
Munich Personal RePEc Archive

Free disposal, monotonicity and

equilibrium

Yang, Yi-You

13 November 2012

Online at https://mpra.ub.uni-muenchen.de/42585/

MPRA Paper No. 42585, posted 13 Nov 2012 12:52 UTC



Free disposal, monotonicity and equilibrium�

Yi-You Yangy

November 13, 2012

Abstract

This paper studies the e¤ect of free disposal on the existence of Walrasian
equilibrium for exchange economies with indivisible objects. It is shown that
allowing an agent to enjoy free disposal has the same e¤ect for generating an
equilibrium (or eliminating existing equilibria) as allowing every agent to enjoy
free disposal. A new equilibrium existence theorem is given to show how this
observation can enhance the existence results by Kelso and Crawford (1982)
and Sun and Yang (2006).
Keywords: Indivisibility; equilibrium; free disposal; monotonic cover.

1 Introduction

This paper studies the e¤ect of free disposal on the existence of Walrasian equilibrium
for an exchange economy with indivisible objects. The assumption of free disposal
is often applied to ensure that each agent�s preferences satisfy monotonicity. The
intuition behind this argument is that when an agent is allowed to discard unwanted
objects for free, adding objects to the agent�s bundle never makes the agent worse
o¤. In this paper, we use the notion of monotonic cover to formulate the e¤ect of
free disposal on agents� preferences. Namely, we assume that when free disposal is
available to an agent, the agent�s original utility function would be replaced by its
monotonic cover.

Free disposal not only changes agents� preferences, but it also possibly a¤ects
the existence of Walrasian equilibrium. The motivation of the paper is to investigate
conditions under which the existence of equilibrium can be free from the e¤ect of
free disposal. One of our main results (Theorem 1) shows that free disposal has
no e¤ect on the existence of equilibrium if there exists an agent whose preferences
satisfy monotonicity. One interpretation for this observation is that allowing an
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agent to enjoy free disposal has the same e¤ect for generating an equilibrium (or
eliminating existing equilibria) as allowing every agent to enjoy free disposal. Thus,
when the e¤ect of free disposal is helpful to yield an equilibrium for an economy, it
is su¢cient to o¤er free disposal to some agent.

Moreover, in sight of Theorem 1, we note that each equilibrium existence result
can be correspondingly extended to yield a new existence theorem with the aid of the
notion of monotonic cover. To clarify the impact of this observation, we recall two
conditions on preferences, namely, the gross substitutes (GS) condition (Kelso and
Crawford, 1982) and the gross substitutes and complements (GSC) condition (Sun
and Yang, 2006), each of which can ensure the existence of Walrasian equilibrium,
and show how these two conditions can be used to generate new existence results.

Finally, we note that the e¤ect of free disposal cannot destroy the gross substi-
tutability of preferences. Namely, the monotonic cover of a utility function satisfying
the GS condition cannot fail the GS condition. This result means that when the
existence of Walrasian equilibrium is guaranteed by the GS condition, it is immune
to the e¤ect of free disposal.

The rest of the paper is organized as follows. Section 2 gives the model and
fundamental de�nitions. Section 3 establishes the main theorems and Section 4
concludes.

2 Preliminaries

Consider an exchange economy with a �nite set N = f1; : : : ; ng of agents and a
�nite set 
 = fa1; : : : ; amg of indivisible objects, and a perfectly divisible good
called money. Each agent i 2 N has quasi-linear preferences, namely, i�s utility
equals ui (A) � c from consuming a bundle A � 
 in return for payment c, where
ui : 2


 ! R with ui (;) denotes the utility function of agent i. Moreover, we assume
that each agent i is initially endowed with a su¢cient amount of moneyMi > ui (A)
for all A � 
. Under these assumptions, each agent will not be subject to any budget
constraint, and hence the initial endowment of objects to the agents is irrelevant for
the e¢cient allocations and their supporting prices. Thus, we choose to leave the
initial endowment of objects unspeci�ed, and represent this exchange economy by
E =

�

; (ui)i2N

�
.

A price vector p = (pa)a2
 2 R

 assigns a price for each object a in 
. For any

bundle A � 
, let p (A) be a shorthand for
P
a2A pa, and for each object a 2 
, let

ea 2 R
 denote the characteristic vector whose i-th coordinate is 1 if a = ai and 0
otherwise.

For each agent i with utility function ui, the demand correspondence Dui : R

 !

2
 is de�ned by
Dui (p) := argmax

A�

Ui (A; p) ;

where Ui (A; p) := ui (A) � p (A) denotes the utility of consuming the bundle A at
price level p.
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An allocation of objects for the economy E =
�

; (ui)i2N

�
is a partition of 
,

i.e., a set of mutually exclusive bundles X = (X1; : : : ; Xn) that exhaust 
, where Xi
represents the set of object consumed by agent i under the allocation X.

A Walrasian equilibrium for the economy E =
�

; (ui)i2N

�
is a pair (X; p),

where X =(X1; : : : ; Xn) is an allocation and p 2 R

 is a price vector such that for

each agent i 2 N , ui (Xi) � p (Xi) � ui (A) � p (A) for each bundle A � 
, i.e.,
Xi 2 Dui (p). In that case, X is called an equilibrium allocation and p is called an
equilibrium price.

The utility function ui : 2

 ! R is called monotone if for all B � A � 
,

ui (B) � ui (A). The monotonic cover of ui is the utility function ûi : 2

 ! R given

by ûi (A) = maxB�A ui (B) for each A � 
. Note that ui is monotone if and only
if ui = ûi. The monotonic cover of an economy E =

�

; (ui)i2N

�
is de�ned to be

Ê =
�

; (ûi)i2N

�
. In case E = Ê, we call E an economy with free disposal. Let E

denote the class of economies in which there exists at least one agent whose utility
function is monotone, and let Ê denote the class of economies with free disposal.
Clearly, we have Ê � E .

An interpretation for the relation between a utility function and its monotonic
cover is that once discarding unwanted objects becomes costless for an agent i, i�s
original utility function ui would be replaced by its monotonic cover ûi. Moreover,
free disposal not only changes utility functions of agents in an economy, but also
possibly a¤ects the existence of Walrasian equilibrium. To illustrate these phenom-
enons, we consider the following two economies.

The �rst economy E1 =
�

1;

�
u1i
�
i2N1

�
with 
1 = fa; b; cg and N1 = f1; 2g is

given by

u11 (A) =

8
>><

>>:

6; if A = fa; b; cg ,
5; if A = fag ,
1; if A = fcg ,
0; otherwise,

u12 (A) =

8
<

:

7; if A = fa; bg ,
5; if A = fag or A = fbg ,
0; otherwise,

and the second economy E2 =
�

2; (ui)i2N2

�
with 
2 = fa; b; c; a0g and N2 =

f1; 2; 3g is given by

u21 (A) =

8
>><

>>:

9; if A = fa; bg ,
8; if A = fa; b; a0g ,
�6; if A = fa0g ,
0; otherwise.

u22 (A) = u
2
3 (A) =

8
>><

>>:

9; if A = fa; cg or fb; cg ,
4; if A = fcg ,
�6; if a0 2 A,
0; otherwise.

Note that E1 has no Walrasian equilibrium, but Ê1 has a Walrasian equilibrium�
X
1; p1

�
with X1

1 = fa; cg, X1
2 = fbg, p1a = p1b = 4 and p1c = 0. This means that

allowing all the agents in the economy E1 to enjoy free disposal is helpful to yield
an equilibrium. On the other hand, the second economy E2 illustrates that free
disposal might destroy existing equilibria: E2 has a Walrasian equilibrium

�
X
2; p2

�

with X2
1 = fa; b; a

0g, X2
2 = fcg, X

2
3 = ;, p

2
a = p

2
b = 6, p

2
c = 4 and p

2
a0 = �5, while

Ê2 has no Walrasian equilibrium.
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3 Existence of Walrasian equilibrium

The examples given at the end of Section 2 show that the existence of Walrasian
equilibrium can be signi�cantly a¤ected by the free disposal condition. A natural
question is under which conditions free disposal has no e¤ect on the existence of
equilibrium. The following result sheds some light on this issue by showing that
if there exists an agent whose utility function is monotone, then the existence of
equilibrium is free from the e¤ect of free disposal.

Theorem 1 Let E =
�

; (ui)i2N

�
be an economy with an agent j 2 N whose utility

function uj is monotone, i.e., E 2 E.

(a) Each equilibrium allocation for E is an equilibrium allocation for Ê.

(b) Each equilibrium price vector p for Ê is an equilibrium price E.

(c) E has a Walrasian equilibrium if and only if Ê has a Walrasian equilibrium.

The proof of Theorem 1 requires the following lemma.

Lemma 2 Let E =
�

; (ui)i2N

�
be an economy and let j 2 N be an agent whose

utility function uj is monotone. If (X; p) is a Walrasian equilibrium for E, then

fa 2 
 : pa < 0g � Xj.

Proof. Suppose that there exists a 2 
nXj such that pa < 0. Since uj is monotone,
we have

uj (Xj [ fag)� p (Xj [ fag) � uj (Xj)� p (Xj)� pa > uj (Xj)� p (Xj) ;

violating the assumption that (X; p) is a Walrasian equilibrium for E.
We are now ready to prove Theorem 1.

Proof of Theorem 1. (a) Assume that (X; p) is a Walrasian equilibrium for E.
Let p0 2 R
+ be the price vector given by

p
0

a =

�
pa; if pa � 0;
0; if pa < 0:

Clearly, p0 � p. We are going to show that (X; p0) is a Walrasian equilibrium for Ê.
We �rst show that (X; p0) is a Walrasian equilibrium for E. Let �A = fa 2 
 : pa < 0g.

In case �A = ;, then p0 = p and we have done. In case �A 6= ;, by Lemma 2, we have
�A � Xj . It follows that for any bundle A � 
,

Uj
�
Xj ; p

0
�
= Uj (Xj ; p)+p

�
�A
�
� Uj

�
A [ �A; p

�
+p
�
�A
�
= Uj

�
A [ �A; p0

�
� Uj

�
A; p0

�

and for each agent i 2 N with i 6= j,

Ui
�
Xi; p

0
�
= Ui (Xi; p) � Ui (A; p) � Ui

�
A; p0

�
:
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We then verify that

ûi (Xi) = ui (Xi) for each agent i 2 N: (1)

Suppose, to the contrary, that ûi (Xi) > ui (Xi) for some agent i 2 N with i 6= j.
Then there exists a proper subset B of Xi such that ûi (Xi) = ui (B) = ûi (B). This
implies ui (B)� p (B) > ui (Xi)� p (B) � ui (Xi)� p (Xi), violating the assumption
that (X; p) is a Walrasian equilibrium for E.

Finally, suppose on the contrary that (X; p0) is not a Walrasian equilibrium for
Ê. Then there exists an agent i with i 6= j such that ûi (Xi)�p

0 (Xi) < ûi (T )�p
0 (T )

for some bundle T � 
. Since (X; p0) is a Walrasian equilibrium for E, together
with (1), we have

ui (T )� p
0 (T ) � ui (Xi)� p

0 (Xi) = ûi (Xi)� p
0 (Xi) < ûi (T )� p

0 (T ) ; (2)

and hence ui (T ) < ûi (T ). This implies that there exists some proper subset C of
T such that ûi (T ) = ui (C). Combining with (2), we have

ui (Xi)� p
0 (Xi) < ui (C)� p

0 (T ) � ui (C)� p
0 (C) ;

violating the fact that (X; p0) is a Walrasian equilibrium for E.
(b) Assume that (X; p) is a Walrasian equilibrium for Ê. Clearly, p � 0. We

are going to show that there exists a Walrasian equilibrium (Y; p) for E such that
Yi � Xi and ûi (Xi) = ui (Yi) = ûi (Yi) for each agent i with i 6= j, and Yj =
([i2N (XinYi)) [Xj . Let i be an agent with i 6= j. We consider two cases.

Case I. ui (Xi) = ûi (Xi). Let Yi = Xi. Then for any bundle A � 
,

ui (Yi)� p (Yi) = ûi (Xi)� p (Xi) � ûi (A)� p (A) � ui (A)� p (A) : (3)

Case II. ui (Xi) < ûi (Xi). Then there exists a proper subset Yi of Xi such that
ûi (Xi) = ui (Yi) = ûi (Yi). This implies

ûi (Xi)� p (Xi) � ûi (Yi)� p (Yi) = ûi (Xi)� p (Yi) ;

and hence pa = 0 for all a 2 XinYi. It follows that (3) holds for any bundle A � 
.
Let Yj = ([i2N (XinYi)) [Xj . Since uj is monotone, the combination of Cases

I and II implies that for any bundle A � 
,

uj (Yj)�p (Yj) = ûi (Yj)�p (Xj) � ûj (Xj)�p (Xj) � ûi (A)�p (A) � ui (A)�p (A) :

The result of (c) is an immediate consequence of the combination of (a) and (b).
This completes the proof.

Theorem 1 has a number of signi�cant consequences. First, the result of Theorem
1 (c) can be rephrased to illustrate that allowing an agent to enjoy free disposal has
the same e¤ect for generating an equilibrium (or eliminating existing equilibria) as
allowing every agent to enjoy free disposal. Thus, when the e¤ect of free disposal
is helpful to yield an equilibrium for an economy, e.g., the economy E1 given at the
end of Section 2, it is su¢cient to o¤er free disposal to some agent.
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Theorem 3 Let E =
�

; (ui)i2N

�
be an arbitrary economy. For any agent j 2 N ,

the economy E0 = (
;u1; : : : ; ûj ; : : : ; un) has a Walrasian equilibrium if and only if

Ê has a Walrasian equilibrium.

Second, Theorem 1 establishes useful links between economies that share the
same monotonic cover. Namely, for any two economies E1 and E2 in E such that
Ê1 = Ê2, E1 has a Walrasian equilibrium if and only if E2 has a Walrasian equilib-
rium.

Third, Theorem 1 indicates that Ê , the class of economies with free disposal, plays
a central role in analyzing the existence problem of equilibrium in the sense that
each equilibrium existence theorem for economies in Ê has a natural corresponding
extension for economies in E . To clarify the point, we shall recall two important
conditions on utility functions, namely, the gross substitutes condition (Kelso and
Crawford, 1982) and the gross substitutes and complements condition (Sun and
Yang, 2006), each of which can guarantee the existence of Walrasian equilibrium,
and discuss how these results can be extended to generate new existence theorems.

The utility function ui satis�es the gross substitutes (GS) condition if for any
two price vectors p and q with q � p, and any bundle A 2 Dui (p), there exists
B 2 Dui (q) such that fa 2 
 : qa = pag � B. Thus, the GS condition ensures
that the demand for an object does not decrease when prices of some other objects
increase. Theorem 2 of Kelso and Crawford (1982, p. 1490) shows that if each
agent�s utility function satis�es the GS condition, then there exists a Walrasian
equilibrium.

In contrast to Kelso and Crawford (1982), Sun and Yang (2006) study an econ-
omy E =

�

; (ui)i2N

�
in which all the objects in 
 can be divided into two groups

S1 and S2, and show that if objects in the same group are substitutes and objects
across these two groups are complements, then the economy has a Walrasian equilib-
rium. Formally, the utility function ui satis�es the gross substitutes and complements
(GSC) condition if for any price vector p 2 R
, a 2 Sj ; � � 0, and A 2 Dui (p), there
exists B 2 Dui (p+ �e

a) such that [A \ Sj ] n fag � B � (A [ Sj). When S1 = ;
or S2 = ;, the GSC condition reduces to the GS condition. However, it should be
noted that when S1 6= ; and S2 6= ;, the GSC condition is logically independent from
the GS condition. Theorem 3.1 of Sun and Yang (2006, p 1388) shows that if each
agent�s utility function satis�es the GSC condition, then there exists a Walrasian
equilibrium.

The result of Theorem 1, together with Kelso and Crawford�s Theorem 2 and
Sun and Yang�s Theorem 3.1, can yield new equilibrium existence results to cover
economies in which agents� utility functions may fail the GS (or GSC) conditions.

Theorem 4 Let E =
�

; (ui)i2N

�
be an economy with an agent j 2 N whose utility

function uj is monotone, i.e., E 2 E.

(a) If the monotonic cover ûi of each agent i�s utility function satis�es the GS
condition, then E has a Walrasian equilibrium.
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(b) If the monotonic cover ûi of each agent i�s utility function satis�es the GSC
condition, then E has a Walrasian equilibrium.

Proof. Assume that ûi satis�es the GS (respectively GSC) condition for each i 2 N .
Then Kelso and Crawford�s Theorem 2 (respectively Sun and Yang�s Theorem 3.1)
implies that the economy Ê =

�

; (ûi)i2N

�
has a Walrasian equilibrium. Since

E 2 E , we obtain the desired result by Theorem 1.
Finally, we recall a non-existence result by Gul and Stacchetti (1999) and study

its implications. Gul and Stacchetti focus on economies with free disposal, and prove
that for economies in Ê , the class of utility functions satisfying the GS condition is
a largest set for which the existence of Walrasian equilibrium is guaranteed. More
precisely, Theorem 2 of Gul and Stacchetti (1999, p. 103) shows that for any agent 1
with a monotone utility function u1 : 2


 ! R that violates the GS condition, there
exists a �nite class of utility functions fu2; : : : ; ung such that E =

�

; (ui)i2N

�
2 Ê

and ui satis�es the GS condition for i 6= 1, but there does not exist any Walrasian
equilibrium. In some sense, this non-existence theorem can be considered as a con-
verse to Kelso and Crawford�s existence result. A natural question is whether this
non-existence result still holds for economies in E . In the following result, we answer
the question in the negative.

Proposition 5 There exists a utility function u1 : 2

 ! R that violates the GS

condition, but for any economy E =
�

; (ui)i2N

�
2 E in which ui satisfying the GS

condition for i 6= 1, there exists a Walrasian equilibrium.

The proof of Proposition 5 relies on the following lemma, which shows that the
e¤ect of free disposal cannot destroy the gross substitutability of a utility function.

Lemma 6 If the utility function ui : 2

 ! R satis�es the GS condition, then the

monotonic cover ûi of ui satis�es the GS condition as well.

Proof. Let ui : 2

 ! R be a utility function that satis�es the GS condition.

Suppose on the contrary that ûi does not satis�es the GS condition. By Theorem
2 of Gul and Stacchetti, there exists an economy E = (
;u1; : : : ; ûi; : : : ; un) 2
Ê that has no Walrasian equilibrium but uk satis�es both the GS condition and
monotonicity for k 6= i. Together with Theorem 1, we have that the economy
E = (
;u1; : : : ; ui; : : : ; un) has no Walrasian equilibrium, contradicting to Theorem
2 of Kelso and Crawford.

We are now ready to prove Proposition 5.
Proof of Proposition 5. Let 
 = fa; b; cg. Consider the utility function u1 :
2
 ! R given by

u1 (A) =

�
1; if A = fag or A = fa; b; cg ;
0; otherwise.

Clearly, u1 fails the GS condition while û1 satis�es the GS condition. Let E =�

; (ui)i2N

�
be an economy in E such that ui satisfying the GS condition for i 6= 1.
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The result of Lemma 6 implies that ûi satis�es the GS condition for i 6= 1. Combining
Theorem 1 and Theorem 2 of Kelso and Crawford (1982), we obtain that the economy
E, as well as it monotonic cover Ê, has a Walrasian equilibrium.

We close this section with another implication of Lemma 6. Namely, when the
existence of Walrasian equilibrium is ensured by the GS condition, it is free from
the e¤ect of free disposal.

4 Concluding remarks

This paper contributes to the literature on the existence of Walrasian equilibrium
by analyzing the e¤ect of free disposal. We use the notion of monotonic cover to
embody the e¤ect of free disposal and to extend existing results, including the works
of Kelso and Crawford (1982), Sun and Yang (2006), and Gul and Stacchetti (1999).
Most of our results focus on the existence of equilibrium. It might be interesting to
study the e¤ect of free disposal on the structure of equilibrium allocations as well as
the structure of equilibrium payo¤ vectors following the line indicated by the results
of Theorem 1 (a) and (b).
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