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Abstract 

We present a new model for pricing Quanto FTD where the FX could be strongly 

dependent to some or all credit names. The model assumes lognormal hazard rate and 

deterministic FX local volatility where the FX spot can jump at time of first to default 

and where the jump size depends on credit name reference. We present the model, the 

calibration algorithm, and the Quanto FTD pricing. This model is an extension of the 

model BSWithJump[1] for pricing Quanto CDS with FX devaluation risk.
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Introduction 

In this paper, we present a new model for pricing quanto FTD and walk away (in case 

of FTD) cross currency swaps. Example: pricing of FTD on (BRAZIL, MEXICO, and 

Microsoft) with USD as natural currency but paid in real (Brazil currency). Ideally, 

we would like the model to address two issues. Firstly, we would like the model to 

take into account the different dependencies between the constituents of the portfolio 

and the FX. In the example above, we expect the FX spot USDBRL to jump more at 

time of default if the credit name who defaulted first is Brazil than if the FTD name is 

Microsoft. Secondly, we would like the model to be compatible with the standard 

pricing model used for FTD. In other words, the model assumes that the FTD prices 

are an input. 

The model assumes lognormal dynamic for FTD spreads and lognormal FX but with a 

jump at time of default that depends on the first to default credit name. This model is 

a natural extension of BSWithJump model to the multi case where the credit reference 

is FTD instead of CDS. In particular, when the jump size does not depends on the 

FTD name, the model is equivalent to BSWithJump model. 

In the first section, we describe briefly the pricing of FTD under the Gaussian copula 

model with single correlation, which is assumed to imply the FTD market.   

In the second section, we present the main results of the recent work of T.R.Bielecki, 

M.Jeanblanc, and M.Rutkowski where they extend the hazard process approach to 

multi-names in their recent paper [4]. The main results that we will be using in 

BSFTDWithMultiJump are the properties of what they call the FTD intensities or 

what we call the joint intensities of single credit names. 

In the third section, we present the dynamic of the FTD intensity, the joint intensities, 

and the FX spot. We have chosen a lognormal dynamic for the FTD intensity and 

deterministic conditional intensities (defined as the ratios of the joint intensities to the 

FTD intensity). Also, the joint intensities are lognormal processes proportional to the 

FTD intensity. However, The FX spot has a lognormal dynamic with a jump at time 

of first to default that depends on the credit name who defaulted first.  

In the fourth section, we present the pricing formulas for FTD within this model, and 

we show that the FTD pricing in this model is equivalent to the pricing with LN 

model (single name model) of a synthetic CDS with time dependent recovery.  

In the fifth section, we present the pricing formulas for FX options.  

In the sixth section, we present the calibration algorithms of BSFTDWithMultiJump 

to the term structure of FTD and to the term structure of FX implied volatilities. We 

show that the calibration of the model to FTD is similar to the calibration of LN 

model to a synthetic CDS with time dependent recovery. However, the calibration of 

the implied volatility term structure is different from the calibration of BSWithJump 

to implied volatilities because the pricing formulas are more complex. In addition, the 

calibration algorithm is fast, very accurate and, based on an iterative algorithm that 

allows us to achieve very small calibration errors.  

In the seventh section, we describe how we can price a quanto FTD within this model 

and show that the pricing is equivalent to the pricing of a quanto synthetic CDS with 

time dependent recovery. Also, similarly to the model BSWithJump, we can use one 

forward PDE to calculate the term structure of quanto FTD survival probabilities and 

quanto FTD. 

In the last section, we show some examples where we see the calibration accuracy and 

robustness for different FTD baskets and market data.  
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1. Pricing FTD under Gaussian copula model 

We assume that i is the default time of the name i and, g and ig are Gaussian 

variables. 

    
2

inf ,
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i i

i i

i i

t U N h q t

h g g
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 iq t is the survival probability of the credit name i. 

The correlation between ih and jh is 2   

1.1. The FTD time distribution 

Let us calculate the distribution of the FTD time using the fact that the default times 

are conditionally independent: 
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1.2. The joint distribution of the FTD time and the FTD indicator 

The joint distribution of the FTD time and the FTD indicator is given by: 
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1.3. Pricing the recovery leg  

The recovery leg of a first to default pays   IR1 at the first to default time (if it 

occurs before the maturity T) where I is the index of the name who defaulted. 

The price of the recovery leg is given by: 
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The price of the recovery leg of FTD_i is given by 
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1.4. Pricing the riskyBPV 

Given a schedule  NT T T T0 10, , ..., , the FTD riskybpv price is given by: 
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2. Hazard Process Approach 

In this section, we present the main results of the multi-names hazard process 

approach as presented by T.R.Bielecki, M.Jeanblanc, and M.Rutkowski in their recent 

paper [4]. 

 

2.1. Definitions and notations  

i is the default time of the name i which is a strictly positive random variable. 

 1
i

i

t t
N   is the default indicator of the name i. 

i

tH is the filtration generated by the process i

tN . 

tH is the filtration generated by all the processes i

tN . 

tG is the filtration generated by all the processes i

tN  and the Brownian filtration tF . 

 

We introduce the conditional joint survival process  nG u u t1, ..., ; :  

      n n n tG u u t Q u u F1 1 1, ..., ; , ..., |  

 

2.2. First To Default Intensity 

Let us set     ftd

n1 ... the first to default time. 
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Let us define the process  ftdG t t; by setting: 

              ftd
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We define  ftd

t the intensity of the FTD time  
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The process M̂  defined by: 
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2.3. Joint Intensities 

We have the following result, in which we introduce the first-to-default intensity (or 

the joint-intensity of the name credit name i) i

th and the associated martingale i

tM̂ for 

each credit name i n1, ..., . 
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For any i n1, ..., , the process 
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Lemma2 

We define the tF -predictable vector of processes    
ftd
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The proof on these two lemmas could be found in [4]. 

The intensity i

th is different from the default intensity i

t , which satisfies the property 


 
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2.4. Conditional Intensities 

We define the conditional intensity of the name i:  

1

i i

i t t

t n ftd
j t

t

j

h h
x

h



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
 

In single name case, there is one conditional intensity, which is deterministic and 

equal to 1.  

3. BSFTDWithMultiJump model 

3.1. Definitions and notations 
/d loc

tS is the FX spot where d is the domestic currency (typically a G7) and loc is the 

foreign currency (typically: an emerging market currency). 

In all the paper, we assume that the interest rates are deterministic. 

We denote  0,dB T , and  0,locB T  respectively the domestic zero coupon and local 

currency zero coupon respectively with maturity T. 

We denote 
 

 

/

0/
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d loc loc

d loc

t d

S B t
F

B t
 the FX forward. 

We assume that we are given the term structures FTD survival probabilities and the 

term structure of FTD prices (the prices could be given by a Gaussian copula or by 

any other pricing model). 

 1
i

i

t t
N   is the default indicator of the credit name i. 

i

th is the joint-intensity of the credit name i as defined in the previous section. The 

intensity i

th is such as the process 
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t

h
x


  

3.2. Modelling the default intensity: LNFTD model 

We suppose that the FTD intensity follows a lognormal dynamic and the conditional 

intensities are deterministic. 

 

 

 

The joint intensities follow lognormal dynamics with constant volatility and constant 

mean reversion. 

 

  t tZi i ftd i

t t th x t e
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All the joint intensities share the same Gaussian driver with the same volatility and 

mean reversion but with different drifts. 

The FTD intensity is the sum of the joint intensities: 
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3.3. Modelling Emerging market FX with jump at FTD time 

We assume that the FX spot has the dynamic: 
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The process tZ   is a Gaussian process described in the previous section. 
iJ  are constants between 0 and 1.  

In case of deterministic credit, the spot process follows a lognormal dynamic before 

and after the default time. 

The FX spot can jump only once: at time of FTD. 

Let us calculate the dynamic of /ln d loc

tS  
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It follows that the FX spot process is given by: 
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The FX spot process is the product of the forward, a continuous martingale, and a 

discontinuous martingale. 

If the jump sizes are the same then the FX spot dynamic is similar to the dynamic of 

the FX spot in BSWithJump dynamic with intensity ftd

t : 
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4. Pricing FTD and FTD_i 

4.1. Pricing the recovery leg under LNFTD 

The price of the recovery leg of a FTD with notionals 1 is given by: 

     ,
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    

Using lemma2 defined in the section 2, we have: 

     
0

0

1

t
ftd

u u

T
r duQ i

i i tRFTD T R E h e dt
     

 
  

iRFTD is the price of the recovery leg of a FTD with notional 0 except the credit 

name i where the notional is 1 or, the recovery leg price of a CDS on the credit name i 

which knock out in case of FTD. 

We have: 

         
 

     
      

01 0,

1 0,

t
ftd

u

i T dT
dud ftd

i i i tftd

T

i

d ftd ftd

i ftd

T
RFTD T dT RFTD T R B T E e dt

T

T
R B T Q T dT Q T

T





       

  


   



 

We conclude that:  

 
 

   
       1 0,

i

i i

ftd ftd ftd d

i

T RFTD T dT RFTD T

T Q T dT Q T R B T

  


   
 

This relationship means that the ratio 
 
 

i

ftd

T

T




does not depend on the LN parameters 

(lognormal intensity volatility and mean reversion) and depends only on the credit 

market data (FTD prices)
3
. Therefore, we need only to calibrate the FTD drift 

(  ftd T ) to calibrate the LNFTD model as the  i T can be deduced from the 

relationship above. 

Let us calculate the price of the FTD recovery leg: 

     

   

   

   

0

0

0

0

1 0

1 0

10

0

1

1

1

1

t
ftd

u u

t
ftd

u u

t
ftd

u u

t
ftd

u u

Tn
r dui

i t

i

T in
r duftdt

i tftd
i t

T in
r duftdt

i tftd
i t

T
r duftd ftd

t t

ft

RFTD T R E h e dt

E R e dt

E R e dt

E R e dt

RCDS















 



 



 



 

    
 

    
 

         
   
 



 

 




 d T

 

                                                 
3 iRFTD and  ftdQ T are given by the Gaussian copula model for example. 
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We conclude that the recovery leg of the FTD is equivalent to recovery leg of a CDS 

with time dependent recovery ftd

tR , which is function of the individual recoveries and 

the Gaussian copula correlation
4
: 

 
1 1

1 1
i in n

ftd t t

t i iftd ftd
i it t

R R R
 

 
   

    

4.2. Pricing the Fixed Leg 

The riskybpv depends only on the interest rates and the FTD intensity: 

   
    

0 0

1 0

T ti ftd ftd
u u u u

TN
r du r duftd

i tt
i

RiskyBPV T E e E t T e dt
 

 
   



       
   

   

 

4.3. FTD as a Synthetic CDS 

In the section 4.1, we proved that the recovery leg of the FTD is equivalent to the 

recovery leg of a synthetic CDS with time dependent recovery. The riskybpv is the 

same for the FTD and the synthetic CDS. We conclude that the calibration of LNFTD 

model to the term structure of FTD given by the Gaussian copula model (or any other 

FTD pricing model) is equivalent to the calibration of a LN model to the term 

structure of a synthetic CDS with time dependent recovery. We note ftdCDS this 

synthetic CDS. 

5. Pricing FX call options 

5.1. General case 

In order to price a call option within this model we need to separate the calculations 

into two cases: default before maturity and no default before maturity.  

         

   

/, 0,

, ,

1 1ftd ftd

d d loc

T T T

def sur

C T K B T E S K

C T K C T K

  

        
 

 

defC is the default part of the call price. 

surC is the survival part of the call price. 

The default part of the call price is given by (using lemma2): 

       

    0

/

,
1 0

/

1 10

, 0, ,

0, 1 exp

1 ftd

t
ftd

s

Tn
d d loc d ftd

def T I i u
i

Tn n
dsd i d loc i i i

T t t

i i

C T K B T E S K dQ I i u

B T E J X J h K h e dt






 





  

         

         
    



 
 

We define the effective intensity eff

t : 

 
1

1
n

eff i i

t t

i

J h


   

                                                 

4 

i

t

ftd

t




is function only of the Gaussian copula correlation and the single name CDS. 
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If the jump sizes are equal to J then the effective intensity is proportional to the FTD 

intensity. 

The survival part of the call price is given by: 

     
0 0/, 0,

T T
ftd ftd eff

d s s sds dsd Q d loc

sur TC T K B T E e X e K
   



         
 

 

The call price is given by: 

 

       

   

0 0

0 0

/

1 0

/

, 0, 1

0,

t t
ftd eff ftd

s s s

T T
ftd ftd eff

d s s s

Tn
ds dsd i d loc i

T t

i

ds dsd Q d loc

T

C T K B T E J X e K h e dt

B T E e X e K

  

  

 

 

 



       
   

         


 

Unfortunately, we cannot transform easily the call price formula to a more simple 

formula as we did in [1] for BSWithJump model (unless if the jump sizes are the 

same, in this case the problem is equivalent to one synthetic credit name defined by 

the first to default). 

5.2. Deterministic credit case 

 In case of deterministic credit, the call price is given by a closed form solution. The 

call price is easily calculated by integrating the call payoff with respect to the 

lognormal distribution of /d loc

TX . 

 

6. Model Calibration  

6.1. LNFTD Calibration 

The calibration of the model consists on calibrating a LN model to the term structure 

of ftdCDS  premiums. The calibration of LN model using forward PDE is described in 

[1] (section 3.1). 

 

6.2. Calibration of BSFTDWithMultiJump to ATM FX options 

The FX volatility is calibrated using an iterative calibration method based on 

MonteCarlo. This method is simple to implement, robust, fast, and very accurate. 

1) We calibrate the BSFTDWithMultiJump by assuming that the intensity is 

deterministic
5
. The calibration is performed using a root finder algorithm.  

2) We calculate the calibration errors of the implied volatilities using a single 

MonteCarlo for all the maturities (we use control variate techniques to achieve 

a good convergence with few paths). 

3) We shift the local FX volatility with a function of the implied volatilities 

errors and we repeat 2 and 3 until the calibration errors are very smalls. 

This calibration algorithm is very simple and need few iterations to reach very small 

errors even for extreme market data
6
.  

                                                 
5 In this case, we have closed form solution to the call option. 
6 The calibration accuracy and robustness are shown in section 8. 
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This calibration method could be used as well for BSWithJump model instead of the 

forward PDE algorithm and it is more robust in case of extreme market data and 

model parameters. 

7. Pricing Quanto FTD survival probabilities and quanto FTD 

7.1. Pricing Quanto FTD survival probabilities 

Let us calculate the local currency FTD survival probability or the quanto FTD 

survival probability: 

   
   

     

 

/

0

/

0
1 10

/

0
10

0,
0,

0,

exp ln 1

exp exp

1

1 1

d

ftd

d

ftd ftd ftd

d

d d loc

Tloc Q

loc T

Tn n
T

Q d loc i i i i

T ss s T
i i

T n
T

Q d loc ftd i i

T u s

i

Q

B T S
Q T E

S B T

E M J dN J h ds

E M du J h ds

E



  





  
 



 
   

 
   

         
   

        



  

 

 /

0
exp

d T
d loc eff

T uM du  
 

 

/d loc

TM is an exponential martingale  2
/

0 0

1
exp

2

T T
d loc fx fx fx

T u u uM dW du    
    

We can see that under the local currency measure, each conditional intensity i

th is 

multiplied by1 iJ . By doing a change of numeraire, we conclude that the quanto 

survival probability is: 

   0
0, exp

M T
loc Q eff

uQ T E du   
   

The intensity is lognormal under the domestic measure and stays lognormal under the 

new measure with the same volatility and mean reversion but different 
, ,ftd loc eff M

T T   function.  

The intensity of default under the local currency is a LN model with a ,ftd loc

T  function 

given by the formula: 

   ,

0
1

1 exp
n T

ftd loc i i T u fx

T T u

i

J e e du   



 
    

 
   

The term structure of quanto survival probability can be easily calculated using the 

same forward PDE on the green function defined in the LN calibration section. 

7.2. Pricing the recovery leg of quanto FTD 

We recall the FTD recovery leg payoff:  

      

     1
1

0, 1

0, 1

1

1

d

ftd

d

ftd
j j

Q ftd

I T

M
d Q

j I t t
j

RQFTD T E B R

B t E R











 


    

    
 

Where IR is the recovery of the first to default name. 

The price of the recovery leg of a quanto FTD is given by:  
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     
     

         

1

1

/

1 0

/

0
1 1 10

0,
0, 0, 1

0,

0, exp ln 1 1

1

1 1

d

ftd
j j j

d

ftd ftd ftd
j j j

d
M

jloc loc Q d loc

j t Iloc t t
j j

tM n nt
loc Q d loc i i i i

j t s Is s t t
j i i

B t
RFTD T B t E S R

S B t

B t E M J dN J h ds R



  





 


   
  

 
  
  
   

      
    



   
We know that  

       
1

10
1 1 10 0

exp ln 1 1 exp1 1
j

ftd ftd ftd
j j

ttn n nt
i i i i i i i

s ss s t t
i i i

J dN J h ds J J h ds
  



   
  

     
                

      

Using the expression of the effective intensity:  
1

1
n

eff i i

t t

i

J h


   

 

It follows 

        

      

 

1

1

1

0

/

,
1 1 10

/

1

1 1

/

0, 1 1 0, exp

1 1 0,

0, 1

1
j

d

ftd
j j j

t j eff
d s

j j

d

j

t
M n n

loc i i loc Q d loc i i

j t s t t I i
j i i

M n
dsi i loc Q d loc i

j t t j j

j i

loc Q d loc

j t

RFTD T J R B t E M J h ds

J R B t E M h e t t

B t E M











  
  




 

              
     
 

 

 



    

  

1

0

,

0

1

1 1

, ,

0

1

0, 1

t j eff
s

j

t
ftd loc

M s

M n
dsi i i

t j j

j i

T
dsloc ftd loc Q ftd loc

t t

J R h e t t

B t R E e dt










 



      
  
    
 

 


 

 

   
 

 ,

1

1

1 /
1 1

1 /

i i ftd
n

t tftd loc i

t n
p p ftdi

t t

p

J
R R

J



  
  

  



 

The recovery leg of a quanto FTD is equivalent to the recovery leg of a quanto CDS 

using BSWithJump. We conclude that the pricing of the recovery leg of a quanto FTD 

is similar to the pricing of the recovery leg of a single name CDS with BSWithJump 

model. We notice that the local currency recovery function is different from the 

domestic currency recovery function unless if the jump sizes are the same or the 

single name recoveries are the same. 

 

7.3. Pricing the RiskyBPV of quanto FTD 

The pricing of the riskyBPV of a quanto FTD is straightforward given the term 

structure of quanto survival probabilities. 

 

8. Examples: FX volatility calibration accuracy 

In this section, we show the FX volatility calibration quality of the iterative method. 

8.1. FX volatility calibration: USDMXN and FTD1  

We choose FTD1 (FTD on B and A) for this example. 
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Market Data 
 

The A CDS curve (quotation currency: USD) is given by: 

 

Mat 1y 3y 3y 5y 7y 10y 

CDS 111 131 147 177 187 197 

The recover is 40% 

The B CDS curve (quotation currency: USD) is  

 

Mat 1y 3y 3y 5y 7y 10y 

CDS 189 224 235 240 230 215 

The recover is 40% 

The Gaussian copula correlation is 0.7. 

 

The USDMXN ATM volatility is given by: 

Mat 1w 2w 1m 2m 3m 6m 9m 1y 2y 3y 4y 5y 7y 10y 

volatilities 14.0% 14.5% 16.0% 16.0% 16.0% 16.0% 16.0% 16.0% 16.0% 16.0% 16.3% 16.5% 16.5% 16.5%

 

We choose extreme values for the jump sizes: 80% for A and 20% for B. 

The volatility of the FTD intensity is 140% 

The correlation between FTD1 and MXNUSD is set to -70%.  

 

Calibration errors for different iterations 
 

The graph below shows the FX local volatility for different values of iteration 

parameter. We can see that the FX local volatility converge quickly to an FX 

volatility function after two iterations  

FX volatility for different iterations

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Maturity

iter =0

iter=1

iter=2

iter=3

 
The table below shows the calibration errors (modelVol-marketVol in bp) for 

different values for the iteration parameter. 

 
Maturity iter =0 iter=1 iter=2 iter=3 

0.02 3.05 0.02 0.00 0.00 
0.04 4.46 -0.01 0.00 0.00 
0.08 7.59 -0.04 0.00 0.00 
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0.17 13.61 0.22 0.00 0.00 
0.25 18.64 0.13 0.00 0.00 
0.50 33.36 -0.39 0.01 0.00 
0.75 44.11 -0.51 0.01 0.00 
1.00 54.34 -1.26 0.05 0.00 
2.00 83.27 -2.81 0.14 -0.01 
3.00 85.74 1.01 -0.20 0.02 
4.00 80.75 6.62 -0.37 0.01 
5.00 73.09 9.18 0.14 -0.03 
7.01 61.98 10.84 0.93 0.02 
10.00 54.98 12.73 2.44 0.43 

8.2. FX volatility calibration : USDMXN and FTD2 

We would like to show the FX volatility calibration quality when the market 

conditions are extreme. We multiply the CDS curve A by 4 and the FX implied 

volatility by 3. The rest of market data is the same as the first example.  

The jumps sizes are 80% for both A and B. 

The FTD hazard rate volatility is 140% and the correlation between FTD2 and 

MXNUSD is -70% 

The graph below shows the FX local volatility for different values of iteration 

parameter. We can see that the FX local volatility converge quickly to an FX 

volatility function after two iterations. 

FX local volatility for different iterations

35.00%

37.00%

39.00%

41.00%

43.00%

45.00%

47.00%

49.00%

51.00%

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Maturity

iter=0

iter=1

iter=2

iter =3

 
 

The table below shows the calibration errors (modelVol-marketVol in bp) for 

different values for the iteration parameter. 

 
Maturity iter =0 iter=1 iter=2 iter=3 

0.02 8.99  0.05  0.00  0.00  
0.04 13.29  -0.03  0.00  0.00  
0.08 22.89  -0.12  0.00  0.00  
0.17 41.78  0.87  0.02  0.00  
0.25 57.78  0.60  0.02  0.00  
0.50 104.92  -0.71  0.00  -0.00 
0.75 140.09  -1.01  0.01  -0.00 
1.00 172.28  -4.77  0.28  -0.02 
2.00 274.61  -9.85  0.53  -0.03 
3.00 284.29  14.63  -0.52 0.03  
4.00 264.43  31.71  -0.19 -0.04 
5.00 235.44  39.59  2.23  -0.04 
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7.01 187.15  37.93  3.39  0.10  
10.00 137.68  29.52  4.51  0.36  
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