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Abstract

Collusion sustainability depends on firms’ aptitude to impose sufficiently severe punish-

ments in case of deviation from the collusive rule. We extend results from the literature

on optimal collusion by investigating the role of limited liability. We examine all situations

in which either structural conditions (demand and technology), financial considerations (a

profitability target), or institutional circumstances (a regulation) set a lower bound, possibly

negative, to firms’ profits. For a large class of repeated games with discounting, we show that,

absent participation and limited liability constraints, there exists a unique optimal penal code.

It commands a severe single-period punishment immediately after a firm deviates from the col-

lusive stage-game strategy. When either the participation constraint or the limited liability

constraint bind, there exists an infinity of multi-period punishment paths that permit firms

to implement the optimal collusive strategy. The usual front-loading scheme is only a specific

case and an optimal punishment profile can take the form of a price asymmetric cycle. We

characterize the situations in which a longer punishment does not perform as a perfect substi-

tute for more immediate severity. In this case the lowest discount factor that permits collusion

is strictly higher than without the limited liability constraint, which hinders collusion.

JEL classification: C72; D43; L13

Keywords: Collusion; Oligopoly; Limited Liability.

∗This paper was completed while the first author was visiting the University of Montreal whose hospitality

is gratefully acknowledged. Several versions benefited from comments at the 2005 ETAPE seminar in industrial

economics (University of Paris 1), the 2005 Econometric Society World Conference (University College London),

the 2008 Dynamic Games in Management Science conference (GERAD-HEC Montreal), and the 11th conference

of the Society for the Advancement of Economic Theory in 2011 (SAET). Special thanks are addressed to Nihat

Aktas, Luis Corchón, Jacques Cremer, Michel Le Breton, Onur Özgür, Richard Ruble, and Georges Zaccour for

insightful comments or help in various forms. All remaining errors are ours. Corresponding author: etienne.de-

villemeur@univ-lille1.fr

1



1 Introduction

In this paper, we characterize the implementability of a collusive strategy by oligopolistic firms

when their ability to punish deviations over one or several periods is limited.

Firms in the same industry may increase profits by coordinating the prices they charge or

the quantities they sell. In a legal context in which collusive agreements cannot be overtly en-

forced, and future profits are discounted, it is well-known that an impatient firm may find it

privately profitable to deviate from a collusive strategy. This renders collusive agreements funda-

mentally unstable. However, firms may design non-cooperative discipline mechanisms that help

implementing collusion.

Many papers examine the structural conditions that facilitate the formation of cartels. Most

theoretical analyses rely on a class of dynamic models usually referred to as supergames. These

models feature a repeated market game in which firms maximize a flow of discounted individual

profits by non-cooperatively choosing a price or a quantity over an infinite number of periods.

When a deviation can be credibly and sufficiently “punished” via lower industry prices or larger

quantities in subsequent time periods, conditions on structural parameters can be derived which,

when satisfied, make collusion stable.

A majority of recent contributions to the literature investigate the impact of various model

specifications on the sustainability of collusion with stick-and-carrot mechanisms in the style of

Abreu (1986, 1988). In this category of mechanisms, if a firm deviates from collusion, all firms

play a punishment strategy over one or several periods — the stick — which is more severe than

Nash reversion (i.e., it leads to lower instantaneous profits, possibly negative) before returning

to a collusive price or quantity. If a deviation occurs in a punishment period, the punishment

phase restarts, otherwise all firms resume the collusive behavior to earn supernormal profits — the

carrot. More specifically, Abreu (1986) exploits a single-period punishment mechanism for a class

of repeated quantity-setting oligopoly stage games with symmetric sellers of a homogenous good,

constant positive marginal costs, and no fixed cost. For a given discount factor, the most severe

punishment strategy — following a deviation either from the collusive path or from a punishment

rule — that sustains collusion, is characterized. It results in the highest level of discounted collusive

profits.

Our objective is to enrich the study of the circumstances that facilitate collusion, or make it

more difficult to sustain.1 This is done by investigating the exact role of an assumption, in the

1The analysis of the connection between structural conditions and collusion stability with a stick-and-carrot
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seminal paper by Abreu (1986), according to which the price is strictly positive for all levels of

industry output, so that there is no floor for firms’ losses when the constant marginal cost is also

specified above zero. Indeed the quantity sold — and related costs — tend to infinity when firms

charge below the marginal cost and the price approaches zero. In that case, the single-period

punishment that follows a deviation can be made as severe as needed. Although the strategy set

is assumed to be finite, the upper bound to the available quantities is so high as to never be used

as a punishment action that sustains collusion.

To our knowledge, most papers — if not all — that refer to Abreu (1986, 1988) actually overlook

this key assumption by introducing more structure. They typically borrow the same stick-and-

carrot mechanism with a single punishment period, although they either assume that demand is

finite at all prices, or that firms have limited production capacity. It follows that losses are bounded

from below in a punishment period, and collusion can be hindered. In that case, an extension

of the punishment phase to several periods appears as a natural substitute for more immediate

severity. Fudenberg and Tirole (1991, p. 165) emphasize that, when the severity of punishments

is limited the punishment phase should be longer, although “it is not obvious precisely which

actions should be specified” in the punishment phase. Our paper is novel in that it thoroughly

examines this point. This is done in a setup that encompasses the main assumptions in Abreu

(1986). In our model, firms sell substitutable goods (possibly differentiated), inverse demand

functions are non-increasing (they can be finite at all prices), the marginal cost is constant and

non-negative (it can be zero), and there can be a fixed cost. In addition to standard incentive and

participation constraints, a key specification that we introduce is the limited liability constraint,

which amounts to imposing a limitation on the lowest level of profits a firm may earn. Whether

the limited liability constraint binds or not impacts firms’ choices of price or quantity in the

punishment phase.

Interestingly, a limited liability constraint is not a technical sophistication that we add to

standard specifications. It is de facto present, or latent, in all models where demand or tech-

nological conditions set a lower bound to firms’ losses. A finite demand, or a limited capacity,

are examples of structural specifications that constrain firms’ payoffs to remain above a certain

(non-positive) level. Then, firms’ losses also remain finite when the prices they charge are below

their unit costs of production. This limits the maximal severity of punishment schemes.

In this case, a firm with high fixed and/or variable costs earns more negative payoffs during

aggressive pricing episodes than more efficient firms. This offers a new explanation for an empirical

mechanism à la Abreu has been extended to many aspects. The literature is briefly reviewed in a dedicated section

that follows our main results.
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observation by Symeonidis (2003), who finds strong evidence that collusion is more likely in

industries with high capital intensity. This result has been interpreted as a consequence of high

barriers to entry.2 Another possible and more direct interpretation, which we investigate below

(see the linear example in section 5), is that high average costs — which permit severe punishments

— facilitate collusion.

It is also well-known that financial parameters (e.g., a return on investment target) may also

shape the limited liability constraint. For example, prudential ratios set a limit to the quantity

of loans a bank may supply. Another example is that financial markets constrain managers of

equity-dependent firms not to post low operational profits for too long. The empirical literature

has evidenced the connection between stock prices and firms’ investments, as in Baker et al.

(2003). Our theoretical analysis establishes that there is also a link between financial constraints

and the ability to collude.

Finally, the limited liability constraint can capture all real-world contexts in which institu-

tional circumstances (e.g., regulation) impact firms’ behavior. An example of a regulatory measure

that reduces the severity of punishments is a price floor. As it rules out severe punishments, it

should hinder collusion. In an empirical paper, Gagné et al. (2006) study the impact on prices of

a price floor established by the Quebec provincial government on the retail market for gasoline.

By limiting the severity of price wars, the floor was seen as a means to reduce the ability of firms

to punish retailers deviating from a high price strategy. The analysis reveals that the net effect of

the floor on average price-cost margins is near zero. The impact of the floor on retail prices in low

margin periods (or price wars) is actually offset by the rise in their average duration. Price wars

are less severe, but they last longer.3 Our analysis offers theoretical grounds to these empirical

findings.

In this paper, by delineating the largest parameter space for which a collusive strategy can be

implemented, we fully characterize the conditions under which the limited liability constraint does

reduce the firms’ ability to implement a given collusive action (a price or a quantity), in a large

class of models where the duration of punishments can be adjusted. For given cost and demand

2 In Symeonidis (2003), the capital stock of the average plant, and the capital-labor ratio, are proxies for high

barriers to entry, which in turn are seen to facilitate collusion. See also Levenstein and Suslow (2006).
3The introduction of a price floor followed a price war. The local association of independent gasoline retailers

reported that the price war “resulted in retail prices that were observed well below wholesale prices. It was so severe

as to force several independent retailers either to close down temporarily or to exit the market” (translated from

the Mémoire de l’Association Québécoise des Indépendants du Pétrole, June 1998, pp. 7-8). In another empirical

analysis of the impact of this regulation, Houde (2008) finds that the minimum retail price floor had a significant

impact on the firms’ option value of staying in the market.
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parameters, the optimal punishment path is defined as a vector of prices or quantities, played

period after period, that let firms implement a given collusive strategy for the lowest admissible

discount factor. When only incentive constraints are at play, there is a unique optimal punishment

path.

When the limited liability constraint is slack, we find that the possibility to punish over several

periods does not result in a lower threshold for the discount factor than with a single-period

punishment scheme that we use as a benchmark. This also holds with a binding participation

constraint. The latter specifies a minimum continuation payoff following a deviation, but says

nothing on the distribution of this payoff over time.

When the limited liability constraint binds, we find that there exists an infinity of simple

punishment paths that permit firms to implement the collusive strategy. The lowest discount

factor for which a given collusive strategy can be implemented strictly decreases if the punishment

phase is not limited to a single period. We establish that this discount threshold is always

reached with a punishment phase of finite length. Only in particular circumstances, which we

characterize, the discount threshold is as low as in the case without the limited liability constraint.

In all other cases, the discount threshold remains strictly higher than in the absence of a limited

liability constraint. In other words, a longer punishment with discounting offers only an imperfect

substitute for more immediate severity. This means that, although the duration of the punishment

phase is not bounded, the limited liability constraint hinders collusion.

The remainder of the paper is organized as follows. Section 2 describes the model. In section

3, we restrict the duration of a punishment phase to a single period and identify the largest space

of parameters for which a collusive strategy can be implemented. In section 4, we obtain the

main results by investigating the impact of punishing over several periods on the firms’ ability to

collude. In section 5, the latter results are illustrated in the context of a linear Cournot model.

In section 6 we discuss our results in the light of the related literature. Section 7 concludes.

Due to space limitation, several intermediate results and detailed proofs are relegated to the

appendix.

2 The Model

We construct a supergame, in which symmetric firms in N = {1, . . . , n} supply substitutable

goods, possibly differentiated, to maximize individual intertemporal profits by simultaneously

and non-cooperatively choosing a strategy ai — or “action” — that is either a price or a quantity
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in an infinitely repeated stage game over t = 1, 2, ...,∞. Each firm’s action set A is an interval

of R+. The discount factor δ = 1/(1 + r), where r is the single-period interest rate, is common

to all firms. The continuous function πi : R
2
+ → R relates firm i’s profits to a vector of actions

a ≡ (ai, a−i), where a−i describes a symmetric action chosen by all firms in N\{i}. We omit the

subscript i and specify a single argument a, which is a scalar, to represent the profits π(a) earned

by firms that all choose the same action. Similarly, we denote by πdi (a) the profits firm i earns

when it “deviates”, in that it plays its best reply to a, as played by all other firms. The set of

available actions includes a unique symmetric Nash equilibrium in pure strategy aNE , implicitly

defined by πdi (aNE)− π(aNE) = 0, all i, and a collusive action, am, which yields more profits (it

maximizes joint profits when am = a∗m, a case of “perfect” collusion, as in the example we present

in section 5). Firms’ actions may differ from period to period. An action path {at}∞t=1 is defined

as an infinite stream of n-dimensional vectors of actions, as chosen by each firm in each period.

We give more structure to the analysis by relating each firm i’s profits πi = piqi − C (qi),

where pi is a price qi a quantity, to the exact properties of cost and demand conditions. There

are three basic assumptions:

(A1) Firms incur a fixed cost f ≥ 0, and a variable cost c (qi) ≥ 0, to sell substitutable goods

(possibly differentiated), and their strategic variable is either a (non-negative) price (a = p

in the Bertrand specification) or quantity (a = q in the Cournot specification).

(A2) Firm i’s inverse demand function pi : R
n
+ → R+ is non-increasing and continuous.

(A3) pi (0) > c and limqi→∞ pi (qi,q−i) = 0, any q−i in Rn−1+ .

The main features of our model appear clearly when compared with the specifications in Abreu

(1986), a reference, where the following three assumptions hold: ( �A1) Firms sell a homogeneous

good at constant marginal cost c > 0, and their strategic variable is quantity; ( �A2) The market

inverse demand function p(q) : R+ → R+ is strictly decreasing and continuous in q =
�
i∈N qi;

and ( �A3) p (0) > c and limq→∞ p (q) = 0. Note that the latter two assumptions imply that, for all

levels of total output q, the price p is strictly positive. They also imply that there exists qc > 0

such that p (qc) < c. This says that firms can always force the price p at which firm i sells qi

down to a level strictly below c. In this case there is no floor for firms’ losses since the quantity

sold — and related costs — can tend to infinity when p approaches 0. The latter three assumptions

are encompassed by (A1-A3). Note that our assumptions also capture circumstances in which the
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price pi is driven down to exactly zero with finite quantities (qi,q−i), a case ruled out by Abreu’s

assumptions ( �A1- �A3).4

As in Abreu (1986) we construct a “stick-and-carrot” penal code. All firms initially collude

by choosing the collusive action am. If this action is played by all firms in all periods, each firm

earns the discounted sum of the single-period (positive) collusive profits πm ≡ π (am). All firms

have a short-run incentive to deviate, that is to lower (increase) its own price (quantity) in order

to increase individual profits at every other firm’s expense. If such a deviation is detected in

period t, all firms switch to the punishment action aP , in period t + 1 (the stick). The choice

of a low (high) punishment price (quantity) aP renders a free-riding behavior less attractive. If

any deviation from aP is detected, the punishment phase restarts, otherwise all firms resume the

collusive behavior by adopting the same am forever (the carrot).

In order to express results and related proofs with notational parsimony, independently of the

price and quantity specifications, hereafter we adopt the definition that the action a′, as chosen

by all firms, is more severe to firm i than (strictly less severe than) a when πi(a′) ≤ (>)πi(a).

This is denoted by a′ �i (≻i)a, where the subscript is omitted whenever no ambiguity is likely to

result.

A key feature of the paper is that we investigate the consequence of having a lower bound

to individual punishment actions, and thereby to punishment profits. We refer to this lower

bound aP �i aNE , for all i in N , as the most severe symmetric punishment action, a parameter.

Given aP , we define π ≡ π (aP ) ≤ π (aNE). Most realistic circumstances offer a justification

for this setting. It can capture the impact of a regulatory measure. For example, a price floor

will impose firms to charge above a given value (say, a wholesale price), and then will limit the

severity of punishment actions (in some cases we may have π > 0). More generally, the severity

of punishments is also limited when the demanded quantity is finite at any price, including zero,

for all firms.5 As indicated above, there is no such constraining limit on punishments in Abreu

4 In Abreu (1986, Assumption (A4), p. 195) each firm’s strategy set is defined on a finite interval of quantities

Si = [0, q̄ (δ)], where q̄ (δ) satisfies πi (q̄ (δ) , 0) < − δ

1−δ
supqi πi (qi, 0), in our notation. This means that q̄ (δ) is

specified to be greater than the quantity a firm should sell to incur a loss equal in magnitude to the continuation

profits, computed from the next period onward, it would earn as a monopolist in all periods forever. This upper

bound in fact is so high as to be always greater than the single-period punishment quantity that sustains optimal

collusion (see proof of Lemma 8, p. 201).
5 In two related papers, Yasuda (2009) and Beviá, Corchón, and Yasuda (2011) introduce a similar specification in

order to study how financial constraints affect collusion equilibrium payoffs and firms’ behavior in repeated games.

Yasuda (2009) shows in particular that, with a single-period punishment stick-and-carrot mechanism adapted from

Abreu (1986), collusion in which Cournot duopolists equally divide a monopoly profit in each period may not be
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(1986).6 However, we may point to such a floor in more applied and recent contributions to the

literature. When the marginal cost is constant and set equal to zero, as in Häckner (1996) or

Compte et al. (2002), for examples, the lowest possible profits are zero. Another example is

Vasconcelos (2005), where there is a variable marginal cost and a finite demand, so that profits

can be negative but limitedly so. Our more general specification also captures these cases.

We now introduce a few additional assumptions that are needed to produce formal results:

(A4) πi(ai,a
′
−i) ≤ (>)πi(ai,a−i) for all all ai �i am if a′−i �i (≻i)a−i.

This assumption specifies the extension of the order relation to vectors of actions.7

Another specification of the model relates to deviation profits. A firm can earn positive

benefits by playing its best reply to all other firms’ action, only if the latter action is not too

severe. Formally:

(A5) There exists ãP �i aNE such that πdi (a) ≤ (>)0 if and only if a �i (≻i)ãP .

When all firms in N\{i} play a ≻i ãP , the latter assumption implies that firm i’s gross

deviation profits are strictly higher than the level of fixed costs, that is f . A consequence of (A5)

is that π (aNE) ≥ 0.

Although the analysis focuses on situations with limited punishments, the latter may be very

severe. A reference action that measures this severity is âP , which is such that the minmax profit

is obtained by stopping production. We assume that:

sustainable. Beviá, Corchón, and Yasuda (2011) also specify that profits must be greater than or equal to an

exogenously given value, which is non-positive. They characterize the allocations which can be sustained as an

equilibrium of a dynamic oligopoly model when no firm can be forced to bankruptcy by any other firm satisfying

the financial constraint. In both papers, a firm is assumed to go bankrupt if its profits are driven below the financial

threshold. This can be interpreted as a very severe form of punishment, as a binding financial constraint is assumed

to result in zero continuation profits. Our analysis is thus complementary, since in the present paper a binding

limited liability constraint does not imply bankruptcy. It only sets a limit to the severity of punishments, which

may be possibly associated to positive profits, as in the case of a profit target imposed by financial markets pressure.
6 In contrast, in the present model, the most severe punishment π can be arbitrarily close to the Nash payoff

π (aNE).
7 In the Bertrand (resp. Cournot) specification, firm i’s profits are often non-decreasing (resp. non-increasing)

with other firms’ symmetric price (resp. quantity), so that if p′−i ≤ p−i (or q′−i ≥ q−i) then p′−i �i p−i (and

q′−i �i q−i). This, however, does not hold in all cases. For example, in a simple price-setting oligopoly model with

perfect substitutes and a constant positive marginal cost c, if pi < pNE = c then for all p′−i < pi < p−i we have

p′−i ≻i p−i.
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(A6) There exists âP �i ãP such that πdi (a) = (>)− f if and only if a �i (≻i)âP .

In terms of output quantity, let qdi (a) denote firm i’s best-reply to a, as chosen by all other

firms. Assumption (A6) specifies that qdi (a) = 0 if a �i âP , and qdi (a) > 0 otherwise. In words,

any action a, as chosen by all firms in N\{i}, that is strictly more severe than âP , drives firm

i’s profit-maximizing output to zero. In particular, if âP i aP , then the most severe symmetric

punishment action, when played by all firms in N\{i}, is sufficiently penalizing as to lead firm i

to stop producing, and thereby to incur losses equal to the magnitude of fixed costs, its minmax

value. Note that if âP i a ≻i aP we have π(a) > π, although qdi (a) = qdi (aP ) = 0 so that firm i’s

best-reply profit is πdi (a) = πdi (aP ) = −f ≤ 0. To gain familiarity with the notation, observe that

when firms’ strategic variable is price, and c = f = π = 0, as commonly assumed for simplicity

in many existing models, we have ãP = âP = aP = 0, a particular case.

When no constraint on the severity of a is introduced, as in most contributions to the literature,

profits π (a) are unbounded from below. In that case, since best-reply profits πdi (a) do have a

lower bound (a firm may always stop selling; see (A6)), we have πdi (a)− π (a) unbounded from

above. Recalling that πdi (aNE) − π (aNE) = 0, we know there exists at least one ǎ �i aNE

verifying πdi (ǎ)− π (ǎ) = πdi (am)− πm > 0. Finally we specify uniqueness, for simplicity:

(A7) There exists a unique ǎ ≺i am such that πdi (ǎ)− π (ǎ) = πdi (am)− πm.

Clearly ǎ ≺i aNE (since ǎ �i aNE by definition and πdi (aNE)−π (aNE) = 0 < πdi (am)−πm).

Note that (A7) is very mild. It captures in particular all usual situations in which the incentive

to deviate πdi (a)− π(a) increases with the severity of actions a �i aNE , and also with the level of

collusion a ≻i aNE .8

In what follows we investigate the role of the parameter aP , that is the most severe punishment

action, on the implementation of collusion. This is done by first considering situations in which

the duration of punishments is limited to a single period.

3 The Benchmark

In this section, as a benchmark, we restrict the duration of the punishment phase to a single period.

For each player to have no incentive to deviate, a deviation must be followed by a punishment
8For an illustration with quantity-setting firms see Fig. 2 in Abreu (1986). The formalization in the present

paper is more intuitive when a is interpreted as a price.
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that leads the discounted flow of profits to be less than the stream of collusive equilibrium profits.

Moreover, for the punishment to be a credible threat, one should verify that firms do implement

the punishment action. This occurs if individual gains to deviate from the punishment phase are

smaller than the loss incurred by prolonging the punishment.9 Formally, the profile {am, aP},
with aP � am (this is for all i, so we can drop the subscript for the order relation), must satisfy

two incentive constraints, we refer to hereafter as IC0 and IC1, that is

πdi (am)− πm ≤ δ [πm − π(aP )] , (IC0 )

πdi (aP )− π(aP ) ≤ δ [πm − π(aP )] , (IC1)

where π(a) denotes a firm’s stage profit when all competitors choose the same action a, and πdi (a)

is firm i’s profit from a one-shot best deviation from the action a selected by all rivals in N\{i}.
The first condition says that the profits associated with a deviation from the collusive action must

be smaller than what is lost due to the punishment phase. The second condition says that the

benefits associated with a deviation from the punishment must be smaller than the loss incurred

by prolonging the punishment by one more period.

Our objective is to delineate the largest space of parameters for which the two constraints are

satisfied. The problem we investigate is thus to find a punishment aP that minimizes δ under

the two incentive constraints (IC0 -IC1). The solution a∗P , defined as the optimal punishment,

yields δ∗, the minimum. Before introducing additional constraints, we characterize a∗P and δ∗ by

presenting three intermediate results.

Lemma 1. The optimal single-period punishment action a∗P and the discount factor lower bound

δ∗ are such that (IC0 ) and (IC1) hold with equality.

Proof. Suppose that a = a∗P , the optimal punishment is in the interior of A (it is always possible

to define A for this condition to hold), and δ = δ∗, the lowest possible discount factor for which

am is implementable. There are three possible cases: either the two inequalities are slack, or only

one, or none. Consider the first two cases in turn. (i) If none of the two constraints binds, observe

that the two expressions on the RHS of the inequality sign are continuous in δ and monotonically

decreasing when the discount parameter is decreasing, so that there exists δ′ < δ∗ such that the

system still holds true when δ = δ′, contradicting the claim that δ∗ is a lower bound. (ii) If exactly
9 In a trigger penal code à la Friedman (1971), a deviation implies that firms stop colluding and revert to the

one-shot stage game Nash equilibrium forever. The punishment action is then self-enforcing. A stick-and-carrot

setup authorizes a more severe (and also shorter) punishment phase that may lead firms to earn negative profits

for some time. It is not self-enforcing unless (IC1) holds.
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one constraint binds for δ = δ∗, recall that profit functions πdi (.) and π(.) are continuous in firms’

choices, therefore by changing slightly the punishment action from a∗P to a′P one can relax the

binding constraint and still let the other inequality be verified. This leads the two constraints

(IC0 ) and (IC1) to be slack, implying again that there exists δ′ < δ∗ such that the system still

holds true when δ = δ′. It follows from (i) and (ii) that both constraints must be binding.

This first result establishes that, when aP = a∗P , and δ = δ∗, the two incentive constraints are

exactly satisfied. Therefore we may compute a∗P and δ∗ by solving in (aP , δ) the system (IC0 -IC1)

with equality signs.

To compare, recall that Abreu (1986)’s problem consists in identifying the pair of actions

(aP , aC) that permits firms to maintain the most profitable collusive action aC for a given discount

factor δ. The two approaches are dual since the value δ∗ we obtain as a solution, for a given am,

is identical to the given value of δ that leads to the solution a∗C = am in Abreu’s problem. In the

latter, the solution a∗C is bounded from above by the stage-game joint-profit maximizing action.

When δ is high enough for this boundary value to be implemented as a collusive equilibrium, the

constraint not to deviate from collusion is slack. This explains why Lemma 1 differs slightly from

Abreu’s Theorem 15, in which the analogue of (IC0 ) holds with a weak inequality only (while

the analogue to (IC1) holds with an equality sign, as in the present case).

Note however that the single-period punishment action that implements the collusive action

needs not be a∗P . This is because a∗P is defined as the punishment action that satisfies (IC0 -

IC1) for the lowest possible value of δ, that is exactly δ∗. When δ > δ∗, the collusive action is

implementable with a “non-optimal punishment” aP about a∗P .

We now introduce two additional constraints. The first one is a participation constraint.10 It

specifies that each firm, when it actualizes the future stream of profits earned from the period

of punishment onward, must find it beneficial to continue playing the game even if it earned

negative profits for a while. Formally, it must be the case that π(aP )+
�∞
k=1 δ

kπm ≥ 0. A simple

reorganization of terms, toward a more intuitive expression, leads to

(1− δ) [πm − π(aP )] ≤ πm. (PC )

In words, the participation constraint is satisfied when the profit a firm forgoes in the pun-

ishment period, that is the difference πm − π(aP ), is not greater than the discounted stream of

collusive profits earned in all following periods, that is πm/ (1− δ).
10Lambson (1987) refers to it as an individual rationality constraint.
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Note that (IC1), which we may rewrite as (1− δ) [πm − π(aP )] ≤ πm− πdi (aP ), can be easily

compared to (PC ). Recalling from (A5) that πdi (aP ) ≤ (>)0 if and only if aP � (≻)ãP , observe
that (IC1) is (weakly) stronger than (PC ) if and only if aP  ãP . It follows that, when a∗P ≺ ãP ,

(PC ) is violated, hence δ∗ is not attainable.

In this case, toward a solution to the participation-constrained problem we define a particular

punishment action, denoted by aP , that satisfies exactly both (IC0) and (PC ). In formal terms,

π (aP ) = πm − πdi (am).
11 For notational clarity, let π ≡ π (aP ). Note that aP ≺ aNE because

π (aP ) < 0.

The next constraint is central to the analysis. It imposes a limit to the severity of the

punishments all firms may inflict on each other in a single period. Formally, aP must satisfy

π(aP ) ≥ π. (LLC )

This constraint can be rooted in structural conditions (e.g., demand is finite at any price, including

zero), financial considerations (e.g., a profitability target), or in institutional features (e.g., a

regulation). In what follows we refer to this weak inequality as the limited liability constraint. It

does not appear in Abreu (1986)’s seminal paper, where the inverse demand is strictly monotonic,

and the constant marginal cost is always positive, so that losses can be made as negative as needed

by charging sufficiently close to zero. In the majority of more recent models which capitalize

on Abreu’s results, and specify a stick-and-carrot mechanism with a single punishment period, a

limited liability constraint is implicit (e.g., the quantity demanded is finite for all prices, including

zero), although to the best of our knowledge its implications were not investigated in the literature.

Note from (IC0) that the first incentive constraint is satisfied if and only if
�
πdi (am)− πm

�
/δ ≤

πm−π(aP ), and from (LLC ) that the limited liability constraint can be rewritten πm− π(aP ) ≤
πm − π. It follows that, for a given collusive “target” am to be implementable, we must have
�
πdi (am)− πm

�
/δ ≤ πm − π for some δ ∈ (0, 1]. The latter condition obviously does not hold if

limδ→1
�
πdi (am)− πm

�
/δ > πm − π, or equivalently if π > πm −

�
πdi (am)− πm

�
. Accordingly,

the limited liability constraint can be so strong as to make collusion impossible. Because we

assume that π ≤ π (aNE), a feasibility condition for am to be implementable in this single-period

punishment context is πm − π (aNE) ≥ πdi (am)− πm. In words, the one-shot profit of collusion

must be greater than the gain to deviating from it.
11The implicit definition of aP is obtained by rewriting (IC1) as δ ≥

�
πdi (am)− πm

�
/ [πm − π (aP )], and (PC)

as δ ≥ −π (aP ) / [πm − π (aP )]. Then observe that the denominators are equal. If a∗P ≺ ãP , we know that

aP exists. This is because πdi (am) − πm = πdi (a
∗

P ) − π (a
∗

P ) from Lemma 1, and πdi (a
∗

P ) < 0 from (A5), hence

π (a∗P ) < πm−π
d
i (am) < 0. Recalling that π (aNE) ≥ 0, by the intermediate value theorem we have a∗P ≺ aP ≺ aNE

such that π (aP ) = πm − πdi (am).
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The order relation on the set of punishment actions aP , as defined in the previous section,

implies that (LLC ) can be rewritten as aP  aP . This does not mean that punishments cannot

result in very low profits when (LLC ) is satisfied. Indeed recall from (A5) that the “lower” bound

aP , when played by all firms in N\{i}, can be sufficiently severe as to make firm i stop producing

as a best-reply.

We may now write the δ-minimization problem in aP as follows:

min
aP∈A

δ

s.t. IC0; IC1;PC ;LLC
(1)

The lowest δ for which the collusive action am is implementable finds different expressions

depending on the comparison of the structurally defined punishment actions a∗P , aP , and aP .

Proposition 1. The collusive action am � a∗m is implementable with a single-period punishment

if and only if δ ≥ δ∗1, with

δ∗1 =





δ∗ ≡ πdi (am)−πm
πm−π(a∗P )

if a∗P  aP , aP (regime 1);

δ ≡ πdi (am)−πm
πm−π if aP  aP , a

∗
P (regime 2);

δ ≡ πdi (am)−πm
πm−π if aP  a∗P , aP (regime 3);

(2)

with δ∗ < 1 and δ < 1 for all parameter values, and δ < (=) 1 if and only if π < (=)πm −�
πdi (am)− πm

�
.

Proof. First we solve a less constrained version of (1), in which (PC ) and (LLC ) are absent.

Then we reintroduce each of the latter two constraints separately. (See appendix A.1.)

The three regimes identified in Proposition 1 reflect which constraints are at play in the δ-

minimization problem (1). In regime 1, the two incentive constraints are stronger than (PC ) and

(LLC ). The optimal punishment is a∗P , and the minimized discount factor is δ∗1 = δ∗ (here the

subscript “1” refers to the single-period punishment case). In regime 2, (IC0) and (PC ) bite,

the optimal punishment is aP , and am can be implemented only if δ ≥ δ∗1 = δ; while in regime 3,

(IC0) and (LLC ) are binding, the optimal punishment is aP , and am can be implemented only

if δ ≥ δ∗1 = δ. Note that (IC0) is active in all regimes. In fact a firm’s incentive to deviate from

the collusive action remains the same in the three regimes.

Another important point is that the comparison between regimes 1 and 2 differs in kind from

the comparison between regime 3 and either regime 1 or 2. More precisely, whether a solution is
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of the regime-1 or regime-2 type depends on whether (PC ) is stronger than (IC1) or not. Their

ranking is rooted in the firms’ payoff functions. Whether regime 3 arises or not can also depend

on the strategy set, which can be limited “from below” for all sorts of institutional or financial

reasons that do not relate to cost or demand conditions.

Remark 1. If a∗P  aP , aP , so that regime 1 applies, δ∗ ≥ δ, δ.

This remark emphasizes a subtle aspect of Proposition 1. Obviously, when either regime 2

or 3 applies, so that either (PC ) or (LLC ) binds, respectively, we have δ∗ ≤ δ, δ. Indeed the

δ-minimization problem (1) is more constrained than when only the incentive constraints (IC0)

and (IC1) are considered. However, when regime 1 applies, it does not mean that (PC ) and

(LLC ) are set aside. It only means that (IC0) and (IC1) are stronger than both (PC ) and

(LLC ). Hence the relevant threshold δ∗ cannot be lower than δ and δ. More generally, in the

single-period punishment benchmark problem, at most two constraints bind, that determine the

threshold for δ. This threshold can only be higher than the other two expressions in (2).

A final observation is that, while δ∗ and δ are both lower than 1, the limited liability constraint

can be so strong as to result in δ > 1, in which case the collusive action am is not implementable

with a single-period scheme, for any δ. Recalling that our objective is to identify the largest space

of parameters for which a given collusive action is implementable, it remains to investigate the

possibility to lengthen the duration of the punishment phase. The intuition is that, by shifting

to a multi-period punishment scheme, firms can penalize more severely a deviation than in the

single-period framework. This can soften the lower bound condition on the discount factor, and

thus facilitate collusion.12 However, we demonstrate in the next section that this occurs only is

very specific circumstances, we fully characterize.

4 The Main Results

In this section we introduce the possibility for firms to choose a punishment action over several

periods. The objective is to investigate the impact of the extended length of punishment on firms’

ability to implement collusion, when the severity of punishment is limited in each period.
12Several periods of punishment have been considered only in a few theoretical contributions with more specific

assumptions than in the present model. Lambson (1987) considers price-setting sellers of a homogenous good,

a constant average cost, with capacity constraints. Häckner (1996) constructs a repeated price-setting duopoly

model, with spatial differentiation, and a constant average cost normalized to zero. In Lambertini and Sasaki

(2002), again there are two firms and a constant marginal average cost, but with another specification of the

horizontal differentiation assumption, together with a non-negative constraint on quantities, but not on prices.
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To do that, consider a stick-and-carrot penal code in which, if any deviation from am by

any firm is detected, all firms switch to a l-period punishment phase (the stick) during which

they play aP,k, with k = 1, . . . , l. Punishment actions may vary from one period to another. A

deviation from the punishment action may occur in any period of punishment. If this occurs, the

punishment phase restarts for l more periods, after which all firms revert to the initial collusive

action am forever (the carrot).

Formally, the two incentive constraints (IC0) and (IC1) are now extended to

πdi (am) +
l�

k=1

δkπ(aP,k) +
∞�

k=l+1

δkπm ≤
∞�

k=0

δkπm, (3)

and

πdi (aP,s) +
l�

k=1

δkπ (aP,k) +
∞�

k=l+1

δkπm ≤
l�

k=s

δk−sπ(aP,k) +
∞�

k=l+1

δk−sπm, (4)

respectively, for any period s in which a firm deviates from the penal code, with 1 ≤ s ≤ l, all i.

Given am, the vector aP ≡ (aP,1, . . . , aP,k, . . . , aP,l) sustains collusion if and only if (3) and

(4) are satisfied. There are 1+ l incentive constraints in all: the single constraint in (3) says that

the gain earned by deviating from the collusive action must be smaller than what is lost over

the l periods of punishment; the other l constraints in (4) say that the gain to deviate from the

punishment phase, in any period s, with 1 ≤ s ≤ l, must be smaller than the loss incurred by

re-initiating the punishment phase.

To simplify the presentation of incentive constraints and clarify their interpretation, we now

introduce a value function. If a firm does not deviate from the punishment path, the continuation

profits it earns from period s+ 1 onward is

Vs (aP , δ) =
l�

k=s+1

δk−s−1π(aP,k) +
∞�

k=l+1

δk−s−1πm. (5)

Here s = 0 indicates that the l-period flow of punishment profits is not truncated from below,

whereas s = l means that exactly all punishment profits are removed, so that only collusive profits

are considered from period l + 1 onward. Note from (5) that aP,l+1 = am implies Vs (aP , δ) ≤
Vl (aP , δ) = πm/ (1− δ), all s. This also implies that Vl (aP , δ) = V0 (am, δ).

Then the multi-period incentive constraints in (3) and (4) are

πdi (am)− πm ≤ δ [V0 (am, δ)− V0 (aP , δ)] , (MIC 0)
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and

πdi (aP,1)− π (aP,1) ≤ δ [V1 (aP , δ)− V0 (aP , δ)] , (MIC 1)

. . . (...)

πdi (aP,s)− π(aP,s) ≤ δ [Vs (aP , δ)− V0 (aP , δ)] , (MIC s)

. . . (...)

πdi (aP,l)− π(aP,l) ≤ δ [Vl (aP , δ)− V0 (aP , δ)] , (MIC l)

respectively, with 1 ≤ s ≤ l. Note that π(aP,s) ≤ πdi (aP,s) requires that V0 (aP , δ) ≤ Vs (aP , δ),

all s, a feasibility condition of the punishment scheme.

In (MIC 0) we compare a firm’s payoff when it colludes by choosing am, that is πm+δV0 (am, δ),

with the payoff it earns by deviating, that is πdi (am) + δV0 (aP , δ). It is individually rational to

stick to the collusive action if this first constraint is satisfied. The next incentive constraints,

one for each period of punishment, compare a firm’s payoff when it implements a punishment

action, with the payoff it earns by deviating. More precisely, in (MIC 1) we compare the firm’s

payoff when it plays aP,1, that is π (aP,1) + δV1 (aP , δ), with the payoffs it earns by deviating,

that is πdi (aP,1)+ δV0 (aP , δ). The next row describes the same comparison for the next period of

punishment, and so on, down to (MIC l). A firm will not deviate from the l-period punishment

path if all constraints of rank s = 1, . . . , l are satisfied.

A first technical claim is a multi-period counterpart to Lemma 1, as offered above in the

single-period punishment case.

Lemma 2. Given aP,1, the lowest discount factor δ verifying (MIC 0) and (MIC 1) results from

punishment actions aP,k, with k > 1, such that these two multi-period incentive constraints bind.

Proof. See appendix, section A.2.

The multi-period participation constraint is Vs (aP , δ) ≥ 0, all s = 0, 1, . . . , l. In words, the

continuation profits, from the first period of punishment onward, must remain non-negative for a

firm to implement the punishment aP . Interestingly this can also be rewritten as

(1− δ) [V0 (am, δ)− Vs (aP , δ)] ≤ πm, (MPC )

all s = 0, 1, . . . , l, an intuitive generalization of the single-punishment period counterpart in

(PC ). This says that the sum of profits that each firm foregoes by implementing the remaining
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punishment as+1, . . . , al, that is the difference V0 (am, δ) − Vs (aP , δ), cannot be more than the

discounted stream of profits earned in all collusive periods that follow, πm/ (1− δ).13

Observe from (MIC 0) and (MPC ) that the value differential V0 (am, δ)−V0 (aP , δ) is bounded

from below by
�
πdi (am)− πm

�
/δ and from above by πm/ (1− δ), respectively. This yields:

Lemma 3. The lowest δ compatible with (MIC 0) and (MPC ) is δ ≡ πdi (am)−πm
πdi (am)

.

Proof. The threshold δ =
�
πdi (am)− πm

�
/πdi (am) follows directly from the comparison of

(MIC 0) and (MPC ) for s = 0. This threshold does not differ from δ, as introduced in Proposition

1, since πdi (am) = πm − π (denominator) from the implicit definition of aP .

Therefore there can be no l-period punishment aP that implements am when the discount

factor is strictly lower than δ. In other words, the lengthening of the punishment scheme cannot

help relaxing the participation constraint.

Now the multi-period limited liability constraint is

π(aP,k) ≥ π, (MLLC )

with 1 ≤ k ≤ l, all l ≥ 2. In words, the limited liability constraint (MLLC ) captures structural

conditions imposing that, in any period k of the punishment phase, a firm’s profit cannot be

driven below π, a parameter. Note that (MLLC ) implies that aP,1  aP , which we use to prove

the following technical result:

Lemma 4. The lowest δ compatible with (MIC 0) and (MLLC ) is δ′ ≡ πdi (am)−πm
πdi (am)−πdi (aP )

.

Proof. First, recall from Lemma 2 that, given aP,1, the lowest discount factor δ verifying (MIC 0)

and (MIC 1) results from punishment actions aP,k, with k > 1, such that both (MIC 0) and

(MIC 1) bind. This implies that the latter two constraints must hold with an equality sign

throughout. The solution in (δ, V1) is (δ∗(aP,1),V1(aP , δ
∗(aP,1))), with

δ∗(aP,1) =
πdi (am)− πm

πdi (am)− πdi (aP,1)
,

where the monotonicity of πdi (aP,1) in aP,1 (see Lemma A-2 in the appendix, section A.2) implies

that δ∗(aP,1) is monotone non-decreasing in aP,1. Next, introduce the constraint (MLLC ), which

is equivalent to aP,1  aP . Then substitute aP for aP,1 to find δ∗(aP ) = δ′.
13The latter interpretation of (MPC ) is even more intuitive when one sees that V0 (aM , δ) − V0 (aP , δ) =�l

k=1 δ
k−1 (π(aM )− π(aP,k)), so that l = 1 leads to (PC ), the participation constraint in the single-period punish-

ment setup.
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Given all constraints, the multi-period punishment problem is

min
(aP,1,...,aP,l)∈Al

δ

s.t. (MIC 0−MIC l);MPC ;MLLC
(7)

For any given l, the optimal multi-period punishment is the solution in aP = (aP,1, . . . , aP,l) to

(7). It yields the lowest possible value of the discount factor, we denote by δ∗l , that authorizes

firms to implement am, under all constraints. In what follows we examine successively the role of

the 1+ l multi-period incentive constraints (MIC 0-MIC l), the participation constraint (MPC ),

and the limited liability constraint (MLLC ).

We now establish that, in the absence of participation and limited liability constraints, or

when they are slack, the possibility to punish over several periods does not result in an optimal

punishment path that differs from the single-period punishment case, our benchmark.

Proposition 2. In the multi-period punishment scheme, if a∗P  aP , aP the collusive action

am � a∗m is implementable if and only if δ ≥ δ∗, and a∗P ≡ (a∗P , am, . . . , am) is optimal.

Proof. There are two steps (see appendix): (1) We investigate a less constrained version of

(7) by leaving aside the last l − 1 multi-period incentive constraints together with (MPC ) and

(MLLC ), to keep only (MIC 0) and (MIC 1). This is done by capitalizing on Lemma 2: we solve

in (δ, V1) the system (MIC 0-MIC 1) with equality signs, to obtain (δ∗(aP,1), V1(aP , δ
∗(aP,1)));

then we identify the level of aP,1 that minimizes δ∗(aP,1) under the feasibility constraint that

V1(aP , δ
∗(aP,1)) ≤ Vl (aP , δ

∗(aP,1)) = πm/ (1− δ∗(aP,1)). This leads to the minimizer a∗P,1 = a∗P .

(2) We show that (δ∗(a∗P ), V1(aP , δ
∗(a∗P ))) satisfies all incentive constraints in (MIC 0-MIC l) as

well as (MPC -MLLC ).

Obviously it is always possible to replicate the single-period punishment scheme by playing

aP,1 = aP in the first period, followed in all l−1 subsequent periods by the same collusive action,

that is aP,k = am, all k = 2, . . . , l. Proposition 2 establishes that, when (MPC ) and (MLLC ) are

slack, by doing so with aP = a∗P one obtains the lowest possible value of δ for which the collusive

action am is implementable. The threshold value of the discount factor we obtain in this l-period

punishment scheme is the same as in the single-punishment case, namely δ∗.

Remark 2. If a∗P  aP , aP there is a unique punishment path a∗P that permits firms to implement

am for δ = δ∗.

In other words, as long as the participation and limited liability constraints are not binding,

there is one best way to solve (7). In a supergame with discounting, late punishments have less
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impact. Firms must charge a low price or supply a large quantity as early as possible, that is in the

first punishment period, in order to minimize the discount factor at which am is implementable.

Next, we establish that, when the multi-period participation constraint binds, again the pos-

sibility to punish over several periods does not enlarge the space of parameters for which the

collusive action is implementable.

Proposition 3. In the multi-period punishment scheme, if aP  aP , a
∗
P , the collusive action

am � a∗m is implementable if and only if δ ≥ δ, and aP ≡ (aP , am, . . . , am) is optimal.

Proof. There are two steps (see the appendix, section A.2): (1) In addition to (MIC 0) and

(MIC 1), we introduce (MPC ) in the less constrained version of (7), the last l − 1 multi-period

incentive constraints and (MLLC ) being left aside. We show that (MPC ) is stronger than (IC1)

if a∗P � ãP . Then am is implementable with the l-period punishment aP ≡ (aP , am, . . . , am) if

δ = δ, that is the lower bound to the interval of δ for which (MIC 0) and (MPC ) are compatible.

(2) We obtain that (δ,aP ) satisfies all other incentive constraints (MIC 2-MIC l), in which case

δ is a solution of (7) and aP is optimal.

When (MPC ) binds, by playing aP in the first punishment period (as in the single-period

scheme), followed by the same collusive action afterwards (i.e., aP,k = am, all k = 2, . . . , l), one

obtains the lowest possible value of δ for which am is implementable. This discount threshold is the

same as in the single-punishment case when (PC ) binds, that is δ. The intuition for this result is

straightforward. Indeed the participation constraint V0 (aP , δ) ≥ 0 determines the maximum total

punishment a firm can incur (as opposed to a per-period punishment). In fact this constraint

is identical in the single- and multi-period schemes, since the definition of the maximum total

punishment does not depend on the number of periods. When the participation constraint binds

with only one punishment period, it cannot be relaxed by extending the number of periods.

Remark 3. If aP ≻ a∗P there is a continuum of punishments that permit firms to implement am

for δ = δ.

This says that, when (MPC ) binds, the punishment aP ≡ (aP , am, . . . , am) is only one way,

among others, of implementing am when the discount factor is the lowest possible, at δ. Firms

may opt for a softer first-period action if they choose to lengthen the punishment phase to one or

several subsequent periods, before reverting to am. While the possibility to punish over several

periods does not permit firms to reduce the discount factor threshold for which the collusive action

is implementable, the space of punishment strategies that allow them to reach a given threshold

is strictly larger than in the single-period punishment case.
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We now turn to the case of a binding limited liability constraint. We will see that it differs

qualitatively from the previous cases, in that additional punishment periods result in a strictly

lower discount threshold than with a single-period scheme.

The next proposition describes the optimal punishment, and characterizes the associated

discount threshold, when (MLLC ) binds.

Proposition 4. In the multi-period punishment scheme, if aP  a∗P , aP collusion at am � a∗m is

implementable if and only if δ ≥ δM ≡ sup{δ, δ′}, with aP ≡ (aP , aP,2, . . . , aP,l) of finite length l.

Proof. As we are interested in establishing implementability for δ ≥ δM ≡ sup{δ, δ′}, there are

two cases that depend on the comparison of δ′ and δ (see the appendix, section A.2). In both

cases: (1) we establish that there exists a finite punishment, we denote aP , which is such that

V1 (aP , δ) is equal to a particular value we explicit; (2) we check that all incentive constraints are

satisfied; (3) we also verify that the participation and limited liability constraints hold.

Remark 4. If (MLLC ) is strictly binding, that is if aP ≻ a∗P , aP , there exits a continuum of

optimal punishments (aP , a2, . . . , al) of finite length l ≥ 2, such that am is implementable for

δ = δM .

In other words, when the limited liability constraint binds, so that the single period punish-

ment action aP,1 cannot be more severe than aP , the multi-period optimal punishment profile

does not necessarily look like the usual front-loading scheme (where firms are punished as much

as immediately possible before returning to the collusive path as soon as possible). In fact the

optimal profile (aP , a2, . . . , al) can display much more complicated patterns.

Example 1. Two price-setting firms sell a homogeneous good in a market with a linear demand.

Sales from firm i are given by

qi(p) =





q(pi) if pi < pj
1
2q(pi) if pi = pj

0 if pi > pj

,

where q(pi) = sup{0, α − pi} for α > 0 and pi ≥ 0, with i, j = 1, 2, i �= j. The unit cost of

production is a constant c > 0, the fixed cost is f > 0, and there is a price-floor regulation which

prohibits below-marginal-cost pricing, i.e. p
P
= pNE = c, so that the limited liability constraint

is π(pP,k) ≥ π = −f , with 1 ≤ k ≤ l, all l ≥ 2. The punishment profile aP possibly can take

the form of a price asymmetric cycle, where fast price increases from c to the (perfect) collusive
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price p∗m = (α+ c) /2 are followed by several smaller decreases down to the price floor, or the

neighborhood of it (see Figure 1).

Example 1 echoes recent empirical investigations on dynamic pricing behavior in retail gasoline

markets, where asymmetric retail price cycles are observed. They begin with a price jump, followed

by a series of smaller price cuts, until the observed price reaches the competitive level (Eckert

(2002), Eckert and West (2004); Noel (2006, 2007)). Then the cycle restarts, and so on. This

resembles the Edgeworth cycles obtained as a (non-collusive) equilibrium in an alternating-move

price-setting duopoly model by Maskin and Tirole (1988). Here Figure 1 illustrates that two-phase

asymmetric cycles are also consistent with collusion as implemented by a multi-period punishment

scheme.14
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Figure 1: The punishment profile p
P
≡ (p

P
, pP,2, . . . , pP,l) in Example 1 can take the form of asymmetric

price cycles (here with α = 1, c = 1/4, p
P
= pNE= c = 1/4, implying that δM≡ sup {δ′,δ} = 1/2). In this

ten-period punishment phase, fast price increases from p
P

to p∗m= (α+ c)/2 are followed by a two-period fall

down to p
P
= c (here with intermediate prices aP,3= aP,6= aP,9= (p

P
+p∗m)/2).

We may now state our main proposition. It synthesizes the previous results, and allows us to

rank all the discount thresholds introduced above.
14The limited liability constraint in Example 1 echoes the regulations that constrain the formation of gasoline

retail prices above the wholesale (rack) price in several U.S. states and Canadian provinces (Houde 2008, 2010). In

our setup there can be no deviation from the collusive path in equilibrium. However, should uncertainty of some

kind be introduced, out-of-equilibrium punishment profiles would be observed (for example, unobserved random

shocks on demand may induce price wars to appear in equilibrium, as first investigated in Porter (1983) and Green

and Porter (1984)).
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Proposition 5. If aP ≻ a∗P , aP , and additional punishment periods are introduced, the lowest

discount factor δM that permits the implementation of am � a∗m cannot be as low as δ∗, and can

attain δ only in particular circumstances. More formally, either aP � a∗P so that δ∗ < δM < δ,

or aP ≻ a∗P and δ ≤ δM < δ. In the latter case δM = δ if and only if ãP  aP ≻ aP ≻ a∗P .

Proof. See the appendix, section A.2.

In other words, when regime 3 applies in the single-period scheme, a delayed punishment with

discounting offers only an imperfect substitute for more immediate severity.

To see that, suppose that, absent the (multi-period) limited liability constraint (MLLC ),

regime 1 applies. Then recall from Remark 2 that the only punishment profile allowing firms

to implement collusion when δ = δ∗, a lower bound, is a∗P ≡ (a∗P , am, . . . , am). When limited

liability results in regime 3 to apply, we know that a∗P is unattainable in the first punishment

period. In that case a longer punishment phase permits firms to increase the total punishment,

and thereby facilitates collusion in that it results in a discount threshold δM which is lower than

δ. However, with discounting, delayed punishments harm less. They do not allow δM to attain

the lower bound δ∗.

As an alternative, suppose now that, absent the limited liability constraint, regime 2 applies.

In that case, recalling that aP is implicitly defined by π = πm − πdi (am), it is straightforward

to observe from the comparison of the expressions of δ and δ′, as displayed in Proposition 3 and

Lemma 4 respectively, that the two thresholds coincide if and only if πdi (aP ) = 0, or equivalently

aP = ãP . When punishments cannot be very severe, in that aP ≻ ãP , firms earn positive profits

by deviating from the punishment “floor” (i.e., πdi (aP ) > 0, see Assumption A6). In that case

there is no finite number of punishment periods that allow firms to implement am for a discount

level as low as δ. That is, δM > δ. Only when the most severe punishment is such that firms

cannot break even by deviating, so that their minmax profit is non-positive (i.e., πdi (aP ) ≤ 0),

they may implement am by lengthening the punishment phase for any discount level greater than

or equal to δ, that is δM = δ.

By substituting (aP , am, . . . , am) for aP in (MIC 1), and reorganizing terms, we obtain that

πdi (aP ) ≤ πm for all aP � am. This leads to:

Remark 5. δM ≤ 1.

In other words, the Folk theorem (Fudenberg and Maskin (1986)) is verified in the multi-

period punishment setup (recall from Proposition 1 that, with a single period of punishment, in

Regime 3 we have δ > 1 for π sufficiently high).
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The next section illustrates the latter results and their interpretation in the usual context of

a linear case.

5 A Linear Case

In this section, we introduce additional specifications on costs and demand in order to illustrate the

importance of considering limited liability constraints in the familiar context of a linear oligopoly

structure. We investigate the circumstances which allow firms to sustain perfect collusion (i.e., to

maximize joint profits) when prices cannot be negative. Toward this aim, we assume that, over

all periods, demand is derived from a utility function adapted from Häckner (2000), of the form

U(q, I) =
n�

i=1

qi −
1

2




n�

i=1

q2i + 2γ
�

i�=j
qiqj


+ I, (8)

which is quadratic in the consumption of q-products and linear in the consumption of the com-

posite I-good (the numeraire).15 The parameter γ ∈ (0, 1) measures product substitutability as

perceived by consumers. If γ → 0, the demand for the different product varieties are independent

and each firm has monopolistic market power, while if γ → 1, the products are perfect substitutes.

Consumers maximize utility subject to the budget constraint
�

piqi + I ≤ m, where m denotes

income, pi is the non-negative price of product i, and the price of the composite good I is normal-

ized to one. By symmetry, we note
�
j �=i qj = (n− 1)qj . On the cost side, in the example we set

f = 0, for simplicity, and a constant marginal cost c < 1. We examine the Cournot version of the

model. With quantity-setting firms, the relation q′ is more severe than q is formally equivalent

to q′ ≥ q.

From (8) firm i’s inverse demand function in each period is

pi(qi, qj) = sup{0, 1− qi − γ(n− 1)qj}, (9)

and the inverse demand for each other symmetric firm j in N\{i} is

pj(qi, qj) = sup {0, 1− γqi − (1 + γ(n− 2))qj} , (10)

all qi, qj ≥ 0, i �= j. It is straightforward to check that a firm’s profit function is continuous and

the associated maximization problem is convex.
15 In Häckner (2000), quantities qi are multiplied by a parameter ai, that is a measure of the distinctive quality

of each variety i. Here we exclude vertical product differentiation by assuming that ai = 1, all i ∈ N .
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Which of the three regimes we identified in Proposition 1 applies depends on the status of

the participation and limited liability constraints. This in turn depends on the number of firms

n, the degree of product differentiation γ, and the marginal (and unit) cost c. The connection of

the latter cost parameter to the limited liability constraint, is very intuitive in this example.

With a linear demand, the quantity demanded is finite at all prices. The limited liability

constraint here does not artificially set boundaries to firms’ strategies, as it only formalizes that

prices cannot be negative:

π(aP,k) ≥ π ≡ π(q
P
),

where the most severe punishment q
P

is obtained when the price charged by all firms is equal to

zero. This may result in exactly zero profits if the marginal cost is equal to zero as well, or to losses

if the price-cost margin is negative, all other things (i.e., the demand to each firm) remaining

equal. Whether the endogenous q∗P or qP , as defined above (by simply substituting q for a) is less

or more severe than q
P

can thus be seen to depend only on the comparison of c with a threshold

level, we denote by c, which is a function of n and γ.

In the specific algebraic context of this example, we check that (PC ) binds if and only if

qP ≥ q̃P , where q̃P = (1− c) / [γ (n− 1)] is computed by solving πd(q) = 0 (see Assumption (A5)).

Note that, in the absence of fixed costs, we have q̃P = q̂P (see Assumption (A6)), and deviation

profits cannot be negative (a firm may stop producing to earn zero benefit). Moreover (LLC )

binds if and only if qP ≥ q
P
, where q

P
= 1/ [1 + γ(n− 1)] is obtained by solving pi(q, q) = 0. This

is because, in the absence of regulatory intervention, the lower bound to punishment profits results

from the non-negativity constraint in prices (the constraint binds when quantities are sufficiently

large, because demand is finite).

We can compute the expression of the frontier c̃ (for the specific form see appendix A.3.1),

a function of n and γ, which delineates the parameter space in which the quantity q∗m (perfect

collusion) can be implemented in the benchmark set-up with a single-period punishment scheme.16

If c < c̃, collusion cannot be sustained, for any set of parameter values, with a single-period

punishment scheme. However, we verify that collusion at q∗m can always be implemented with a

multi-period punishment scheme for some δ in [δM , 1], which illustrates the Folk theorem in this

linear setup. We also compute the three-part expression of a continuous frontier c, with c = 0

if 0 ≤ γ ≤ γ̂, c = c′ > 0 if γ̂ < γ ≤ γ̌, and c = c′′ > c′ otherwise, with γ̂ ≡ 2/ (n− 1) and

16With a multi-period punishment scheme, the collusive quantity q∗m is always implementable by mimicking a

trigger mechanism (with qP = qNE, the Cournot equilibrium quantity, forever). In that case collusion is sustainable

for all δ ≥ πd
i
(q∗
m
)−π∗

m

πd
i
(q∗
m
)−π(qNE)

. The latter discount threshold is always less than 1.
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γ̌ ≡ 2
�
1 +

√
2
�
/ (n− 1), all n. This leads to a partition of the parameter space (n, γ, c) into

three subsets, one for each regime.

1=c

0 1=γ

PP qqc =′′ :

regime 2:
∗≤ PPP qqq ,

regime 1:

PPP qqq ,≤∗

γγ ˆ=

PP qqc =′ ∗
:

PP qq =~

γγ (=

PP qq =∗

c~

PPP
qqq ,∗≤

regime 3:

Figure 2: Collusion regimes in plane (c, γ) for n ≥ 6. The limited liability constraint binds in the grey area

(regime 3). In the benchmark single-period set-up, the collusive quantity is not implementable below the frontier c̃.

Proposition 6. The parameter space (c, n, γ) is partitioned in three subsets where either Regime

1, 2, or 3, as defined in (2), applies.

Proof. See appendix A.3.3.

The partition of the parameter space (c, n, γ) is such that, if the constant unit cost is

sufficiently high (formally, c ≥ c), either regime 1, where neither (PC ) nor (LLC ) binds, or

regime 2, where (PC ) binds, applies. The former case may hold for all n ≥ 2, while the second

cannot arise if n < 6. Regime 3 is ruled out only if n = 2. Otherwise, when goods are sufficiently

substitutable (γ ≥ γ̂), and for all numbers of firms, a sufficiently large reduction in c will always

result in a shift to regime 3, where (LLC ) binds.17

17To the best of our knowledge this characterization cannot be found in the literature. However, a clear intuition

for that result already appears in an exploratory note by Lambertini and Sasaki (2001), who explain that “high

marginal costs tend to provide more room for tacit collusion than [...] with lower marginal costs, due to the positive

price constraint” (p. 119).
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Fig. 2 precisely illustrates this point.18 Note that the non-implementability frontier c̃ is

monotone increasing in γ and crosses the plane (γ, c) below c′′. It is non-negative if and only if

γ ≥ γ̌. Because inf {γ̌, 1} = 1 if and only if n < 6, the collusive q∗m cannot be implemented in

the single-period scheme for all n ≥ 6 if the marginal cost is sufficiently low and/or the products

are sufficiently substitutable.19 At any point (c, n, γ) where Regime 3 applies (the grey area),

q∗m is implementable for all δ ≥ δM . This illustrates Proposition 4. Next, as an illustration of

Proposition 5, the grey area can be partitioned into three subsets, which describe the consequences

of introducing a multi-period punishment scheme. For all points below the frontier c′′ and above

the frontier q̃P = q
P

(so that q̃P ≤ q
P

together with f = 0 imply πdi (qP ) = 0), we have δM = δ.

Then firms may implement q∗m for all δ ≥ δM = δ with a multi-period punishment. Second, in

the grey area below the frontier q̃P = q
P

(in which case q̃P > q
P

implies πdi (qP ) > 0) and for

γ ≥ γ̌, we have δM > δ. In that case firms cannot implement q∗m for a discount level as low as δ.

Eventually, for γ < γ̌ and below c′, we have q
P

< q∗P ≤ qP , hence δ∗ < δM < δ. In other words,

the limited liability constraint binds, and several periods of punishment are only an imperfect

substitute for more severity in the first period. The same figure also helps identifying the role of

fixed costs. When f = 0, one can check that (IC1) simplifies to the same expression as (PC ).

This does not hold whenever f > 0.20 In that case all incentive constraints, together with the

limited liability constraint, remain unchanged. The only difference is that the future stream of

profits earned from the first period of punishment onward is reduced by the magnitude of fixed

costs, so that the participation constraint becomes stronger. Hence the parameter subset where

regime 2 applies expands. This has no impact on δ∗, δ, and δ.

An interesting aspect of Proposition 6 is that the limited liability constraint can be ignored

for all values of c and γ if there are exactly two or three firms (see Regime 1-(i)). In that case, the

results obtained in the literature on the implementation of collusion with a duopoly, homogenous

goods, and a cost set to zero, are robust. This does not apply when n > 3, as the limited liability

constraint binds for some values of the cost and differentiation parameters.

18 In this figure, γ < (=)γ̌ is equivalent to q∗P < (=)q̃P (see appendix A.3.2). Hence it is also equivalent to

q∗P < (=)qP , from Lemma 4.
19 In appendix A.3.1 we show that πdi (qP ) < π∗m. If it were not true, from Lemma 4 we would have δ′ > 1, in

which case collusion could not be sustained, even with a multi-period punishment. This could occur if a sufficiently

high floor on pi or low capacity constraint on qi were added.
20 If f = 0 we have πdi (qP ) = −f = 0 for all qP ≥ q̃P = q̂P . In that case, the solution to the δ-minimization

problem in qP , under (IC0) and (IC1) only, is the same as the solution under (IC0) and (PC ). If f > 0 the

constraint (PC ) becomes stronger than (IC1) for all qP ≥ q̃P , with q̂P > q̃P (see assumptions (A5) and (A6)). We

may also assume that f < 0 to capture the existence of a profitable outside option. In this case (PC ) is weaker

than with a non-negative fixed cost.
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It is also of interest to compare Proposition 6 with Abreu (1986), where there is no limited

liability constraint. In that paper, the model is a Cournot oligopoly with a strictly positive

constant unit cost, homogenous goods, and a quantity demanded that tends to infinity when the

price approaches zero. Then the collusive q∗m can be implemented with a one-period punishment

penal code, for all numbers of firms, provided that the discount factor δ is above a threshold δ∗.

If there are at most three firms, Proposition 6 extends Abreu’s result to our specific example for

any (c, γ). This is remarkable since our demand specification is not a special case of Abreu’s class

of demand functions. However, with more than three firms, the values of c and/or γ must be

higher than a threshold for a single-period punishment scheme to implement collusion at δ = δ∗

or δ = δ.21

We can also characterize the effect of a change in the marginal cost c, the differentiation

parameter γ, or the number of firms n, on the thresholds δ∗, δ, δ, and δM , as follows:

Proposition 7. High marginal costs facilitate collusion in that the limited liability constraint

plays no role only if c ≥ c, where c is monotone increasing in n,γ. Moreover: (i) δ∗ and δ are

monotone increasing in n and γ, and are independent of c; (ii) δ and δM are monotone increasing

in n and γ, and monotone decreasing in c.

Proof. Points (i) and (ii) follow from simple derivations of functional forms that appear in the

appendix, sections A.3.1 and A.3.2.

This proposition establishes that an increase in product differentiation, and a reduction in

the number of firms, facilitate collusion in two ways. Given δ, it enlarges the range of cost

parameters for which optimal collusion can be implemented. Given c, more differentiation and

less firms both lower the discount factor thresholds associated to the three different regimes.

These findings extend existing results to situations in which there is a limited liability constraint,

and also emphasize that all factors enhancing the firms’ ability to punish — in that they relax the

limited liability constraint — facilitate collusion.

21This result contrasts even more sharply with trigger penal code models, in which one can easily check that the

sustainability of collusion is not directly connected to the level of marginal costs in the linear cost setup. The role

of costs, given n and γ, is illustrated graphically in the appendix by comparing the optimal punishment quantities

q∗P and qP with q
P

for any c defined on [0, 1]. Both q∗P and qP are linear in the cost parameter and monotone

decreasing when c rises closer to 1. As for q
P
, it depends only on the number of competitors and on demand

parameters. It is monotone decreasing when either n or γ increases, but constant in c.
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6 Connections to the Literature

In this section, we discuss the robustness of theoretical results, as received from a selection of

related papers, to the introduction of a limited liability constraint.22

One stream of the theoretical literature on collusion has followed Friedman (1971) by con-

sidering trigger strategies, which call for reversion to the one-shot stage game Nash equilibrium

forever when a deviation from the collusive rule is detected in a previous period. A weakness

common to all models of collusion with trigger strategies is that they rule out the possibility

of modulating the level of punishments. More precisely, by assuming that when a deviation is

detected firms revert to the Nash equilibrium of the one-shot stage game forever, they arbitrarily

put an upper bound on the severity of punishments. In this particular context where the strategy

set is de facto truncated, the limited liability constraint plays no role. Indeed, by assumption

(LLC ) cannot bind whenever aP ≺ aNE . When the strategy set is not arbitrarily truncated,

collusion is facilitated, and the limited liability constraint does impact firms’ ability to sustain

collusion.

The analysis of the connection between structural conditions and collusion stability with a

stick-and-carrot mechanism à la Abreu — where the punishment strategy is more severe than Nash

reversion — has been extended to many aspects.23 A series of papers investigate the impact of

product differentiation and industry concentration on the sustainability of collusive agreements.

An example is Wernerfelt (1989), who finds that more product differentiation renders collusion

less sustainable when the number of quantity-setting oligopolists is relatively large.24 In a two-

firm model where the constant marginal cost is set equal to zero, Häckner (1996) establishes

instead that differentiation facilitates collusive agreements. It is also demonstrated that, when the

punishment price is constrained to be non-negative, a prolonged price war is an optimal collusive

22For a comprehensive survey of the literature on the factors that facilitate collusion, see Motta (2004).
23Here we focus on contributions with complete information on cost parameters. Another research stream focuses

on circumstances in which each firm receives a cost shock in each period of a repeated price-setting game with infinite

horizon (notably Athey et al. (2001, 2004, 2008)). An important result is that, when marginal costs are private

information and may differ across firms, and under simple and general assumptions, ex ante cartel payoffs are

maximized when firms charge the same collusive price and share the market equally, as in simpler models with

complete information and symmetric firms. Other contributions, which do not always allow for the possibility

of pricing below marginal costs, investigate the impact of changes in demand, with various specifications for the

dynamics of shocks (see, in particular, Rotemberg and Saloner (1986), Haltiwanger and Harrington (1991), Bagwell

and Staiger (1997)). A “tuned” collusive price gets closer to the competitive level when demand is high.
24Although of interest, this ambiguous result is derived from demand assumptions (adapted from Deneckere,

1983, 1984) which are not standard (on this see Osterdal, 2003, pp. 54-55).
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strategy. Our paper extends the analysis to situations where below-cost pricing is possible and

reveals that costs impact firms’ ability to sustain collusion.

With two firms and constant marginal costs again, but with another specification of the

horizontal differentiation assumption, Lambertini and Sasaki (2002) find a qualitatively similar

relationship between product substitutability and collusion sustainability. This is obtained in a

setup where quantities are constrained to be non-negative although prices may fall below zero.

The example in section 5 extends this result to a linear setup with n firms, when the limited

liability constraint imposes prices to be non-negative.

Other papers, including Rothschild (1999) and Miklós-Thal (2011), focus on cost asymme-

tries. It is found that collusion is more difficult to sustain when costs are asymmetric, and that

collusion sustainability depends on the difference between the marginal cost levels that character-

ize both the less and the most efficient firms in the industry. Compte, Jenny, and Rey (2002) in

particular capitalize on early characterizations by Lambson (1987, 1994) of optimal punishments

— possibly over several periods — for a class of infinitely repeated games with price-setting sellers

of a homogenous good. They examine the impact of the distribution of firm-specific capacity

constraints on the ability to sustain collusion. When capacity constraints are weak, in that any

subset of firms can serve the entire market, the Nash equilibrium of the stage game yields zero

profit. When aggregate capacity is limited vis-à-vis market size, it is shown that asymmetric

capacities make collusion more difficult to sustain. With no fixed cost and a constant marginal

cost normalized to zero, firms earn zero profit when they are minmaxed. This holds also when

the price is set to zero. Hence, the limited liability constraint associated to price non-negativity

can never be binding. Our analysis reveals that another factor would be at play if the marginal

cost were specified to be positive. In that case, the limited liability constraint would depend on

each firm i’s capacity ki, with the lowest profit equal to −cki < 0, and it could be binding.

In Vasconcelos (2005), quantity-setting firms have a different share of the industry capital,

which determines their marginal costs. In a punishment period, the total industry output is

divided in proportion to capital endowments. The analysis focuses on maximum punishments.

They make a deviant firm earn its minmax payoff, that is zero (there are no fixed costs), from

the first period of punishment onward. In the terms of our paper, this is equivalent to assuming

that the firms’ punishment quantities are such that the participation constraint binds. When

this holds, an important result is that a one-period punishment penal code exists, where the

collusive action leads to monopoly profits (perfect collusion), if the discount factor is higher than

a threshold level that depends on the size of the largest firm. The introduction of our limited

liability constraint — which is a natural extension since demand is finite so that punishments are
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structurally limited from below — would lead to a higher threshold for some parameter values. By

choosing simple values for the cost and demand parameters, we find that the above-mentioned

discount threshold remains unchanged only if the marginal cost parameter is sufficiently high.

More specifically, by setting (say) ki = 1/n for each firm i’s capital share (so that symmetry

is restored) and a = b = 1 for the linear demand curve parameters in Vasconcelos’ model, one

obtains that qP ≤ q
P

if and only if c ≥ sup {0, c(δ)}, where qP is the quantity such that both

(IC0) and (PC ), as defined in the present paper, are exactly satisfied, and q
P

is the quantity

that drives prices to zero.25 For c < sup {0, c(δ)}, the limited liability constraint binds, and a

one-period simple penal code is suboptimal.

7 Conclusion

We fully characterize the conditions under which a limited liability constraint reduces the firms’

ability to implement a given collusive action in a large class of oligopoly supergames where the

duration of punishments can be adjusted. The limited liability constraint is in fact present in all

circumstances where either structural conditions (demand and technology), financial considera-

tions (a profitability target), or institutional circumstances (a regulation) set a lower bound to

firms’ profits. The main theoretical lesson of the paper is that models of collusion, when they

do not take into account the limited liability constraint, exaggerate the sustainability of collusive

agreements. More specifically, when the limited liability constraint binds we show that an infinity

of punishment paths permit firms to implement optimal collusion. We establish that the lowest

discount factor for which collusion is implementable is always reached with a punishment phase

of finite length although the duration of the punishment phase is not bounded. The discount

threshold is either the same or strictly higher than in the absence of a limited liability constraint,

implying that a longer punishment is an imperfect substitute for more immediate severity. As a

policy implication, all attempts that amount to limiting further the severity of punishments can

only hinder collusion. Depending on circumstances, this can take the form of a cost reduction,

tighter financial constraints, or a more stringent control of below-cost pricing by the legislation.

A possible extension is thus to investigate the implications of our results for the design of a regu-

latory mechanism that makes the limited liability constraint stronger and thereby makes collusion

less likely. This is left for future research.

25With ki = 1/n and a = b = 1, the discount threshold of Proposition 2 in Vasconcelos (2005, p. 48) reduces to

3 (n+ 2)n/ (2n+ 1)2. With δ at the latter level, we obtain c(δ) = 1/n.
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A Appendix

A.1 Single-Period Punishments

Proof of Proposition 1.We first introduce three intermediate results (Lemmas A-1 to A-3).
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Figure A-1: The optimal punishment action a∗P is such that πdi (a
∗

P )− π(a
∗

P ) = π
d
i (am)− πm, given am (here

with aP ≺ a
∗

P ≺ aP ≺ ã). As in Abreu (1986) the difference πdi (aP )− π(aP ) is unbounded from above if the

limited liability constraint is removed.

Lemma A-1. Given am, the optimal punishment action a∗P is such that πdi (a
∗
P ) − π(a∗P ) =

πdi (am)− πm. Hence a∗P = ǎ as defined in Assumption (A7).

Proof. The constraints in (IC0-IC1) can be rewritten as δ ≥ δ′ and δ ≥ δ′′, respectively, with

δ′ ≡
�
πdi (am)− πm

�
/ [πm − π(aP )] and δ′′ ≡

�
πdi (aP )− π(aP )

�
/ [πm − π(aP )]. Lemma 1 implies

that

δ∗ = δ′
��
aP=a

∗

P

= δ′′
��
aP=a

∗

P

.

It is then sufficient to observe that the numerators of δ′ and δ′′ are identical to conclude that the

numerators πdi (am)− πm and πdi (aP )− π(aP ) are also equal if aP = a∗P .

Lemma A-1 offers an implicit definition of a∗P and says that, in the stage game, a firm’s

incentive to deviate from a∗P is equal to the incentive to deviate from am (see Fig. A-1). Note

that, because a∗P = ǎ from Lemma A-1, where ǎ is as in Assumption (A7), by continuity of
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πdi (.)− π(.), together with πdi (aNE)− π (aNE) = 0, the incentive to deviate from am is an upper

bound to a firm’s incentive to deviate, for any a that verifies a∗P � a � am.

The next technical result establishes a monotonicity property.

Lemma A-2. πdi (a) ≥ πdi (a
′), all a  a′.

Proof. Recall that πdi (a) ≡ πi
�
adi (a−i) , a−i

�
, with a−i ≡ a, and adi (a−i) ≡ argmaxai πi (ai, a−i).

From the definition of adi (a−i), we have πi
�
adi (a−i) , a−i

�
≥ πi

�
adi
�
a′−i
�
, a−i

�
, all a−i, a′−i. Next,

a i a′ here can be rewritten as a−i i a′−i, implying that πi
�
adi
�
a′−i
�
, a−i

�
≥ πi

�
adi
�
a′−i
�
, a′−i

�
.

This leads to πdi (a) ≥ πdi (a
′) by transitivity.

A useful technical result is:

Lemma A-3. aP  a∗P if and only if ãP  a∗P .

Proof. Sufficiency: If a∗P � ãP then πdi (a
∗
P ) ≤ 0 by (A5). Suppose that aP ≺ a∗P (which

implies that aP ≺ aNE because ãP � aNE from Assumption (A5)), and look for a contradiction.

First recall that, absent the limited liability constraint, profits π (a) are unbounded from below

by assumption, while best-reply profits πdi (a) have a lower bound (a firm may always stop selling

from Assumption (A6)). Hence πdi (a) − π (a) is unbounded from above (i.e., the difference is

strictly larger than the constant πdi (am)− πm for a sufficiently severe a in the absence of limited

liability constraint). Then suppose that πdi (aP )−π ≤ πdi (am)−πm, by continuity of πdi (.)−π (.)

there would exist a ≺ aP ≺ a∗P such that πdi (a)−π (a) = πdi (am)−πm, contradicting Lemma A-1

and Assumption (A7). Hence πdi (aP )−π > πdi (am)−πm. Next, by Lemma A-2, aP ≺ a∗P implies

πdi (aP ) ≤ πdi (a
∗
P ) hence πdi (aP ) ≤ 0. It follows that π < πm−πdi (am)+πdi (aP ) ≤ πm−πdi (am) ,

which clearly contradicts the definition of aP . As a result ãP  a∗P implies aP  a∗P . Necessity:

If ãP ≺ a∗P , suppose that aP  a∗P and look for a contradiction. By assumption aP � am, and

clearly π < 0 implies aP ≺ am. By Lemma A-1 and (A7), a∗P � aP ≺ am implies that πdi (aP )−π ≤
πdi (am)−πm. From the very definition of aP , it follows that πdi (aP ) ≤ 0 = πdi (ãP ). By Lemma A-

2, this implies that aP � ãP and by transitivity through ãP ≺ a∗P , that aP ≺ a∗P , a contradiction.

Hence aP  a∗P implies ãP  a∗P .

The latter three technical results are useful to establish Proposition 1, as follows. There are

three steps. First we solve a less constrained version of (1), in which (PC ) and (LLC ) are absent.

Then we reintroduce each of the latter two constraints separately, one after another.

1) Consider the δ-minimization problem without constraints (PC ) and (LLC ). The two

constraints (IC0-IC1) can be rewritten together as

X (δ) ≤ πm − π(aP ) ≤ Y (δ, aP ) , (12)
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where X (δ) ≡
�
πdi (am)− πm

�
/δ and Y (δ, aP ) ≡

�
πm − πdi (aP )

�
/ (1− δ) denote the lower-bound

and the upper-bound, respectively, of the profit differential πm − π(aP ). (They are represented

in Fig. A-2.) We know that (a∗P , δ
∗) solves X (δ) = Y (δ, aP ) from Lemma 1.26 Together with

πdi (am)− πdi (a
∗
P ) = πm − π(a∗P ) from Lemma A-1, this leads to

δ∗ =
πdi (am)− πm
πm − π(a∗P )

. (13)

Then observe (i) from (IC1) that πdi (a
∗
P ) ≤ δπm+(1− δ)π(a∗P ); and (ii) that a∗P ≺ am implies

(1− δ) (π(a∗P )− πm) < 0, which can be rewritten as δπm + (1− δ)π(a∗P ) < πm. Then (i) and

(ii) together imply that πdi (a
∗
P ) < πm, and consequently πdi (a

∗
P )− π(a∗P ) < πm − π(a∗P ). As the

difference on the LHS is equal to πdi (am)− πm from Lemma A-1, we obtain that πdi (am)− πm <

πm − π(a∗P ), which implies from (13) that δ∗ < 1.
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Figure A-2: The two ICs in (IC0-IC1) can be rewritten X (δ) ≤ πm − π(aP ) ≤ Y (δ, aP ), with

X (δ) ≡
�
πdi (am)− πm

�
/δ and Y (δ, aP ) ≡

�
πm − π

d
i (aP )

�
/ (1− δ). Similarly, PC can be rewritten

πm − π(a
∗

P ) ≤ Y (δ), with Y (δ) ≡ πm/(1− δ), and LLC can be rewritten πm − π(a∗P ) ≤ Y , where Y ≡ πm − π.

When PC and LLC are absent, the optimal punishment a∗P and the threshold δ∗ are such that X(δ∗, a∗P ) = Y (δ
∗).

Here a∗P ≺ aP ≺ aP , therefore LLC binds. The limited liability constrained optimal punishment is aP , and firms

may implement am for all δ ≥ δ. The latter discount threshold is implicitly defined by X (δ) = Y .

2) Introduce (PC ), in addition to (IC0-IC1). For aP = a∗P , recall that the latter two con-

straints imply X (δ) ≤ πm−π(a∗P ) ≤ Y (δ, a∗P ), while the participation constraint can be rewritten
26Deviation profits πdi (aP ) have a lower bound (a firm may always stop selling; see (A6)), all aP . Therefore

limδ→0X (δ) = +∞ > Y (0, aP ) = πm − π
d
i (aP ), and X (1) = πdi (am) − πm < limδ→1 Y (δ, aP ) = +∞. Hence

there always exists δ∗(aP ) in [0, 1) verifying X (δ∗(aP )) = Y (δ∗(aP ), aP ), all aP .

36



πm − π(a∗P ) ≤ Y (δ), with Y (δ) ≡ πm/ (1− δ).

There are two cases:

(i) If aP ≺ a∗P then ãP ≺ a∗P , from Lemma A-3. Then we know from (PC ) that Y (δ) > Y (δ, a∗P )

for all δ ∈ [0, 1), and the participation constraint is slack for aP = a∗P and δ = δ∗.

(ii) If a∗P � aP then a∗P � ãP , from Lemma A-3. Then we know from (PC ) that Y (δ) ≤ Y (δ, a∗P )

for all δ ∈ [0, 1). When the inequality sign is strict, (PC ) is violated for aP = a∗P and δ = δ∗.

Next, toward a participation-constrained solution, substitute (PC ) for (IC1), or equivalently

Y (δ) for Y (δ, aP ) in (12). (See Fig. A-2.) The negative slope of X (δ), the positive slope of Y (δ),

together with the continuity of π(.), imply that the minimizer aP and the minimum δ verify

X
�
δ
�
= πm − π = Y

�
δ
�
.27 This leads to

δ =
πdi (am)− πm

πm − π
, (14)

and then one checks that Y
�
δ
�
≤ Y

�
δ, aP

�
. Recalling that π = πm − πdi (am) by (implicit)

definition of aP , from (14) we have δ < 1 if and only if πdi (am) − πm < πm −
�
πm − πdi (am)

�
,

which is true for all πm > 0.

(iii) Clearly if aP ≻ (=)aP , then any (δ, aP ), with δ ≥ δ, also verifies (LLC ).

3) Introduce (LLC ), in addition to (IC0-IC1). Observe that the limited liability constraint

can be rewritten πm − π(aP ) ≤ Y , where Y ≡ πm − π. There are two cases:

(i) If aP ≺ a∗P we have π < π (a∗P ), hence (LLC ) is slack for aP = a∗P , all δ.

(ii) If a∗P � aP , we know from (LLC ) that Y ≤ X (δ∗) = πm − π(a∗P ) = Y (δ∗, a∗P ). When the

inequality sign is strict (LLC ) is violated for aP = a∗P and δ = δ∗. Next, toward a limited liability

constrained solution, one substitutes (LLC ) for (IC1), or equivalently Y for Y (δ, aP ) in (12).

(See Fig. A-2.) Because Y is a constant, the slope of X (δ) is negative, and π(.) is continuous,

the minimizer aP and the minimum δ verify X (δ) = πm − π = Y .28 This leads to

δ =
πdi (am)− πm

πm − π
. (15)

Then a∗P � aP � am together with assumption (A7) imply that δ ≥ πdi (aP )−π
πm−π , hence that

Y ≤ Y (δ, aP ). It is obvious from (15) that δ < (=)1 if and only if π < (=)πm−
�
πdi (am)− πm

�
.

27Note that limδ→0X (δ) = +∞ > Y (0) = πm together with limδ→1X (δ) = π
d
i (am)−πm < limδ→1 Y (δ) = +∞

imply that there always exists δ in (0, 1) verifying X
�
δ
�
= Y

�
δ
�
.

28Since X (δ) is downward sloping, and limδ→0X (δ) = +∞ > X , there exists δ in (0, 1) verifying X (δ) = Y if and

only if limδ→1X (δ) < Y . This condition holds from Assumption (A8). Otherwise am would not be implementable.
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(iii) Clearly if aP ≻ (=)aP , then any (δ, aP ), with δ ≥ δ, also verifies (PC ). �

A.2 Multi-Period Punishments

We first prove Lemma 2, which is needed in the proof of Proposition 2, that follows.

Proof of Lemma 2. In (MIC 0), the expression on the RHS of the weak inequality sign simplifies

to
�l

k=1
δk [πm − π(aP,k)]. It is clearly monotone increasing when either aP,k decreases, all k ≥ 1,

or when δ increases, the LHS expression (which does not depend on punishment levels) remaining

constant. In (MIC 1), the expression on the RHS of the weak inequality sign can be rewritten

δ [(1− δ)V1 (aP , δ)− π (aP,1)]. It is monotone increasing when aP,k increases (since δ (1− δ) > 0),

for all k > 1, the LHS expression (a function of aP,1 only) remaining constant. Then for any given

aP,1, suppose that aP,2, . . . , aP,l are such that δ takes the lowest possible value for which (MIC 0-

MIC 1) hold true. There are three possible cases: either the two inequalities are slack, or only

one, or none. (i) If none of the two constraints binds, by continuity, one may obviously reduce δ

by an arbitrarily small amount so that both constraints remain verified, contradicting the claim

that there is no lower discount factor verifying (MIC 0) and (MIC 1). (ii) If exactly one of the

two constraints binds, pick any k > 1 such that aP,k ≺ am. Then by continuity, one may reduce

δ and adjust aP,k so that the RHS expression of the binding constraint remains constant, while

the other constraint remains satisfied, contradicting again the initial supposition. Therefore it

must be the case that, given aP,1, (MIC 0-MIC 1) hold with an equality sign when aP,2, . . . , aP,l

are such that δ is minimized. �

Proof of Proposition 2. There are two steps: (1) We investigate a less constrained version

of the problem (7) by leaving aside the last l − 1 multi-period incentive constraints together

with (MPC ) and (MLLC ), to keep only (MIC 0) and (MIC 1). This is done by capitaliz-

ing on Lemma 2: we solve in (δ, V1) the system (MIC 0-MIC 1) with equality signs, to obtain

(δ∗(aP,1), V1(aP , δ
∗(aP,1))); then we identify the level of aP,1 that minimizes δ∗(aP,1) under the

feasibility constraint that V1(aP , δ
∗(aP,1)) ≤ Vl (aP , δ

∗(aP,1)) = πm/ (1− δ∗(aP,1)). This leads

to the minimizer a∗P,1 = a∗P . (2) We show that (δ∗(a∗P ), V1(aP , δ
∗(a∗P ))) satisfies all incentive

constraints in (MIC 0-MIC l) as well as (MPC -MLLC ).

(1) Consider the δ-minimization problem with the two incentive constraints (MIC 0) and (MIC 1)

only. Observing that Vl (aP , δ) = V0 (am, δ), the two constraints become

X (δ) ≤ V0 (am, δ)− V0 (aP , δ) ≤ Y (δ, aP,1) , (16)
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where X (δ) ≡
�
πdi (am)− πm

�
/δ and Y (δ, aP,1) ≡

�
πm − πdi (aP,1)

�
/ (1− δ) denote the lower-

bound and the upper-bound, respectively, of the value differential V0 (am, δ) − V0 (aP , δ) =

V0 (am, δ)− π (aP,1)− δV1 (aP , δ). Given aP,1, from Lemma 2 we know that (16) must hold with

an equality sign throughout for δ to be minimized. Solving X (δ) = Y (δ, aP ) in (δ, V1(aP , δ)), we

find

δ∗(aP,1) =
πdi (am)− πm

πdi (am)− πdi (aP,1)
, (17)

and

V1(aP , δ
∗(aP,1)) =

�
πdi (am)− πdi

�
a∗P,1

��



πdi

�
a∗P,1

�
− π

�
a∗P,1

�

πdi (am)− πm
+

πdi

�
a∗P,1

�

πm − πdi

�
a∗P,1

�


 . (18)

Observe from the monotonicity of πdi (aP,1) in aP,1 (Lemma A-2) that δ∗(aP,1) is monotone non-

decreasing in aP,1. Therefore the lowest value of δ∗(aP,1) is obtained for the most severe first-period

punishment aP,1 compatible with the feasibility constraints of the problem. Note in particular from

(5) that aP,1 must be such that Vs (aP , δ) ≤ Vt (aP , δ) ≤ Vl (aP , δ) = πm/ (1− δ), all s ≤ t ≤ l.

Then V1 (aP , δ) ≤ πm/ (1− δ), together with (17) and (18), becomes

�
πm − πdi (aP,1)

��
1− πdi (aP,1)− π (aP,1)

πdi (am)− πm

�
≥ 0. (19)

Clearly πm−πdi (aP,1) for all aP,1 � aNE (since the monotonicity of πdi (aP ) implies that πdi (aP,1) ≤
πdi (aNE) = π(aNE), while π(aNE) < πm for all aNE ≺ am). It follows from (19) that the term

between rounded brackets must be non-negative. This implies that

πdi (aP,1)− π (aP,1) ≤ πdi (am)− πm. (20)

Recalling from Lemma A-1 that πdi (a
∗
P )−π(a∗P ) = πdi (am)−πm, from Assumption (A7) we obtain

that aP,1 cannot be strictly more severe than a∗P .

(2) Substitute a∗P for aP,1 in (17 − 18), and also πdi (am) − πm for πdi (a
∗
P ) − π(a∗P ), again from

Lemma A-1, to obtain

δ∗(a∗P ) = δ∗ ≡ πdi (am)− πm

πdi (am)− πdi
�
a∗P
� ,

and

V ∗
1 (a∗P , δ

∗(a∗P )) =
πm

1− δ∗
.

It follows directly from the later equation that V ∗
1 (a∗P , δ

∗(a∗P )) = Vl(aP , δ
∗(a∗P )), implying that

π
�
a∗P,k

�
= πm, all k > 1. This says that a∗P = (a∗P , am, . . . , am) when the only the two incentive
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constraints in (MIC 0) and (MIC 1) are considered. Next, observe from the definition of con-

tinuation profits in (5) that a∗P,k = am, all k > 1, implies that V1 (a
∗
P , δ) = Vs (a

∗
P , δ), all s. It

follows that the last l− 1 multi-period incentive constraints are all identical to the first one, that

is (MIC 0), implying that all constraints in (MIC 0-MIC l) are satisfied. Since a∗P  aP , aP it is

also plain that (MPC ) and (MLLC ) are satisfied. Therefore the solution to the less constrained

problem is also a solution to (7), and the punishment (a∗P , am, . . . , am) is optimal. �

Proof of Proposition 3. There are two steps: (1) In addition to (MIC 0) and (MIC 1), we

introduce (MPC ) in the less constrained version of (7), the last l − 1 multi-period incentive

constraints and (MLLC ) being left aside. We show that (MPC ) is stronger than (IC1) if a∗P � ãP .

Then am is implementable with the l-period punishment aP ≡ (aP , am, . . . , am) if δ = δ, that is

the lower bound to the interval of δ for which (MIC 0) and (MPC ) are compatible. (2) We obtain

that (δ, aP ) satisfies all other incentive constraints (MIC 2-MIC l), in which case δ is a solution

of (7) and aP is optimal.

(1) Introduce the multi-period participation constraint (MPC ) in addition to (MIC 0-MIC l). For

aP = a∗P ≡ (a∗P , am, . . . , am) recall that the first two incentive constraints in (MIC 0) and (MIC 1)

can be rewritten X (δ) ≤ V0 (am, δ) − V0 (a
∗
P , δ) ≤ Y (δ,a∗P ), while (MPC ) can be rewritten

V0 (am, δ)− V0 (a∗P , δ) ≤ Y (δ), with Y (δ) ≡ πm/ (1− δ). If aP  a∗P we know from Lemma A-3

that ãP  a∗P , in which case πdi (a
∗
P ) ≤ 0 from (A5). This implies that Y (δ) ≤ Y (δ, a∗P ) for any

δ ∈ [0, 1). When the inequality sign is strict (MPC ) is stronger than (MIC 1), and thus is violated

for aP = a∗P and δ = δ∗. Next, toward a participation-constrained solution, substitute (MPC )

for (MIC 1). From Proposition 1, in the single-period punishment case we know that (IC0) and

(PC ) are satisfied if aP = aP and δ ≥ δ, implying that in the multi-period setup (MIC 0) and

(MPC ) are satisfied as well if aP ≡ (aP , am, . . . , am) and δ ≥ δ. Therefore, there is at least one

punishment aP for which am is implementable with δ = δ. Then recall from Lemma 3 that δ is

the lowest value of δ compatible with (MIC 0) and (MPC ). This is sufficient to conclude that δ

is a solution to the δ-minimization problem under the constraints (MIC 0), (MIC 1), (MPC ).

(2) Observe from the definition of continuation profits in (5) that aP,k = am for all k > 1 implies

that Vs (aP , δ) = V0 (am, δ), all s > 1. It follows the last l − 1 multi-period incentive constraints

are all identical to (MIC 0), implying that all constraints in (MIC 0-MIC l) are satisfied. Clearly

if aP ≻ (=)aP , then
�
δ,aP

�
also verifies (MLLC ). Therefore δ is a solution to (7), and the

punishment (aP , am, . . . , am) is optimal, all l. �

Proof of Remark 3. Recall from proof of Proposition 3 that (MIC 0) is written as X (δ) ≤
V0 (am, δ)−V0 (aP , δ), and (MPC ) as V0 (am, δ)−V0 (aP , δ) ≤ Y (δ), withX (δ) ≡

�
πdi (am)− πm

�
/δ
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and Y (δ) ≡ πm/ (1− δ). If (aP , δ) = (aP , δ) and aP ≻ a∗P we know that X
�
δ
�
= V0

�
am, δ

�
−

V0
�
aP , δ

�
= Y (δ), where aP ≡ (aP , am, . . . , am), while all other multi-period incentive constraints

are satisfied also. Given δ, consider a change from aP to a′P , with a′P,1 ≻ aP and a′P,k � am for

some k > 1, that verifies V0 (aP , δ) − V0 (a
′
P , δ) = 0. For all l > 1, the continuity of π(aP,k) in

aP,k implies that the number of solutions a′P to the latter equation is infinite. By the very nature

of the change both constraints (MIC 0) and (MPC ) remain exactly satisfied, while by continuity

(MIC 1) remains satisfied as well for a sufficiently small adjustment (it was slack for aP,1 = aP ).

Moreover, the l − 1 remaining multi-period incentive constraints in (MIC 2-MIC l) are relaxed

as a result of an adjustment from am “down” to a′P,k ≺ am in any of the k > 1 following pe-

riods of punishment, all other things remaining equal. It follows that am is implementable if

(aP , δ) = (a′P , δ). �

We now introduce two additional technical results which are needed to prove Proposition 4.

Lemma A-4. For all V verifying π < (1− δ)V ≤ πm, there exists a finite l and a punishment

aP ≡ (aP , aP,2, . . . , aP,k, . . . , aP,l), with aP,k  aP for all k > 1, such that V1 (aP , δ) = V .

Proof. There are three steps: (1) we show that, given any δ, for any l ≥ 2 there exists a

punishment alP of length l such that V1 (aP , δ) = V for any V in a closed interval Il we define;

(2) we establish that the upper-bound of Il+1 is the lower bound of Il so that their finite union

IL = ∪Ll=1Il is itself a closed interval; (3) we conclude by evidencing that the lower and upper

bounds of the union of intervals are respectively π/ (1− δ) and πm/ (1− δ).

(1) Define alP ≡ (alP,1, a
l
P,2, . . . , a

l
P,k, . . . , a

l
P,l), where alP,k = aP for all k = 1, 2, . . . , l − 1, and

alP  aP . Here firms opt for the most severe action aP in the first l − 1 periods, and for a

possibly softer action in the l-th period. In the latter final period, the continuity of π in alP
implies that π(alP ) may take any value in [π(aP ), πm]. Let alP and alP denote the just defined

penal code alP where alP,l = aP and alP,l = am respectively. By definition, for any value V in

Il = [V1
�
alP , δ

�
, V1

�
alP , δ

�
], there exists alP such that V1

�
alP , δ

�
= V .

(2) Clearly, V1
�
alP , δ

�
= V1

�
al+1P , δ

�
so that IL = ∪Ll=1Il = [V1

�
aLP , δ

�
, V1

�
a1P , δ

�
] for any integer

L > 1.

(3) From the definition of continuation profits in (5) we know that V1
�
a1P , δ

�
= πm/ (1− δ), while

V1
�
aLP , δ

�
verifies

(1− δ)V1
�
aLP , δ

�
= π + δl−1 (πm − π) .

Since limL→∞(π+δL−1 (πm − π)) = π, for any V > π/ (1− δ) there exists a finite L such that

π+ δL−1 (πm − π) ≤ (1− δ)V so that V ∈ [V1
�
aLP , δ

�
, V1

�
a1P , δ

�
], and there exists a punishment
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profile alP , with l ≤ L, such that V1
�
alP , δ

�
= V .

We may now use Lemma A-4.

Proof of Proposition 4. As we are interested in establishing implementability for δ ≥ δM ≡
sup{δ, δ′}, there are two cases that depend on the comparison of δ′ and δ. In both cases: (1)

we establish that there exists a finite punishment, we denote aP , which is such that V1 (aP , δ) is

equal to a particular value we explicit; (2) we check that all incentive constraints are satisfied; (3)

we also verify that the participation and limited liability constraints hold.

(δ′ ≥ δ ⇒ δM = δ′)

(1) Define implicitly aP , specified to take the form of alP as introduced in Lemma A-4 (so that

(MLLC ) is satisfied) by

V1 (aP , δ) =
1

1− δ

�
π +

πdi (aP )− π

δ

�
, (21)

which describes continuation profits from the 2nd period of punishment onward.29 Given δ, from

Lemma A-4 a sufficient condition for aP to be well defined is π < (1− δ)V1 (aP , δ) ≤ πm. To

check this holds, consider the two inequalities in turn: (i) We have π < (1− δ)V1 (aP , δ) since
�
πdi (aP )− π

�
/δ > 0 (by definition), for all δ > 0. (ii) Toward V1 (aP , δ) ≤ πm/(1− δ) first note

that aP  a∗P implies that πdi (am) − πm ≥ πdi (aP ) − π(aP ) from Assumption (A7) and Lemma

A-1. From the expression of δ′, as displayed in Lemma 4, it follows that

δ′ ≤ πdi (am)− πm
πm − π(aP )

. (22)

Then pick δ = δ′. Now (22), and X
�
δ′
�
≡
�
πdi (am)− πm

�
/δ′ = V0

�
am, δ′

�
− V0

�
aP , δ

′�, imply

that πm − π(aP ) ≤ V0
�
am, δ′

�
− V0

�
aP , δ

′�. Moreover, substituting
�
1− δ′

�
V0
�
am, δ′

�
for πm

in the latter expression leads to V0
�
aP , δ

′� ≤ δ′V0
�
am, δ′

�
+ π(aP ). Then substituting π(aP ) +

δ′V1
�
aP , δ

′� for V0
�
aP , δ

′� results in
�
1− δ′

�
V1
�
aP , δ

′� ≤ πm, as needed. As (1− δ)V1 (aP , δ) is

monotone decreasing in δ, it follows that (1− δ)V1 (aP , δ) ≤ πm for all δ ≥ δ′. Eventually, (i)

and (ii) establish that there exists at least one aP for a finite l such that V1 (aP , δ) satisfies (21)

for all δ ≥ δ′.

(2) Recall from the proof of Lemma 4 that for collusion to be implemented at δ = δ′, it must be the

case that the two constraints (MIC 0) and (MIC 1) are binding and that aP,1 = aP . Therefore,

for aP = aP ≡ (aP , aP , . . . , aP , aP,l), where aP,l  aP (i.e., the same vector as introduced in
29 In order to obtain the expression in (21), substitute aP for aP,1, and aP for aP , in (MIC 1) written with an

equality sign, and reorganize terms.
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the proof of Lemma A-4), if δ = δ′ we have that (MIC 0-MIC 1) are exactly satisfied. Clearly,

Vk+1 (aP , δ) is strictly increasing in k as long as 1 ≤ k ≤ l − 1. Since πdi
�
aP,k

�
− π(aP,k) is

identical for all 1 ≤ k ≤ l − 1, if (MIC 1) holds and is binding, it must be the case that all

constraints (MIC 2) , . . . , (MIC l − 1) hold also and are slack. Finally, to check that the last

incentive constraint (MIC l) is also satisfied, we compare it with (MIC 0). First, observe that the

terms on the RHS of the inequality sign are the same in the two constraints, because Vl (aP , δ) =

V0 (am, δ), all aP . Next, consider the terms on the LHS of the inequality side of (MIC l). There is

no loss of generality in assuming that aP,l ≺ am. (If there is equality, collusion can be implemented

by the means of a l − 1 punishment scheme where aP,l−1 = aP ≺ am). Assuming this is the case,

we know from Assumption (A7) and Lemma A-1 that πdi (aP,l)−π(aP,l) < (=)πdi (am)−πm, for all

aP,l ≻ (=)a∗P (as in the present case, since here aP,l  aP  a∗P ). Therefore, if (MIC 0) holds and

is binding, it must be the case that (MIC l) holds also and is slack. This says that, in the absence

of participation constraint, am is implementable with at least one l-punishment vector, that is

aP = aP , when δ = δ′. Since for aP = aP all MIC s (MIC 0-MIC l) are monotone increasing in

δ, this also holds for all δ ≥ δ′.

(3) Consider now the participation constraint. If δ ≤ δ′, then the comparison of the developed

expressions for the two thresholds implies that πdi (am)−πdi (aP ) ≤ πm−π. Since π = πm−πdi (am)

by definition, we have πdi (aP ) ≥ 0. Since V0 (aP , δ) = π + δV1 (aP , δ), with V1 (aP , δ) as in (21),

and aP as defined above in (1), we have V0 (aP , δ) ≥ 0, which says that the participation constraint

(MPC ) is also satisfied for aP = aP and δ ≥ δ′. This says that am is implementable with a finite

punishment scheme for all δ ≥ δ′. Then recall from Lemma 4 that the lowest δ compatible with

(MIC 0-MIC 1) and (MLLC ) is δ′. It follows that δ′ is the lowest possible discount factor that

implements am.

(δ > δ′ ⇒ δM = δ)

(1) We proceed as in the previous case to define implicitly āP by

V1 (āP , δ) = −
π

δ
. (23)

Again, we must check that āP satisfies the sufficient condition introduced in Lemma A-4, that is

π < − (1−δ)
δ

π ≤ πm, for all δ ≥ δ.30 The LHS inequality is always satisfied for δ ∈ (0, 1]. On the

RHS, aP  aP implies that π ≥ π = πm−πdi (am), recalling that the latter equality is the implicit

30 In order to obtain the expression in (23), substitute aP for aP,1, and āP for aP , in (MPC ) written with an

equality sign for s = 0, and reorganize terms.
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definition of aP . As a result −(1−δ)
δ

π ≤ πm, which extends to any δ ≥ δ by monotonicity. Hence

there exists at least one āP for a finite l such that V1 (āP , δ) satisfies (23) for any δ ≥ δ.

(2) At δ = δ, we check that (MIC 0-MIC 1) are satisfied for aP = āP ≡ (aP , am, . . . , am), so that

aP,1 = aP , and (MLLC ) is satisfied by construction). Indeed X
�
δ
�
= V0

�
am, δ

�
− V0

�
āP , δ

�
<

Y
�
δ, aP

�
with X

�
δ
�
= πdi (am), Y

�
δ, aP

�
= πdi (am)

�
1− πdi (aP )

πm

�
> πdi (am) since πdi (aP ) < 0,

and V0
�
am, δ

�
−V0

�
āP , δ

�
= V0

�
am, δ

�
= πm

1−δ = πdi (am). Again, Vk+1 (āP , δ) is strictly increasing

in k as long as 1 ≤ k ≤ l− 1. Since πdi (aP,k)−π(aP,k) is identical for all 1 ≤ k ≤ l− 1, if (MIC 1)

is satisfied, it must be the case all constraints (MIC 1) , . . . , (MIC l − 1) are also satisfied. As

for the last incentive constraint, that is (MIC l), we compare it with (MIC 0). The terms on the

RHS of the inequality sign are the same in the two constraints, because Vl (aP , δ) = V0 (am, δ),

all aP . On the LHS, there is no loss of generality in assuming that aP,l ≺ am. (If there is

equality, collusion can be implemented by the means of a l−1 punishment scheme where aP,l−1 =

aP ≺ am). Assuming this is the case, we know from Assumption (A7) and Lemma A-1 that

πdi (aP,l) − π(aP,l) < πdi (am) − πm, for all aP,l ≻ (=)a∗P , as in the present case. Therefore, if

(MIC 0) holds and is binding, it must be the case that (MIC l) holds also and is slack. We obtain

that all incentive constraints are satisfied. Again, since for aP = āP all MICs (MIC 0-MIC l)

are monotone increasing in δ, this also holds for all δ ≥ δ.

(3) By construction, from (23), V0 (āP , δ) = 0 hence (MPC ) is satisfied for all δ. Given the

structure of āP , (MLLC ) is also satisfied. This says that am is implementable with a finite

punishment scheme for all δ ≥ δ. Then recall from Lemma 3 that the lowest δ compatible with

(MIC 0-MIC 1) and (MPC ) is δ. It follows that δ is the lowest possible discount factor that

implements am. �

Proof of Remark 4. Consider again the punishment profile of Lemma A-4, that is alP ≡
(alP,1, a

l
P,2, . . ., alP,k, . . . , a

l
P,l), where alP,k = aP for all k = 1, 2, . . . , l − 1, and alP,l  aP . We

know from Proposition 4 that there exists a punishment profile of this kind that allows firms to

implement am for δ = δM . We also have shown that, for this punishment profile, the (MIC l)

constraint holds and is slack. One may construct a l + 1 period punishment profile identical to

alP up to the period k = l − 1 and with åP,l ≻ alP,l and åP,l+1 ≺ am such that

π (aP,l) + δπm = π (̊aP,l) + δπ (̊aP,l+1)

and all incentive constraints are satisfied. �

Proof of Proposition 5. It is assumed that aP ≻ a∗P , aP . To see that δM < δ, recall that

δM ≡ sup{δ′, δ} and consider the two possible cases: (i) If δM = δ then it suffices to recall
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that aP ≻ a∗P , aP implies δ > δ (see Remark 1) to conclude. (ii) If δM = δ′ then compare the

expressions of the denominators of δ′ and δ. We have πdi (am) − πdi (aP ) > πm − π if and only if

πdi (am)− πm > πdi (aP )− π. To establish the latter property, recall from Assumption (A7) that

there exists a unique ǎ ≺ am such that πdi (am)− πm = πdi (ǎ)− π (ǎ), and from Lemma A-1 that

ǎ = a∗P . Therefore, here aP �= a∗P implies that either πdi (am) − πm < πdi (aP ) − π, which is not

possible (the incentive to deviate from am is an upper bound to a firm’s incentive to deviate from

any a, see comment below Lemma A-1), or πdi (am)− πm > πdi (aP )− π, which thus holds.

For the comparison of δM with the other discount thresholds, there are two cases. Suppose

first that a∗P  aP , to compare δM with δ∗ (regime 1). From Remark 2 we obtain directly that

δ∗ < δM . Suppose next that aP ≻ a∗P , to compare δM with δ (regime 2). From the definition

of δM we obtain directly that δM ≥ δ. Finally, to demonstrate that δM = δ if and only if

ãP  aP ≻ aP ≻ a∗P , note that ãP  aP if and only if πdi (aP ) ≤ 0 from Assumption (A5), and

equivalently πdi (am)−πdi (aP ) ≥ πdi (am). Recalling that πm−π = πdi (am) by (implicit) definition

of aP , it follows that ãP  aP if and only if δ ≡ πdi (am)−πm
πm−π =

πdi (am)−πm
πdi (am)

≥ δ′ ≡ πdi (am)−πm
πdi (am)−πdi (aP )

,

establishing that δM = δ (by definition), as needed. �

A.3 A Linear Example

In this appendix we compute the specific algebraic expressions we need for the analysis of the

linear example in section 5. Inverse demand functions for firm i and all other symmetric firms j

are given by (9) and (10). Therefore symmetric profits are

π(q) =

�
(1− q (1 + γ(n− 1))− c)q if q ≤ q

P
≡ 1

1+γ(n−1)
−cq if q ≥ q

P

, (24)

where the piecewise structure results from the non-negativity constraint we impose on prices (solve

1− qi − γ(n− 1)qj ≥ 0 for qi = qj = q to find q ≤ q
P
≡ 1

(1+γ(n−1))). The collusive quantity and

corresponding profits are q∗m = 1−c
2(1+γ(n−1)) and π∗m = (1−c)2

4(1+γ(n−1)) , respectively (there is perfect

collusion, with π∗m ≡ π (q∗m)). The one-shot best deviation profits are

πdi (q) =

�
1
4 (1− c− γ (n− 1) q)2 if q ≤ q̃P ≡ 1−c

γ(n−1)
0 otherwise

, (25)

where q̃P is the solution to πdi (q) = 0 (here f = 0 implies q̃P = q̂P , see (A5) and (A6)). Since

q∗m < q̃P for all parameter values, firm i’s best-reply profits, when each firm in N\{i} sells q∗m,

are πdi (q
∗
m) =

(1−c)2
16

(γ(n−1)+2)2
(1+γ(n−1))2 , from (25).

45



A.3.1 Implementability (feasibility of collusion)

In the single-period benchmark set-up (section 3), consider the expression of δ in (2). We have

δ ≤ 1 if and only if c ≥ c̃, where

c̃ ≡
γ2 (n− 1)2 + 4 (γ (n− 1) + 1)− 4

�
γ2 (n− 1)2 (1 + γ (n− 1))

γ2 (n− 1)2 − 4 (γ (n− 1) + 1)
,

which is the only admissible root to π = π∗m−
�
πdi (q

∗
m)− π∗m

�
, the second root being negative for

all γ, n. Given n ≥ 2, we have c̃ ≥ 0 if on and only if γ ≥ γ̌ ≡ 21+
√
2

n−1 . Note that inf {γ̌, 1} = 1 if

and only if n < 6. Hence c̃ is positive only when n ≥ 6. In that case, q∗m cannot be implemented

with a single-period scheme for all c < c̃ (see Fig. 1).

Now we check that q∗m can always be implemented for some δ sufficiently high in the multi-

period punishment case (section 4). Recall that δM ≡ sup{δ′, δ}. We know from Lemma 3 that

δ < 1 for all π∗m > 0, and from Lemma 4 that δ′ < 1 if and only if πdi (qP ) < π∗m. Then from (25)

there are two cases: if c > 1
1+γ(n−1) , or equivalently q

P
> q̃P , we have πdi (qP ) = 0 < π∗m for all

π∗m > 0; otherwise πdi (qP ) < π∗m if and only if 0 ≤ c ≤ c̃′, where

c̃′ ≡ 1�
1 + γ (n− 1)

.

This is the only admissible root to πdi (qP ) = π∗m, the second root being negative for all γ, n. Then

it is sufficient to observe that c̃′ > 1
1+γ(n−1) to verify that πdi (qP ) < π∗m.

A.3.2 Calculation of the discount thresholds

For all qP > q∗m one must consider the two forms of πdi (qP ), that depend on the comparison of qP

with q̃P . This leads to two cases:

(1) If qP ≤ q̃P ≡ 1−c
γ(n−1) best-reply profits are πdi (qP ) = 1

4 (1− c− γ (n− 1)) q)2 and (PC )

is slack. When only (IC0) and (IC1) are considered, we know (from Lemma 1) that the

optimal punishment q∗P is a solution in qP of πdi (qP )−π (qP ) = πdi (q
∗
m)−π∗m. The only two

solutions are q∗m, which does not apply as a punishment; the other one is

q∗P =
1− c

2

3γ(n− 1) + 2

[2 + γ(n− 1)] [1 + γ(n− 1)]
.

The latter punishment quantity is defined only when lower than q̃P , which holds if and only

if γ ≤ inf {γ̌, 1}, recalling that γ̌ ≡ 21+
√
2

n−1 and inf {γ̌, 1} = 1 if and only if n < 6. The
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threshold value for δ is

δ∗ =
1

16

[2 + γ (n− 1)]2

1 + γ (n− 1)
< 1. (26)

This is Regime 1 (see (2)). Next, we find q∗P ≤ q
P
, so that the price pi(q

∗
P , q

∗
P ) is non-negative

and (LLC ) is slack if and only if c ≥ c′, with

c′ ≡ γ (n− 1)− 2

3γ(n− 1) + 2
. (27)

The frontier c′ intersects the line c = 0 from below at γ = γ̂ ≡ 2
n−1 . Therefore there exists

c′ > 0 if and only if 2
n−1 < 1 (one checks that γ̂ < γ̌ for all n ≥ 2), or equivalently n > 3,

otherwise c′ = 0 for all parameter values. Whenever c < c′ we have q
P

< q∗P ≤ q̃P and

(LLC ) binds. (Here q∗P ≤ q̃P is implied by γ ≤ inf {γ̌, 1}.) This is regime 3.

(2) If qP > q̃P ≡ 1−c
γ(n−1) best-reply profits are πdi (qP ) = 0 and (IC1) is identically equal to

(PC ). (This holds because f = 0, otherwise f > 0 would imply that (IC1) is strictly

weaker than (PC ).) It follows from the previous case (where qP ≤ q̃P ≡ 1−c
γ(n−1)) that we

need only consider γ ≥ γ̌ and n ≥ 6 to complete the analysis. There are two solutions in qP

to −π (qP ) = πdi (q
∗
m)− π∗m, the equation that defines qP implicitly. The first one is strictly

less than q̃P for all c < 1, therefore it is not admissible; the second one is then

qP =
1− c

4

2 [1 + γ(n− 1)] + [2 + γ(n− 1)]
�
1 + γ (n− 1)

[1 + γ(n− 1)]2
,

which we check is always strictly higher than q̃P . Then the threshold value for δ now is

δ =

�
γ (n− 1)

2 + γ (n− 1)

�2
< 1. (28)

This is Regime 2 (see (2)). Next, we find qP < (=)q
P
, so that the price pi(qP , qP ) is

non-negative and (LLC ) is slack if and only if c > (=)c′′, with

c′′ ≡
�
1 + γ(n− 1) [2 + γ(n− 1)]− 2 [1 + γ (n− 1)]�
1 + γ(n− 1) [2 + γ(n− 1)] + 2 [1 + γ(n− 1)]

. (29)

The frontier c′′ intersects from below the line c = 0 if γ = 0, and c′′ > 0 otherwise. Therefore

c′′ > 0 for all γ ≥ γ̌. Whenever c < c′′ we have q
P

< qP ≤ q∗P and (LLC ) binds. (Here

qP ≤ q∗P is implied by γ ≥ γ̌ and n ≥ 6.) This is regime 3.

The two preceding paragraphs delineate the parameter subsets in which regimes 1 and 2 apply,

respectively. (In the latter case, since f = 0, note that (IC1) being identical to (PC ) implies that
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regimes 1 and 2 coincide for all points (n, γ, c) verifying n ≥ 6, γ̌ ≤ γ ≤ 1, and c′′ ≤ c < 1.) All

points in the parameter set where regime 3 applies were also identified. In the latter regime, the

discount threshold δ solves πdi (q
∗
m)− π∗m = δ

�
π∗m − π(q

P
)
�
. As the specific algebraic form of the

latter expression does not depend on parameter values, for all n, γ, c there is a unique

δ =
1

4

�
1− c

1 + c

�2 (n− 1)2 γ2

1 + γ (n− 1)
. (30)

It remains to compute δM , the discount threshold when (LLC ) binds and firms design the

optimal l-period punishment scheme. We know (from Proposition 4) that δM = sup{δ′, δ}. Again

we know from (25) there are two cases: 1) if q
P

< q̃P , or equivalently c < 1
1+γ(n−1) , we have

πdi (qP ) =
1
4

�
1− c− γ (n− 1)) q

P

�2
, which implies that

δM =
γ (n− 1) (1− c)2

(1 + c) [4 (1− c)− γ (n− 1) (3c− 1)]
> δ; (31)

and 2) if q
P
≥ q̃P , or equivalently c ≥ 1

1+γ(n−1) , we have πdi (qP ) = 0, hence

δM =

�
γ (n− 1)

2 + γ (n− 1)

�2
, (32)

which is the same expression as δ (regime 2), an illustration of Proposition 5.

A.3.3 Partition of the parameter space

The sections A.3.1 and A.3.2 lead to the partition of the parameter space (c, n, γ) in three subsets

where either Regime 1, 2, or 3 apply, as follows:

1) Regime 1 applies if and only if

(i) 2 ≤ n ≤ 3; 0 ≤ γ ≤ 1; 0 ≤ c < 1; or

(ii) 4 ≤ n ≤ 5; 0 ≤ γ ≤ 1; c′ ≤ c < 1; or

(iii) 6 ≤ n; 0 ≤ γ ≤ γ̂; 0 ≤ c < 1; or

(iv) 6 ≤ n; γ̂ ≤ γ ≤ γ̌; c′ ≤ c < 1.

2) Regime 2 applies if and only if

6 ≤ n; γ̌ ≤ γ ≤ 1; c′′ ≤ c < 1.

3) Regime 3 applies if and only if

(i) n = 3; γ = γ̂ = 1; c = c = 0; or

(ii) 4 ≤ n ≤ 5; γ̂ ≤ γ ≤ 1; 0 ≤ c ≤ c′; or
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(iii) 6 ≤ n; γ̂ ≤ γ ≤ γ̌; 0 ≤ c ≤ c′; or

(iv) 6 ≤ n; γ̌ ≤ γ ≤ 1; 0 ≤ c ≤ c′′.

In this partition the role of costs, given n and γ, can be illustrated by comparing q∗P and qP

with q
P

for any c defined on [0, 1]. The punishment quantities are represented for all n ≥ 6, with

highly substitutable products in Fig. A-3(a), where γ̌ < γ, and for more differentiated products

in Fig. A-3(b), where γ < γ̂. In both cases regime 3 applies when the constant cost parameter is

low, that is c ≤ c.

)(a

1=c

Pq

PP qq ˆ~ = Pq

P
q

0 cc ′′=

regime 3 regime 2

mq

1=c

Pq

mq

Pq*

P
q

0 cc ′=

regime 3 regime 1 )(b

PP qq ˆ~ =

Figure A-3: Thick lines represent optimal punishment quantities (all c, and n ≥ 6). In (a) products are highly

substitutable (γ̌ < γ). Regime 3 applies for c ≤ c′′, and regime 2 applies otherwise. In (b) products are more

differentiated (γ < γ̌). Regime 3 applies for c ≤ c′, and regime 1 applies otherwise.

For higher levels of c we have regime 2 in (a), and regime 1 in (b). Note that the cost threshold

c is monotone increasing in n and γ (see (27-29)). The structural boundary level q
P

depends only
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on the number of competitors and demand parameters. It is monotone decreasing when either n

or γ increases, but constant in c. The optimal punishment quantities q∗P and qP are linear in the

cost parameter and monotone decreasing when it rises closer to 1. �
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