Dentcheva, Darinka and Ruszczynski, Andrzej (2012): Common mathematical foundations of expected utility and dual utility theories.
Preview |
PDF
MPRA_paper_42736.pdf Download (252kB) | Preview |
Abstract
We show that the main results of the expected utility and dual utility theories can be derived in a unified way from two fundamental mathematical ideas: the separation principle of convex analysis, and integral representations of continuous linear functionals from functional analysis. Our analysis reveals the dual character of utility functions. We also derive new integral representations of dual utility models.
Item Type: | MPRA Paper |
---|---|
Original Title: | Common mathematical foundations of expected utility and dual utility theories |
Language: | English |
Keywords: | Preferences, Utility Functions, Rank Dependent Utility Functions, Separation, Choquet Representation |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General |
Item ID: | 42736 |
Depositing User: | Andrzej Ruszczynski |
Date Deposited: | 22 Nov 2012 13:06 |
Last Modified: | 26 Sep 2019 20:05 |
References: | S.~Banach. \newblock {\em Th\'eorie des {O}p\'erations {L}in\'eaires}. \newblock Monografje Matematyczne, Warszawa, 1932. P.~Billingsley. \newblock {\em Convergence of {P}robability {M}easures}. \newblock John Wiley \& Sons Inc., New York, 2nd edition, 1999. D.~S. Bridges and G.~B. Mehta. \newblock {\em Representations of preferences orderings}, volume 422 of {\em Lecture Notes in Economics and Mathematical Systems}. \newblock Springer-Verlag, Berlin, 1995. J.~C. Candeal, E.~Indur{\'a}in, and G.~B. Mehta. \newblock Utility functions on locally connected spaces. \newblock {\em J. Math. Econom.}, 40(6):701--711, 2004. G.~Choquet. \newblock Theory of capacities. \newblock {\em Ann. Inst. Fourier, Grenoble}, 5:131--295 (1955), 1953--1954. G.~Debreu. \newblock Representation of a preference ordering by a numerical function. \newblock In C.~Davis A.~Thrall, B.~Combs, editor, {\em Decision Processes}, pages 159--165. John Wiley, New York, 1954. G.~Debreu. \newblock Continuity properties of {P}aretian utility. \newblock {\em International Economic Review}, 5:285--293, 1964. J.~Diestel and J.~J. Uhl, Jr. \newblock {\em Vector measures}. \newblock American Mathematical Society, Providence, R.I., 1977. \newblock With a foreword by B. J. Pettis, Mathematical Surveys, No. 15. J.~Dieudonn{\'e}. \newblock Sur le th\'eor\`eme de {H}ahn-{B}anach. \newblock {\em Revue Sci. (Rev. Rose Illus.)}, 79:642--643, 1941. R.~M. Dudley. \newblock {\em Real {A}nalysis and {P}robability}, volume~74 of {\em Cambridge Studies in Advanced Mathematics}. \newblock Cambridge University Press, Cambridge, 2002. \newblock Revised reprint of the 1989 original. N.~Dunford and J.~T. Schwartz. \newblock {\em Linear {O}perators. {P}art {I}}. \newblock John Wiley \& Sons Inc., New York, 1958. M.~Eidelheit. \newblock Zur {T}heorie der konvexen {M}engen in linearen normierten {R}{\"a}umen. \newblock {\em Studia Mathematica}, 6:104--111, 1936. S.~Eilenberg. \newblock Ordered topological spaces. \newblock {\em Amer. J. Math.}, 63:39--45, 1941. P.~C. Fishburn. \newblock {\em Utility {T}heory for {D}ecision {M}aking}. \newblock Publications in Operations Research, No. 18. John Wiley \& Sons Inc., New York, 1970. P.~C. Fishburn. \newblock {\em The {F}oundations of {E}xpected {U}tility}, volume~31 of {\em Theory and Decision Library}. \newblock D. Reidel Publishing Co., Dordrecht, 1982. P.~C. Fishburn. \newblock {\em Nonlinear {P}reference and {U}tility {T}heory}, volume~5 of {\em Johns Hopkins Series in the Mathematical Sciences}. \newblock Johns Hopkins University Press, Baltimore, MD, 1988. H.~F{\"o}llmer and A.~Schied. \newblock {\em Stochastic {F}inance: An {I}ntroduction in {D}iscrete {T}ime}, volume~27 of {\em de Gruyter Studies in Mathematics}. \newblock Walter de Gruyter \& Co., Berlin, 2nd edition, 2004. I.~Gilboa and D.~Schmeidler. \newblock Maxmin expected utility with nonunique prior. \newblock {\em J. Math. Econom.}, 18(2):141--153, 1989. S.~Guriev. \newblock On microfoundations of the dual theory of choice. \newblock {\em The Geneva Papers on Risk and Insurance Theory}, 26:117–--137, 2001. I.~N. Herstein and J.~Milnor. \newblock An axiomatic approach to measurable utility. \newblock {\em Econometrica}, 21:291--297, 1953. J.-Y. Jaffray. \newblock Existence of a continuous utility function: an elementary proof. \newblock {\em Econometrica}, 43(5-6):981--983, 1975. V.~L. Klee. \newblock Convex sets in linear spaces. \newblock {\em Duke Math. J.}, 18:443--466,875--883, 1951. M.~Ledoux and M.~Talagrand. \newblock {\em Probability in {B}anach spaces}, volume~23 of {\em Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]}. \newblock Springer-Verlag, Berlin, 1991. \newblock Isoperimetry and processes. Yu.~V. Prohorov. \newblock Convergence of random processes and limit theorems in probability theory. \newblock {\em Teor. Veroyatnost. i Primenen.}, 1:177--238, 1956. J.~Quiggin. \newblock A theory of anticipated utility. \newblock {\em Journal of Economic Behavior and Organization}, 3:323--343, 1982. J.~Quiggin. \newblock {\em Generalized Expected Utility Theory: The Rank-Dependent Model}. \newblock Kluwer, Norwell, 1993. J.~Quiggin and P.~Wakker. \newblock The axiomatic basis of anticipated utility: a clarification. \newblock {\em J. Econom. Theory}, 64(2):486--499, 1994. T.~Rader. \newblock The existence of a utility function to represent preferences. \newblock {\em The Review of Economic Studies}, 30:229--232, 1963. D.~Schmeidler. \newblock Integral representation without additivity. \newblock {\em Proc. Amer. Math. Soc.}, 97(2):255--261, 1986. D.~Schmeidler. \newblock Subjective probability and expected utility without additivity. \newblock {\em Econometrica}, 57(3):571--587, 1989. A.~V. Skorohod. \newblock Limit theorems for stochastic processes. \newblock {\em Teor. Veroyatnost. i Primenen.}, 1:289--319, 1956. J.~von Neumann and O.~Morgenstern. \newblock {\em Theory of {G}ames and {E}conomic {B}ehavior}. \newblock Princeton University Press, Princeton, New Jersey, 1944. M.~E. Yaari. \newblock The dual theory of choice under risk. \newblock {\em Econometrica}, 55:95--115, 1987. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/42736 |