Hall, Jamie (2012): Rapid estimation of nonlinear DSGE models.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_42534.pdf Download (482kB) | Preview |
Abstract
This article describes a new approximation method for dynamic stochastic general equilibrium (DSGE) models. The method allows nonlinear models to be estimated efficiently and relatively quickly with the fully-adapted particle filter, without using high-performance parallel computation. The article demonstrates the method by estimating, on US data, a nonlinear New Keynesian model with time-varying volatility.
Item Type: | MPRA Paper |
---|---|
Original Title: | Rapid estimation of nonlinear DSGE models |
Language: | English |
Keywords: | New Keynesian; particle filter |
Subjects: | E - Macroeconomics and Monetary Economics > E0 - General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General |
Item ID: | 42534 |
Depositing User: | Jamie Hall |
Date Deposited: | 11 Nov 2012 07:44 |
Last Modified: | 30 Sep 2019 05:44 |
References: | Adjemian, S., Bastani, H., Karam ́, F., Juillard, M., Maih, J., Mihoubi, F., Perendia, G., Ratto, M. & Villemot, S. (2012), Dynare: Reference manual, version 4, Dynare Working Paper 1, CEPREMAP. Akaike, H. (1974), ‘A new look at the statistical model identification’, IEEE Transactions on Automatic Control 19(6), 716 – 723. Amisano, G. & Tristani, O. (2010), ‘Euro area inflation persistence in an estimated nonlinear DSGE model’, Journal of Economic Dynamics and Control 34(10), 1837–1858. Amisano, G. & Tristani, O. (2011), Exact likelihood computation for non-linear DSGE models with heteroskedastic innovations, Working Paper 1341, ECB. Anderson, D. G. (1965), ‘Iterative procedures for nonlinear integral equations’, J. ACM 12(4), 547–560. Calvo, G. A. (1983), ‘Staggered prices in a utility-maximizing framework’, Journal of Monetary Economics 12(3), 383–398. Campbell, J. Y. & Cochrane, J. H. (1999), ‘By force of habit: A Consumption-Based explanation of aggregate stock market behavior’, Journal of Political Economy 107(2), 205–251. Del Moral, P. (2004), Feynman-Kac formulae: genealogical and interacting particle systems with applications, Springer, New York. Fang, H.-r. & Saad, Y. (2009), ‘Two classes of multisecant methods for nonlinear acceleration’, Numerical Linear Algebra with Applications 16(3), 197–221. Fernandez-Villaverde, J., Gordon, G., Guerron-Quintana, P. A. & Rubio-Ramirez, J. (2012), ‘Nonlinear adventures at the zero lower bound’, National Bureau of Economic Research Working Paper Series No. 18058. Gali J. (2008), Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework, Princeton University Press. Gelfand, A. E. & Dey, D. K. (1994), ‘Bayesian model choice: Asymptotics and exact calculations’, Journal of the Royal Statistical Society. Series B (Methodological) 56(3), 501–514. Geweke, J. (1999), ‘Using simulation methods for Bayesian econometric models: inference, development,and communication’, Econometric Reviews 18(1), 1–73. Gomme, P. & Klein, P. (2011), ‘Second-order approximation of dynamic models without the use of tensors’, Journal of Economic Dynamics and Control 35(4), 604–615. Haario, H., Saksman, E. & Tamminen, J. (2001), ‘An adaptive metropolis algorithm’, Bernoulli 7(2), 223–242. Hall, J., Pitt, M. K. & Kohn, R. (2012), ‘Bayesian inference for nonlinear structural time series models’, arXiv:1209.0253. Harvey, A. C. (1991), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press. Heer, B. & Maußner, A. (2009), Dynamic General Equilibrium Modeling: Computational Methods and Applications, Springer. Judd, K. L. (1998), Numerical Methods in Economics, MIT Press. Kim, J., Kim, S., Schaumburg, E. & Sims, C. A. (2008), ‘Calculating and using second-order accurate solutions of discrete time dynamic equilibrium models’, Journal of Economic Dynamics and Control 32(11), 3397–3414. Klein, P. (2000), ‘Using the generalized schur form to solve a multivariate linear rational expectations model’, Journal of Economic Dynamics and Control 24(10), 1405–1423. Pitt, M. K. & Shephard, N. (1999), ‘Filtering via simulation: Auxiliary particle filters’, Journal of the American Statistical Association 94(446), 590–599. Pitt, M. K., Silva, R., Giordani, P. & Kohn, R. (2012), On some properties of Markov chain Monte Carlo simulation methods based on the particle filter, Mimeo, UNSW. Schmitt-Grohe, S. & Uribe, M. (2004), ‘Solving dynamic general equilibrium models using a second-order approximation to the policy function’, Journal of Economic Dynamics and Control 28(4), 755–775. Schwarz, G. (1978), ‘Estimating the dimension of a model’, The Annals of Statistics 6(2), 461–464. Sims, C. A. (2001), ‘Solving linear rational expectations models’, Computational Economics 20(1), 1—20. Smets, F. & Wouters, R. (2003), ‘An estimated dynamic stochastic general equilibrium model of the euro area’, Journal of the European Economic Association 1(5), 1123–1175 Smets, F. & Wouters, R. (2007), ‘Shocks and frictions in US business cycles: A Bayesian DSGE approach’, American Economic Review 97(3), 586–606. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. (2002), ‘Bayesian measures of model complexity and fit’, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4), 583–639. Tallis, G. M. (1965), ‘Plane truncation in normal populations’, Journal of the Royal Statistical Society. Series B (Methodological) 27(2), 301–307. Walker, H. F. & Ni, P. (2011), ‘Anderson acceleration for fixed-point iterations’, SIAM J. Numer. Anal. 49(4), 1715–1735. Woodford, M. (2003), Interest and prices: Foundations of a theory of monetary policy, Princeton University Press, Princeton, NJ. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/42534 |
Available Versions of this Item
-
Rapid estimation of nonlinear DSGE models. (deposited 12 Sep 2012 04:32)
- Rapid estimation of nonlinear DSGE models. (deposited 11 Nov 2012 07:44) [Currently Displayed]