a) and (c), W_M is an ex post social welfare function, and W is an ex ante social welfare function, and both are of a classical utilitarian form, while W is also of the expected utility type.\(^{22}\) Thus, the conclusions together express a reconciliation of ex ante with ex post Paretianism and the exacting price that this imposes on the diversity of individual characteristics.

Like Theorem 3, this result can be likened to Harsanyi’s, or rather, to its state-contingent variations. Suppose the individuals satisfy the betweenness property on top of dominance, and also suppose that the observer similarly satisfies dominance, and is ex ante and ex post Paretian as far as his social welfare criterion is concerned. Weak as they are compared with Harsanyi’s, these assumptions suffice to entail his sum-of-utility formulas. Again, it is interesting

\(^{21}\)Hammond (1981) also had this conclusion under his special microeconomic assumptions.

\(^{22}\)Unlike those of Theorem 5, the social welfare functions delivered by Theorem 3 were unweighted. However, this is a purely apparent difference, since the initial utility amounts x^i_j could be subjected to increasing transformations. If this was done, a weighted sum of individual utilities would also result in Theorem 3.
to compare Theorem 5 with the earlier results of Blackorby et al. (2004) and Gajdos et al. (2008).

We now change directions, and give an interpretation of Theorem 5 that goes beyond our initial list of examples. It has an interest of its own, beside illustrating the wide expressive power of the framework. Famously, Anscombe and Aumann (1963) modified Savage’s axiomatization of subjective probability by allowing some probabilistic information to enter their primitives. Given a set of states of nature, they define prospects by associating these states with outcomes taken in a set of von Neumann-Morgenstern lotteries instead of Savage’s non-descript consequences. Technically, this change was motivated by the need to derive subjective probability for finite sets of states, like ours in this paper. Let us interpret M as being the set of states and N as being the (also finite) set of deterministic outcomes that underlies a convex set of von Neumann-Morgenstern lotteries. If we take x^j_i to represent the probability of getting outcome i in state j, then alternatives in X become Anscombe-Aumann prospects, with x^j being the lottery associated with state j, and x_i being a vector summarizing the conditional probability of outcome i occurring under each state in M. This sketch must however be refined, because it would make X_M — a lottery set — only $(N-1)$-dimensional, and thus violate our full-dimensionality requirement on X.

We will therefore base the set of von Neumann-Morgenstern lotteries on an enlarged set of outcomes $M \cup \{0\}$, where 0 indexes one of the outcomes. Formally, this lottery set is

$$\Delta_0^0 := \{ x \in \mathbb{R}_+^N ; \sum_{i=1}^n x^i \leq 1 \},$$

where for all x, the probability that outcome 0 occurs is $1 - \sum_{i=1}^n x^i$. This is an N-dimensional set, so the framework applies if we take prospects to be elements of $(\Delta_N^0)^M$. Supposing as before that feasibility restrictions hold, we assume that $X \subseteq (\Delta_N^0)^M$ is open and connected in $\mathbb{R}^{N \times M}$. Because outcome 0 does not explicitly enter the definition of X, it can be restricted only through the application of the axioms to the other outcomes, and this happens only through COORDINATE MONOTONICITY. This axiom now says that it is better, ceteris paribus, to shift probability mass away from 0 to any other outcome in N. (If $x^h_k = y^h_k$ for all $(h,k) \in N \times M \setminus \{(i,j)\}$ as the antecedent requires, then $x^j_j > y^j_j$ only if $x^0_j < y^0_j$.) Thus, COORDINATE MONOTONICITY means that 0 is the worst possible outcome. By relabelling the alternatives if necessary, this can be assumed for any individual decision-maker, without loss of generality.

As for the other axiomatic conditions, COLUMN PREFERENCES is the dominance property also assumed in Anscombe and Aumann (1963), to the effect that an agent’s preferences over prospects should be increasing with respect to her conditional preferences over lotteries. Meanwhile, COLUMN INVARIANCE makes the agent’s lottery preferences state-independent, which is also implied
by Anscombe-Aumann axioms. The only unusual axiom is **Row Preferences**, which extends the dominance property from conditionals on *states* to conditionals on *outcomes*.

Now to the conclusions of Theorem 5. The vectors \(q \) and \(p \) define a normalized utility function over \(N \) and a subjective probability vector on \(M \), respectively, and both serve to compute expected utility values in \(W_M(x) \) (part (a), this is in effect a repetition of the von Neumann-Morgenstern theorem) and in \(W(X) \) (part (c), which is the important one). With the uniqueness statement (d), the conclusions are precisely those of the representation theorem in Anscombe and Aumann (1963).

The added value lies in the derivation. Our driving technical condition is betweenness, this time applied to lottery sets, and if we choose to apply it to \(\succeq_M \), we see that it exactly plays the role of Anscombe and Aumann’s assumption that von Neumann-Morgenstern theory regulates the state-independent preference over lotteries. In other words, only part of von Neumann-Morgenstern independence is needed to derive a subjective probability from the agent’s preferences under uncertainty. We also generalize Anscombe and Aumann’s construction by allowing the set of prospects not to be Cartesian product, which matters if across-state technical dependencies prevail between outcomes. The price for these improvements is that we need the unconventional **Row Preferences** condition. However, it is justified after the fact by condition (b), which holds true in Anscombe and Aumann (1963) even if they do not mention it.

5 Another result with application to economic integration

We now return to the framework of section 2 and apply it to our last example, i.e., the assessment of economic integration across a set of national economies. Since the sectors define both the rows and columns, \(N = M \) and \(\mathcal{X} \) is a space of square \((n \times n) \) matrices. Let us fix the convention that *row* \(i \) records the *inputs* to sector \(i \) from other sectors, so that, consistently, *column* \(j \) records the *outputs* of sector \(j \) to the other sectors. This application deserves a separate treatment for the following reason. If input-output matrices are to be compared in terms of their degree of economic integration, and nothing else, some normalization is clearly in order, but this will make the set \(\mathcal{X} \) less than full dimensional in \(\mathbb{R}^{n \times n} \), apparently excluding it from the present framework.

To elaborate, we surely do not want the absolute sizes of two economies to distort their integration ranking. One possibility is to reexpress the \(x_{ij} \) as fractions of total GDP, which amounts to setting \(\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} = 1 \) in the original matrices, hence confining \(\mathcal{X} \) within an \((n^2 - 1) \)-dimensional subspace of \(\mathbb{R}^{n \times n} \).

23In effect, Anscombe and Aumann also have **Identical Column Spaces**, but this is dispensable.

24If we applied betweenness to the \(\succeq^t \) preferences, an alternative derivation would result. Then, the betweenness condition would evoke Savage’s sure-thing principle in weaker form.
We should probably also be worried that the sectors within national economies have different sizes and that this may affect international comparisons. A natural answer is to normalize by total input, i.e., putting $\sum_{j=1}^{n} x_{ij} = 1$ for all $i \in N$, or by total output, i.e., putting $\sum_{i=1}^{n} x_{ij} = 1$, for all $j \in N$. Either way secures a fixed total sum of x_{ij}, so that the problem addressed by different GDPs is also resolved. Here \mathcal{X} is confined within an $(n^2 - n)$-dimensional subspace of $\mathbb{R}^{n \times n}$. Since the alternative set is not anymore an open subset of $\mathbb{R}^{n \times n}$, one of the key structural conditions of Proposition 2 fails. Furthermore, some axioms become vacuous, that is to say, Coordinate Monotonicity if matrices are normalized by total GDP, and on top of this, either Row Preferences or Column Preferences if the stronger normalization is resorted to.

Luckily, this technical difficulty can be superseded by making use of a third natural feature of an integration ranking. Diagonal elements of the matrix represent a flow within one sector, rather than between sectors, and as such, they are irrelevant to the comparison. Formally, let $L := \{(i,j) \in N \times N; \ i \neq j\}$ be the set of off-diagonal elements in the square $N \times N$. Instead of assuming that \mathcal{X} is a subset of $\mathbb{R}^{N \times M}$, we will define it to be a subset of \mathbb{R}^{L}. When x_{ij} are fractions of either GDP or, say, total outputs, the hidden flows of goods from each sector to itself act as slack variables, so \mathcal{X} is an open set in \mathbb{R}^{L} and incurs no loss of dimensionality. More generally, any accounting identity can be accommodated if it only restricts \mathcal{X} to be an open subset of $\mathbb{R}^{n \times (n-1)}$.

It is easy to adapt the axioms to this modified framework. Coordinate Monotonicity becomes:

For all $(i,j) \in L$, and all $X, Y \in \mathcal{X}$ with $x_{hk} = y_{hk}$ for all $(h,k) \in L \setminus \{(i,j)\}$, we have $X \succeq Y$ if and only if $x_{ij} \geq y_{ij}$.

For all $i \in N$, let $L^i := \{(i,j); \ j \in N \text{ and } j \neq i\}$, and let \mathcal{X}^i be the projection of \mathcal{X} onto \mathbb{R}^{L^i}. For all $j \in N$, let $L_j := \{(i,j); \ i \in N \text{ and } i \neq j\}$, and let \mathcal{X}_j be the projection of \mathcal{X} onto \mathbb{R}^{L_j}. Row and Column Preferences are now understood to apply with these new definitions of \mathcal{X}^i and \mathcal{X}_j.

Arguably, there is a fourth feature to the ranking problem. For the purpose of assessing economic integration, the off-diagonal entries should not be treated differently from one another. If they are equal in value, the flow of commodities from sector i to sector j contributes just as much to the overall index as the flow of commodities from sector h to sector k. But nothing yet forces the ranking to be impartial in this fashion.

Let Π_N be the group of all permutations of N. For any $\pi \in \Pi_N$, and any $X \in \mathbb{R}^L$, we define a new matrix $\pi(X) \in \mathbb{R}^L$ by permuting both the rows and the columns of X simultaneously. Formally, $\pi(X) := Y$, where $y_{ij} := x_{\pi(i)\pi(j)}$ for all $(i,j) \in L$. This is a well-defined operation, because $(i,j) \in L$ if and
only if \((\pi(i), \pi(j)) \in L\). A subset \(X \subseteq \mathbb{R}^L\) will be said to be permutation-invariant if \(\pi(X) \in X\) for all \(X \in X\) and all \(\pi \in \Pi_N\). Given one such \(X\), the following axiom captures the sense in which the integration ranking should not discriminate between sectors.

Impartiality: For all \(\pi \in \Pi_N\) and all \(X, Y \in X\), \(X \succeq Y\) if and only if \(\pi(X) \succeq \pi(Y)\).

Proposition 6 Let \(X\) be a connected, sectionally connected, relatively open subset of \(\mathbb{R}^L\), and let \(\succeq\) be an order on \(X\) such that \(X\) is \(\succeq\)-indifference connected.

(a) The order \(\succeq\) has Row Preferences and Column Preferences, and satisfies Coordinate Monotonicity and Continuity if and only if for all \((i, j) \in L\), there exist continuous, increasing functions \(v_{ij}^i : X_i^j \to \mathbb{R}\) such that \(\succeq\) is represented by the function \(V\) defined by

\[
V(X) := \sum_{(i,j) \in L} v_{ij}^i(x_{ij}) \text{ for all } X \in X.
\]

In this case, for all \(i \in N\), the order \(\succeq^i\) is represented by the function \(V^i\) defined by

\[
V^i(x^i) := \sum_{(i,j) \in L^i} v_{ij}^i(x_{ij}) \text{ for all } x^i \in X^i,
\]

and for all \(j \in N\), the order \(\succeq_j\) is represented by the function \(V_j\) defined by

\[
V_j(x_j) := \sum_{(i,j) \in L_j} v_{ij}^j(x_{ij}) \text{ for all } x_j \in X_j.
\]

The functions \(\{v_{ij}^j\}_{i,j \in N}\) are unique up to positive affine transformations with a common multiplier.

(b) If \(X\) is permutation-invariant, then there is a single open interval \(X^*_j \subseteq \mathbb{R}\) such that \(X^*_j = X^*_i\) for all \((i, j) \in L\). If the order \(\succeq\) is as in part (a), then it also satisfies Impartiality if and only if there is a single continuous increasing function \(v : X^*_j \to \mathbb{R}\) such that \(v_{ij}^j = v\) for all \((i, j) \in L\). Thus, the representations in part (a) simplify to \(\sum_{(i,j) \in L'} v(x_{ij})\) (where \(L'\) is either \(L^i\) or \(L_i\) or \(L\), as appropriate).

25For example, take \(n = m = 3\), let

\[
X = \begin{bmatrix}
\bullet & 0.05 & 0.08 \\
0.12 & \bullet & 0.17 \\
0.15 & 0.13 & \bullet
\end{bmatrix},
\]

and suppose \(\pi(1) = 2\), \(\pi(2) = 3\) and \(\pi(3) = 1\). Then

\[
\sigma(X) = \begin{bmatrix}
\bullet & 0.17 & 0.12 \\
0.13 & \bullet & 0.15 \\
0.05 & 0.08 & \bullet
\end{bmatrix}.
\]
In words, under the revised monotonicity conditions, the ranking of economic integration takes the form of an additively separable function, which sums up quantities evaluating the flows between every pair of distinct sectors in the economy. Furthermore, if the ranking treats all sectors the same, then these basic quantities are obtained from a single function. While standard input-output analysis approaches economic integration in terms of discrete concepts, such as the algebraic decomposability of matrices, we have provided a continuous ranking that is amenable to a numerical index.

6 Conclusion

The paper has developed a new approach for ranking multiattribute alternatives that permits multiple applications. Those covered here are sufficient to illustrate its power, but others have independent interest and would call for an analysis using it. Even in the field of welfare economics broadly conceived, where our approach heuristically originates, there seems to be more room for concrete work. We may put GDP time-series, wealth distributions, or systems of interpersonal utility comparison into suitable matrix form, and each time check whether or not the axioms introduced here meaningfully apply. Some of these cases will raise the loss of dimensionality problem that underlies our application to input-output tables. Not all them will accommodate the special invariant preference and identical spaces axioms that enhanced our treatment of uncertain prospects. So the forthcoming applications will probably range all the way from the more basic Propositions 3, 5 and 7 to the very precise Theorems 4 and 6. On the other hand, given the objections to additive separability in the certainty context, our approach does not do justice to the intertemporal consumption problem, and to make it flexible enough to capture this example well opens up another avenue of research.

Appendix: Proofs

Proof of Lemma 1. Clearly, Row Monotonicity or Column Monotonicity imply Coordinate Monotonicity. We show the nontrivial converse. Suppose \mathcal{X} is convex, and satisfies Coordinate Monotonicity; we will show that it satisfies Column Monotonicity. Let $j \in M$ and $i \in N$, and let $x, y \in \mathcal{X}_j$. Suppose $x^h = y^h$ for all $h \in M \setminus \{i\}$; we must show that $x \succeq_j y$ if and only if $x^i \geq y^i$.

Case 1. First suppose \mathcal{X} is a box. Then we can find $\tilde{X}, \tilde{Y} \in \mathcal{X}$ such that $\tilde{x}_j = x$ and $\tilde{y}_j = y$, while $\tilde{y}_k = \tilde{x}_k$ for all $k \in M \setminus \{j\}$. Thus, we have:

\[
(x \succeq_j y) \iff (\tilde{X} \succeq \tilde{Y}) \iff (\tilde{x}_j \geq \tilde{y}_j) \iff (x^i \geq y^i),
\]

\[\text{26} \text{Compare with the up-to-date survey of input-output analysis in Miller and Blair (2009).}
\]

For more economic perspective on the subject, see Kurz et al. (1998) and the classic application by Leontief (1959).
as desired, by applying first Column Preferences, then Coordinate Monotonicity, and finally the definition of \(\tilde{X} \) and \(\tilde{Y} \).

Case 2. Now let \(\mathcal{X} \) be any open convex set. Then the coordinate projection \(\mathcal{X}_j \) is also open and convex, so the line segment \(\mathcal{L} \) between \(\mathbf{x} \) and \(\mathbf{y} \) is in \(\mathcal{X}_j \). For each \(\mathbf{z} \in \mathcal{L} \), we can find an open box \(\mathcal{B}_z \subseteq \mathcal{X}_j \) that contains \(\mathbf{z} \), and an open box \(\mathcal{B}_z' \subseteq \mathcal{X} \) that projects onto \(\mathcal{B}_z \). Apply the argument from Case 1 to \(\mathcal{B}_z' \) to show that \(\succeq_j \) satisfies Column Monotonicity when restricted to \(\mathcal{B}_z \). Since \(\mathcal{L} \) is compact, it can be covered with a finite collection of boxes like \(\mathcal{B}_z \), and \(\succeq \) satisfies Column Monotonicity on each one. An inductive argument leads one to conclude that \(\mathbf{x} \succeq_j \mathbf{y} \) if and only if \(x^i \geq y^i \).

The proof of Row Monotonicity is similar, only using Row Preferences instead of Column Preferences. \(\square \)

Proof of Example (a) just above Proposition 2. Without loss of generality, we can take \(\mathcal{X} = (0, 1)^{N \times M} \). Fix \(\mathbf{X} \in \mathcal{X} \), letting \(\mathcal{Y} := \{ \mathbf{Y} \in \mathcal{X}; \ Y \approx \mathbf{X} \} \). Given \(\mathbf{Y}_1, \mathbf{Y}_2 \in \mathcal{Y} \), we must find a path in \(\mathcal{Y} \) connecting \(\mathbf{Y}_1 \) to \(\mathbf{Y}_2 \).

Define \(\mathbf{1} \in \mathbb{R}^{N \times M} \) by setting \(1_{ij} := 1 \) for all \(i \in N \) and \(j \in M \). By Continuity and Coordinate Monotonicity, there exists \(r_1 \in (0, 1) \) such that \(r_1 \mathbf{1} \in \mathcal{Y} \). Let \(Z_1 \subset \mathcal{X} \) be the open line segment from \(\mathbf{Y}_1 \) to \(\mathbf{1} \). For all \(\mathbf{Z} \in Z_1 \), Coordinate Monotonicity implies that \(\mathbf{Z} \succeq \mathbf{Y}_1 \). Again by Continuity and Coordinate Monotonicity, there exists \(r_{\mathbf{Z}} \in (0, 1] \) such that \(r_{\mathbf{Z}} \mathbf{Z} \in \mathcal{Y} \). The set \(\mathcal{L}_1 := \{ r_{\mathbf{Z}} \mathbf{Z}; \ \mathbf{Z} \in Z_1 \} \) is a continuous path in \(\mathcal{Y} \) from \(\mathbf{Y}_1 \) to \(r_1 \mathbf{1} \).

Likewise, a continuous path \(\mathcal{L}_2 \) can be found in \(\mathcal{Y} \) from \(\mathbf{Y}_2 \) to \(r_1 \mathbf{1} \). A path in \(\mathcal{Y} \) from \(\mathbf{Y}_1 \) to \(\mathbf{Y}_2 \) results from joining it to \(\mathcal{L}_1 \). \(\square \)

The proof of Proposition 2 is based on the Gorman-Debreu theory of additive representations for separable preference orders, which requires some background. Let \(I \) be an indexing set (e.g. \(I = N \times M \)), let \(\mathcal{Y} \) be an open subset of \(\mathbb{R}^I \), and for all \(i \in I \), let \(\mathcal{Y}_i \) be the projection of \(\mathcal{Y} \) onto the \(i \)-th coordinate. A preference order \(\succeq \) on \(\mathcal{Y} \) has a fully additive representation if there exist functions \(u_i : \mathcal{Y}_i \rightarrow \mathbb{R} \), for all \(i \in I \), such that if we define \(U : \mathcal{Y} \rightarrow \mathbb{R} \) by

\[
U(\mathbf{y}) := \sum_{i \in I} u_i(y_i),
\]

then \(U \) represents \(\succeq \).

For any \(\mathbf{y} \in \mathcal{Y} \), we say that \(\succeq \) admits a fully additive representation near \(\mathbf{y} \) if there is an open neighbourhood \(\mathcal{Y}' \subseteq \mathcal{Y} \) around \(\mathbf{y} \), such that \(\succeq \) admits a fully additive representation when restricted to \(\mathcal{Y}' \). We will use the following result.

Lemma A1 Let \(\mathcal{Y} \) be an open, connected, sectionally connected subset of \(\mathbb{R}^I \), and let \(\succeq \) be a continuous, indifference-connected preference order on \(\mathcal{Y} \), which is strictly increasing in every coordinate. If \(\succeq \) admits a fully additive representation near every \(\mathbf{y} \in \mathcal{Y} \), then \(\succeq \) admits a fully additive representation on \(\mathcal{Y} \). Furthermore, this global additive representation is unique up to a positive affine transformation.

Let $J \subseteq I$, and let $K := I \setminus J$. For any $y \in \mathcal{Y}$, define $y_J := \{y_j\}_{j \in J}$ (an element of \mathbb{R}^J) and $y_K := \{y_k\}_{k \in K}$ (an element of \mathbb{R}^K). We say that \succeq is J-separable (or that J is a \succeq-separable subset of I) if the following holds. For all $x, y, x', y' \in \mathcal{Y}$, if

$$
x_K = y_K, \quad x_J = x'_J, \quad x'_K = y'_K, \quad \text{and} \quad y_J = y'_J,$$

then $(x \succeq y) \iff (x' \succeq y')$. We say that \succeq is totally separable if every subset $J \subseteq I$ is \succeq-separable. A well-known result applies these concepts to the case where \mathcal{Y} is an open box.

Lemma A2 If \succeq is a continuous, totally separable preference order on an open box $B \subseteq \mathbb{R}^I$, and \succeq is increasing in every coordinate, then \succeq has a fully additive utility representation.

Proof. See Theorem 3 in Debreu (1960). □

Let $J \subseteq I$ and $K := I \setminus J$. We say that J is strictly \succeq-essential if, for any $y \in \mathcal{Y}$, there exist $x, x' \in \mathcal{Y}$ such that $x_K = x'_K = y_K$, but $x \succ x'$. (In words, it is possible to create a strict preference by only manipulating the J coordinates, while keeping the K coordinates fixed at any stipulated values.)

Lemma A3 Let \succeq be a continuous preference order on an open box $B \subseteq \mathbb{R}^I$. Let $J, K \subseteq I$ be two \succeq-separable subsets, such that $J \cap K \neq \emptyset$. Suppose that J, K, and $J \cap K$ are all strictly \succeq-essential. Then:

(a) $J \cup K$ is \succeq-separable.

(b) $J \cap K$ is \succeq-separable.

Proof. See Theorem 1 by Gorman (1968b) for the original result, Theorem 4.7 of Blackorby et al. (1978) for a restatement, and Theorem 11 and Proposition 16 of von Stengel (1993) for the most general treatment. □

Now, for any $i \in N$, define $M_i := \{(i, j) ; j \in M\}$. We can write $\mathbb{R}^{N \times M} = \mathbb{R}^{M_1} \times \mathbb{R}^{M_2} \times \ldots \times \mathbb{R}^{M_m}$. For any $j \in M$, define $N_j := \{(i, j) ; i \in N\}$. Similarly, we can write $\mathbb{R}^{N \times M} = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \times \ldots \times \mathbb{R}^{N_m}$.

Lemma A4 As in Lemma A3, let \succeq be a continuous preference order on an open box $B \subseteq \mathbb{R}^{N \times M}$. For all $i \in N$ and $j \in M$, suppose the sets N_j and M_i are \succeq-separable, and the set $\{(i, j)\}$ is \succeq-strictly essential. Then \succeq is totally separable.
Proof. Clearly, the union of two strictly \succeq-essential subsets of $N \times M$ is strictly essential. Since every singleton subset of $N \times M$ is strictly \succeq-essential, it follows that every subset of $N \times M$ is strictly \succeq-essential.

To show from the assumptions that \succeq is totally separable, consider the cases of singleton and doubleton subsets of $N \times M$. Singletons $\{ (i,j) \}$ are intersections of the \succeq-separable subsets M_i and N_j, hence \succeq-separable by Lemma A3(b). A slightly more roundabout application of Lemma A3 shows that doubletons are \succeq-separable. Finally, prove that any subset $J \subseteq N \times M$ is \succeq-separable, by induction on $|J|$, doubleton separability, and Lemma A3(a). (See also Corollary to Theorem 3.7 in Keeney and Raiffa, 1976.) □

Remark. To show that doubletons are separable in the proof of Lemma A4, we need $n \geq 2$ and $m \geq 2$. This is the key place in the proofs of our main results where this assumption is necessary.

Proof of Proposition 2. (a) Given $X \in \mathcal{X}$, there is an open box B of \mathcal{R}_M^N such that $X \in B \subseteq \mathcal{X}$. We first show that if \succeq is restricted to B, then it is M_i-separable for all $i \in N$. Let $Y, Z, \bar{Y}, \bar{Z} \in B$, and suppose that (a) $y^h = z^h$ for all $h \in N \setminus \{i\}$, (b) $y^i = \bar{y}^i$, (c) $y^h = \bar{z}^h$ for all $h \in N \setminus \{i\}$, and (d) $z^i = \bar{z}^i$. Then

$$(Y \succeq Z) \iff (y^i \succeq^i z^i) \iff (y^i \succeq^i z^i) \iff (Y \succeq Z),$$

showing that \succeq is M_i-separable. (The first equivalence is by (a) and Row Preferences, the second by (b) and (d), and the last one by (c) and Row Preferences.) By a similar argument based on Column Preferences, if \succeq is restricted to B, then it is N_j-separable for all $j \in M$. It remains to show that \succeq has a fully additive representation on B. By Continuity, \succeq is continuous on B. Coordinate Monotonicity implies that every coordinate is strictly essential. We have just shown that M_i and N_j are separable for all i and j; thus Lemma A4 implies that \succeq is totally separable on B. Finally, Lemma A2 and Coordinate Monotonicity yield an additive representation of \succeq on B. This proves part (a) with $Y = B$.

Proof of (b). This follows from part (a), along with Coordinate Monotonicity, Continuity and Lemma A1.27. (Alternately, we could have directly proved (b) by applying Theorem 1 of Segal (1992).)

Proof of (d). Fix $X \in \mathcal{X}$, and consider the section of \mathcal{X} in the jth dimension through X, as defined by:

$$S_j(X) := \{ Y \in \mathcal{X} \; : \; y_k = x_k, \; \text{for all} \; k \in M \setminus \{j\} \}.$$

27This is the one place in the proof that makes use of sectional connectedness and indifference connectedness.
Let \(\mathcal{X}_j(\mathbf{X}) := \{\mathbf{y} : \mathbf{Y} \in \mathcal{S}_j(\mathbf{X})\} \subseteq \mathcal{X}_j \). Column Preferences implies that \(\succeq \), when restricted to \(\mathcal{S}_j(\mathbf{X}) \), is equivalent to \(\succeq_j \) on \(\mathcal{X}_j(\mathbf{X}) \). Thus, part (b) implies that the order \(\succeq_j \) on \(\mathcal{X}_j(\mathbf{X}) \) is represented by the function \(U^X_j \) defined by

\[
U^X_j(\mathbf{y}) := \frac{\text{a constant}}{\sum_{k \in M \setminus \{j\}} \sum_{i \in N} u_k^i(x_k^i)} + \sum_{i \in N} u_j^i(y^i),
\]

for all \(\mathbf{y} \in \mathcal{X}_j(\mathbf{X}) \). Thus, the function \(U_j := \sum_{i \in N} u_j^i(y^i) \) also represents \(\succeq_j \) on \(\mathcal{X}_j(\mathbf{X}) \). This holds for all \(\mathbf{X} \in \mathcal{X} \); thus \(U_j \) represents \(\succeq_j \) on \(\mathcal{X}_j(\mathbf{X}) = \bigcup_{\mathbf{X} \in \mathcal{X}} \mathcal{X}_j(\mathbf{X}) \).

Proof of (c). Similar to the proof of (d), only using Row Preferences instead of Column Preferences. \(\square \)

To prove Theorem 3, we must solve a Pexider functional equation on a general domain. The solution is provided by the following result.

Lemma A5. Let \(\mathcal{Y} \subseteq \mathbb{R}^J \) be an open, connected set. For all \(j \in [1 \ldots J] \), let \(\mathcal{Y}_j \) be the projection of \(\mathcal{Y} \) onto the \(j \)th coordinate, and let \(\mathcal{Y}_0 := \{\sum_{j=1}^J y_j : y \in \mathcal{Y}\} \).\(^{28}\) For all \(j \in [0 \ldots J] \), let \(f_j : \mathcal{Y}_j \to \mathbb{R} \) be functions, at least one of which is continuous, and suppose they satisfy the Pexider equation:

\[
f_0 \left(\sum_{j=1}^J y_j \right) = \sum_{j=1}^J f_j(y_j), \quad \text{for all } \mathbf{y} \in \mathcal{Y}.
\]

Then there exist (unique) constants \(a, b_0, b_1, b_2, \ldots, b_J \in \mathbb{R} \) such that \(b_0 = \sum_{j=1}^J b_j \), and such that, for all \(j \in [0 \ldots J] \), \(f_j(y) = ay + b_j \) for all \(y \in \mathcal{Y}_j \).

Proof. See Theorem 1 and Corollary 2 in Radó and Baker (1987). \(\square \)

Proof of Theorem 3. The “if” direction is obvious; we will prove the “only if” direction.

Proof of (a). This follows from adapting the representations in Proposition 2(d) to the fact that \(\mathcal{X} \) now satisfies **Identical Column Spaces** and \(\succeq \) now satisfies **Column Invariance**. (Specifically, for all \(i \in N \), and all \(\mathbf{x} \in \mathcal{X}_M \), define \(u^i(x^i) := u^i_1(x^i) \), and put \(W_M = U_1 \), where \(U_1 \) is defined by setting \(j = 1 \) in Proposition 2(d).)

To prove parts (b)-(d), we need the following claim.

Claim 1: For any \(j \in M \), there exist constants \(a_j > 0 \) and \(b_j^i \in \mathbb{R} \) such that \(u_j^i(x^i) = a_j u^i_1(x^i) + b_j^i \) for all \(\mathbf{x} \in \mathcal{X}_M \) and \(i \in N \).

\(^{28}\)Thus, \(\mathcal{Y}_0, \mathcal{Y}_1, \ldots, \mathcal{Y}_J \) are all open intervals in \(\mathbb{R} \).
Proof. By Identical Column Spaces, \(\mathcal{X}_M \) is the same as \(\mathcal{X}_j \) for any \(j \in M \), so it is an open and connected set of \(\mathbb{R}^n \) by the usual properties of the projection map. Let \(j \in M \), and let \(U_1 \) and \(U_j \) be as in Proposition 2(d). By Column Invariance, both \(U_1 \) and \(U_j \), represent \(\succeq_M \) on \(\mathcal{X}_M \). Thus, there are continuous, increasing transformations \(g_j : \mathbb{R} \rightarrow \mathbb{R} \) such that \(U_j = g_j \circ U_1 \), or

\[
\sum_{i \in N} u^j_i(x^i) = g_j \left(\sum_{i \in N} u^i_i(x^i) \right), \quad \text{for all } x \in \mathcal{X}_M.
\]

(A1)

The image set \(\mathcal{Z} := \{(u^1_i(x^1), \ldots, u^n_i(x^n)) : x \in \mathcal{X}_M \} \) is also open and connected in \(\mathbb{R}^N \), because the \(u^i_j \) are continuous and increasing, hence open. If we make the change of variables \(z^i := u^1_i(x^i) \) for all \(i \in N \), then (A1) becomes the Pexider equation:

\[
\sum_{i \in N} u^j_i \circ (u^i_1)^{-1}(z^i) = g_j \left(\sum_{i \in N} z_i \right), \quad \text{for all } z \in \mathcal{Z}.
\]

Lemma A5 applied to \(\mathcal{Z} \) yields constants \(a_j \) and \(b^1_j, \ldots, b^n_j \in \mathbb{R} \) such that \(u^j_i \circ (u^i_1)^{-1}(z^i) = a_j z^i + b^i_j \) for all \(z \in \mathcal{Z} \) and all \(i \in N \), hence such that \(u^j_i(x^i) = a_j u^1_i(x^i) + b^i_j \) for any \(x \in \mathcal{X}_M \). Finally, \(a_j > 0 \) because \(u^j_i \) and \(u^1_i \) are both increasing.

Proof of (c). Let \(A := \sum_{j \in M} a_j \) and \(p_j := a_j/A \) for all \(j \in M \), so that \(p = (p_1, \ldots, p_m) \) is a strictly positive weight vector on \(\mathcal{M} \). Claim 1 implies that, for all \(i \in N \) and \(j \in M \), and all \(x \in \mathcal{X} \),

\[
u^j_i(x^i) = A p_j u^1_i(x^i) + b^i_j.
\]

(A2)

If we let \(U : \mathcal{X} \rightarrow \mathbb{R} \) be as in Proposition 2(a,b), and define \(B := \sum_{i \in N} \sum_{j \in M} b^i_j \), then for all \(x \in \mathcal{X} \),

\[
U(x) = \sum_{i \in N} \sum_{j \in M} u^j_i(x^i) = A \cdot \sum_{i \in N} \sum_{j \in M} p_j u^1_i(x^i) + \sum_{i \in N} \sum_{j \in M} b^i_j = A \cdot \sum_{j \in M} p_j \left(\sum_{i \in N} u^1_i(x^i) \right) + B = A \cdot W(x) + B,
\]

where \(W \) is defined as in equation (3). Thus, \(W \) is an increasing transform of \(U \), so it represents \(\succeq \) on \(\mathcal{X} \).

Proof of (b). Let \(U_i \) be as in Proposition 2(c). Then for all \(x \in \mathcal{X}_i \), we have

\[
U_i(x) = \sum_{j \in M} u^j_i(x_j) = A \sum_{j \in M} p_j u^1_i(x_j) + \sum_{j \in M} b^i_j = A U^i_p(x) + [\text{a constant}],
\]

where the second equality is by (A2). Thus, \(U^i_p \) represents \(\succeq_i \).

\(^{29} \)Any function \(\phi \) from an open subset of \(\mathbb{R} \) to \(\mathbb{R} \) that is continuous and increasing is also open. We will make repeated use of this property.
Proof of (d). For all \(i \in N \), let \(\tilde{u}^i : R \rightarrow R \) be a continuous and increasing function, and let \(\tilde{p} \in \Delta_M \) be a strictly positive weight vector. Suppose that \(\succeq_M \) is represented by the function \(\tilde{W}_M : \mathcal{X}_M \rightarrow R \) defined by
\[
\tilde{W}_M(x) := \sum_{i \in N} \tilde{u}^i(x^i), \quad \text{for all } x \in \mathcal{X}_M.
\]
and that \(\succeq \) is also represented by the function \(\tilde{W} : \mathcal{X} \rightarrow R \) defined by
\[
\tilde{W}(X) := \sum_{j \in M} \sum_{i \in N} \tilde{p}_j \tilde{u}^i(x_j^i), \quad \text{for all } X \in \mathcal{X}.
\]
Now, \(\sum_{i \in N} \tilde{u}^i(x^i) = g(\sum_{i \in N} u^i(x^i)) \) for some increasing and continuous transformation \(g \). Thus carrying the same functional equation argument as for Claim 1, we conclude that there are constants \(a > 0 \) and \(b^1, \ldots, b^n \in R \) such that
\[
\tilde{u}^i(x^i) = a u^i(x^i) + b^i, \quad (A3)
\]
for all \(i \in I \) and \(x \in \mathcal{X}_M \). Thus, \(u^1, \ldots, u^n \) are unique up to a common affine transformation, as was to be proved.

Meanwhile, the uniqueness part of Proposition 2(a) yields constants \(A > 0 \) and \(b_j^i \in R \), for all \(i \in N \) and \(j \in M \), such that
\[
\tilde{p}_j \tilde{u}^i(x_j^i) = A p_j u^i(x_j^i) + b_j^i, \quad (A4)
\]
for all \(X \in \mathcal{X} \), \(i \in N \) and \(j \in M \). Let \(x \in \mathcal{X}^1 \). The set \(\mathcal{X}^1 \) is open, and \(u^1 \) is continuous and increasing; thus, there exist some \(\varepsilon > 0 \) and some \(y \in \mathcal{X}^1 \) such that \(u^1(x_j^i) - u^1(y_j^i) = \varepsilon \) for all \(j \in M \). But then, for all \(j \in M \),
\[
a \varepsilon \tilde{p}_j = a \tilde{p}_j u^1(x_j^i) - a \tilde{p}_j u^1(y_j^i) = \tilde{p}_j \tilde{u}^1(x_j^i) - \tilde{p}_j \tilde{u}^1(y_j^i) \quad \text{(by Eq.}(A3))
\]
\[
= A p_j u^1(x_j^i) - A p_j u^1(y_j^i) = A \varepsilon p_j, \quad \text{(by Eq.}(A4)).
\]
It follows that \(a \varepsilon \tilde{p} = A \varepsilon \tilde{p} \), and thus \(A = a \), since \(\tilde{p} \) and \(\tilde{p} \) are weight vectors. Thus, \(p = \tilde{p} \), which completes the proof of (d). \(\Box \)

Proof of Corollary 4. Again, we prove the “only if” direction. Theorem 3(c) says that \(\succeq \) is represented by the function \(W : \mathcal{X} \rightarrow R \) defined by equation (3). Now, by the variant of this theorem using Row-Independent Preferences and Identical Row Spaces, there is a weight vector \(q = (q^1, q^2, \ldots, q^n) \in \Delta_N \), and, for all \(j \in M \), there is an increasing, continuous function \(v_j : \mathcal{X}^j \rightarrow R \), such that \(\succeq_N \) is represented by the function \(W^N : \mathcal{X} \rightarrow R \) defined by
\[
W^N(x) := \sum_{j \in M} v_j(x_j), \quad \text{for all } x \in \mathcal{X}^N, \quad (A5)
\]
If \(f \) and \(h \) are continuous real-valued functions on some connected subset \(B \subseteq R \), and \(g \) is an increasing real-valued function such that \(h = g \circ f \), then \(g \) is continuous on \(f(B) \). We will make repeated use of this fact.
while \(\succeq \) is represented by the function \(\tilde{W} : \mathcal{X} \rightarrow \mathbb{R} \) defined by

\[
\tilde{W}(X) := \sum_{j \in M} \sum_{i \in N} q^i v_j(x^i_j), \quad \text{for all } X \in \mathcal{X}. \tag{A6}
\]

Now fix \(x_0 \in \mathcal{X}_*^* \). By Theorem 3(d) and its variant, we can subtract relevant constants from the functions \(\{v_j\}_{j \in M} \) and \(\{u^i\}_{i \in N} \), to ensure that

\[
v_j(x_0) = 0 \quad \text{for all } j \in M, \quad \text{and } u^i(x_0) = 0 \quad \text{for all } i \in N. \tag{A7}
\]

Since \(\succeq \) is represented by both \(W \) and \(\tilde{W} \), there is some continuous, increasing function \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that:

\[
f\left(\sum_{j \in M} \sum_{i \in N} p_j u^i(x^i_j) \right) = \sum_{j \in M} \sum_{i \in N} q^i v_j(x^i_j), \quad \text{for all } X \in \mathcal{X}. \tag{A8}
\]

For all \(i \in N \) and \(j \in M \), define \(g^i_j(\zeta) := q^i v_j \circ (u^i)^{-1}(\zeta/p_j) \) for all \(\zeta \in \mathbb{R} \) where this definition makes sense. Define \(\Xi := \{[p_j u^i(x^i_j)]_{i \in N}^j \in M; \ X \in \mathcal{X}\} \), an open, connected subset of \(\mathbb{R}^{N \times M} \). Then substituting \(\xi^i_j := p_j u^i(x^i_j) \) into both sides of equation (A8) yields

\[
f\left(\sum_{j \in M} \sum_{i \in N} \xi^i_j \right) = \sum_{j \in M} \sum_{i \in N} g^i_j(\xi^i_j), \quad \text{for all } \xi \in \Xi.
\]

Now Lemma A5 implies that there exists a constant \(a > 0 \) such that \(f(\zeta) = a \zeta = g^i_j(\zeta) \) for all \(i \in N \) and \(j \in M \). (Equation (A7) implies that the added constants of Lemma A5 are all 0.) By rescaling \(\{v_j\}_{j \in M} \) if necessary, we can assume that \(a = 1 \); hence \(g^i_j(\zeta) = \zeta \). But \(g^i_j(\zeta) = q^i v_j \circ (u^i)^{-1}(\zeta/p_j) \), so this implies that \(p_j u^i = q^i v_j \), for all \((i, j) \in N \times M\). Dividing these equations by \(q^i p_j \) (which are nonzero), we obtain

\[
u^i/j^i = v_j/p_j, \quad \text{for all } (i, j) \in N \times M.
\]

It follows that there is a single increasing continuous function \(u : \mathcal{X}_*^* \rightarrow \mathbb{R} \) such that

\[
\begin{align*}
\text{(a)} & \quad u^i/j^i = u \quad \text{for all } i \in N \quad \text{and} \quad \text{(b)} \quad v_j/p_j = u \quad \text{for all } j \in M. \tag{A9}
\end{align*}
\]

Substituting equation (A9)(a) into equation (1) yields part (a) of the result. Substituting (A9)(b) into (A5) yields part (b), while substituting (A9)(b) into (A6) yields part (c). Part (d) is straightforward.

The proof of Theorem 5 relies on the following Lemma.
Lemma A6 Let $\mathcal{Z} \subseteq \mathbb{R}^M$ be an open set. For all $j \in M$, let \mathcal{Z}_j be the projection of \mathcal{Z} onto the jth coordinate, and let $u_j : \mathcal{Z}_j \rightarrow \mathbb{R}$ be a continuous increasing function. Define $U(z) = \sum_{j=1}^{m} u_j(z_j)$ for all $z \in \mathcal{Z}$, and let \succeq be the preference order on \mathcal{Z} represented by U. Then \succeq is flat if and only if the functions u_1, \ldots, u_m are affine.

Proof. If u_1, \ldots, u_m are affine, then clearly \succeq is flat. To prove the converse, fix $z \in \mathcal{Z}$, and let $\mathcal{Y}(z) := \{y \in \mathcal{Z} ; z \succeq y\}$ be its indifference surface. If \succeq is flat, then there is some hyperplane $\mathcal{H} \subset \mathbb{R}^M$ such that $\mathcal{Y}(z) = \mathcal{H} \cap \mathcal{Z}$. The equation of this hyperplane is $\sum_{j=1}^{m} a_j y_j = b$, with all the a_j being non-zero because u_j is increasing and \mathcal{Z} is open in \mathbb{R}^M. Without loss of generality, suppose $a_1 = 1$. Then for all $y \in \mathbb{R}^{[2^m]}$,

$$\left(y_1 = b - \sum_{j=2}^{m} a_j y_j \right) \implies (y_1, y) \in \mathcal{H}.$$

Let \mathcal{Y}' be a connected component of $\mathcal{Y}(z)$; then \mathcal{Y}' is a relatively open subset of \mathcal{H}. If $C := U(z)$, then $U(y) = C$ for all $y \in \mathcal{Y}'$. Define \mathcal{Y}_j' to be the projection of \mathcal{Y}' onto the jth coordinate, and $\mathcal{Y}'_{[2^m]}$ to be the projection of \mathcal{Y}' onto $\mathbb{R}^{[2^m]}$. The set $\mathcal{Y}'_{[2^m]}$ is open and connected in $\mathbb{R}^{[2^m]}$ by the usual properties of the projection map.

For all $y \in \mathcal{Y}'_{[2^m]}$, if $y_1 = b - \sum_{j=2}^{m} a_j y_j$, then $(y_1, y) \in \mathcal{Y}'$ and $U(y_1, y) = C$. In other words,

$$u_1 \left(b - \sum_{j=2}^{m} a_j y_j \right) + \sum_{j=2}^{m} u_j(y_j) = C, \quad \text{for all } y \in \mathcal{Y}'_{[2^m]},$$

and this can be rewritten as a Pexider equation:

$$u_1 \left(\sum_{j=2}^{m} y_j \right) = \sum_{j=2}^{m} \tilde{u}_j \left(\frac{\tilde{y}_j - b/m}{a_j} \right), \quad \text{for all } y \in \mathcal{Y}'_{[2^m]}.$$

by putting $\tilde{y}_j := \frac{b}{m} - a_j y_j$ and $\tilde{u}_j := \frac{C}{m} - u_j$ for all $j \in [2^m]$. Lemma A5 implies that, for all $j \in M$, the function \tilde{u}_j is affine on \mathcal{Y}_j'. Thus, u_j is affine when restricted to \mathcal{Y}_j'.

By repeating this argument for all connected components of $\mathcal{Y}(z)$, and for all $z \in \mathcal{Z}$, we can cover \mathcal{Z}_j with open subsets such that u_j is affine on each subset. But \mathcal{Z} is connected, so \mathcal{Z}_j also is, and by a standard argument based on path-connectedness, we can conclude that for all $j \in M$, u_j is an affine function on \mathcal{Z}_j. \hfill \square

Proof of Theorem 5. The “if” direction is obvious; we will prove the “only if” direction.

31For example, suppose $a_1 = 0$; then there exists $\epsilon > 0$ such that $y = (z_1 + \epsilon, z_2, z_3, \ldots, z_M)$ is in $\mathcal{H} \cap \mathcal{Z} = \mathcal{Y}(z)$, and thus, $U(y) = U(z)$, which contradicts the fact that u_1 is increasing.
Claim 1: For any \(X \in \mathcal{X} \), there exists an open neighbourhood \(B_X \subseteq \mathcal{X} \) and constants \(c^i_{j,X} > 0 \) for all \(i \in N \) and \(j \in M \), such that \(\succeq \) is represented on \(B_X \) by the function \(U_X : B_X \rightarrow \mathbb{R} \) defined by \(U_X(B) := \sum_{i \in N} \sum_{j \in M} c^i_{j,X} \cdot b^j_i \) for all \(B \in B_X \). We can assume \(\max\{c^i_{j,X} : i \in N \text{ and } j \in M\} = 1 \).

Proof. Proposition 2(a) yields an open rectangular neighbourhood

\[
B_X = \prod_{i \in N} \prod_{j \in M} B^i_{j,X} \subset \mathcal{X},
\]

as well as continuous, increasing functions \(u^i_{j,X} : B^i_{j,X} \rightarrow \mathbb{R} \), for all \(i \in N \) and \(j \in M \), such that \(\succeq \) is represented on \(B^i_{j,X} \) by the function \(U_{X} \) defined by \(U_X(B) := \sum_{i \in N} \sum_{j \in M} u^i_{j,X}(b^j_i) \) for all \(B \in B^i_{j,X} \). We consider the two flatness assumptions of the theorem in turn.

Case 1. Suppose \(\succeq^i \) is flat for all \(i \in N \). Let \(B^i_{j,X} := \prod_{j \in M} B^i_{j,X} \); then \(B_X \subseteq \mathcal{X} \). Proposition 2(c) says that \(\succeq^i \) is represented on \(B_X \) by the function \(U_X \) defined by \(U_X(B) := \sum_{i \in N} \sum_{j \in M} u^i_{j,X}(b^j_i) \) for all \(B \in B^i_{j,X} \). Lemma A6 implies that for all \(j \in M \), \(u^i_{j,X} \) is affine on \(B^i_{j,X} \); i.e., that for all \(j \in M \), there exist constants \(c^i_{j,X} > 0 \) and \(d^i_{j,X} \in \mathbb{R} \) such that \(u^i_{j,X}(b) = c^i_{j,X} b + d^i_{j,X} \) for all \(b \in B^i_{j,X} \). Without loss of generality, we can set \(d^i_{j,X} = 0 \) in these equations. By the first assumption of the theorem, they hold for all \(i \in N \). Noting that \(c^i_{j,X} > 0 \) by Coordinate Monotonicity, we can multiply the coefficients \(\{c^i_{j,X}\}_{i \in N} \) by a positive constant without changing the representations, and thus ensure that

\[
\max\{c^i_{j,X} : i \in N, j \in M\} = 1.
\]

Case 2. Suppose \(\succeq_{\mathcal{X}} \) is flat. Fix \(j \in M \), and let \(B^X := \prod_{i \in N} B^i_{j,X} \); then \(B^X \subseteq \mathcal{X} \). Proposition 2(d) and Column Invariance imply that \(\succeq_M \) is represented on \(B^j_X \) by the function \(U^X \) defined by \(U^X(B) := \sum_{i \in N} u^i_{j,X}(b_i) \) for all \(B \in B^j_X \). Lemma A6 implies that for all \(j \in M \), \(u^i_{j,X} \) is affine on \(B^i_{j,X} \). This holds for all \(j \in M \). Now proceed as in Case 1. \(\triangleleft \) Claim 1

Claim 2: There exist constants \(c^i_{j} > 0 \) for all \(i \in N \) and \(j \in M \), such that \(\succeq \) is represented on \(\mathcal{X} \) by the function \(U : \mathcal{X} \rightarrow \mathbb{R} \) defined by \(U(X) := \sum_{i \in N} \sum_{j \in M} c^i_{j} \cdot x^j_i \) for all \(X \in \mathcal{X} \).

Proof. Take \(X, X' \in \mathcal{X} \) and the associated rectangular neighbourhoods \(B_X \) and \(B_{X'} \) of Claim 1, supposing that \(B' = B_X \cap B_{X'} \neq \emptyset \). Then Claim 1 implies that the functions \(U_X \) and \(U_{X'} \), defined by \(U_X(B) = \sum_{i \in N} \sum_{j \in M} c^i_{j} \cdot x^j_i \) and \(U_{X'}(B) = \sum_{i \in N} \sum_{j \in M} c^i_{j} \cdot x'^j_i \) for all \(B \in B' \), both represent \(\succeq \) on \(B' \), so they are ordinally equivalent on \(B' \). Thus, there is some continuous, increasing function \(g : \mathbb{R} \rightarrow \mathbb{R} \) such that:

\[
g \left(\sum_{i \in N} \sum_{j \in M} c^i_{j} \cdot b^j_i \right) = \sum_{i \in N} \sum_{j \in M} c^i_{j} \cdot b^j_i, \quad \text{for all } B \in B'.
\]
Lemma A5 for this Pexider equation yields $A > 0$ such that $c^j_i x, b^j_j = A c^j_i x b^j_j$ for all $i \in N$ and $j \in M$ and $B \in B'$. Since B' is open in $\mathbb{R}^{N \times M}$, we may divide by b^j_j in each of these equations, and conclude that $c^j_i x, = A c^j_i x, \text{ for all } i \in N$ and $j \in M$. However, $\max\{c^j_i x; i \in N \text{ and } j \in M\} = 1 = \max\{c^j_i x; i \in N \text{ and } j \in M\}$, hence $A = 1$, and $c^j_i x, = c^j_i x, \text{ for all } i \in N \text{ and } j \in M$.

Now, by another argument based on the path-connectedness of \mathcal{X}, we cancel the dependence on X in the $c^j_i x$ coefficients and conclude that \succeq is represented on all of \mathcal{X} by the function U defined as above.

\begin{claim}
For all $j \in M$, the order \succeq_M is represented on \mathcal{X}_j by the function U_j defined by $U_j(x) := \sum_{i \in N} c^j_i x^i$, for all $x \in \mathcal{X}_j$.
\end{claim}

\begin{proof}
The proof is the same as for Proposition 2(d), but with Column Invariance.
\end{proof}

\begin{claim}
For all $j, k \in M$, if $\mathcal{X}_j \cap \mathcal{X}_k \neq \emptyset$, then there exists a constant $a_{jk} > 0$ such that $c^j_i = a_{jk} c^i_k$ for all $i \in N$.
\end{claim}

\begin{proof}
Let \mathcal{X}_{jk} be any connected component of $\mathcal{X}_j \cap \mathcal{X}_k$. Claim 3 implies that the functions U_j and U_k both represent \succeq_M on \mathcal{X}_{jk}. Thus, they are ordinally equivalent, yielding another Pexider equation. Just as in the proof of Claim 2, we can use Lemma A5 to find $a_{jk} > 0$ such that $c^j_i x^i = a_{jk} c^i_k x^i$ for all $x \in \mathcal{X}_{jk}$ and $i \in N$. Since \mathcal{X}_{jk} is an open subset of \mathbb{R}^M, this implies that $c^j_i = a_{jk} c^i_k$ for all $i \in N$.

\begin{claim}
For all $j, k \in M$, then there exists a constant $a_{jk} > 0$ such that $c^j_i = a_{jk} c^i_k$ for all $i \in N$.
\end{claim}

\begin{proof}
Fix j and k, and observe that there is a subset of indexes $\Lambda = \{\lambda_1, \ldots, \lambda_L\} \subseteq M$ with $\lambda_1 = j$, $\lambda_L = k$, such $\mathcal{X}_{\lambda_1} \cap \mathcal{X}_{\lambda_{L+1}} \neq \emptyset$ for all $\ell \in [1 \ldots L]$. (This follows from the fact that \mathcal{X}_M is a connected set; we skip the easy topological argument.) Let $a_{j\lambda_2}, a_{j\lambda_3}, \ldots, a_{j\lambda_{L-1},k} > 0$ be the constants obtained in Claim 4. Then define $a_{jk} := a_{j\lambda_2} \cdot a_{j\lambda_3} \cdots a_{j\lambda_{L-1}k}$. Then iteration application of Claim 4 yields the result.

\begin{proof}[Proof of (a)]
For all $i \in N$, define $q^i := c^i_1$, and for all $j \in N$, define $p_j := a_{j1}$. Then for all $i \in N$ and $j \in M$, Claim 5 implies that
\[
c^j_i = a_{j1} c^i_1 = p_j q^i. \quad (A10)
\]
Thus, fixing j and using the definition of $U_j(x)$ in Claim 3, we have that for all $x \in \mathcal{X}_j$,
\[
U_j(x) = \sum_{i \in N} c^j_i x^i = \sum_{i \in N} p_j q^i x^i = p_j \sum_{i \in N} q^i x^i = p_j W_M(x),
\]
Then Claim 3 implies that W_M represents \succeq_M on \mathcal{X}_j. Since this holds for all $j \in M$, W_M represents \succeq_M on $X_M = \bigcup_{j \in M} \mathcal{X}_j$.

32
Proof of (c). Define U as in Claim 2. Then, for all $X \in \mathcal{X}$, equation (A10) yields

$$U(X) = \sum_{i \in N} \sum_{j \in M} c^i_j \cdot x^i_j = \sum_{i \in N} \sum_{j \in M} q^i_j \cdot x^i_j = W(X).$$

Thus, Claim 2 implies that W represents \succeq on \mathcal{X}.

Proofs of (b) and (d). Similar to the proofs of Theorem 3(b,d). □

Proof of Proposition 6. The “if” direction is obvious; we will prove the “only if” direction. If $n = 2$, then $|L| = 2$. Then an ordering \succeq on \mathbb{R}^2 satisfies COORDINATE MONOTONICITY if and only if it is totally separable; the additive representation then follows from Debreu (1960).

So, suppose $n \geq 3$. Then the proof is very similar to the proof of Proposition 2, except that Lemma A4 is replaced with the following claim.

Claim 1: Let $n \geq 3$, and \succeq be a continuous preference order on an open box $\mathcal{B} \subseteq \mathbb{R}^n$. For all $i \in N$ and $j \in M$, suppose the sets L^i and L_j are \succeq-separable, and the set $\{(i, j)\}$ is \succeq-strictly essential. Then \succeq is totally separable.

The proof of Claim 1 is very similar to the proof of Lemma A4 (suitably adapted to the $n \times n$ square minus the diagonal). The proof of part (a) now follows the proof of Proposition 2 verbatim, only using Claim 1 in place of Lemma A4. (To see this, observe that the proof of Proposition 2 makes no reference to the structure of the set $N \times M$. Thus, the same argument works if we replace $N \times M$ with L. The separability of the subsets L^i and L_j again follows from ROW MONOTONICITY and COLUMN MONOTONICITY. Lemmas A1 and A2 apply to any abstract Cartesian product.)

Proof of (b). Let $\pi \in \Pi$. Since $\pi(\mathcal{X}) = \mathcal{X}$, we have $\mathcal{X}^{\pi(i)}_{\pi(j)} = \mathcal{X}^i_j$ for all $i, j \in N$. Repeating this for all $\pi \in \Pi$, we conclude that $\mathcal{X}^{i'}_j = \mathcal{X}^{h}_{k}$ for all pairs $(h, i) \in L$ and $(j, k) \in L$ which are in the same II-orbit. But it is easy to see that Π acts transitively on L. Thus, we obtain $\mathcal{X}^* \subseteq \mathbb{R}$ such that $\mathcal{X}^*_j = \mathcal{X}^*_i$ for all $(i, j) \in L$.

Now, for any $\pi \in \Pi$, define $V_{\pi} := V \circ \pi^{-1} : \mathcal{X} \rightarrow \mathbb{R}$. Thus, for all $X \in \mathcal{X}$, we have

$$V_{\pi}(X) = \sum_{(i', j') \in L} v^i_{j'} \left(x^{\pi^{-1}(i')}_{\pi^{-1}(j')}\right) = \sum_{(i, j) \in L} v^\pi_{\pi(j)}(x^i_j).$$

(Here, the last step is by the change of variables $i := \pi^{-1}(i')$ and $j := \pi^{-1}(j')$, because π is a bijection of N.) But IMPARTIALITY implies that V_{π} also represents the order \succeq. Thus, by uniqueness up to affine transformations, we obtain some constant $a > 0$ and constants b^i_j for all $i, j \in N \times N$ such that $v^\pi_{\pi(j)} = a v^i_j + b^i_j$ for all $(i, j) \in N$. It follows that $v^\pi_{\pi(j)} = a^2 v^i_j + [\text{a constant}]$,

33
and $v_{\pi^2(i)} = a^3 v_j^i + \text{[a constant]}$, and so on. But π^n is the identity map on L. Thus, we get $v_j^i = a^n v_j^i + \text{[a constant]}$, which means that $a^n = 1$, which means $a = 1$.

Thus, $v_{\pi^1(i)} = v_j^i + b_j^i$ for all $(i, j) \in N$. Repeating this argument for all $\pi \in \Pi$, we conclude that there is a single continuous increasing function $v : X^* \to \mathbb{R}$ and constants c_j^i for all $(i, j) \in L$ such that $v_j^i = v + c_j^i$ for all $(i, j) \in L$.

Since adding a constant does not change the representation, we can remove the constants c_j^i, and assume without loss of generality that $v_j^i = v$ for all $(i, j) \in L$. □

References

