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The bulk of the literature investigating persistence properties of non�renewable resource 

prices series has focused on application of unit root tests. This paper contributes to the 

debate, applying a methodology which allows (1) robust detection of the presence and (if so) 

the number of changes, (2) inference on stationarity of the series, and (3) estimation of 

change locations. In contrast to previous papers, the analysis is carried out from the 

perspective of stationarity testing, incorporating quadratic trends and the possibility of 

smooth changes. For a classical database, we find significant evidence of trend stationarity 

in most of the series, suggesting that shocks are mostly of a transitory nature. Exceptions are 

silver and natural gas, with stationarity being rejected for all the specifications considered in 

the paper. Finally, the knowledge of the stochastic characteristics of the series allows robust 

detection of change points which appear to be related to economic events.



3�,4��#�: non�renewable resource prices, structural changes, stationarity test, sequential 

procedure. 
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There is a large body of literature which investigates the time series properties of non�

renewable resource prices. The reasons for this interest include both theoretical and 

econometric issues.    

From a theoretical point of view, if prices are trend stationary, shocks dissipate and policy 

efforts to restore price following a shock are unwarranted. On the contrary, in the case of a 

stochastic trend, policy intervention is sensible in order to overcome the permanent effect of 

a shock.     

                                                 
1
 The authors are with the Departament of Applied Economics, University of Oviedo, Avenida del Cristo s/nº, 

33009 Oviedo, Asturias (Spain). E�mail: mpresno@uniovi.es (M.J. Presno); landajo@uniovi.es (M. Landajo);  

pfgonzal@uniovi.es (P. Fernández). 
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Researching the potential stationarity of real non�renewable resource prices can be vital in 

an assessment of theories validity. One of the models more debated is the Hotelling model. 

In a world of certainty, the Hotelling model predicts that non�renewable resource prices are 

trend stationary; while in an uncertain context, according to Slade (1988), prices may be 

difference stationary. A number of papers
2
 have examined this issue in an effort to 

understand which theory or theories best describe the observed behaviour. In this respect, 

Slade (1988) represents one of the first attempts to analyze time series properties of natural 

resource prices in order to evaluate the Hotelling model; applying unit root tests and 

considering a linear trend model, Slade finds evidence of stochastic trends. After Slade´s 

(1982) assessment that the progress effect can lead to a U�shaped price path, Agbeyegbe 

(1993) and Berck and Roberts (1996) extended the unit root analysis incorporating a 

quadratic trend, and Ahrens and Sharma (1997) and Lee et al. (2006) considered breaks and 

found further evidence against the unit root hypothesis. Using a different methodology �

Kalman filter methods� Pindyck (1999) estimated a model where prices revert to a quadratic 

trend that shifts over time.  

In the field of energy, time series properties of prices have been analysed in order to 

investigate the efficient market hypothesis. Lee and Lee (2009) found evidence in favour of 

the broken stationarity hypothesis, implying that energy prices are not characterized by an 

efficient market. Maslyuk and Smyth (2008) focused on crude oil, and highlighted reasons to 

analyse the stochastic properties of its price: if oil prices are trend reverting, this is consistent 

with crude oil being sold in a competitive market where prices revert to long�run marginal 

cost, which changes only slowly. Also, some studies
3
 have linked shocks to crude oil prices 

to output and inflation, the natural rate of unemployment, movements in stock market 

indices, and fluctuations in business cycles. Finally, there are links between oil price shocks 

and investment decisions (e.g. Dixit and Pindyck, 1994; Finn, 2000), and the price of oil 

occupies a central stage in theories in the area of environmental and resource economics. For 

instante, Sinn (2008) points out that oil is one of the main sources of carbon emissions and 

extends the Hotelling model in order to consider the global warming, and Holland (2008) 

shows that oil prices, rather than production, are a better indicator of impending resource 

scarcity.   

Knowledge of the stochastic properties of time series is also important in econometric 

estimation and subsequent application of the models to forecasting and decision making. 

                                                 
2
 Krautkraemer (1998) includes a survey of this literature. 

3
 See Maslyuk and Smyth (2008) for a review. 
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Berck and Roberts (1996) focused on ARMA and ARIMA models to forecast natural 

resource prices, but in their estimation they did not consider structural breaks. Lee et al. 

(2006) overcame this limitation, and stressed that pre�testing for unit roots and including 

structural breaks can improve the accuracy of forecasting non�renewable resource prices. 

Pindyck (1999) applied Kalman filter techniques to obtain forecasts of energy prices and 

stressed the relevance of knowing the stochastic properties of prices in terms of long�run 

forecasting and for firms making investment decisions. In the field of energy, Felder (1995) 

highlighted the importance of long�term fuel price forecasts in ascertaining generation 

planners to make correct choices in determining their fuel mix and evaluating fuel 

diversification strategies. 

Papers which investigate persistence properties of non�renewable resource prices have 

focused on unit root tests results, allowing in some cases for structural breaks in the trend 

function. In this paper we contribute to the debate by incorporating results from new time 

series methodologies which provide more robust conclusions about the nature of the 

resource price time paths. For this we examine a classical database of 11 natural resource 

real prices series from 1870 to 1990. These data were analysed previously using others 

methodologies, thus making comparability of conclusions easier. 

First, we apply stationarity tests. The above papers analysed the null hypothesis of a unit 

root against the alternative of trend stationarity �in some cases with a break�, but we consider 

the testing problem in the reverse direction: the null of trend stationarity (around linear and 

quadratic trends with breaks or smooth transitions) against the alternative of a unit root. So, 

stationarity tests complement unit root tests. Furthermore, as unit root tests are known to 

have low power under stationary but highly persistent processes, stationarity tests provide a 

useful means to confirm results from unit root tests.  

In this paper we apply stationarity tests allowing for breaks and smooth transitions in the 

trend function, but we use a new methodology for their treatment. Some researches have 

shown that there is a circular testing problem between tests on the parameters of the trend 

function and unit root/stationarity tests, so Perron and Yabu (2009), Harvey et al. (2010) and 

Kejriwal and Perron (2010) proposed approaches that are robust to unit root and stationary 

errors in order to test for stability of the trend function and to obtain a consistent estimate of 

the true number of breaks. With this basis, our analysis begins by detecting the presence, and 

if so, the number of breaks in the series. For this we apply the above methodologies. In their 

mainstream versions these techniques consider linear trends, but the pecualirities of non�



 4 

renewable resource prices time series have led us to extend the basic methodology in order 

to allow for nonlinear (quadratic) trends.   

Once we have checked the number of changes, we apply two alternative types of stationarity 

tests in order to distinguish the stochastic properties of the data: (i) allowing for breaks �

which occur instantaneously� and (ii) allowing for smooth transitions �whose effects are 

gradual, the transition between two regimes being smooth�. The latter approach is attractive 

since to assume that the change takes place instantaneously may be unrealistic in many 

economic applications, and also allows us to eliminate the very substantial size distortions 

which appear when we apply stationarity tests with a break when the series really exhibits 

smooth changes (see Landajo and Presno, 2010).  

Finally, knowing the stochastic characteristics of time series is useful in order to tackle 

consistent estimation of the break/midpoint smooth transition dates. Concretely, with breaks 

in the level and/or the slope, consistent estimates of the break dates are obtained from a level 

or first�differenced specification according to whether a stationary process is present or not.   

To summarize, this paper contributes to the debate about temporal properties of a classical 

database of natural resource real price series, but applying a powerful methodology that 

enables (i) robust detection of presence, and if so, the number of breaks in the level and/or 

the slope of the trend function, (ii) to carry out inferences on stationarity of the series, 

conditional on the presence of breaks and smooth transitions, and (iii) estimation of 

breaks/midpoint smooth transition locations. 

The rest of the paper is structured as follows: section 2 introduces the methodology, 

including Monte Carlo experiments to obtain critical values adapted to the characteristics of 

the time series. Section 3 reports the empirical results and a discussion. The paper closes 

with a summary of conclusions.  
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In this section we introduce the methodology for the analysis. First, we estimate the number 

of changes in time series, applying some approaches which are robust to 

stationary/integrated errors. Upon this basis, we examine the stochastic properties of the data 

via the analysis of the null of stationarity around linear and quadratic trends, with the 

number of changes detected in the previous stage. For this, we implement the Landajo and 

Presno (2010) proposal, applying two types of stationarity tests: allowing for breaks and 

allowing for smooth transitions. Finally, we estimate change locations.  
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Information about the absence or presence (and in this case, the number) of changes is vital 

to devise unit root and stationarity tests with good properties. Traditionally, both kinds of 

tests were applied considering a priori the presence of one or more changes; however, it 

seems more suitable to research first the potential presence of such breaks, since the 

inclusion of dummy variables to cope with nonexistent breaks leads to reduction in the 

power of unit root/stationarity tests.  

On the other hand, knowing the nature of persistence in the noise component is necessary in 

order to test for structural breaks. Inference based on a structural change test from first�

differenced data �which conveys to assume a unit root� leads to tests with poor properties 

when the series contains a stationary component. On the other hand, application of the test 

on the level of the data entails different limiting distributions �so, different asymptotic 

critical values� depending on a unit root is present or not.  

So, there is a circular problem between tests on the parameters of the trend function and unit 

root/stationarity tests. 

Perron and Yabu (2009) solved this circular problem. They proposed an approach to assess 

the presence of a structural change in the linear trend function of a univariate time series 

without any prior knowledge as to whether the noise component is stationary or contains an 

autoregressive unit root. Kejriwal and Perron (2010) extended the methodology, and 

developed a sequential procedure that allows one to obtain a consistent estimate of the 

number of breaks in the linear trend function. Their proposal provides a procedure to test the 

trend function for breaks in slope or simultaneous breaks in slope and level, but no breaks 

solely in level. Harvey et al. (2010) filled this gap and derived tests which allow for multiple 

level shifts. Next we introduce these tests. All these proposals consider a linear trend, but we 

extend them in order to incorporate a quadratic trend to cope with nonlinearities. 

 

The Perron and Yabu (2009) test  

Perron and Yabu (2009) proposed an approach to testing the stability of the trend function 

based on a Feasible Quasi Generalized Least Squares procedure that uses a super�efficient 

estimate of the sum of the autoregressive parameters α when α=1.  

They consider the data generating process: 



 6 

tt

ttt

ttt

eLd

uu

uxy

)(

1

'

=
+=

+Ψ=

−

ν
να  

(1) 

for t=1,…,T, where xt is a (r x 1) vector of deterministic components, Ψ is a (r x 1) vector of 
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constant. It is assumed that �1<α≤1. If α=1, ut is an integrated process of orden 1 (ut~I(1)), so 

yt is a difference stationary process with a possibly broken trend; when �1<α<1,  ut~I(0), and 

the series is trend stationary with a possibly broken trend.  

The null hypothesis to be tested is RΨ=a, where R is a (q x r) full rank matrix and a is a (q x 

1) vector, with q being the number of restrictions. 

Perron and Yabu (2009) considered three linear Models including a shift: Models I and II 

only allow for a shift in intercept and in slope, respectively, and Model III allows for both a 

shift in intercept and slope at Tb=[λT] for some λ∈ (0,1), where [.] denotes the largest integer 

that is less than or equal to the argument. In our analysis, we just consider
4
 Model III, where 

xt=(1,t,DUt,DTt)´, DUt=1(t>T1), DTt=1(t>T1)(t�T1), with 1(.) being the indicator function, 

and Ψ=(β0,β1,δ1,η1)´. For the general case, the hypothesis of interest is δ1=η1=0. We also 

consider an “unrestricted” case
5
 which allows testing for stability of the slope parameter 

while the intercept may vary across regimes. For that, we only test whether a shift in slope is 

present (η1 with δ1 unrestricted, so the hypothesis of interest is η1=0). In this case, critical 

values corresponding to Model II are used. 

Since we also analyse the case of quadratic trends, we extend the procedure, to include a 

new model: Model III (quadratic), where xt=(1,t,t
2
,DUt,DTt)´, with Ψ=(β0,β1,β2,δ1,η1)´. The 

hypotheses of interest are δ1=η1=0 and η1=0 for the general and unrestricted cases, 

respectively. Appendix A.1. describes the test procedure.  

Perron and Yabu (2009) provided asymptotic critical values for this test, although our 

simulations
6
 (see Table 1 below) indicated that in finite samples of moderate size, critical 

values may differ considerably from their asymptotic counterparts; so, finite sample critical 

                                                 
4 We skip Model I because the sequential procedure by Kejriwal and Perron (2010) does not allow for shifts 

just in intercept, so, in order to analyse this kind of change, we apply the Harvey et al. (2010) procedure.  
5
 As shown in Kejriwal and Lopez (2010), the joint test for Model III has power against processes which are 

characterized by shifts only in the level and it is likely to reject the null of stability even when there is no 

change in the slope of the trend function. So, in order to distinguish between changes in level or slope, they 

recommend the “unrestricted” proposal. 
6
 Matlab codes for the procedures used in this paper are avalaible from the authors upon request. 
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values are obtained. More precisely, we generated critical values for samples with T=100 

and T=500 in Models III and III (quadratic), in the general and unrestricted versions. Based 

on simulations we found that the trimming parameter ε=0.05 and δ=0.5 in (3a) –see 

Appendix A.1.� led to good results in finite samples, so we considered these values both to 

obtain critical values and in applications.  

Table 1 reports critical values. As a reference, the last two columns contain the asymptotic 

critical values (Perron and Yabu, 2009). As expected, as T increases, finite sample critical 

values approach the asymptotic ones, but for T=100 there are remarkable differences 

between both values. Concretely, for T=100 critical values are longer than asymptotic ones, 

and application of the latter in finite samples would lead to an increase in rejections of the 

null hypothesis of stability and to size distortions in the test, so, in this paper we use the 

finite sample critical values.    

:�����+
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The Kejriwal and Perron (2010) sequential test



Kejriwal and Perron (2010) extended the Perron and Yabu (2009) test and proposed a 

sequential procedure that allows one to obtain a consistent estimate of the number of breaks 

while being agnostic to whether a unit root is present. The procedure proceeds by testing the 

null hypothesis of l changes against the alternative hypothesis of l+1 changes. In our 

analysis, given the number of sample observations, we allow a maximum of two breaks
7
.  

The first step of the procedure conducts the Perron and Yabu test for no break versus one 

break. Conditional on rejection, the estimated break date is obtained by a global 

minimization of the sum of squared residuals. The strategy proceeds (by using the 

methodology by Perron and Yabu, 2009) to test for the presence of an additional break in 

each of the segments obtained from the estimated partition. The test statistic for the null of 

one versus two breaks can be expressed as: 

( ) { })(

21
max12 i

i
ExpWExpW

≤≤
=  (2) 

where )(iExpW  is the one�break test in segment i. The null hypothesis of a single change 

against the alternative of two is rejected if ( )12ExpW  is sufficiently large. 

                                                 
7
 This is in accordance with Kejriwal and Perron (2010), who recommended that the maximum number of 

breaks should be decided with regard to the available sample size. Otherwise, the sequential test will be based 

on a small number of observations in each subsample, leading to low power and/or size distortions in the tests.   
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As in Perron and Yabu (2009), we considered Model III (for the general and unrestricted 

proposals), derived the quadratic case (Model III, quadratic, general and unrestricted), and 

generated finite sample critical values. Simulations showed good results for the trimming 

parameter ε=0.1 and for δ=0.1. Table 2 reports critical values and shows that small sample 

critical values are again longer than the asymptotic ones.  

:�����+
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The Harvey et al. (2010) test for breaks in level 

The sequential procedure by Kejriwal and Perron (2010) does not allow testing for multiple 

breaks solely in level. Harvey et al. (2010) filled this gap and proposed robust tests for 

detecting multiple breaks in level conditional on a stable underlying slope. The model is:  
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Λ∈iλ , where [ ]UL λλ ,=Λ , with Lλ  and Uλ  being trimming parameters which satisfy 

10 <<< UL λλ . 

The null hypothesis is 0=iδ  for i=1,…, n, and the alternative is that there is at least one 

break in level. 

The test is based on the quantities: 
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m is the window width, and must satisfy the constraint max1 n
m

n LU =






 −
+≤

λλ
, which 

provides an upper bound for the maximum number of breaks assumed to be present. 1β̂  
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denotes the OLS estimator of the trend coefficient, and υω̂  and uω̂  are the long�run variance 

estimates appropriate for the case of I(1) and I(0) shocks, respectively. 

The proposed test is: 
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(5) 

where 1

ξcv  and 0

ξcv  denote the asymptotic critical values of S1 and S0, under I(1) and I(0) 

errors respectively, at significance level ξ. The decision rule rejects the null if U> 1

ξξκ cv , 

where ξκ is a positive scaling constant. A rejection informs us that at least one level break is 

present.  

Harvey et al. (2010) also proposed a sequential procedure for determining the number of 

level breaks, nU. The procedure, adapted to a maximum of two breaks, is in Appendix A.2. 

We extended the above procedures in order to include a quadratic trend. The model is: 
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In this case, M in (4) is replaced by 

[ ] ( ) 
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where 2β̂  is the OLS estimator for the quadratic trend coefficient. This modification is also 

included in the sequential procedure to determine the number of breaks. 

Table 3 reports finite sample critical values for linear and quadratic cases
8
.  
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Once the number of changes is analysed, we apply stationarity tests allowing for breaks and 

smooth transitions. 

                                                 
8
 Following Harvey et al. (2010) recommendation, we chose m=0.1 and m=0.15 for the window width, and 

considered 85.0,15.0 == UL λλ  and 9.0,1.0 == UL λλ  respectively. Our choices imply that the maximum 

number of breaks allowed in the model is  nmax=8 and 6, respectively. Harvey et al. (2010) does not consider 

this last case, although we included it in order to analyse the possibility of changes at both ends of the sample, 

as in Perron and Yabu (2009) and Kejriwal and Perron (2010).  
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Landajo and Presno (2010) extended previous results on stationarity testing to nonlinear 

models which may include several endogenously determined changes. Their approach may 

be applied to a wide range of models, including smooth deterministic components, and some 

non�smooth cases (e.g., breaks) may be seen as limiting cases of the considered structures.  

The following error�components model is analysed: 

( ) ,,/, ttTt Ttfy εµ ++= θθθθ  

,...2,1;,...,1;1 ==+= − TTtuttt µµ  

(8) 

where ( )θθθθ,/Ttf  is a smooth function of time (i.e. a trend) with θ being a vector of free 

parameters, { }tε  and { }tu  are independent zero�mean error processes with variances 

( ) 022 >= εσε tE  and ( ) 022 ≥= utuE σ ; { }tµ  starts with 0µ , which is assumed to be zero. 

As for the linear smooth transition models we consider logistic sigmoidal changes of the 

forms: 

Model I:                                     ( ) ( ){ }[ ] 1

110 /exp1/,/
−−−+++= λγδββ TtTtTtf θθθθ  (9) 

Model III:                   ( ) ( ) ( ){ }[ ] 1

1110 /exp1//,/
−−−++++= λγηδββ TtTtTtTtf θθθθ      (10) 

λ∈ [0,1], γ>0. λ  determines the relative position of the timing of the transition midpoint  bT  

into the sample and γ controls the speed of transition (gradual for small γ, and  converging to 

a break as γ increases). So, smooth transition models are a very flexible class. The above 

specifications allow the analysis of series affected by a smooth change in level (Model I), 

and both in level and slope (Model III).  

Lagrange Multiplier (LM) stationarity testing relies on the following setting: 

0:,0: 10 2

2

>=≡ qHqH u

εσ
σ

 (11) 

The LM statistic to test (11) has the expression: 

∑
=

−−=
T

t

tT ETS
1

222ˆˆ σ  
(12) 

where ∑
=

=
t

i

it eE
1

denotes the forward partial sum of the residuals of nonlinear least squares 

(NLS) fitting and 2σ̂ is a suitable estimator for the long�run variance of }{ tε . 
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Finally, information on stationarity of the time series can be exploited to facilitate more 

accurate estimation of the break dates.  

Results by Perron and Zhu (2005) show that, in the presence of a break in slope, the 

estimates of the break dates from the level specification are consistent irrespective of the 

noise component is stationary or has a unit root; however, Kejriwal and Lopez (2010) 

concluded via Monte Carlo simulations that more accurate estimates of the break dates can 

be obtained by estimating a specification in first differences when a unit root is present, and 

lower mean squared errors are observed when estimating a level model in the I(0) case.  

In models with pure level shifts, consistent estimates of the break dates may be obtained 

using the procedure suggested by Harvey et al. (2010) in the unit root case, and by 

minimizing the sum of squared residuals from the level specification in the stationary case. 
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This section includes an empirical analysis of the time series properties of non�renewable 

resource prices. To ensure comparability between our conclusions and previous papers we 

selected series similar to those analysed by Slade (1982) and Berck and Roberts (1996), and 

identical to the data used by Ahrens and Sharma (1997) and Lee et al. (2006). Data are 

annual prices for the period between 1870 and 1990, deflated by the producer price index 

(1967=100), and include aluminium, bituminous coal, copper, iron, lead, natural gas, nickel, 

petroleum, silver, tin and zinc. In this long period of time, non�renewable resource prices 

have suffered changes due, among others, to macroeconomic factors �such us changes in 

interest rates and exchange rates�, business cycle phases �recessions and expansion periods�, 

or political events �such us wars or threats�, so our analysis begins with the estimation of the 

number of changes.   
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In the first stage we applied tests to ascertain if breaks are present. These tests are usually 

applied to evaluate the joint significance of the intercept and slope dummies. However, in 

order to distinguish between changes in level or slope, we followed a strategy similar to the 

Kejriwal and Lopez (2010) proposal. The first step tests for one structural break using the 

Perron and Yabu (2009) procedure and considering the more general Model III. A rejection 

by this test can be caused by a change in level and/or slope. So, in the second stage the 

unrestricted test (designed to detect a break in slope while allowing the intercept to shift) is 
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applied. A rejection by this test can be interpreted as a change in the growth rate regardless 

of whether the level has changed. Given evidence in favour of a break we then proceed to 

test for one versus two breaks using the Kejriwal and Perron (2010) test. According to the 

number of observations in our analysis we allow for a maximum of two breaks. Bai and 

Perron (1998) and Prodan (2008) point out that a potential problem associated with this 

sequential procedure is that single break tests may suffer from low power in finite samples in 

the presence of multiple breaks, especially if they show opposite signs. So, we report the 

results of the one versus two breaks test independently of the results from the single break 

test. 

Conditional on a stable slope in the first step, we focus on changes in the level of the series, 

applying the Harvey et al. (2010) test in order to estimate the number of level breaks. Figure 

1 illustrates the sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

�)9!��
(� Sequential application of change tests. 

 

The analysis was carried out for the linear and quadratic models. Table 4 reports results. 

Columns ExpW and ExpW(2/1) show figures from Perron and Yabu (2009) and Kejriwal and 

Perron (2010) tests respectively. Column U includes results from Harvey et al. (2010) test 

for m=0.15 (first row) and m=0.1 (second row), which led to identical conclusions in all 

cases. Column nU  reports the number of level breaks detected from the sequential test. 

Test (0 vs. 1 break) 
(general model). 
Perron and Yabu (2009) test

Reject Test (0 vs. 1 break)
(unrestricted model) 

Reject
Test (1 vs. 2 breaks)
Kejriwal and Perron (2010) test

Reject 2 changes

Fail to reject

Fail to reject
1 change

Test for changes in the level
Harvey et al. (2010) test

Fail to reject
0 changes (¿low power?)

Test (0 vs. 1 break) 
(general model). 
Perron and Yabu (2009) test

Reject Test (0 vs. 1 break)
(unrestricted model) 

Reject
Test (1 vs. 2 breaks)
Kejriwal and Perron (2010) test

Reject 2 changes

Fail to reject

Fail to reject
1 change

Test for changes in the level
Harvey et al. (2010) test

Fail to reject
0 changes (¿low power?)
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Conclusions about the number of changes for the linear and quadratic models are similar, 

and the inclusion of a quadratic trend only allows modification of results manifestly for the 

coal and iron series. Also, we find one pure level shift just in the coal series (lineal model).  

Aluminium, gas, silver and zinc series show clearly two changes, both for the linear and 

quadratic models, while petroleum and tin have just one. For copper, lead and nickel (for the 

last two ones, only in the quadratic model) we find contradictory results from ExpW and 

ExpW(2/1) tests, which can be explained by low power of the tests in finite samples in the 

presence of multiple breaks. In these cases of doubt we will show further results about 

stationarity for both models (0 and 2 breaks). 
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Once the kind and number of changes were found, we applied the stationarity tests for the 

linear and quadratic specifications. For both models, we considered two types of changes: 

breaks and smooth transitions. The last specification is of interest since it incorporates the 

possibility of gradual, instead of instantaneous, changes and allows the nonlinear nature of 

the series to be captured. 

Tables 5 and 6 display results and critical values at the 1%, 5% and 10% significance levels 

(columns c.v.) for the stationarity tests, under the break and smooth case, respectively.
9
 

Column “Model” indicates the specification considered and between parentheses is the 

number of changes detected in the previous stage. In case of doubt on the specification 

(change in level and/or growth rate), we chose the more general one in order to avoid 

distortions in the size of the test, since the inclusion of irrelevant components just leads to 

slight reduction in power. In order to take residual autocorrelation into account, we used the 

Bartlett window, with bandwidth Tℓ  selected by using the data�driven device proposed by 

Kurozumi (2002), with the pre�specified values 9.0,8.0,5.0=k  (in Kurozumi's notation, 

kAT ℓℓ = ). Similar conclusions are obtained for each k value. Table 6 also includes the 

fitted λ and γ values
10

. 

In contrast to Lee et al. (2006), who concluded that including a quadratic trend implies few 

significant differences in their unit root analysis with breaks, we observed that the null of 

stationarity is generally favoured. In particular, for the break case, aluminium and petroleum 

                                                 
9
 In order to compute critical values for the stationarity test, the Monte�Carlo�based bootstrap proposed by 

Landajo and Presno (2010) was used (see Appendix A.3).  
10

 NLS fitting of the smooth transition models was implemented by using Levenberg�Marquardt algorithm, 

with the constraints λ∈ [0,1] and 0<γ<500 imposed on each smooth change. A preliminary grid search over 

10,000 (λ, γ) pairs was carried out before the gradient descent algorithm was initiated. 
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become stationary; and the same occurs for aluminium, coal and copper in the smooth 

analysis, although the contrary effect takes place for nickel. These changes in conclusions 

could be due to a decrease in size distortions as a consequence of a more suitable 

specification, although a factor to keep in mind is also the loss of power associated with the 

introduction of a new determinist component. 

Results in Table 6 show that estimated speeds of transition are clearly low for the gas series. 

In this case, the specification of a smooth change leads to the rejection of the null hypothesis 

of stationarity at lower significance levels. A similar behaviour happens for silver, copper, 

coal and nickel series, which are characterized by a relatively smooth/medium change 

estimate.        

For the tin series the fitted speed of transition is medium. However, in this case the 

stationarity test moves from rejection to non rejection of the null hypothesis when the more 

flexible smooth change specification is considered. A similar behaviour is observed for the 

petroleum series in the linear case. One explanation for this fact may be found in Landajo 

and Presno (2010), who point out that if the change is smooth and it is misspecified as a 

break, the stationarity test suffers size distortions which lead to incorrectly rejecting the null; 

on the contrary, the introduction of a smooth transition in series with a break just leads to 

slight reductions in the power of the stationarity test. 

In order to carry out a confirmatory analysis, we compared our results with Lee et al. (2006) 

unit root test conclusions for the same specifications (linear or quadratic model and number 

of breaks). Their research concludes that series are stationary in more cases than ours, which 

looks somewhat unexpected, since stationarity tests tend to favour the null of stationarity. In 

general terms, conclusions from both tests coincide except for coal (just for the linear 

model), aluminium, gas, silver and tin (for both, linear and quadratic, models) series, for 

which opposite conclusions are found. Cheung and Chinn (1996) summarized the results of 

their confirmatory analysis, and concluded that contradictions due to non rejection of 

stationarity tests and unit root tests can be imputed to the low power of the tests. This could 

be the case of the aluminium series for the quadratic model and coal for the linear one. The 

reverse, that is, a rejection for both tests can be explained by the existence of more complex 

data generating processes. It could be the case of aluminium (for the linear model), gas, 

silver and tin (for both models). We note that most of these cases are series where the 

estimation of the smooth transition model displays at least one low/medium value of the 

speed of transition parameter. This seems to suggest the suitability of considering these 

smoother and more flexible models. 
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Due to the variety of models considered and that some conclusions vary according to model 

specification, we opted for applying model selection criteria for linear/quadratic and 

break/smooth models, considering the number of changes detected in the first stage. 

Concretely, we computed the Schwarz information criterion (SIC), the Akaike information 

criterion (AIC) and the adjusted R�Squared. Table 7 reports results. With the exception of 

zinc and iron, in all cases the quadratic model is selected. Also, the smooth transition model 

is selected for coal, copper, iron, gas, petroleum and tin series. Excepting petroleum, all 

these series have at least one change with low/medium speed of transition, and some of them 

are marked as problematic in the break�based confirmatory analysis. This appears to support 

the presence of nonlinear patterns in the relative prices of natural resources. For the selected 

models, the null of stationarity is not rejected at 5% significance, except for gas and silver; at 

10% significance the null is also rejected for lead, nickel and tin. 

Prevalence of nonlinear features in relative prices of primary commodities is documented in 

the literature
11

. Balagtas and Holt (2009) studied the dataset
12

 compiled by Pfaffenzeller et 

al. (2007), which includes 24 relative primary commodity price series, among them some 

non�renewable resourses: aluminium, copper, lead, silver, tin and zinc. Balagtas and Holt 

(2009) conducted tests of the linear unit root model against models belonging to the family 

of smooth transition autoregressions (STAR). In their analysis they found that the null is 

rejected for most prices of primary commodities, among them, all the series corresponding 

to non�renewable resourses. They postulate that nonlinearity is due to impossibility of 

negative storage. 

Harvey et al. (2011) analysed the integration properties of the same dataset with a different 

methodology. They generalized the Elliott et al. (1996) unit root test which considers a 

linear trend along the direction of allowing for a local quadratic trend term, and suggested a 

test procedure based on a conservative union of rejections decision rule. In their analysis it is 

confirmed the rejection of the unit root hypothesis with both tests for aluminium and zinc, 

and the non rejection for silver and tin; however, their results are mixed for copper and lead. 

In these cases, the rejection rule leads to the rejection of the null of unit root, although just at 

the marginal 10% for copper.  

Our conclusions are largely in accordance to the above references. 

                                                 
11

 See Balagtas and Holt (2009) for a review.  
12

 Data differ from ours, since these are indices of primary commodity prices relative to the price of 

manufactures, observed annually over the period 1900�2003 and measured in logarithms. 
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By way of summary, we find that the series are stationary, excepting silver and gas. In the 

case of tin, lead and nickel the rejection is at the marginal 10% level significance. 

For the gas series, the conclusion of no stationarity is robust to all trend specifications and 

confirms Pindyck (1999) assertion: “state variables for coal and natural gas are estimated to 

be random walks or something very close to a random walk”. For the coal series, our results 

agree with this conclusion for the linear case, but not for the finally selected quadratic 

specification.  

Results for another energy series –petroleum� lead to non rejection of the null of stationarity 

for the selected quadratic model. Previous papers found evidence for quadratic trends in 

petroleum series (e.g. Slade, 1982 and Lee et al., 2006), and concluded that the inclusion of 

breaks allows rejecting the null of unit root (e. g. Postali and Picchetti, 2006 or Lee et al., 

2006). 

Conclusions for the silver series are also robust to the model specifications considered in this 

research, and for all of them we reject the null of stationarity, confirming the efficient 

market hypothesis. Xu and Fung (2005) remarked that precious metal commodities are 

characterized by standard quality and storage characteristics that enable arbitrage in cross�

market futures trading, so, understanding whether shocks to these prices are persistent or 

transitory has direct relevance to arbitrageurs and speculators in the commodity trading 

market. In our study it is confirmed that shocks are persistent, so prices cannot be predicted 

using historical data and it is not possible for investors to make profits using technical 

analysis. A conclusion about non�stationarity of silver series could be expected since its 

price, as that of gold, is determined in clearly speculative markets. Also, information criteria 

select the break model, which is in accordance to Mainardi´s (1998) assertion that precious 

metal price peaks are quickly followed by downward pressures brought about by factors 

such as international interest rates hikes or slack world economic activity. 

In the case of tin, conclusions depend on the model. For the selected one �a quadratic trend 

model with one smooth change� the rejection of the null of stationarity is just at the 10% 

significance level; however, the rejection is at lower levels when a break is considered. In 

the case of non linear models, the unit root test by Balagtas and Holt (2009) rejects the null 

at the marginal 10% and the procedure by Harvey et al. (2011) leads to no reject. So, 

conclusions are mixed, but at the habitual 5% significance level our results seem to indicate 

stationarity of the tin series. 
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Upon the above information about stationarity of the series more accurate estimates of the 

change dates can be obtained. According to Kejriwal and Lopez (2010), in the case of unit 

root the change dates are estimated from a specification in first differences, while for 

stationarity series a model in levels is considered. Table 8 reports change points for all the 

models considered in the study. In the case of smooth transition models we report 

estimations of λ and γ. As expected, when a smooth model is selected, at least one of the 

parameters of speed of transition is low/medium valued. For the specification selected 

according to information criteria we report parameter estimates of the complete model.  

Most of the series show negative slopes and the quadratic model is selected in many cases. 

Krautkraemer (2005) points out that for most of the twentieth century, natural resource 

commodity price trends have been generally flat or decreasing, especially for minerals 

series. Since these are non�renewable resources, one might expect they would be more 

subject to increasing scarcity and therefore increasing prices; however mineral prices 

generally declined, with the exception of the period from 1945 until the early 1980s, when 

many non�renewable prices (copper, iron, nickel, silver, tin, coal, gas) showed an upward 

trend, particularly after the 1973 embargo. Krautkraemer (2005) points out that “this seems 

to match the U�shaped price curve that would occur as depletion exerted enough upward 

pressure on price to overcome the downward force of technological progress”. However, the 

economy responds to price increases in a variety of ways: substitutions, research and 

development, new reserves are discovered, new methods for recovering resources or 

reducing the cost of using lower�quality reserves are found… As a result, most mineral 

prices declined since the early 1980s. 

:�����+
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Next we comment specific results for each resource and discuss historical and economic 

events which took place. 

�"!.)�)!.�
Linear models detect a change date which matches with the outbreak of World 

War I in Europe in 1914. Then, shortages of aluminium metal began to appear, and prices 

rose because of the increased demand for aluminium in war materials. In March 1918, the 

president of the U.S. imposed price controls on aluminium metal, and its use for military 

equipment and essential civilian needs was placed under Government regulation. This fact 

could mark the other turning point, detected around the end of World War I. 

However, the quadratic trend models detect changes before, at the end of the 19
th 

century 

and in the early 1900´s. The first date matches with the use of innovations, such as the Hall�
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Heroult process, which led to the mass commercial production of aluminium; as production 

levels continued to increase, producers kept the price low to encourage its use by consumers. 

This way, in the early 1900’s, producers held aluminium metal prices at a low steady level in 

order to compete against copper in the electrical industry and other appliances (Plunkert, 

1999). 

�DD���
In this case a quadratic trend is selected. Our results agree with Slade (1982), who 

compares linear and quadratic trends, and finds the latter provides the best fit for copper 

prices. The trend is quadratic, falling for a time and then rising.  

For the selected model, the change midpoints are detected at 1898 and 1982. The first 

change is quite sharp and may be related to the period of depression by the end of the 19
th

 

century. However, in 1982 the change has a medium speed. Edelstein (1999) points out that 

when the recession began in 1981, world mine production was reaching peak levels, and the 

resulting oversupply depressed copper prices (not sharply, according to our results) for 5 

years.  

For the other specifications, a change in 1918 is detected, corresponding to World War I. 

During war time copper was most needed, so some studies detect structural breaks in the 

First, and even in the Second World War.  

����� A linear model with two smooth changes (with midpoints around 1874 and 1956) is 

selected. The first change is quite sharp and coincides with the Long Depression which 

began with the Panic of 1873. Concretely, some researches show that the iron industry as a 

whole felt the effects of the depression between 1875 and 1886. At the time, railroad�

building industry and iron were closely related: the first one peaked in 1871 and the second 

one reached its highest price in 1872. So, the fall in railroad construction in 1875 entailed 

that both consumption and prices of iron declined. Following Stürmer (2011), the Long 

Depression exhibited a negative aggregate demand shock, which had effects on the iron 

prices. 

The change in 1956 could be related to the period after the Korean War. 

	��#�
 Information criteria select a quadratic model with breaks in 1947 and 1982, which 

coincide with previous studies, such us Kellard and Wohar (2006) or Yang et al. (2012). The 

first change could be related to the period after World War II, when total demand for lead 

accelerated with electronic developments (e.g. primary television and video display tubes) 

and demand for leaded gasoline. Smith (1999) points out that with the near phaseout of lead 

in gasoline, paints, solders, and water systems, and the imposition of expensive 

environmental production controls, the industry experienced hard times beween 1982 and 
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1986. Also, lead consumption declined substantially at the beginning of the eighties due to 

recession.  

�)8E�"�
Models show robust conclusions about change points, although a quadratic model 

with two breaks (in 1973 and 1988) is finally selected.  

Stainless steel production and nickel prices are closely related. In fact, in the late 1990’s, 

stainless steel production accounted for more than 60% of world nickel consumption and 

was the primary factor in nickel pricing (Kuck, 1999). So, nickel prices, reflecting 

consumption, rose slightly from 1970 until 1975, when the cumulative effect of opening 

several new production facilities began to be felt. In 1975, U.S. demand for nickel 

weakened, partly because of the termination of military operations in Vietnam and the crisis 

of the early 1970´s.  

In the eighties, price peaked in 1988 and declined afterwards. Kuck (1999) points out three 

factors which were responsible for this increase: the substantial and unforeseen increase in 

demand for stainless steel, reduction in world production capacity because of low metal 

prices during the early and mid�1980’s and the decreased availability of stainless steel scrap.  

�)"*���
 All the models detect changes at the beginning of the 80´s. It coincides with the 

exceptional speculative movement occurring in 1979�1980, when the Hunt brothers 

attempted to corner the silver market. Parameter estimates show a sharp increase followed 

by a negative slope. This fall in prices after the break point appears as a reaction to the high 

levels obtained beforehand. 

�)��
A smooth change with the midpoint in 1976 is detected
13

. Carlin (1999) remarks that 

during the 29�year run of the tin agreements (1956�1985), the International Tin Council 

supported the price of tin by buying and selling tin from its buffer stockpile; however, the 

buffer stockpile was not sufficiently large, mainly to defend the artificial ceiling prices, and 

tin prices rose, especially from 1973 through 1980 when rampant inflation plagued the 

American and many foreign economies. 1976 is precisely the midpoint of this period of 

increase in prices. This date is roughly in accordance to Lee et al. (2006) �who detect a break 

in 1974 which they relate to the energy crisis of the early 1970s�, and Kellard and Wohar 

(2006) �in 1975�. As Kellard and Wohar, we observe that after an initial ratchering up of 

prices, the trend slope is negative. As in the case of silver, this fall in prices seems to be a 

reaction to the previous high levels. Stürmer (2011) ascribes the increase of prices to a 

                                                 
13

 As remarked previously, results from stationarity testing in tin series are mixed, so we also estimated the 

change point under non�stationarity for the selected model, finding a change midpoint in 1977, which is very 

similar to the one found in the stationary case. 
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specific demand shock that might be explained by sustained purchases of tin by the 

international buffer stock until its collapse in 1985. 

F)�8�
Changes are detected around World War I, and are related to the importance of zinc in 

the war industry. With the onset of World War I in 1914, the demand for zinc ammunition 

products �bronze and brass shell casings� tripled the value of zinc. However, as the war 

ended so did the boom. 

For energy series (petroleum, coal and natural gas), information criteria select the quadratic 

model, which is in accordance to Pindyck (1999) specification. He points out that a quadratic 

U�shaped trend line is consistent with models of exhaustible resource production that 

incorporate exploration and accumulation of proved reserves over time, as well as 

technological change. 

��"�
The selected model estimates a smooth change at the beginning of the 1960´s and a 

fast one in 1974. The “Study of Coal Prices” by the U.S. government found that the second 

change was due to the OPEC oil embargo started in December 1973, which raised prices for 

substitutes (coal and natural gas). Other factors were the anticipation of the United Mine 

Workers' strike during the second half of 1974 and the continuing increase in labor costs, a 

trend which had begun in 1970. 

Following Ellerman (1994), the trends in the price of coal roughly coincide with the 

dominant realities of the industry: loss of market share to oil and natural gas during the 

1950s and 1960s, rising crude oil prices in the 1970s, and over�capacity in the 1980s. He 

points out these conditions probably contributed to the observed changes in price, but 

changing productivity is the major explanatory factor for the trend in coal prices in U.S. 

since World War II.  

6��� Different changes are found depending on the specific structures (breaks/smooth 

transitions) considered. The break model captures the first oil shock and the period of the 

full liberation of the U.S. gas market. From 1954 to 1978, the price of natural gas transported 

through the interstate pipeline system was regulated by the Federal Power Commission, and 

prices changed very little from year to year. A partial deregulation of wellhead prices 

occurred with the Natural Gas Policy Act in 1978. But in the meantime, prices began to rise 

in the mid�1970s, a period of turmoil in international energy markets as a result of the first 

oil shock. So, when full de�regulation finally became effective in 1985, gas prices had risen, 

creating a long�term market surplus, the ‘gas bubble’. Prices suqsequently retreated. Starting 
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in 1984, the Federal Energy
Regulatory Commission initiated a series of orders
14

 intended to 

restructure the buy�sell relationship among production, transmission and distribution 

companies. 

Lee and Lee (2009) also detect structural breaks in many countries around 1985, which they 

relate to the 1985 crash in oil prices. 

��+��"�!.�
Information criteria select a quadratic model. This is in accordance with Ahrens 

and Sharma (1997), Lee et al. (2006) and Li and Thompson (2010), who emphasized the 

importance of allowing for a nonlinear specification when examining the time series 

properties of oil price. 

All the models detect a change in 1980�1981, coinciding with the Iranian Revolution and 

Iran�Iraq War, which caused oil prices to peak towards the end of 1981 as well as important 

effects on the world economy
15

. Kilian (2009) points out that the increase in the real price of 

oil after 1979 appears to be driven mainly by the superimposition of a sharp increase in 

precautionary demand in 1979 (due to the political uncertainty in the Middle East: 

Khomeini’s arrival in Iran, the Iranian hostage crisis and the Soviet invasion of Afghanistan) 

on a slower�moving strong increase in real economic activity that started two years earlier, 

with only minor contributions from oil supply shocks.  

Subsequently world petroleum consumption declined in the early 1980s due mainly to the 

development of new technologies, oil substitution by other energies (especially in power 

generation) and more efficient energy use. Although Saudi Arabia shut down production in 

1981�1985, the nominal and the real price of oil declined significantly; in 1986, the Saudis 

abandoned those efforts, causing the price of oil to collapse. 

Parameter estimates in Table 8 agree with these events, and show that after a large increase, 

oil prices experienced a negative trend, the adjustment being relatively fast.  




?�
��	������


This paper employs a powerful time series methodology in order to investigate the stochastic 

properties and the change points of a database of 11 nonrewable resource real prices. For this 

we have considered four model specifications which combine linear and quadratic trends 

with potential breaks and smooth transitions between regimes. 

                                                 
14

 For instance, order no. 380 released utility buyers (such as the local distribution companies) from the 

commitment to purchase the transportation capacity they reserve; as Davoust (2008) shows, this led to a deep 

fall in average wellhead prices. 
15

 In fact, the National Bureau of Economic Research characterizes the economic difficulties at this time as 

being two separate economic recessions, with the first one, due to the Iranian Revolution ending in July 1980, 

but followed very quickly by a new shock beginning in July 1981 with the Iran�Iraq War. 
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Our results indicate that most of the series are stationary, but there are two clear exceptions: 

natural gas and silver. This fact means that real price shocks on these resources are mostly 

permanent in nature, following that their markets are efficient in the weak sense, so prices 

cannot be predicted using historical data and it is not possible for investors to make profits 

using technical analysis. Also, both resources share the characteristic that their prices were 

regulated and after the deregulation suffered a “bubble”: in 1980, when the Hunt brothers 

tried to corner the silver market and in the mid�eighties, when full de�regulation in gas 

market finally became effective. In contrast to others papers, we find that oil prices are 

stationary around a quadratic trend. As Pindyck (1999) noted, this is consistent with crude 

oil being sold in a competitive market where prices revert to long�run marginal cost, which 

changes only slowly. In this case, technical analysis is useful in order to predict prices and 

making profits. 

Demarcation between stationary and non�stationary resource real prices series also has 

implications in terms of stabilization policies. Reinhart and Wickham (2004) argue that 

design and feasibility of stabilization and hegding strategies depend very much on the nature 

of shocks. Both are useful in dealing only with temporary and, preferably, short�lived 

shocks, while permanent shocks require adjustment and, possibly, the implementation of 

structural policies. Also, if a shock is temporary, but its effects are widespread and persist 

for many years or the price series has a varying trend, price stabilization may be equally 

costly and difficult to implement. From our analysis, silver and gas are difference stationary 

and so stabilization policies would be ineffective, and for the rest of series, these policies 

may be difficult to implement. This fact would explain, for instance, the gradually selling off 

of the tin buffer stock (see Ghoshray, 2011).  

Information about stochastic properties of the series also allowed more accurate estimates of 

the change dates in prices, which are related to economic and historical events. Following 

Kilian (2009), some of the changes could be related to supply, aggregate demand and 

specific demand shocks. An example of the first one is the negative shock to supply which 

increased the real price of oil at the beginning of the eighties. Aggregate demand shocks are 

characterized for being relatively similar for all the resources. Instances include the Long 

Depression, World Wars I and II and the subsequent reconstruction, the industrial expansion 

of South Korea and Japan in the 1960s or the recessions in 1974 and 1981, and they seem to 

explain changes in copper, iron, lead or zinc prices. Specific demand shocks evolve 

differently across markets, and include precautionary demand, demand shocks due to the 

spread of technological innovation or non�linearities in the intensity of use. Stürmer (2011) 
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noted that positive commodity�specific demand shocks exhibit inmediate, large and 

persistent positive effects on real prices, and this could be the case of lead, gas, petroleum, 

silver or tin. Also, in many series we find a sharp increase in price levels followed by a 

negative change in trend, which arises as a reaction to the high prices. Research and 

development, innovation in production methods, use of substitutes, discovery of new 

reserves, among other factors, would explain this fact.  

Finally, along the analysis we have considered some models: linear/quadratic and 

breaks/smooth transitions. Information criteria confirm suitability of quadratic and smooth 

transition models in many of the series, and so the neccesity of applying stationarity tests 

adapted to these nonlinearities. However, the above tests are parametric, and in some cases, 

conclusions vary with the trend specification. An interesting avenue for future research 

would be to extend the analysis in order to allow for nonparametric stationarity testing, such 

as the recent proposal by Landajo and Presno (2012). Nonparametric methods provide 

increased flexibility, as they do not require a priori specification of a fixed parametric 

structure for the trend function.  
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��/"�
(� Perron and Yabu (2009) test. Finite sample and asymptotic critical values.  

 T=100 T=500 Asymptotic 

 α=0 α=1 α=0 α=1 α=0 α=1 

Model III 

90% 3.1644 3.6845 2.6683 3,04970 2.51 2.82 

95% 4.0131 5.1254 3.3964 3,8810 3.12 3.36 

99% 6.2493 20.9171 5.0738 12,5198 4.78 4.76 

Model III unrestricted 

90% 1.6534 1.9696 1.5143 1.6641 1.34 1.40 

95% 2.2766 3.0167 2.0423 2.4588 1.90 1.93 

99% 4.1969 13.1699 3.4173 13.2114 3.07 3.27 

Model III (quadratic)  

90% 3,2577 3,790 2.6681 3.0934 ����� ����� 

95% 4,2117 5,146 3.3491 3.8542 ����� ����� 

99% 6,5818 14,329 5.0565 8.4882 ����� ����� 

Model III (quadratic) unrestricted 

90% 1,6315 2,085 1.5091 1.7092 ����� ����� 

95% 2,3153 3,178 2.0917 2.3248 ����� ����� 

99% 4,3529 11,374 3.3234 5.9285 ����� ����� 
5,000 replications. ε=0.05; δ=0.5 

 

��/"�
1� Kejriwal and Perron (2010) test. Finite sample and asymptotic critical values.  

 T=100 T=500 Asymptotic 

 α=0 α=1 α=0 α=1 α=0 α=1 

Model III 

90% 4.8002 4.5112 3.1204 3.2812 2.96 3.26 

95% 5.9687 6.0204 3.8413 3.9506 3.67 3.85 

99% 9.3103 21.2810 5.8604 5.4421 5.21 5.15 

Model III unrestricted 

90% 2.322 2.312 1.8235 1.7652 1.75 1.82 

95% 3.562 3.331 2.4927 2.3702 2.32 2.41 

99% 6.263 8.232 4.0152 3.7879 3.79 3.76 

Model III (quadratic)  

90% 5.32932 5.1782 3.2625 3.2606 ����� ����� 

95% 6.8828 7.0421 4.0928 4.0200 ����� ����� 

99% 10.8247 24.6765 5.8838 5.6563 ����� ����� 

Model III (quadratic) unrestricted 

90% 2.7601 2.8740 1.7755 1.8058 ����� ����� 

95% 3.8446 3.9938 2.3763 2.3945 ����� ����� 

99% 6.7711 12.5337 4.0526 3.8243 ����� ����� 
5,000 replications. ε=0.1; δ=0.1 
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��/"�
<� Harvey et al. (2010) test. Finite sample critical values.  

 S1 S0 ξκ  S1 S0 ξκ  

Linear model 

90% (ξ=0.1) 0.5139 20.6963 1.057 0.5588 17.1472 1.029 

95% (ξ=0.05) 0.5612 22.067 1.064 0.6129 18.2202 1.031 

99% (ξ=0.01) 0.6717 24.8387 1.086 0.7239 20.7237 1.030 

Quadratic model 

90% (ξ=0.1) 0.5091 20.8609 1.081 0.5426 17.5263 1.026 

95% (ξ=0.05) 0.5634 22.5771 1.061 0.5922 18.6203 1.029 

99% (ξ=0.01) 0.6600 25.0302 1.127 0.6881 21.7276 1.058 

 m=0.1; 85.0;15.0 == UL λλ ;nmax=8 m=0.15; 9.0;1.0 == UL λλ ; nmax=6 

T=100; 5000 replications  
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��/"�
?� Estimation of number of breaks. Linear and quadratic cases. 
 LINEAR QUADRATIC 

 ExpW 

(Model 

III) 

ExpW 

(Model III; 

unrestricted) 

ExpW(2/1) 

(Model 

III) 

ExpW(2/1) 

(Model III; 

unrestricted) 

Number 

of breaks 

U Level 

breaks 

nU 

ExpW 

(Model 

III) 

ExpW 

(Model III; 

unrestricted) 

ExpW(2/1) 

(Model 

III) 

ExpW(2/1) 

(Model III; 

unrestricted) 

Number 

of breaks 

U Level 

breaks 

nU 

Aluminium 31.761b 30.185 b 36.441 b 3.409 a 2   21.218 b 16.591 b 22.897 b 0.126 2   

Coal 61.797 b 1.140 7.201 b 2.261  0.8747b 

0.9675b 

1 62.648 b 4.411 b 7.516 b 0.422 2   

Copper 1.763 0.165 5.116 a 4.186 b 0/2 0.3398 

0.3591 

0 

 

1.897 0.683 79.856 b 78.885 b 0/2 0.3398 

0.4112 

0 

Iron 4.943a 4.064 b 18.877 b 4.849 b 2   1.616 0.643 6.089a �0.095 0 0.3803 

0.4846 

0 

Lead 3.999 a 0.323 1.856 0.544 0 0.2750 

0.3515 

0 3.286 0.111 13.605 b 12.283 b 0/2 0.2750 

0.3364 

0 

Gas 60.821 b 9.319 b 100.978 b 75.331 b 2   51.112 b 21.990 b 32.961 b 31.996 b 2   

Nickel 5.994 b 5.888 b 31.466 b 9.045 b 2   2.916 1.868 22.010 b 6.090 b 0/2 0.4439 

0.5658 

0 

Petroleum 15.565 b 5.181 b 1.686 1.070 1   11.964 b 6.202 b 0.940 0.217 1   

Silver 37.639 b 7.735 b 22.582 b 17.827 b 2   33.908 b 27.014 b 26.324 b 25.165 b 2   

Tin 17.413 b 12.862 b 4.656 3.512 a 1   19.924 b 17.241 b 2.979 1.988 1   

Zinc 19.672 b 1.568 58.105 b 57.251 b 2   20.622 b 0.677 39.211 b 39.198 b 2   

ε=0.05; δ=0.5 (Perron and Yabu test) ε=0.1; δ=0.1 (Kejriwal and Perron test). Column U: m=0.15 (first row), m=0.1 (second row) for the Harvey et al. (2010) test. 
a, b

 denote significance at 10% and 5%, respectively. 

��/"�
@. Stationarity test. Break case. 

 LINEAR QUADRATIC 

 Model k=0.5 k=0.8 k=0.9 c.v.  10% c.v. 5% c.v. 1% Model k=0.5 k=0.8 k=0.9 c.v. 10% c.v. 5% c.v. 1% 

Aluminium III(2) 0.1308b 0.1209b 0.1209b 0.0912 0.1093 0.1632 III(2) 0.0447 0.0474 0.0474 0.0591 0.0691 0.0893 

Coal I(1) 0.0811 0.0903 0.1177b 0.0948 0.1155 0.1827 III(2) 0.0254 0.0307 0.0307 0.0439 0.0533 0.0713 

Copper (0) 

III(2) 

0.2160c 

0.0513a 

0.1422b 

0.0513a 

0.1422 

0.0513a 

0.1050 

0.0503 

0.1279 

0.0571 

0.1777 

0.0723 

(0) 

III(2) 

0.0897b 

0.0276 

0.0698a 

0.0276 

0.0698a 

0.0276 

0.0631 

0.0354 

0.0743 

0.0413 

0.0916 

0.0536 

Iron III(2) 0.0366 0.0366 0.0366 0.0502 0.0582 0.0738 (0) 0.0479 0.0479 0.0472 0.0729 0.0876 0.1207 

Lead (0) 0.0881 0.0826 0.0826 0.1077 

 

0.1295 0.1829 (0) 

III(2) 

0.0926b 

0.0395a 

0.0864b 

0.0395a 

0.0864b 

0.0395a 

0.0615 

0.0391 

0.0734 

0.0458 

0.0995 

0.0586 

Gas III(2) 0.1395c 0.1023b 0.1023b 0.0796 0.0961 0.1332 III(2) 0.0661b 0.0603c 0.0603c 0.0529 0.0606 0.0773 

Nickel III(2) 0.0756a 0.0704 0.0704 0.0736 

 

0.0883 0.1161 (0) 

III(2) 

0.0496 

0.0554a 

0.0497 

0.0507a 

0.049 

0.0507a 

0.0719 

0.0506 

0.0860 

0.0576 

0.1211 

0.0742 

Petroleum III(1) 0.1659b 0.1532b 0.1532b 0.1007 0.1205 0.1977 III(1) 0.0570 0.0549 0.0549 0.0635 0.0761 0.0961 

Silver III(2) 0.2868c 0.1648c 0.1574b 0.0970 0.1200 0.1675 III(2) 0.1035c 0.0848b 0.0848b 0.0619 0.0712 0.1000 

Tin III(1) 0.1313b 0.1255b 0.1255b 0.0966 0.1190 0.1616 III(1) 0.0882b 0.0868b 0.0868b 0.0593 0.0706 0.0961 

Zinc III(2) 0.0315 0.0327 0.0327 0.0582 0.0708 0.0921 III(2) 0.0317 0.0330 0.0330 0.0421 0.0486 0.0597 
   a, b, c

 denote significance at 10%, 5% and 1%, respectively. 
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��/"�
A� Stationarity test. Smooth transition case. 
 LINEAR QUADRATIC 

 Model  k=0.5 k=0.8 k=0.9 c.v. 

10% 

c.v. 

5% 

c.v. 

1% 

Model  k=0.5 k=0.8 k=0.9 c.v. 

10% 

c.v. 

5% 

c.v. 

1% 

Aluminium III(2) 

65.228ˆ;154.0ˆ

23.101ˆ;020.0ˆ

22

11

==

==

γλ

γλ � 0.1174
c
 0.1110

a
 0.1110

a
 0.0902 0.1114 0.1592 III(2) 

65.228ˆ;156.0ˆ

03.26ˆ;040.0ˆ

22

11

==

==

γλ

γλ  0.0347 0.0356 0.0356 0.0425 0.0500 0.0670 

Coal I(1) 44.184ˆ;853.0ˆ
11 == γλ  0.0866 0.0957

b
 0.1094

b
 0.0886 

 

0.1089 0.1532 III(2) 

64.228ˆ;865.0ˆ

82.44ˆ;756.0ˆ

22

11

==

==

γλ

γλ  0.0235 0.0259 0.0259 0.0358 0.0424 0.0576 

Copper III(2) 

80.58ˆ;940.0ˆ

65.228ˆ;409.0ˆ

22

11

==

==

γλ

γλ  0.0567
b
 0.0561

b
 0.0561

b
 0.0395 0.0452 0.0589 III(2) 

81.44ˆ;924.0ˆ

26.174ˆ;238.0ˆ

22

11

==

==

γλ

γλ  0.0270 0.0270 0.0270 0.0299 0.0345 0.0452 

Iron III(2) 

12.15ˆ;823.0ˆ

26.174ˆ;040.0ˆ

22

11

==

==

γλ

γλ  00227 0.0227 0.0227 0.0377 0.0443 0.0604         

Lead         III(2) 

26.174ˆ;936.0ˆ

26.174ˆ;635.0ˆ

22

11

==

==

γλ

γλ  0.0398
a
 0.0398

a
 0.0398

a
 0.0351 0.0404 0.0544 

Gas III(2) 

81.44ˆ;865.0ˆ

12.15ˆ;196.0ˆ

22

11

==

==

γλ

γλ  0.0446
c
 0.0453

c
 0.0453

c
 0.0228 0.0261 0.0340 III(2) 

14.77ˆ;938.0ˆ

81.58ˆ;770.0ˆ

22

11

==

==

γλ

γλ  0.0691
c
 0.0619

b
 0.0619

b
 0.0389 0.0457 0.0620 

Níkel III(2) 

22.101ˆ;979.0ˆ

12.15ˆ;805.0ˆ

22

11

==

==

γλ

γλ  0.0406
a
 0.0399

a
 0.0399

a
 0.0386 0.0458 0.0617 III(2) 

22.101ˆ;979.0ˆ

12.15ˆ;825.0ˆ

22

11

==

==

γλ

γλ  0.0414
b
 0.0406

b
 0.0406

b
 0.0283 0.0324 0.0428 

Petroleum III(1) 85.81ˆ;920.0ˆ
11 == γλ  0.1273

a
 0.1142

a
 0.1142

a
 0.0931 0.1155 0.1614 III(1) 78.213ˆ;922.0ˆ

11 == γλ  0.0567 0.0533 0.0533 0.0611 0.0731 0.1010 

Silver III(2) 

65.228ˆ;905.0ˆ

69.6ˆ;019.0ˆ

22

11

==

==

γλ

γλ  0.0335
b
 0.0335

b
 00355

b
 0.0281 0.0322 0.0419 III(2) 

64.228ˆ;924.0ˆ

65.228ˆ;917.0ˆ

22

11

==

==

γλ

γλ  0.0950
b
 0.0950

b
 0.0950

b
 0.0611 0.0728 0.1001 

Tin III(1) 10.52ˆ;867.0ˆ
11 == γλ  0.0477 0.0495 0.0495 0.0772 0.0945 0.1368 III(1) 72.61ˆ;868.0ˆ

11 == γλ  0.0524
a
 0.0525

a
 0.0525

a
 0.0487 0.0579 0.0786 

Zinc III(2) 

 64.228ˆ;393.0ˆ

65.228ˆ;379.0ˆ

22

11

==

==

γλ

γλ  0.0334 0.0334 0.0334 0.0544 0.0648 0.0888 III(2) 

64.228ˆ;392.0ˆ

65.228ˆ;379.0ˆ

22

11

==

==

γλ

γλ  0.0331 0.0331 0.0331 0.0386 0.0442 0.0565 

a, b, c
 denote significance at 10%, 5% and 1%, respectively. 
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��/"�
B� Results of model selection criteria. 
  BREAK  

LINEAR 

SMOOTH  

LINEAR 

BREAK  

QUADRATIC 

SMOOTH 

QUADRATIC 

Aluminium NºChanges 

SIC 

AIC 

Adj. R2 

2 

496.3 

476.35 

0.897 

2 

502.03 

477 

0.898 

1


?C@�?


?A1�0


2�0( 

2 

491.27 

463.77 

0.913 

Coal NºChanges 

SIC 

AIC 

Adj. R2 

1 

11.26 

�2.71 

0.7809 

1 

10.94 

�3.04 

0.7815 

2 

�116.30 

�141.47 

0.9325 

1


�(1A�?0


�(@B�1@


2�0?(B 

Copper NºChanges 

SIC 

AIC 

Adj. R2 

0 

565.24 

556.85 

0.255 

2 

501.30 

478.93 

0.624 

0 

565.24 

556.85 

0.255 

2 

505.38 

477.42 

0.6617 

0 

547.50 

536.32 

0.3766 

2 

491.34 

466.18 

0.664 

0 

547.50 

536.32 

0.3766 

1


?0A�?0


?A@�B?


2�A0B0 

Iron NºChanges 

SIC 

AIC 

Adj. R2 

2 

563.92 

542.76 

0.6393 

1


@@B�20


@<2�A?


2�B(1( 

0 

584.72 

571.50 

0.5115 

0 

584.72 

571.50 

0.5115 

Lead NºChanges 

SIC 

AIC 

Adj. R2 

0 

258.57 

247.39 

�0.0045 

0 

258.57 

247.39 

�0.0045 

0 

262.48 

248.50 

�0.0057 

1


12B�@B


(C1�?(


2�?B< 

0 

262.48 

248.50 

�0.0057 

2 

218.99 

188.24 

0.416 

Gas NºChanges 

SIC 

AIC 

Adj. R2 

2 

218.53 

200.32 

0.9621 

2 

188.78 

166.01 

.9799 

2 

190.51 

170.02 

0.9754 

1


(BC�0C


(@<�0?


2�0C2C 

Nickel NºChanges 

SIC 

AIC 

Adj. R2 

2 

462.39 

443.53 

0.5960 

2 

457.61 

434.04 

0.6502 

0 

504.81 

493.03 

0.2109 

1


?@<�?C


?<1�1B


2�A@?1 

0 

504.81 

493.03 

0.2109 

2 

461.69 

435.77 

0.6462 

Petroleum NºChanges 

SIC 

AIC 

Adj. R2 

1 

109.62 

92.90 

0.5964 

1 

200.33 

183.60 

0.1406 

1 

76.94 

57.43 

0.7021 

(


AA�(2


?A�@0


2�B1BC 

Silver NºChanges 

SIC 

AIC 

Adj. R2 

2 

1043.55 

1021.18 

0.7120 

2 

1048.1 

1020.1 

0.7188 

1


011�@A


C0B�?2


2�C0B1 

2 

955.81 

925.06 

0.8728 

Tin NºChanges 

SIC 

AIC 

Adj. R2 

1 

705.23 

689.25 

0.7486 

1 

796.89 

780.91 

0.4030 

1 

697.99 

679.35 

0.7730 

(


AC(�0@


AA<�<2


2�C2?0 

Zinc NºChanges 

SIC 

AIC 

Adj. R2 

1


1B?�<0


1@1�21


2�@(1B 

2 

332.77 

304.81 

0.2576 

2 

279.16 

253.99 

0.5085 

2 

335.43 

304.67 

0.3253 
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��/"�
C� Change dates and parameter estimates.

 BREAK LINEAR SMOOTH LINEAR BREAK QUADRATIC SMOOTH QUADRATIC 

Aluminum 1914; 1917 

 

 

 

1917; 1919 

235.0
1
ˆ =λ ; 9.246

1
ˆ =γ ; 255.0

2
ˆ =λ ; 1.203

2
ˆ =γ  

 

(C00G
(02C


8.277
0

ˆ =β ; 1.3432ˆ
1 −=β ; 6.101

2
ˆ =β  

3.13
1
ˆ −=δ ; 1.3479

1
ˆ =η ; 

5.38
2

ˆ −=δ 4.228
2

ˆ −=η  

1899;1909 

040.0
1
ˆ =λ ; 0.26

1
ˆ =γ ; 6.228

2
ˆ =γ 156.0

2
ˆ =λ  

 

Coal 1974 1973 

853.0
1
ˆ =λ ; 4.184

1
ˆ =γ  

 

 
 

 

1958; 1974 (0A(�1G(0B?


756.0
1
ˆ =λ ; 8.44

1
ˆ =γ ; 865.0

2
ˆ =λ 6.228

2
ˆ =γ  

5.4
0

ˆ =β ; 7.5
1

ˆ −=β ; 8.12
2

ˆ =β  

8.17
1
ˆ −=δ ; 2.18

1
ˆ =η ; 

5.78
2

ˆ =δ ; 7.83
2

ˆ −=η  

 

Copper 1919; 1981 1919; 1984 

409.0
1
ˆ =λ ; 940.0

2
ˆ =λ ; 6.228

1
ˆ =γ ; 8.58

2
ˆ =γ  

 

1918; 1975 (C0CG
(0C1


238.0
1
ˆ =λ ; 3.174

1
ˆ =γ ; 924.0

2
ˆ =λ 8.44

2
ˆ =γ  

0.58
0

ˆ =β ; 9.145
1

ˆ −=β ; 8.300
2

ˆ =β  

7.67
1
ˆ =δ ; 6.202

1
ˆ −=η ; 4.369

2
ˆ −=δ ; 8.327

2
ˆ =η  

Iron 1875; 1924 (CB?G
(0@A


040.0
1
ˆ =λ ; 3.174

1
ˆ =γ ; 823.0

2
ˆ =λ 1.15

2
ˆ =γ  

5.83
0

ˆ =β ; 3282
1

ˆ =β  

4.29
1
ˆ =δ ; 1.3345

1
ˆ −=η ; 

111.339
2

ˆ =δ ; 018.272
2

ˆ −=η  

 

1875; 1949  1875�76; 1951�52 

052.0
1
ˆ =λ ; 9.246

1
ˆ =γ ; 784.0

2
ˆ =λ 9.8

2
ˆ =γ  

 

Lead   (0?BG
(0C1


9.14
0

ˆ =β ; 2.4
1

ˆ −=β ; 8.0
2

ˆ −=β  

6.5
1
ˆ =δ ; 9.8

1
ˆ −=η ; 

6.7
2

ˆ −=δ ; 2.97
2

ˆ =η  

 

1947; 1983 

635.0
1
ˆ =λ ; 3.174

1
ˆ =γ ; 936.0

2
ˆ =λ 3.174

2
ˆ =γ  
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Gas 1974; 1984 1985; 1987 

902.0
1
ˆ =λ ; 8.23

1
ˆ =γ ; 942.0

2
ˆ =λ 2.113

2
ˆ =γ  

 

 

1974; 1984 (0C@G
(0CC


902.0
1
ˆ =λ ; 8.23

1
ˆ =γ ; 942.0

2
ˆ =λ 2.113

2
ˆ =γ  

6.19
0

ˆ =β ; 7.28
1

ˆ −=β  

1.1166
1
ˆ =δ ; 2.1114

1
ˆ −=η ; 

2.742
2

ˆ −=δ ; 4.740
2

ˆ =η  

Nickel 1970; 1988 1976; 1989 

805.0
1
ˆ =λ ; 1.15

1
ˆ =γ ; 

979.0
2

ˆ =λ 2.101
2

ˆ =γ  

 

 

(0B<G
(0CC


2.99
0

ˆ =β ; 0.172
1

ˆ −=β ; 8.228
2

ˆ =β  

9.30
1
ˆ =δ ; 9.605

1
ˆ −=η ; 

1.175
2

ˆ =δ ; 1.2679
2

ˆ −=η  

1977; 1989 

825.0
1
ˆ =λ ; 1.15

1
ˆ =γ ; 979.0

2
ˆ =λ 2.101

2
ˆ =γ  

 

Petroleum 1981 1981 

924.0
1
ˆ =λ ; 1.203

1
ˆ =γ  

 

 

1980 (0C(


922.0
1
ˆ =λ ; 6.228

1
ˆ =γ  

2.5
0

ˆ =β ; 9.9
1

ˆ −=β ; 1.11
2

ˆ =β  

3.149
1
ˆ =δ ; 9.150

1
ˆ −=η  

Silver 1980; 1982 1980 

911.0
1
ˆ =λ ; 9.246

1
ˆ =γ ; 915.0

2
ˆ =λ 9.246

2
ˆ =γ  

 

(0C2G
(0C1


2.9
0

ˆ −=β ; 5.23
1

ˆ =β  

3.1325
1
ˆ =δ ; 3.737

1
ˆ −=η ; 

9.73
2

ˆ −=δ ; 5.708
2

ˆ =η  

1979; 1982 

908.0
1
ˆ =λ ; 9.246

1
ˆ =γ ; 925.0

2
ˆ =λ 9.246

2
ˆ =γ  

 

Tin 1977 1977 

866.0
1
ˆ =λ ; 8.58

1
ˆ =γ  

 

 

 

 

1974 

 

 

(0BA


867.0
1
ˆ =λ ; 8.58

1
ˆ =γ  

1.77
0

ˆ =β ; 3.48
1

ˆ =β ; 8.29
2

ˆ =β  

5.2185
1
ˆ =δ ; 1.2281

1
ˆ −=η  

Zinc (0(@G
(0(B


2.16
0

ˆ =β ; 2.2
1

ˆ =β  

3.60
1
ˆ =δ ; 3.4491

1
ˆ −=η ; 

2.9
2

ˆ =δ ; 3.4496
2

ˆ =η  

1916; 1918 

379.0
1
ˆ =λ ; 645.228

1
ˆ =γ ; 393.0

2
ˆ =λ ; 644.228

2
ˆ =γ  

 

1915; 1917 1916; 1918 

379.0
1

~ =λ ; 645.228
1

ˆ =γ ; 392.0
2

ˆ =λ 644.228
2

ˆ =γ  
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For the a priori unknown break date case, the Perron and Yabu (2009) test involves the 

following steps: 

1. For each break date candidate, the data are detrended by OLS to obtain residuals 

tû . 

2. Consider autoregression: 

∑
=

−− +∆+=
k

i

tkititt euuu
1

1
ˆˆˆ ζα  

(1a) 

where k is chosen using the Bayesian Information Criterion (BIC) (k is allowed to be in 

the range [0,[12(T/100)
1/4

]]). The corresponding estimate is denoted by α~ , and τ~  is the 

t�ratio 
ασ

ατ ~
1~

~ −= , with ασ~  being its standard deviation.  

If k=0, we have AR(1) errors. 

 

The AR(1) errors case 

3. In order to improve the finite sample properties of the test, Perron and Yabu use 

a bias�corrected version of α~ , denoted by Mα~ :  

( ) ασταα ~~~~ CM +=  

where 

( ) ( ) ( )[ ]
( )













−≤
−≤<−+−

≤<−+++−
>−

= −−

−−

21

1

21

1

11

1

2

1

~0

~~1~

~~~1~

~~

~

cif

acifrTI

aifacrTI

if

C
p

pctp

pct

τ
τττ

τττττ
τττ

τ  

 

 

(2a) 

c1=(1+r)T; ( ) ( )[ ] ( )( )[ ] 12

2 1
−+++−+= TIaTITrc ppctpctppct τττ ; a=10,  pctτ  is a 

percentile of the limit distribution of τ~  when α=1. They recommend 99.0τ  for the 

unknown break case. ( )[ ]21+= pI p , and p is the order of AR errors. 

4. Next the proposal implies to use the following super�efficient estimate of α:  





≤−
>−

=
11~1

11~~
~

M

MM

MS
Tif

Tif

α
αα

α δ

δ

 
(3a) 

This super�efficient estimate is vital for obtaining procedures with nearly identical limit 

properties in the I(0) and I(1) cases. 

5. Apply the quasi Generalized Least Squares (GLS) procedure with MSα~  to obtain 

the estimate of Ψ: 

( ) ( ) ( )
1

'

11

' ,...,2,~1~1~1

uxy

TtuLxLy tMStMStMS

+Ψ=

=−+Ψ−=− ααα
 

(4a) 

Denote the resulting estimates by Ψ~  and residuals by te~ . 
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Next, the Wald�statistic for testing the null hypothesis RΨ=a  is constructed. Denote by 

( )λRQFW , where the subscript RQF stands for Robust Quasi Feasible GLS, the Wald 

statistic for a particular break fraction λ: 

( ) ( )[ ] ( )[ ] ( )[ ]Ψ−ΨΨ−Ψ=
−− ~

''
~ 112'

RRXXRsRWRQF λ  (5a) 

where { }MS

txX
α~= , ( ) tMSt xLx MS αα ~1

~

−=  for t=2,…,T; 1

~

1 xx MS =α
; ∑

=

−=
T

t

teTs
1

212 ~ . 

6. Finally, for an unknown break date, the test statistic is evaluated for each break 

date candidate for a range of possible breaks. Perron and Yabu (2009) consider several 

functionals of the Wald test, but recommend the application of the Exp functional: 

( ) 














= ∑
Λ∈

−

λ
λ '1

2

1
explog RQFWTExpW  

(6a) 

where { }ελελ −≤≤=Λ 1; '' , (λ’ denotes a generic break fraction used to compute a 

particular value of the Wald test). ε>0 is a trimming parameter. 




The AR(p) errors case 

A modification is introduced in step 5, where the Wald statistic is replaced by 

( ) ( )[ ] ( ) ( )[ ] ( )[ ]Ψ−ΨΨ−Ψ=
−− ~

''
~~ 11'

RRXXRhRWRQF λλ ν  
(7a) 

( )λυh
~

 is an estimate of (2π times) the spectral density function of tt uL)1( αν −=  at 

frequency zero. Its construction depends on the nature of the errors, I(0) or I(1). 

In the I(0) case �when 1~ <MSα � the kernel�based estimator 

( ) ( ) ( ) ( ) ( )λνλνωλνλυ jt

T

jt

t

T

t

T

j

t mjTTh −
+==

−

=

−− ∑∑ ∑+= ˆˆ,2ˆ
~

11

1

1

121  
(8a) 

is used, where tν̂  are the OLS residuals from (4a). The function ( )mj,ω  is the quadratic 

spectral kernel and the bandwidth m is selected according a plug�in method, using an 

AR(1) approximation.  

When 1~ =MSα , the above estimator can be obtained from the regression 

tkit

k

i

it e+= −∑ νζν ˆˆ
1)

, with k selected according to the BIC criteria. Denoting 

( ) k

k LLL ζζζ ˆ...ˆ1ˆ
1 −−−=  and ( ) ∑

+=

−−=
T

kt

tkek ekT
1

212 ˆσ̂ ,  

( ) ( )22 1ˆˆ
~ ζσλυ ekh =  (9a) 

With I(1) errors, and for models which involve a change in intercept (Models I and III), 

in order to attain a test with good properties, 1
~µ  is replaced by *

1
~µ , where 

( ) ( ) ekTLh σµζµ ν ˆ~ˆ~~
11

2/1*

1 = . 

The limiting distribution of the test is different for the I(0) and I(1) cases, but relevant 

quantiles are similar in both cases for the Exp functional. So, Perron and Yabu (2009) 

recommend taking the larger critical value in order to bring a powerful robust statistic 

under both stationary and integrated errors.    



 36 




��1�
�7�
���*�,
et al.
=12(2>
��I!��+)�"
D��8�#!��



If 1

1 ξξκ cvS > , we assume that there is a first�level break at 

( ) [ ] 




−= −−
Λ∈ T

m
MTt mTtt

2
ˆˆmaxarg

~
1,

2/11

1 βω . Then, as the possibility of more than one 

break in the interval [ ][ ] [ ] ]1
~

,1
~

111 −++−=Λ mTtmTt  is excluded, the possibility of a 

further break occurring in the remaining portion of Λ, Λ�Λ1, is examined. 

If ( ) [ ]
1

1,

2/11

,
2

ˆˆmax
1 ξβω cvT

m
MT mTtTt ≤




−−−
Λ−Λ∈ , the procedure based on S1 selects one 

break; otherwise two breaks are selected. The number of breaks is denoted by '

1n . 

A similar procedure, based on S0, allows one to select '

0n  breaks. 

The final number of breaks selected by the sequential procedure is ( )'

0

'

1 ,max nnnU = . 
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1. Fit by NLS the trend ( )θT,tf /  in the null model (8). 

2. Set the number of bootstrap resamples (b). Set the bootstrap sample size at T (the 

sample size) and create the T×d matrix of pseudo�regressors: 

 ( ) ( ) ( ) .1,...21
′′′′

ˆˆ/ˆ/




 ∇∇∇ TθTθTθT θf,,θT,f,θT,f=X  

3. Draw an independent sample ( )′T

(B) ε,,ε=ε ...1  from a N(0,1) population 

independent of Tθ̂ .  

4. Compute the bootstrap pseudo�residuals:  ( )( ) (B)

TTTTT

(B) εXXXXI=e ′′ 1−−  .  

5. Compute the bootstrap pseudo�LM test statistic: 
( ) ( )

2

1 1

ˆ

2 ∑ ∑
= +=

− 






−
T

t

T

ti

B

i(B)
eT

θ
eTσ=S

B 2 , 

where (B)(B)

(B)
e

eeT=σ ′2 1− .  

6. Repeat steps (2)�(5) for b  independent samples, and compute the sample 

percentiles of 
( )B
ˆ
T

θ
S .   

 


