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hence the applicability of the proposed framework is quite general. 

The suggested prior enjoys many desirable properties both from 

the Bayesian and non–Bayesian perspective. We provide detailed 

derivations of our prior in many standard time–series models 
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I. INTRODUCTION 

Assume you have a model. If it turns out that some 1–1 transformation of the 

data preserves the original structure of the model we say that the model is invariant 

under this transformation. For example, let the model be 2(0, )y N σ∼ , where y ∈ \  

is the data and ( , )N a b  denotes Normal distribution with mean a  and variance b . 

Assume that we consider different scale of measurement of the data. It amounts to 

multiplying y  by some positive constant g . Then 2(0,( ) )gy N gσ∼ . Note that the 

transformed data possesses the same model structure i.e. it is still normally 

distributed with mean 0 and some (strictly positive) variance. In such a situation it is 

reasonable to assume that the estimation technique should be characterized by some 

sort of invariance with respect to this data transformation. Indeed, every estimation 

technique which is dependent on the scale of data measurement is highly suspect 

because the scale of measurement should not affect the inference. This does not prove 

that invariant statistical procedures are optimal in any sense but in fact there is a 

large statistics literature that demonstrates superiority of invariant statistical 

procedures applied to invariant models under a number of optimality criterions in 

various theoretical frameworks, see e.g. Eaton (1989), Lehmann (1986), Lehmann and 

Casella (1998) and numerous references therein. 

The above discussion concerns the non–Bayesian estimation techniques. The 

Bayesian invariance considerations may be also relevant. For example, in the above 

example when we transform the data y gy6  there is an induced transformation of 

the parameter 2 2 2gσ σ6 . Thus it is sensible to ask e.g. whether your non–

informative prior for 2σ  has also some sort of invariance properties. The idea of 

invariant priors is deeply rooted in Bayesian analysis and the best known example is 

the famous Jeffreys’ prior. The latter is invariant under the 1–1 transformations of 

the parameter. However the focus of this paper is quite distinct from the invariance 

satisfied by the Jeffreys’ prior. We deal with Bayesian inference that is invariant 

under 1–1 transformations of the data. 

As in case of non–Bayesian estimation techniques it turns out that invariance 

arguments in the context of the sample space lead to some interesting optimality 

results of Bayesian inference. Thus although the sample space invariance arguments 

proper are not fully compelling, see e.g. Berger (1985), pp. 86–87, they do lead to 

priors that have remarkable and desirable properties. In particular under various 

theoretical setups it is possible to construct a non–informative prior for an invariant 
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model, which we decided to call the intersubjective prior1. By the latter we mean the 

prior that possesses attributes of non–informative prior but in addition has many 

other desirable characteristics both from the Bayesian perspective (because e.g. it 

avoids some paradoxes in the spirit of Stone (1976), Dawid et al. (1973), Eaton and 

Freedman (2004)), and non–Bayesian perspective (because such a prior leads to 

reconciling frequentists and Bayesians since it works “as if” there is no prior at all2). 

To this end we introduce the so–called orbital prior that satisfies desiderata for such 

an intersubjective prior. 

When a group acts transitively3 on the parameter space then there is a number 

of compelling arguments to use the prior which is induced by the right invariant Haar 

measure on this underlying group and treating it as the intersubjective prior. 

Unfortunately when a group acts intransitively on the parameter space, which is true 

in the context of almost all time–series models applied in economics, then perhaps 

surprisingly the invariance arguments are not very decisive to suggest a formally 

justified intersubjective prior. However when some extra condition is satisfied (which 

we termed a free action of a group on the sample and parameter space) then there is 

a candidate for such a prior i.e. orbital prior. 

Priors designed on the basis of invariance principles are especially useful in the 

context of economic time–series models. The reason is that implementing such priors 

does not require the stationarity assumption provided that appropriate 

parameterization of a model is chosen. We think this argument is not sufficiently 

emphasized in the literature. For example, the Jeffreys’ prior in the strict form needs 

the computation of the expectation of the data unconditional second moments. This 

raises the issue whether conditional (on initial observations) or exact likelihood 

should be used. Uhlig (1994) showed that this choice really matters. In general when 

the data are nonstationary there is a fundamental problem with the existence of the 

exact likelihood or equivalently unconditional distribution for the initial observations. 

Though it should be admitted that many methods to mitigate this problem were 

proposed (Uhlig (1994) and Kleibergen and van Dijk (1994) cover many of them), 

                                                 
1
 We borrowed the term “intersubjective” from Dawid (1982), but with different connotations. 

2
 For example, if the prior leads to the exact probability matching i.e. frequentist coverage sets are 

equal to Bayesian credible regions. 
3
 Roughly speaking, it is the case if the parameter space is in 1–1 correspondence with the underlying 

group acting in a model. This excludes the case when a model is “too big” in relation to a group (seen 

as a space). See section II for the mathematical definition. 
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they should be considered only as informal ways to compute the Jeffreys’ prior. 

Needless to say, the Jeffreys’ prior is much delicate concept and its adoption even in 

regression models entails many ad hoc features. In fact, this was noticed by Jeffreys 

(1961) himself, pp. 182–183, 192, 360. Therefore the abstract mathematical treatment 

of non–informative prior presented in this paper is justified by the fact that the 

notion of non–informativeness is a very subtle one. Seemingly intuitive and 

compelling ignorance priors often turn out to be unacceptable when sufficiently 

scrutinized. For example, in time–series models, the curious thing about the Jeffreys’ 

prior is that it depends on the sample size, see e.g. Phillips (1991). Moreover it does 

so in such a way that unreasonable weight is put on explosive cases. For this reason 

the use of Jeffreys’ prior was criticized e.g. by Sims (1991), Leamer (1991), Poirier 

(1991), Koop and Steel (1991). The latter authors even indicated “the inadequacy of 

Jeffreys prior for time–series models”. 

Although we agree that sometimes the Jeffreys’ prior may be useful in that it 

can penalize the non–identified parameter subspace in the parameter space, see e.g. 

Kleibergen and van Dijk (1994), Chao and Phillips (1998). However it does not 

change our impression that the motivation for Jeffreys’ prior in time–series models is 

weak. Invariance under reparameterizations of a model i.e. one–to–one 

transformations of the parameters, sounds reasonable. However the ultimate 

properties or “real” effects of the Jeffreys’ prior on the data analysis are not equally 

reasonable and may be easily questioned from several perspectives. See e.g. Ni and 

Sun (2003), Berger and Sun (2006,2007) and Eaton and Freedman (2004) for some 

recent critique. 

Our position is that if a model shows some group invariant structure it is 

reasonable to exploit this in construction of the prior. Hence the prior we propose is a 

kind of the logical prior: it follows from a model but also by contemplating the group 

of transformations that might be relevant for the problem at hand. Evidently such a 

prior is both model and group specific. Staying within a given model and assuming 

different group of transformations usually entails different orbital priors and 

consequently different posteriors. This is a consequence of our implicit assumption 

that the group of transformation is an integral part of a model. Although such an 

inferential framework (slightly) violate the Likelihood Principle (LP), even worse LP 

violation concerns the Jeffreys’ or Bernardo’s priors, see e.g. Koop and Steel 
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(1991,1992), Lindley (1979), Poirier (1992)4. For in contrast to these priors, in time–

series models, the orbital prior at least does not depend functionally on either the 

data or the sample size. The latter undesirable property may be called the serious LP 

violation. 

The approach presented in this paper is very close to that in Chang and Eaves 

(1990) in that we use the same decomposition of the parameter space. However 

suggested elicitation of the prior on this decomposition is different, so is our 

motivation. As far as the latter is concerned our goal is to derive some non–

informative priors that will be useful in invariant econometric time–series models. 

Also, the framework of Chamberlain and Moreira (2009) has a close contact with the 

approach suggested in our paper. It may be shown that their recommendation when 

dealing with Panel Data Models is just the application of the more general framework 

presented in this paper i.e. decomposing parameter space in accordance with orbital 

decomposition and assigning the orbital prior. 

 

II. GENERAL SETUP AND NOTATION 

All results in our paper are restricted to invariant models with respect to some 

group of transformations. See e.g. Lehmann (1986), chapter 6, for the theory and our 

assumption 1 for the mathematical definition. By G  we will denote this underlying 

group acting in a model. We assume that G  is a locally compact topological group. 

Basic material on groups, group actions and other related notions may be found in 

Eaton (1989). By e  we denote the identity element in a group G . We will 

extensively use the concepts of Haar measures and integrals. Traditional reference is 

Nachbin (1965), but Eaton (1989) and Wijsman (1990) are also useful. 

We will not differentiate between groups and its domain spaces. Thus 

{ | det( ) 0}m m

mGL g g×= ∈ ≠\  signifies both the general linear group with matrix 

multiplication as a group composition, and (seen as a space) the space of m m×  

nonsingular matrices. Analogous remark relates to mLT +  ( mUT + ): the group (= space) 

of m m×  lower (upper) triangular matrices with positive elements on the diagonal; 

and { | I }m m

m mO g g g gg× ′ ′= ∈ = =\ : the group (space) of orthogonal matrices 

( I : ( )m m m×  is the identity matrix). Obviously, a group composition in mLT + , mUT +  

                                                 
4
 It is not altogether obvious whether LP must hold in time–series models or, in general, within a non–

experimental science like economics, see e.g. Akaike (1980), Geisser (1984), Berger and Wolpert (1988), 

p. 194, Hill (1988), Lane (1988), Poirier (1991). 
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and mO  is the usual matrix multiplication. Lastly, a space of m m×  positive definite 

symmetric matrices will be denoted as mPD , and n1  will signify a 1 n×  vector of 1’s.  

Let Y  be a random variable (with realization y ) taking on values in Y  (a 

sample space). Let { | }Pθ θ= ∈ΘP  be a family of probability measures on Y  

indexed by the parameter θ ∈ Θ  i.e. a model. We assume that Pθ  has a density 

( | )p y θ  with respect to some dominating measure λY . Since we are working in the 

Bayesian framework in addition to a model we need a prior. The latter will be 

systematically denoted as π  and it is understood that π  is σ − finite measure.  

We use the symbol “D” to denote the abstract group operation on some sets. 

On the other hand the group composition will not be symbolically distinguished from 

the usual matrix operation e.g. g θD  but gh , for ,g h G∈  (group) and θ ∈ Θ  (set).  

Special role in our applications plays the Affine group i.e. 
1{ ( , ) | , }m

m mAL g w k w GL k ×= = ∈ ∈ \  with the following properties. The group 

composition is 2 1 2 2 1 1 2 1 2 1 2( , )( , ) ( , )g g w k w k w w w k k= = + , the identity element is 

(I , 0)me =  and inverse element of ( , )g w k=  is 1 1 1( , )g w w k− − −= −  so as 
1 1 (I , 0)mg g gg− −= = . 

With abuse of notation, but following Eaton (1989) and a large body of the 

literature, both an action of a group on Y  and its induced action on Θ  will be 

denoted as g yD  and g θD , respectively. 

We will use the following unified notation, Gν : the right invariant Haar 

measure on a group G ; λS : a σ − finite measure on a space S . In particular the 

Lebesgue measure on a space S  will be denoted as ( )ds , where s ∈ S . We shall 

denote σ –algebra of Borel subsets of a space S  as SB . 

The right invariant Haar measure on G  satisfies ( ) ( )G GBg Bν ν= , for all 

GB ∈ B , g G∈ , where { | }Bg gg g B= ∈ , and leads to the right invariant integral on 

G  i.e. 1( ) ( )G
G

f gg dgν− =∫ ( ) ( )G
G

f g dgν∫ , for each (fixed) g G∈  and all integrable f . 

Less formal way to write it is ( ( )) ( )G Gd gg dgν ν= . 

We say that G  acts transitively on Θ  if for each 1 2,θ θ ∈ Θ  there is a g G∈  

such that 2 1gθ θ= D . In other words, transitivity means that given 0θ ∈Θ , every 

θ ∈ Θ  can be represented as 0gθ θ= D , for some g G∈ . 

We need two basic notions connected with group theory. The first one is the 

orbit. If G  acts on some space S , then the subset Orb { | }s g s g G= ∈ ⊆D S  (for 

given s ∈ S ) is called the orbit of s  with respect to G . The other notion that 

occupies central position in our paper is the stabilizer. For any given s ∈ S , let us 
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define Stab { | }s g G g s s G= ∈ = ⊆D  and call it the stabilizer of s . The fundamental 

fact is that Stabs  is a subgroup of G . When Stab { }s e= , ∀  s ∈ S , we say that a 

group G  acts freely on S , or there is a free action of G  on S  (recall that e  denotes 

the identity element in G ). 

The function :f →S X  is invariant under the action of some group G , or in 

short G − invariant, if ( ) ( )f s f g s= D , for each s ∈ S , g G∈ . The function 

:f →S X  is called maximal G − invariant if it is G − invariant and 1 2( ) ( )f s f s=  

implies 1 2s g s= D , for some g G∈ . 

The assumption that a model P  is G − invariant reads  

 

Assumption 1 (model G –invariance): ( ) ( )gP Y gB P Y Bθ θ∈ = ∈D  for all g G∈ , 

where B ∈ YB  and { | }gB g y y B= ∈D .  

 

Assumption 1 holds in standard statistical models. However it is less known that this 

assumption is also valid in standard econometric models like univariate AR, VAR, 

Structural VAR (SVAR), Error Correction Models (ECM), Linear State–Space 

Models, Linear Panel Data Models (see e.g. Chamberlain and Moreira (2009)) and 

Instrumental Variables Model (see e.g. Chamberlain (2007)). This forms the natural 

basis for our approach. 

We say that the prior measure is relatively invariant if ( ) ( ) ( )gB g Bπ χ π= ⋅ , for 

all B Θ∈ B , g G∈  (notation gB  is explained in definition 1) and :Gχ +→ \  is the 

multiplier which is a continuous function such that 1 2 1 2( ) ( ) ( )g g g gχ χ χ= , for all 

1 2,g g G∈ , see e.g. Wijsman (1990), pp. 127–130. Equivalent definition of the relative 

invariance is that for all integrable f  one has 1( ) ( ) ( ) ( ) ( )f g d g f dθ π θ χ θ π θ−

Θ Θ
= ⋅∫ ∫D . 

 

III. THE PRIOR UNDER THE MODEL INVARIANCE 

When a model is G − invariant it seems reasonable to restrict our 

considerations to the G − invariant posterior inference 

 

Definition 1: A Posterior ( | )yΠ ⋅  is said to be G –invariant if 

( | ) ( | )gB g y B yθ θΠ ∈ = Π ∈D , for all g G∈ , B Θ∈ B , where { | }gB g Bθ θ= ∈D . 

 

The G − invariance of the posterior in the context of G − invariant model was 

motivated and applied e.g. by Stone (1970), Dawid et al. (1973), Dawid (2006), 
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Berger (1985), sections 3.3, 6.1 and p. 413, Lo and Cabrera (1987), Eaton (1989), pp. 

48–50, Eaton and Sudderth (2002, 2004), Helland (2010), p. 80. The point is that 

having G − invariant posterior our inference for θ  will be invariant under the 

simultaneous action of G  on the sample and parameter space. This is a very intuitive 

requirement when a model is G − invariant. However the assumption that posterior is 

G − invariant is weaker than it might appear for we have the following 

 

Lemma 1: Let a model be G –invariant. Then a posterior is G –invariant iff the 

prior measure is relatively invariant. 

Proof: The sufficiency is proved by Stone (1970), under certain weak 

conditions. The necessary part is easy to prove, see e.g. Eaton (1989), p. 49.  

 

This gives us the first criterion for selection of appropriate prior i.e. necessary 

condition. Unfortunately it turns out that the criterion is not particularly useful in 

itself because many priors agree with it. However, the posterior G − invariance 

constitutes a useful starting point to narrow down the possible choice of the prior in 

a more general prior setup. The apparently obvious “narrowing” strategy is to choose 

the (left) invariant prior measure i.e. ( ) ( )gB Bπ π= ; for all B Θ∈ B , g G∈ , i.e. the 

relatively invariant prior measure with a multiplier ( ) 1gχ ≡ . Such a prior guarantees 

that the posterior will be G − invariant yet in some cases there is no ambiguity what 

the invariant prior should be. Technically speaking if a group G  acts transitively on 

Θ , under some further regularity conditions the only prior measure (up to a 

constant) which satisfies ( ) ( )gB Bπ π=  is the Jeffreys’ prior, see e.g. Dawid (2006), 

Eaton and Sudderth (2010), Helland (2010), p. 81. Unfortunately, practically in all 

econometric models the transitivity assumption is violated and there are many (left) 

invariant prior measures. Our aim is to propose general method to construct the 

relatively invariant prior that will be useful in practical situations. Doing this we 

shall incorporate other reasonable criteria and arguments that will make our prior 

setup more convincing. 

 

 

 

 

 



 9

IV. ORBITAL DECOMPOSITION 

The crucial assumption in our framework is that the underlying group G  acts 

freely on Θ  

 

Assumption 2 (G −Θ  freeness): Stab { }eθ = ; ∀  θ ∈ Θ . 

 

It turns out that in many time–series econometric models assumption 2 will be 

satisfied given the appropriate reparameterization of a model. This will be 

demonstrated for every particular model that we encounter later. 

From assumption 2 it follows that the parameter space may be factorized 

 

GΘ = ×Z           (1) 

 

where Z  is a global cross section (or in short a cross section) which is a subset of Θ  

that intersects each orbit Orbθ  in exactly one point, see e.g. Wijsman (1986). Thus a 

(global) cross section is in one–to–one correspondence with the orbit space. There are 

two ways to read factorization (1). Either ( , )g zθ ↔  or g zθ = D ; , ,g G zθ ∈ Θ ∈ ∈ Z . 

The first variant only emphasizes that there is a bijection between every θ  and 

( , )g z . The second one signifies that every θ ∈ Θ  may be obtained by the action of 

(unique) element of a group g G∈  on some (unique) element of a cross section 

z ∈ Z . These two “interpretations” will be useful in various contexts. After 

Barndorff–Nielsen et al. (1989), we shall call (1) the orbital decomposition of Θ  (in 

short, the orbital decomposition). In the sequel we will use the notation ( )z θ ∈ Z  for 

{ } Orbz θ= ∩ Z , to emphasize the dependence of a cross section z  on θ . A fact of 

key importance is that having the orbital decomposition, a group G  acts on G ×Z  

according to the rule ( , ) : ( , )g g z gg z=D , for every g G∈ , see e.g. Wijsman 

(1986,1990) i.e. the action of G  on Z  is trivial. 

Intuition behind (1) is as follows. Any cross section indexes orbits i.e. 

Orb { ( )}zθ θ∩ =Z  (a singleton). It amounts to saying that each Orbθ , for every 

θ ∈ Θ , contains one and only one element from Z , which is ( )z θ . Since, by 

definition, G  is transitive within each orbit, every Orbθθ∗ ∈  such that θ θ∗ ≠  may 

be represented as ( )g zθ θ∗ = D , where ( ) Orbz θθ ∈ . Moreover, by G −Θ  freeness 

assumption, g  in ( )g zθ θ∗ = D  is unique. In general, every θ ∈ Θ  may be obtained by 
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identifying the index of the orbit where θ  lies i.e. z , and then finding the position of 

θ  in that orbit i.e. g . Hence the latter gives coordinates within an orbit. 

In the context of the sample space we assume the analogous 

 

Assumption 3 (G −Y  freeness): Stab { }y e= ; ∀  y ∈ Y . 

 

Assumption 3 will automatically hold in our case for almost all values of the data 

(see lemma 5). Assumption 3 implies existence of the orbital decomposition on the 

sample space 

 

G= ×Y U           (2) 

 

Where U  is a (global) cross section on Y . Hence there is a bijection ( , )y g u↔ , 

g G∈ , u ∈ U , and a group G  acts on G ×U  according to the rule 

( , ) : ( , )g g u gg u=D . 

Since we work in the Bayesian framework the more important for our 

development is the orbital decomposition on the parameter space (1). Its counterpart 

on the sample space (2) will play an instrumental role. However it is important to 

check that assumption 3 is satisfied because without it some nice consequences of the 

orbital prior as listed in section VI are simply untrue. Suffice it to say, proofs in e.g. 

Stein (1965), Stone (1970), Dawid et al. (1973), Severini et al. (2002) rely heavily on 

this assumption. 

To make orbital decomposition (1) operational in practice we should consider 

its modification. Let us define a maximal invariant :t Θ → T  i.e. ( )t tθ =  (note that 

with abuse of notation t  also denotes the image of θ  under t ). Usually one chooses a 

maximal invariant so as it is easy to work with T  (“nice” subset of n\ ). Following 

Wijsman (1986) we introduce a bijection :s →T Z , ( ( )) ( )s t zθ θ= . Note that such a 

bijection exists since in fact a cross section is also a maximal invariant and any one–

to–one correspondence with maximal invariant is also maximal invariant, see e.g. 

Wijsman (1986). The difference between cross section and a maximal invariant is 

that ( )z θ  (besides it is a maximal invariant) must be a point in Orbθ  so that 

( )g zθ θ= D  for some g G∈ , whereas a maximal invariant ( )t θ  does not have to be 

the point in Orbθ . However ( )t θ  can be “lifted” to the orbit Orbθ  by a bijective map 

:s →T Z  so as ( ( ))g s tθ θ= D , for some g G∈ . The following example (from 

Wijsman (1986)) illustrates the difference between z  and t . Consider the 
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simultaneous action of mG GL=  on two spaces of symmetric positive definite 

matrices defined as 1 2 1 2( , ) : ( , )g S S gS g gS g′ ′=D , for every 1 2, mS S PD∈ . As is known 

there is some g G∈  such that 1 ImgS g ′ =  and 2gS g ′ = Λ  where 1( , , )mdiag λ λΛ = …  

with 1 0mλ λ> > >… . Denoting 1 2( , )S Sθ =  we have (I , )mg θ = ΛD . Since (I , )m Λ  

lies in Orbθ  and takes different values in different orbits it is a cross section i.e. 

( ) (I , )mz θ = Λ . Thus 1 1{(I , ) | ( , , ), 0}m m mdiag λ λ λ λ= Λ Λ = > > >… …Z . On the other 

hand the maximal invariant will be 1 2( ) ( , , , )mt θ λ λ λ= … , which are in fact 

characteristic values of 1
1 2S S− . Therefore 1 2 1{ , , , | 0}m mλ λ λ λ λ= > > >… …T . The 

bijection :s →T Z  is obvious.  

Taking into account the above discussion we have two versions of the orbital 

decomposition 

 

G GΘ = × = ×Z T          (3) 

 

Thus there is a bijection ( , ) ( , )g z g tθ ↔ ↔  and each θ ∈ Θ  may be uniquely written 

as ( ) ( ( ))g z g s tθ θ θ= =D D  for some g G∈  and z ∈Z. Since both ( )t θ  and ( )z θ  are 

maximal invariant, when ( , ) ( , )g z g tθ = =  then : ( , ) ( , )g gg z gg tθ = =D , for each 

g G∈ .  

To deal with the orbital decomposition GΘ = ×T  we must ensure the 

bimeasurability condition i.e. that there is a one–to–one correspondence between 

Borel subsets in Θ  and those in G ×T . There are many ways to accomplish it. One 

possibility is to adopt conditions listed in theorem 10.1.2 in Farrell (1985). Other 

option is to assume that the action of G  on Θ  is proper (see e.g. Andersson (1982)). 

However we assume the following regularity condition which ensures we can work in 

practical situations where Jacobian derivations are needed. 

 

Regularity condition (RC) (Wijsman (1986, 1990)): Let the spaces Θ , T  and a group 

G  be differentiable (of order 1) manifolds with group action ( , )g gθ θ6 D  

differentiable. Moreover, assume a bijective map :s →T Z  is differentiable. Define 

:Gϕ × → ΘT  as ( , ) ( )g t g s tϕ = D , which is also differentiable and bijective. Assume 

ϕ  has a positive Jacobian at the point ( , )e t , where e  is the identity element in a 

group G . 

 

To build further intuition we have a simple example (that will be referred to later) 
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Example 1:  Assume we have some mO − invariant model (the specific action on the 

sample space does not concern us). The parameter space is m m×Θ = \  such that 

det( ) 0θ ≠ , for each θ ∈ Θ  (in other words mGLΘ = ). The induced action on the 

parameter space is defined as :g gθ θ=D , for each mg O∈  (i.e. usual matrix 

multiplication). Clearly the G −Θ  freeness holds i.e. 

Stab { | } {I }m mg O gθ θ θ= ∈ = =  (= the identity in mO ) since gθ θ=  

⇒ 1 1 Img gθθ θθ− −= ⇒ = . Thus there is an orbital decomposition of mOΘ = ×T  

mO= ×Z . In fact for every θ ∈ Θ  we can take ( ) : ( )g z gzθ θ θ= =D , mg O∈  

( ) mz UTθ +∈  so as mUT +=Z . This is a known decomposition in matrix theory called 

the QR  decomposition. In our simple case =T Z , thus :s →T Z  is the identity 

function. To show that ( )z z θ≡  is maximal mO − invariant note that 

( ) ( )gz g ggzθ θ θ θ= ⇒ =  for every fixed mg O∈ . On the other hand the orbital 

decomposition of gθ  is ( )g gz gθ θ= �  for some mg O∈� . This gives 
1 1( ) ( ) ( )( ( ))ggz gz g g gg z g zθ θ θ θ− −= ⇒ =� � . But 1

mg gg O− ∈�  and 1( )( ( )) mz g z UTθ θ − +∈  and 

since {I }m m mO UT +∩ =  it follows 1( )( ( )) Imz g zθ θ − =  ( ) ( )z z gθ θ⇒ =  (this proves that 

z  is mO − invariant). On the other hand assume ( ) ( )z zθ θ= . Denote by mg O∈  the 

element such that ( )gzθ θ=  and by mg O∈  the element such that ( )gzθ θ= . Then 

( ) ( )z zθ θ=  1 1( ) ( )g z z gθ θ θ θ− −⇒ = = =  1gg θ θ−⇒ = . Putting 1
mg gg O−

∗ = ∈  we 

have g θ θ∗ = , which proves maximal mO − invariance of z . Note that the number of 

functionally independent elements in z t=  is 1
2 ( 1)m m + . The support for 1

2 ( 1)m m −  

elements is \  and for the remaining m  elements is +\ . Every two distinct 

1
2 ( 1)m m + –tuples in 

1
2 ( 1) ( )m m m− +×\ \  represent different orbits. 

 

V. PROPERTIES OF THE ORBITAL PRIOR 

It is easy to guess that the orbital decomposition is a key factorization in our 

approach. In fact our general recommendation is to elicit the prior for components in 

the orbital decomposition. This justifies calling our prior the orbital prior. In this 

section we explore various properties of this (orbital) prior. 

The orbital prior will be useful in all models that are invariant under some 

group of transformations when, for some reasons, an improper or partially improper 

prior π  is needed5. In such a case it is recommended 1) first to apply the orbital 

factorization on Θ  i.e. ( , )g tθ ↔  and 2) to elicit the improper prior as a product of 

                                                 
5
 By partially improper prior we mean for example the prior pdf 1 2 1 2 2( , ) ( | ) ( )p p pθ θ θ θ θ= , where 

1 2( | )p θ θ  is proper, whereas 2( )p θ  is not. 
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independent marginal priors for g  and t  i.e. ( , ) ( ) ( )dg dt dg dtπ π π= , where ( )dgπ  is 

the right invariant Haar measure on G  and ( )dtπ  may be any marginal prior (proper 

or improper). We notice that such a recommendation is “almost” explicitly given by 

Chamberlain and Moreira (2009). When ( )dtπ  is proper then the resultant joint 

posterior will be also proper irrespective of whether the marginal ( )dgπ  is proper or 

not (see lemma 3). Since the latter is the right invariant Haar measure on G  it may 

be proper if and only if G  is a compact group e.g. an orthogonal group, see Eaton 

(1989), p. 8. However in many applications G  is not compact i.e. general linear or 

Affine groups. 

The RC implies that there is a diffeomorphism between Θ  and G ×T , but 

also a homeomorphism between Θ  and G ×T  (i.e. both ϕ  and 1ϕ−  are continuous) 

and that the action of G  on Θ  is proper, see Wijsman (1986,1990). By assumption 

that G  is a locally compact topological group there is a unique (up to a constant) 

right invariant Haar measure on G  i.e. Gν . The homeomorphism between Θ  and 

G ×T  implies that we can define a measure 1( ) : ( ) ( )GB Bπ ν λ ϕ−= ⊗ T , B Θ∈ B , which 

is a prior on Θ  induced by the product measure Gν λ⊗ T . Since, by the orbital 

decomposition, each θ ∈ Θ  may be represented as ( ( )) ( , )g s t g tθ θ ϕ= =D  for some 

g G∈ , for all integrable f  we have  

 

1( , )
( ) ( ) ( ( , )) ( ) ( )G

B g t B
f d f g t dg dt

θ ϕ
θ π θ ϕ ν λ

−∈ ∈
=∫ ∫ T      (4) 

 

Previously we emphasized that when a model is G − invariant as a minimal 

requirement we should postulate the posterior G − invariance. By lemma 1 this is 

equivalent to adopting the relatively invariant prior. The next lemma demonstrates 

that when we work with a prior π  which is induced by the orbital decomposition 

then this is the case 

 

Lemma 2: The product measure Gν λ⊗ T  and the prior π  induced by Gν λ⊗ T  are 

relatively invariant. 

Proof: see appendix 1. 

 

There is an apparent non–uniqueness in the orbital decomposition which calls 

for some clarification. Assume we have chosen some maximal invariant t  and the 

corresponding z , which leads to the orbital decomposition g zθ = D . The latter is 
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unique but for the given z . Of course a cross section is non–unique in general. In fact 

any other cross section will be obtained as g zD  for some g G∈ . Then we get the 

alternative orbital decomposition 1
1 1gg g z g zθ −= =D D , where 1

1g gg G−= ∈ , 

1z g z= D . The question is whether the induced measure π  for θ  will be different in 

the case of two orbital decompositions. The next proposition is important since it 

shows that in a well defined sense the induced prior π  will be independent of the 

particular cross section on Θ . Thus we can choose the one that is most convenient to 

work with. To fully grasp the meaning of the next proposition note that 

1 ( ) ( )z g z g s t s t= = ≡D D . Hence although 1z  and z  are different cross sections they 

are both the functions of the same underlying maximal invariant t  (which is common 

for them). Intuitively you may think of t  as the functionally independent elements of 

1z  and z . 

 

Proposition 1: Assume we have two orbital decompositions with cross sections 

:z Θ → Z  and 1 1:z Θ → Z  i.e. ( , )g z g tθ ϕ= ≡D  and 1 1( , )g z g tθ ϕ= ≡D , then 

1 1
1( ) ( ) ( ) ( ) : ( )G GB B Bν λ ϕ ν λ ϕ π− −⊗ = ⊗ =T T , for B Θ∈ B . 

Proof: see appendix 2. 

 

Example 1 (cont.): Assume that instead of the cross section mz UT +∈  we take 

1 1: mz PDΘ → =Z  such that 
1
2

1( ) ( )z θ θ θ′= , where 
1
2( )θ θ′  denotes the square root of 

the positive definite θ θ′ . The maximal mO − invariance of 1z  is easy to prove 

( mO − invariance is trivial and maximal mO − invariance follows by Vinograd’s 

theorem). In fact 1gzθ =  for mg O∈ , 1 mz PD∈  is the so–called polar decomposition 

of θ . Since 
1 1 1
2 2 2( ) ( ) ( )z g gz z zθ θ′ ′ ′ ′= =  we have 

1 1 1 1
2 2 2 2( ) ( ) ( ) ( )z z z z z z g z z g θ θ−′ ′ ′ ′= = = =  

1gz= , where 
1
2( ) mg z z z O

−′= ∈ . Since 1
1 1z gz z g z−= ⇔ = , denoting 1g g−=  we have 

1z gz= . Recall that in our simple case mt z UT +≡ ∈  and indeed 1z  is a function of t .  

( ) ( ) ( ) ( )( ) ( ) ( )( )
m mO Of d f gt dg dt f gz dg dtθ π θ ν ν= = =∫ ∫ ∫  

1
1 1( ) ( )( ) ( ) ( )( ) ( ( )) ( )( )

m m mO O Of gg z dg dt f gz dg dt f gs t dg dtν ν ν−= = =∫ ∫ ∫  

where we used (4) and the fact that 
mOν  is the right invariant Haar measure. 

Therefore we end up with the same induced prior measure π  on Θ . 

We have remarkable consequence of the orbital decomposition 

 

Lemma 3 (Zidek (1969)): ( ) ( | ) ( )m y p y dθ π θ
Θ

= =∫ ( | , ) ( ) ( )G
G

p y g t dg dtν λ
×

< ∞∫ T
T

; 

a.e. [ ]λY , provided that ( )dtλ < ∞∫ T
T

. 
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This is a very interesting property of the orbital prior: It does not matter for the 

marginal data density finiteness or posterior existence whether the right invariant 

Haar measure is proper or not. As long as the marginal prior for t  is proper so is the 

posterior. We mention that if Z  is empty i.e. GΘ =  (this is the case when G  acts 

transitively and freely on Θ), then 0( | ) ( ) ( | ) ( )G
G

p y d p y g dgθ π θ θ ν
Θ

= < ∞∫ ∫ D ; a.e. 

[ ]λY , where 0θ ∈Θ  is arbitrary and fixed, see Bondar (1977) for the proof and 

Kocięcki (2011) for some clarification. Hence working with right invariant Haar 

measure as a prior in the case GΘ =  (which will not be a probability measure if G  

is non–compact) implies the existence of the posterior. 

 

VI. MOTIVATIONS FOR OBRITAL PRIOR 

Working with the orbital decomposition GΘ = ×T  i.e. ( , )g tθ = , and 

assigning the measure Gν λ⊗ T  to G ×T  i.e. ( , ) ( ) ( )dg dt dg dtπ π π= , which implicitly 

induces the prior measure ( )dπ θ , turns out to be sensible for several reasons. In fact 

the list of arguments in favor is quite long. 

Assume first that T  in GΘ = ×T  is empty, that is GΘ = . It is the case 

when a group G  acts transitively and freely on Θ . Then 

a) Stein (1965) demonstrated that we get the exact probability matching for θ  

i.e. the coverage frequentist probability is equal to the credible Bayesian probability, 

and for many functions of θ , see e.g. Berger and Sun (2007,2008) and Dawid (2007). 

In the context of prediction, Severini et al. (2002) and Eaton and Sudderth (2004) 

showed that exact probability matching holds also for certain predictive regions. 

Needless to say, for many non–Bayesians the exact probability matching is equivalent 

to applying the non–informative prior within Bayesian model (from their perspective 

the prior works “as if” there is no prior at all).  

b) Many Bayesians think of the improper non–informative priors as an 

approximation to some proper priors. We argued earlier that in the case of 

G − invariant model the posterior should be also G − invariant. Stone (1970) showed 

that there is a sequence of proper priors applied to G − invariant model that 

corresponds in the limit to G − invariant posterior if and only if this G − invariant 

posterior was derived under the right invariant Haar measure Gν .  

c) Any posterior that is not derived under the right invariant Haar prior must 

be strongly inconsistent in the Stone’s (1976) sense, see Eaton and Sudderth (2004). 

Kocięcki (2011) showed that with the G −Θ  freeness assumption the posterior 
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inference under Gν  is not strongly inconsistent in the Stone’s (1976) sense and is 

coherent in the sense of Heath and Sudderth (1978) and De Finetti (i.e. Dutch book). 

d) Standard results indicate that when a decision problem is invariant, the 

Bayes estimators derived under the right invariant Haar prior are the best (minimum 

risk) invariant decision rules, see e.g. Berger (1985), section 6.6.2. Eaton and 

Sudderth (2001) showed that posterior predictive distributions computed with a right 

invariant Haar prior entail best invariant decision rules using a number of loss 

functions. Moreover, any predictive distribution that is not based on the right 

invariant Haar prior is incoherent in the sense of Heath and Sudderth (1978) and 

strongly inconsistent in the Stone’s (1976) sense, see e.g. Eaton and Sudderth 

(1998,1999), Eaton (2008). 

e) The posterior under Gν  is identical to Fraser’s (1968) structural (fiducial) 

distribution, see Hora and Buehler (1966). 

When T  is not empty so as GΘ = ×T , then 

a) We avoid the marginalization paradox for a component parameter t  in 

( , )g tθ = . Dawid et al. (1973) showed that when we adopt the prior which is a 

product of the right invariant Haar measure on G  i.e. Gν , and an arbitrary prior on 

T , then the marginalization paradoxes for t  will not appear6. 

b) In models where t  is a scalar maximal invariant, Datta and Ghosh (1995) 

demonstrated superiority of the prior ( , ) ( ) ( )dg dt dg dtπ π π= 7. In particular, they 

showed that such a prior is probability matching for t  up to order 1( )NO , where N  

denotes the sample size. Interestingly, they showed that Bernardo’s reference prior 

may not be probability matching for t  and suffer from the marginalization 

paradoxes. The same drawbacks concern the Jeffreys’ prior, see e.g. Datta and Ghosh 

(1995), Berger and Sun (2006,2007,2008). 

                                                 
6
 There may be still paradoxes, which however will occur only if we contemplate different groups  

under which the model is still invariant, see Dawid et al. (1973). However, the invariance argument 

proper is most convincing only if we know a priori which form of invariance our model should preserve 

i.e. if we regard the underlying group of transformations as an integral part of a model. Then we must 

a priori decide what specific group acts on the sample space and there is little sense to consider other  

groups. In that case, there will be no marginalization paradox. See Bunke (1975) for similar remarks. 

Thus in practical cases one should use the largest group under which the model is invariant and which 

accommodates all sensible invariance considerations. 
7
 To be precise, they use the marginal prior on T  as suggested by Chang and Eaves (1990), but it 

may be shown that all conclusions stated in Datta and Ghosh (1995) are valid for arbitrary measure 

on T . 
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c) Stein’s (1965) results concerning equality of Bayesian credibility region with 

the frequentist confidence region were somewhat generalized to the case where T  is 

not empty by Chang and Villegas (1986). 

d) In a problem that is invariant under a transformation of some group, the 

risk function of any equivariant estimator is constant on each orbit in Θ , see e.g. 

Lehmann and Casella (1998), corollary 2.13. Even if the action of a group G  is not 

transitive on Θ , the class of all equivariant estimators is small enough to propose 

some optimal estimator using other (perhaps ad–hoc) rules, see e.g. Berger (1985), p. 

397, Helland (2010), p. 92. Zidek (1969) points out that the consequence of the risk 

constancy on every orbit is that we should explicitly specify the prior on orbits, that 

is ( )dtπ . He showed that under fairly general conditions, if we accompany any prior 

on orbits i.e. ( )dtπ , with the right invariant Haar measure i.e. Gν , what really 

matters is ( )dtπ . That is the risk depends only on ( )dtπ . Related results in 

Chamberlain (2007), theorem 6.1, Chamberlain and Moreira (2009), proposition 4, 

establish the fact that, under some conditions, Bayes decision rules under orbital 

decomposition on the parameter space, have minimax property (provided that a 

group G  is compact). In particular, Bayes decision rule depends only on the prior 

( )dtπ  and we can replace averaging with respect to the measure Gν  with the fixed 

value g G∈  that leads to the maximum risk. This emphasizes the fundamental 

meaning of the orbital decomposition ( , )g tθ = . 

e) In fact the crucial importance of t  for inference is noticed by many 

researchers. The component t  in the orbital decomposition of θ  is called permissible 

(using terminology of Helland (2010), pp. 83–85) or natural (using terminology of 

McCullagh (2002)). Moreover t  is also recommended as “appropriate” functions of 

parameters by Fraser (1968). According to model reduction policy of Helland (2010), 

p. 94, a model must be reduced to t  and McCullagh (2002) agrees. 

f) The distribution of a maximal invariant (and hence any invariant) on the 

sample space i.e. u  in the orbital decomposition (2), depends only on maximal 

invariant on the parameter space i.e. t , see e.g. Berger (1985), p. 403. Moreover, if 

the group acts transitively and freely on the parameter space (i.e. GΘ = ) then the 

maximal invariant of the sample space is ancillary i.e. does not depend on any 

parameter, see e.g. Lehmann (1986), Ch. 10, theorem 1. Since all invariant tests are 

some function of maximal invariant, whose distribution depends only on maximal 

invariant on the parameter space, it appears that decomposition of parameter space 

into the maximal invariant and a group element has some extra merits. We may use 
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this decomposition strategy in order to compare Bayesian and non–Bayesian tests e.g. 

how prior distribution of maximal invariant on the parameter space affects the 

invariant tests, whether there is a prior of maximal invariant on the parameter space 

that makes Bayesian and non–Bayesian tests agree with each other. In general we 

can try to find specific priors for maximal invariant t  that has interesting non–

Bayesian consequences. For the latter application see e.g. Chamberlain and Moreira 

(2009). Moreover, under mild regularity conditions, the likelihood ratio tests in 

invariant testing problem depend only on maximal invariant on the sample space, 

which, in turn, is entirely influenced by maximal invariant on the parameter space 

i.e. t , see e.g. Lehmann (1986), Eaton (1989). Lastly, denoting ( )tψ  any real function 

of t , under some conditions, there exists essentially unique unbiased estimator of 

( )tψ  with minimum risk for all t ∈ T  (Fraser (1956), Basu (1977)). This strengthens 

our recommendation for application of the orbital decomposition (when possible) by 

emphasizing an intersubjective character of the orbital prior. 

g) The orbital decomposition on the parameter space is analogous to that used 

in the structural and/or structured (functional) models of Fraser (1968, 1979). The 

difference is that we use this decomposition on the parameter space whereas Fraser 

applies it to the (objective) error space, which he finds fundamental in his approach.  

 

VII. INTERSUBJECTIVE ORBITAL PRIOR 

Although ( )dtπ  of the measure ( , ) ( ) ( )dg dt dg dtπ π π=  may be problem–specific 

(proper or improper) there is a need for having some default prior in our setup. This 

was termed by us as the intersubjective prior which in fact is a different name for a 

non–informative prior. 

 

Definition 2: The intersubjective prior on G ×T  is a product of the right invariant 

Haar measure on G  i.e. ( )G dgν , and the Lebesgue measure on T  i.e. ( )dt . The 

implied measure on Θ  will be referred to as the intersubjective orbital prior. 

 

Therefore the intersubjective prior on G ×T  will be ( , ) ( )( )Gdg dt dg dtπ ν= , and the 

intersubjective orbital prior ( )dπ θ  will be found by computing the Jacobian of the 

bijective transformation :Gϕ × → ΘT  under ( , ) ( )( )Gdg dt dg dtπ ν= . 
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Example 1 (cont.): Assume we have chosen the cross section mz t UT += ∈ . This leads 

to orbital decomposition ( , )g tθ = , where mg O∈ . The intersubjective prior on G ×T  

will be ( , ) ( )( )
mOdg dt dg dtπ ν= , where ( )

mO dgν  is the right invariant Haar measure on 

mO  and ( )dt  the Lebesgue measure on mUT + . Since mO  is compact, ( )
mO dgν  is also the 

left invariant Haar measure, hence it is common to say that ( )
mO dgν  is just invariant 

Haar measure on mO . The induced intersubjective prior on Θ  is computed by 

derivation of the Jacobian ( , )J g t θ→  under the measure ( , ) ( )( )
mOdg dt dg dtπ ν= . 

Since 
1

( , ) ( )( )
m

m m i

ii Oi
J g t t dg dtθ ν−

=
→ =∏  (where iit  are diagonal elements in mt UT +∈ ), 

we have 
1

( ) ( )( )
m

m m i

ii Oi
d t dg dtθ ν−

=
=∏  or 

1
( ) ( )( )

m

m m i

ii Oi
t d dg dtθ ν− +

=
=∏ . We need only to 

express iit  in terms of θ . In fact iit  are implicit functions of θ . Thus the 

intersubjective orbital prior on Θ  is 
1

( ) ( ( )) ( )
m m i

iii
d t dπ θ θ θ− +

=
=∏ . 

 

In a common nomenclature the Lebesgue measure is termed as the flat prior. 

Seeing in this light, the orbital decomposition gives justification for using flat priors 

but only in the context of maximal invariants t  (or a cross section z ). Intuitively the 

parameter space may be decomposed as a disjoint union of orbits. It means that each 

θ ∈ Θ  belongs to one and only one orbit. Usually each orbit (seen as a subspace of 

the parameter space Θ) will contain infinite number of parameters. However a cross 

section z  (or equivalently maximal invariant t ) is in 1–1 correspondence with orbits. 

Thus adopting a flat prior for t  amounts to saying that all orbits are equally 

probable (i.e. different t ’s represent different orbits). That is we find no reason why 

the unknown (“true”) value of the parameter may belong to the particular orbit and 

not the other one. This is the principle of insufficient reason in the purest 

mathematical form because orbits may also be perceived as abstract elements of the 

orbit space8. To put it other way, one must be reminded of the inherent property of 

the orbital decomposition. If you apply some group of transformation to the data i.e. 

g yD ; for some g G∈ , which implies the induced action of the group on the 

parameter space i.e. g θD , then it has no effect on the cross section z  (or maximal 

invariant t ) since : ( , ) ( , )g gg z gg tθ = =D  for each g G∈ . That is z  (or t ) in the 

orbital decomposition of θ  is the same as z  (or t ) in the orbital decomposition of 

g θD . The latter property realizes us that flatness assumption for t  will be invariant 

                                                 
8
 In fact our whole analysis equivalently may be based on abstract (Bourbaki) approach in which 

instead of cross section there is a topological quotient space of orbits / : {Orb | }G θ θΘ = ∈Θ , see e.g. 

Zidek (1969), Andersson (1982), Eaton (1989), Wijsman (1990). 
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under any transformation of the data. This is the ideal situation for the application of 

the insufficient reason principle. On the other hand note the following subtle point. 

The invariance arguments applied only to the parameter space (in short, parameter 

invariance) lead to Jeffreys’ prior which is the solution to the problem of finding the 

mathematical form of the prior measure that is invariant to any 1–1 

reparameterizations. As a matter of fact, in the case of parameter invariance the 

principle of insufficient reason is not applicable and the Jeffreys’ prior was the 

consequence of it. In contrast, invariance arguments applied to the sample space (in 

short, sample invariance) and representation of the parameter space with the orbital 

decomposition allows us to assign the flat prior for t  which will be invariant under 

this form of invariance (i.e. sample invariance). 

 

VIII. UNIVARIATE AR(p) MODEL 

This section begins derivations of the orbital prior for most popular time–series 

models that enjoy invariance property. Consider the simple AR(p) model 

 

1 1 2 2t t t p t p ty c y y yβ β β σ ε− − −= + + + + + ⋅"      (5) 

 

where (0,1)t Nε ∼ . The most natural group of transformations is the affine group i.e. 

1G AL= 9. That is we contemplate the following 1AL  action on the sample space 

 

1( , ) : ( , , )Tg y w k y wy k wy k≡ = + +D D …       (6) 

 

where 0w >  and k ∈ \ . Using definition of G –invariance we can show that the 

AR(p) model is 1AL –invariant with the induced action on the parameter space 

 

                                                 
9
 We think that the Affine group is the most appropriate in the context of univariate and multivariate 

economic time–series models. It is the case when some of the variables are in logs and the remaining 

ones are not and we change the measurement units of all variables. For example, assume we have the 

original data 
1,

2,log( )
t

t

y

y
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 and we change the scale of measurement as follows 

1,1,

2,2,

00
log( )0 1 ln( )log( )

tt

tt

yby b
y lly

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
, where \ {0}b ∈ \  and 0l > . Denote 

0
0 1
b

w
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 and 
0

ln( )k l

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

, 

then we have the following group action 
1, 1, 1,

2, 2, 2,
( , ) :log( ) log( ) log( )

t t t

t t t

y y y
w k w ky y y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

6 D , where ( , )w k  is 

an element of the Affine group 2AL . 
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1 11
( , ) ( , , , , ) : ( (1 ) , , , , )

p

p i pi
w k c wc k wβ β σ β β β σ

=
= + −∑D … …    (7) 

 

The proof is essentially particular case of the proof of lemma 4, whence it is omitted. 

Note that the action of 1AL  on autoregressive parameters is trivial. The G −Y  

freeness is satisfied a.e. [λY ], when 2T ≥  (see lemma 5). On the other hand, the 

action 1AL  on the parameter space is free provided that 
1

1
p

ii
β

=
≠∑ . Hence we must 

only exclude the zero measure hyperplane 
1

1
p

ii
β

=
=∑  from the parameter space but 

the part of parameter space that implies existence of explosive growth or oscillations 

makes no problem. Therefore G −Θ  freeness holds almost everywhere in the 

parameter space and we can apply the orbital decomposition to 1( , , , , )pcθ β β σ= … . 

One particular cross section is 1( ) (0, , , ,1)pz θ β β= …  so that 1( ) ( , , )pt θ β β= … . 

Remember that any cross section z  serves the purpose because the induced prior 

( )dπ θ  is independent of this choice (proposition 1). 

The intersubjective orbital prior will be a product of the right invariant Haar 

measure on 1G AL=  and the Lebesgue measure for ( )t θ . Since the former is 

1

1( ) ( )( )AL dg w dw dkν −=  we have 

 
1

1( , ) ( )( )( ) ( )pdg dt w dw dk d dπ β β−= …       (8) 

 

Since the orbital decomposition is a 1–1 correspondence, by writing 
1

1 11
( , ,, , , ) ( , (1 ) ) (0, , , ,1)

p

p i pi
c cβ β σ σ β β β−

=
= ⋅ −∑… D … , we identify w σ≡  and 

1

1
(1 )

p

ii
k c β −

=
≡ ⋅ −∑  in ( ) ( , ) ( )g z w k zθ θ θ= ≡D D . So we can write (8) as 

 
1

1 1( , ) ( , , , , ) ( )( )( ) ( )p pdg dt d dk d d d dk d dπ π σ β β σ σ β β−≡ =… …    (9) 

 

Note that for stationary AR(p) model, k  has a clear interpretation, namely the 

unconditional mean of a process. The rationale for eliciting prior for k  instead of a 

constant c  was given e.g. by Schotman and van Dijk (1991b), Zivot (1994). 

Incidentally, (9) is exactly the flat prior suggested by Zivot (1994) (his expression 

(5)). 

Changing variables from 1( , , , , )pkσ β β…  to 1( , , , , )pcσ β β…  with the Jacobian 

1

1
| 1 |

p

ii
β −

=
−∑  we get the intersubjective prior on the original space induced by 

( , )dg dtπ  
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1 1
1 11

( , , , , ) | 1 | ( )( )( ) ( )
p

p i pi
d dc d d d dc d dπ σ β β σ β σ β β− −

=
∝ −∑… …   (10) 

Interestingly, exactly the same prior (but differently motivated) was proposed by 

Sims (1991). The very important property of (10) is that in AR(1) model it implies 

probability matching for 1β  up to order 1( )TO , where T  denotes the sample size (see 

section VI). 

Needless to say, the prior avoids marginalization paradoxes for autoregressive 

coefficients i.e. 1( ) ( , , )pt θ β β= … . Moreover, note that in standard location–scale case 

(all 0iβ =  in (5)), the intersubjective orbital prior is 1( , ) ( )( )d dc d dcπ σ σ σ−∝ , which 

is the Jeffreys’ prior (when mean and variance are treated as independent of each 

other) and seems to be acceptable by many Bayesians and non–Bayesians (because it 

leads to convergence of Bayesian and frequentist solutions to the same inferential 

problem). 

The appearance of 1

1
| 1 |

p

ii
β −

=
−∑  in the prior (10) for the model (5) makes 

the simulation from the implied posterior more demanding. However our orbital prior 

is very suggestive and treats 1( , , , , )pγ β β σ… , where 1

1
(1 )

p

ii
cγ β −

=
= ⋅ −∑  as an 

“appropriate” parameter space. Therefore the orbital prior finds it natural to use the 

following parameterization of AR(p) model instead of (5) 

 

1 1( ) ( ) ( )t t p t p ty y yγ β γ β γ σ ε− −− = − + + − + ⋅"     (11) 

 

The model (11) is called the non–linear reduced form of (5) by Zivot (1994). Of 

course the interpretation of γ  as the unconditional mean of the data is valid only for 

stationary AR(p) model. Otherwise it is just the “Greek letter”. We notice that the 

parameterization (11) was also considered more convenient than (5) by Schotman 

and van Dijk (1991a,1991b), Zivot (1994). 

 It may be shown that the model (11) is 1AL − invariant under the action (6) 

(on the sample space) with the induced action on the parameter space 

 

1 1 1( , , , , ) ( , ) ( , , , , ) : ( , , , , )p p pg w k w k wγ β β σ γ β β σ γ β β σ≡ = +D … D … …   (12) 

 

In contrast to specification (5), in the case of model (11) the G −Θ  freeness 

always holds. The G −Y  freeness is satisfied a.e. [λY ], when 2T ≥  (see lemma 5). 

Denoting 1( , , , , )pθ γ β β σ= …  we have that 1( ) ( , , )pt θ β β= …  and the corresponding 

cross section is 1( ) ( ( )) (0, , , ,1)pz s tθ θ β β= = … .  
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The orbital decomposition is  

 

1 1( , ,, , , ) ( , ) (0, , , ,1)p pγ β β σ σ γ β β=… D …       (13) 

 

Identifying w σ≡  and k γ≡  in ( ) ( , ) ( )g z w k zθ θ θ= ≡D D , we have the following 

intersubjective orbital prior for the model (11) 

 
1

1 1( , ) ( ) ( , , , , ) ( )( )( ) ( )p pdg dt d d d d d d d d dπ π θ π σ γ β β σ σ γ β β−≡ = =… …   (14) 

 

In general in all cases to be analyzed it seems to be a good practice to work with the 

parameterization of the model which comprises explicitly a group element of the 

orbital decomposition (in the case (11) this is 1

1
( , (1 ) )

p

ii
g cσ β −

=
= ⋅ −∑ ). The main 

reason for this is the facilitation of the posterior sampling. 

 

IX. STRUCTURAL VAR MODEL 

Consider the following version of the Structural VAR (SVAR) model 

 

1 1 2 2t t t p t p ty c Ay Ay A y ε− − −= + + + + +Λ" ;  1, ,t T= … .  (15) 

 

Where 1m

ty ×∈ \ , : ( )iA m m× , 1mc ×∈ \ , mGLΛ ∈  and 1| , (0, I )t t my Nε − …∼ . Denote 

1 2[ ]Ty y y y= … . The most natural action is that of mAL  e.g. think of the situation 

when variables in a vector ty  may or may not be in logs and we change the 

measurement units of all variables, see footnote 9. That is let ( , ) mg w k AL= ∈ , where 

mw GL∈ , 1mk ×∈ \ , act on the sample space as 

 

1( , ) : ( , , )T Tg y w k y wy k wy k wy k≡ = + + = + ⋅1D D …     (16) 

 

Lemma 4: The SVAR model (15) is mAL − invariant and the induced action on the 

parameter space is defined as 1 1( , , , , ) ( , ) ( , , , , )p pg c A A w k c A AΛ ≡ ΛD … D …  

1 1 1
11

: ( (I ) , , , , )
p

m i pi
wc w A w k wAw wA w w− − −

=
= + − Λ∑ …  

Proof: see appendix 3. 

 

To apply some of our results (e.g. those concerning the marginalization 

paradoxes) we must be sure that assumption 3 is satisfied 
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Lemma 5: Let mG AL=  act on the sample space as 1: ( , , )Tg y wy k wy k= + +D …  

Twy k= + ⋅1 . The G −Y  freeness holds if all rows of [ , ]Ty ′ ′ ′1  are linearly 

independent. 

Proof: see appendix 4. 

 

Thus when 1T m≥ +  then G −Y  freeness is satisfied a.e. [λY ]. 

 Far more important for our approach is the G −Θ  freeness. Hence we have 

 

Lemma 6: In the case of SVAR model (15): 

a) When 
1

rank(I )
p

m ii
A m

=
− =∑ , the G −Θ  freeness assumption is satisfied. 

b) When 
1

0 rank(I )
p

m ii
A m

=
≤ − <∑ , the G −Θ  freeness assumption is violated. 

Proof: see appendix 5. 

 

There are several comments on lemma 6. First, when we exclude a priori parameter 

values that satisfy 
1

0 rank(I )
p

m ii
A m

=
≤ − <∑ , then we are left with stationarity 

assumption and the G −Θ  freeness holds. Second, some may question to attribute 

special importance to subsets of parameter space of measure zero (this is the position 

of Sims (1988)). Then the G −Θ  freeness holds for almost all [π ] values of 

parameters. Third, if we need to impose the exact restriction of cointegration we 

should introduce this explicitly and work with e.g. Error Correction Model, to be 

discussed later (for which the G −Θ  freeness assumption holds). Fourth, if 

1
I 0

p

m ii
A

=
− =∑ , the appropriate treatment of the model amounts to using SVAR 

model in data first differences and the problem disappears i.e. SVAR in differences 

will fulfill the G −Θ  freeness assumption. In sum, we find lemma 6 very interesting 

for the following reason. Although we did not explicitly consider the stationarity 

aspects of the SVAR model, those considerations were brought out in the course of 

our analysis in their full intensity. One must also be reminded that many of the 

alternative non–informative priors suggested in the literature do have similar 

restrictions on its use. For example, both Bernardo’s reference prior and Jeffreys’ 

prior possess inherent dichotomy with respect to stationarity assumption i.e. to 

obtain those priors you should a priori decide whether the data are stationary or not. 

Moreover the treatment of initial observations constitutes a great challenge. Also, the 

existence of cointegration requires extra considerations when applying Bernardo’s 

reference prior or Jeffreys’ prior. 
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Keeping in mind the above discussion we should further assume that 

1
rank(I )

p

m ii
A m

=
− =∑ . Denoting 1( , , , , )pc A Aθ = Λ…  we have 

 

Lemma 7: 1 1 1
1 2( ) ( , , , )pt A A Aθ − − −= Λ Λ Λ Λ Λ Λ…  is maximal mAL − invariant. 

Proof: see appendix 6. 

 

It is a good place to remind the reader of the consequences of proposition 1 in the 

context of lemma 7. Any cross section will be a function of t . The latter consists of 

( )m mp×  functionally independent elements on ( )m mp×\  and the induced prior 

measure π  will be the same under any choice of cross section. 

Let us denote 1

i

m m

A it A− ×= Λ Λ ∈ \ , for 1, ,i p= … . The intersubjective orbital 

prior will be a product of the right invariant Haar measure on mG AL=  and 

Lebesgue measure on 
1

( ) ( , , )
pA At t tθ = … . Since the former is ( )

mAL dgν = | | ( )( )mw dw dk−  

(see e.g. Eaton (1989), p. 11), we have 

 

( , )dg dtπ =
1

| | ( )( )( ) ( )
p

m

A Aw dw dk dt dt− …       (17) 

 

Having t  we can easily derive a cross section 

 
1 1 1

1 2( ) ( ( )) (0, , , , , I )p mz s t A A Aθ θ − − −= = Λ Λ Λ Λ Λ Λ…     (18) 

 

Then one may check that 

 
1 1 1

1 1 2( , , , , ) ( , ) (0, , , , , I )p p mc A A k A A A− − −
∗Λ = Λ Λ Λ Λ Λ Λ Λ… D …    (19) 

 

where 1 1

1
(I )

p

m ii
k A c− −
∗ =
= Λ − Λ∑ . Since the orbital decomposition is a 1–1 

correspondence, we can identify w ≡ Λ  and k k∗≡ . Hence we can write (17) as 

 

( , )dg dtπ =
1

| | ( )( )( ) ( )
p

m

A Ad dk dt dt−
∗Λ Λ …       (20) 

 

Changing variables from 
1

( , , , , )
pA Ak t t∗Λ …  to 1 1( , , , , )c A AΛ …  with the Jacobian 

1

1
| det(I ) |

p

m ii
A −

=
−∑  we obtain the prior on the original space 

 

1( , , , , )pd dc dA dAπ Λ ∝… 1
11

| | | det(I ) | ( )( )( ) ( )
pm

m i pi
A d dc dA dA− −

=
Λ − Λ∑ …  (21) 
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The intersubjective orbital prior for (15) i.e. (21), has evident drawback due to 

appearance of 1

1
| det(I ) |

p

m ii
A −

=
−∑ . Simulation from the posterior of SVAR under 

the prior (21) will be necessarily more difficult than that in the framework presented 

in Sims and Zha (1998). However one should be reminded that the prior (21) 

possesses intersubjective characteristics whereas the “non–informative” priors for 

SVAR proposed in the literature have no fundamental justifications. In fact it 

appears that the literature on the Bayesian SVAR models has not developed any 

standards for the non–informative priors yet, see e.g. ad hoc solutions in Sims and 

Zha (1999). For example a flat prior for 0 1, , , , pA c A A…  (where 1
0A −= Λ ) was used by 

Sims and Zha (1999), Zha (1999) with the motivation to eliminate the discrepancy 

between posterior mode and ML estimates. The same flat prior appears also in 

Waggoner and Zha (2003) and Hamilton et al. (2007). We think that the rationale 

for the orbital prior is much deeper than that for the flat prior. 

 One possibility to avoid all problems connected with adoption of (21) is to use 

the following SVAR parameterization 

 

1 1 2 2( ) ( ) ( ) ( )t t t p t p ty A y A y A yγ γ γ γ ε− − −− = − + − + + − +Λ"   (22) 

 

where γ  has interpretation of unconditional mean for stationary data but remains 

just a “Greek letter” otherwise. Assuming (16) one may show that the model (22) is 

mAL − invariant with the induced action of mAL  on the parameter space10 

 
1 1

1 1 1( , , , , ) ( , ) ( , , , , ) : ( , , , , )p p pg A A w k A A w k wAw wA w wγ γ γ − −Λ ≡ Λ = + ΛD … D … …  (23) 

 

Interesting fact about parameterization (22) is that G −Θ  freeness holds without any 

qualification, hence the orbital decomposition GΘ = ×T  is valid for stationary and 

non–stationary data and in the presence of the cointegration (G −Y  freeness is 

satisfied under condition in lemma 5). Denoting 1( , , , , )pA Aθ γ= Λ…  we still have that 

1 1 1
1 2( ) ( , , , )pt A A Aθ − − −= Λ Λ Λ Λ Λ Λ…  is maximal mAL − invariant, with the 

corresponding cross section 1 1 1
1 2( ) ( ( )) (0, , , , , I )p mz s t A A Aθ θ − − −= = Λ Λ Λ Λ Λ Λ… . The 

orbital decomposition is 

 

                                                 
10

 The proof is a simple modification of that of lemma 4. In general, to save the space we omit proofs 

of model invariance in each particular case, since those proofs are quite similar to that of lemma 4. 
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1 1 1
1 1 2( , , , , ) ( , ) (0, , , , , I )p p mA A A A Aγ γ − − −Λ = Λ Λ Λ Λ Λ Λ Λ… D …    (24) 

 

We identify w ≡ Λ  and k γ≡ , hence the intersubjective orbital prior on G ×T  

reads 

 

1
( , , , , )

pA Ad d dt dtπ γΛ ∝…
1

| | ( )( )( ) ( )
p

m

A Ad d dt dtγ−Λ Λ …     (25) 

 

Or equivalently (by changing variables) 

 

1( , , , , )pd d dA dAπ γΛ ∝… 1| | ( )( )( ) ( )m

pd d A Aγ−Λ Λ …     (26) 

 

which is the intersubjective orbital prior on Θ  i.e. for the model (22).  

For completeness of our results we also provide the treatment of the following 

(most popular) SVAR specification 

 

0 1 1 2 2t t t p t p tA y c Ay Ay A y ε− − −= + + + + +"      (27) 

 

where 0 mA GL∈  and 1| , (0, I )t t my Nε − …∼ . To save the space we give the following 

results without proofs. The model (27) is mAL − invariant under (16) with the group 

action on the parameter space defined as  

 

0 1 0 1( , , , , ) ( , ) ( , , , , )p pg c A A A w k c A A A≡D … D …  

         1 1 1 1
0 0 11

: ( [ ] , , , , )
p

i pi
c A A w k A w Aw A w− − − −

=
= + −∑ …   (28) 

 

for each mg AL∈ . The mAL  acts freely on the parameter space provided that 

0 1
rank( )

p

ii
A A m

=
− =∑ . Denoting 0 1( , , , , )pc A A Aθ = … , we have 

1 1
1 0 0( ) ( , , )pt AA A Aθ − −= …  and the corresponding cross section 

1 1
1 0 0( ) (0, I , , , )m pz AA A Aθ − −= …  which induces the orbital decomposition 

 
1 1 1 1

0 1 0 0 1 0 01
( , , , , ) ( ,( ) ) (0, I , , , )

p

p i m pi
c A A A A A A c AA A A− − − −

=
= −∑… D …   (29) 

 

We easily identify 1
0w A−≡  and 1

0 1
( )

p

ii
k A A c−

=
≡ −∑ . Since the intersubjective 

orbital prior on G ×T  is 
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1
( , , , , )

pA Adw dk dt dtπ ∝…
1

| | ( )( )( ) ( )
p

m

A Aw dw dk dt dt− …     (30) 

 

where 1
0iA it AA−= , by changing variables from 

1
, , , ,

pA Aw k t t…  to 0 1, , , , pc A A A…  we have 

the induced intersubjective orbital prior for the model (27) 

 

0 1( , , , , )pdc dA dA dAπ ∝… ( 1) 1
0 0 0 11

| | | det( ) | ( )( )( ) ( )
pm p

i pi
A A A dc dA dA dA− + −

=
−∑ …  (31) 

 

Lastly, using the parameterization 

 

0 1 1 2 2( ) ( ) ( ) ( )t t t p t p tA y A y A y A yγ γ γ γ ε− − −− = − + − + + − +"   (32) 

 

And assuming (16) we have the induced action on the parameter space 

 
1 1 1

0 1 0 1 0 1( , , , , ) ( , ) ( , , , , ) : ( , , , , )p p pg A A A w k A A A w k A w Aw A wγ γ γ − − −≡ = +D … D … …  (33) 

 

for each mg AL∈ . Denoting 0 1( , , , , )pA A Aθ γ= …  we have 1 1
1 0 0( ) ( , , )pt AA A Aθ − −= …  and 

the corresponding cross section 1 1
1 0 0( ) (0, I , , , )m pz AA A Aθ − −= … . Since G −Θ  freeness in 

the case of (32) is always satisfied we can write the unique orbital decomposition as 

 
1 1 1

0 1 0 0( ) ( , ) ( ) ( , ) (0, I , , , )m pg z w k z A AA A Aθ θ θ γ− − −= ≡ =D D D …    (34) 

 

Therefore we identify 1
0w A−≡ , k γ≡  and the intersubjective orbital prior for the 

model (32) is 

 

0 1( , , , , )pd dA dA dAπ γ ∝… ( 1)
0 0 1| | ( )( )( ) ( )m p

pA d dA dA dAγ− + …    (35) 

 

X. VAR MODEL 

Consider the SVAR model (15) with the restriction mLT +Λ ∈   

 

1 1 2 2t t t p t p ty c Ay Ay A y ε− − −= + + + + +Λ"      (36) 

 

Equivalent way to write (36) is  

 

1 1 2 2t t t p t p ty c Ay Ay A y υ− − −= + + + + +"      (37) 
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where 1| , (0, )t ty Nυ − Σ…∼  and mPDΣ ∈  is in 1–1 correspondence with mLT +Λ ∈  

through the Choleski decomposition ′Σ = ΛΛ . That is we arrive at the VAR model. 

For mathematical reasons we prefer to work with (36) than with (37)11. Since 

presently mLT +Λ ∈  (in the case of SVAR, mGLΛ ∈ ) the group mAL  is too large for 

our problem. Indeed, if ( , ) mg w k AL= ∈ , where mw GL∈  and 1mk ×∈ \ , acts in the 

model (36) then this destroys the model structure. That is after the action of mAL  on 

the parameter space, Λ  no longer belongs to mLT +  but to mGL . We should consider 

the subset of mAL  consisting of elements ( , )g w k= , where mw LT +∈  and 1mk ×∈ \ . 

In fact such a subset is a subgroup of mAL  to be denoted as mALΔ . Interestingly most 

results from the previous section concerning the model (15) remain valid without any 

modification. In particular, the model (36) is mALΔ − invariant, with the same action 

induced on the parameter space 

 

1 1( , , , , ) ( , ) ( , , , , )p pg c A A w k c A AΛ ≡ ΛD … D …  

   1 1 1
11

: ( (I ) , , , , )
p

m i pi
wc w A w k wAw wA w w− − −

=
= + − Λ∑ …  (38) 

 

Note that this time ( , ) mg w k ALΔ= ∈ . Further, when 1T m≥ +  then G −Y  freeness 

is satisfied a.e. [λY ]. When 
1

rank(I )
p

m ii
A m

=
− =∑ , the G −Θ  freeness assumption 

holds. Lastly 1 1 1
1 1 2( , , , , ) ( , , , )p pt c A A A A A− − −Λ = Λ Λ Λ Λ Λ Λ… …  is maximal 

mALΔ − invariant  

We continue to assume 
1

rank(I )
p

m ii
A m

=
− =∑ . Using the notation from the 

previous section i.e. 1

iA it A−= Λ Λ , for 1, ,i p= … , the intersubjective orbital prior will 

be a product measure of the right invariant Haar measure on mG ALΔ=  and the 

Lebesgue measure for 
1

( , , )
pA At t t= … . It may be shown (e.g. using slight modification 

of derivations in Eaton (1989), pp. 10–11 and 16–17) that 

( )
mAL

dgν Δ = 1

1
( )( )

m m i

iii
w dw dk− + −

=∏ , where iiw  are diagonal elements of mw LT +∈ . As a 

result  

 

( , )dg dtπ =
1

1

1
( )( )( ) ( )

p

m m i

ii A Ai
w dw dk dt dt− + −

=∏ …      (39) 

 

                                                 
11

 Traditional VAR specification (37) (although mAL − invariant) is cumbersome for developing 

invariance arguments since the underlying stabilizer Stabθ  is not only an identity element in mAL  but 

is not even a compact space. To our knowledge there is no mathematical theory to accommodate this 

case. Suffice it to say, in such a case nothing of the kind of the orbital decomposition exists. 
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As before, having t  we can easily derive a cross section 

 
1 1 1

1 1 1 2( , , , , ) ( ( , , , , )) (0, , , , , I )p p p mz c A A s t c A A A A A− − −Λ = Λ = Λ Λ Λ Λ Λ Λ… … …  (40) 

 

Then one may check that 

 
1 1 1

1 1 2( , , , , ) ( , ) (0, , , , , I )p p mc A A k A A A− − −
∗Λ = Λ Λ Λ Λ Λ Λ Λ… D …    (41) 

 

where 1 1

1
(I )

p

m ii
k A c− −
∗ =
= Λ − Λ∑ . Since the orbital decomposition is a 1–1 

correspondence, we can identify w ≡ Λ  and k k∗≡ . Hence we can write 

 

( , )dg dtπ =
1

1

1
( )( )( ) ( )

p

m m i

ii A Ai
d dk dt dt− + −

∗=
Λ Λ∏ …      (42) 

 

We can change variables from 
1

( , , , , )
pA Ak t t∗Λ …  to that of the traditional VAR 

parameterization 1( , , , , )pc A AΣ … . Noting that the Jacobian ( )J Λ → Σ =  

1

1
2

mm m i

iii

− − + −

=
= ⋅ Λ =∏

1
2[1 ]

1
2 | |

mm i

i

−−

=
⋅ Σ∏ 6 , where [1 ] : ( )i

jkσΣ =6 ; , 1, ,j k i= …  ( [1 ]iΣ 6  is 

a leading principal submatrix of Σ  consisting the first i  rows and columns of Σ ), we 

can easily find the intersubjective orbital prior for (37) 

 

1( , , , , )pd dc dA dAπ Σ ∝… 1

1
| det(I ) |

p

m ii
A −

=
− ⋅∑ [1 ] 1

11
| | ( )( )( ) ( )

m i

pi
d dc dA dA−

=
Σ Σ∏ 6 …  (43) 

 

As in the case of SVAR model we may write VAR model so as to reduce to a 

minimum the sampling problems. Let us write the VAR model (36) as 

 

1 1 2 2( ) ( ) ( ) ( )t t t p t p ty A y A y A yγ γ γ γ ε− − −− = − + − + + − +Λ"   (44) 

 

where mLT +Λ ∈ . All remarks which were expressed concerning (22) apply also to (44) 

i.e. G −Θ  freeness always holds, the action on the parameter space is the same as 

(23) with the modification that ( , ) mg w k ALΔ= ∈ , the cross section is the same etc. 

We only confine to providing the intersubjective orbital prior for (44), which is 

 

1( , , , , )pd d dA dAπ γΛ ∝… 1
11

( )( )( ) ( )
m m i

ii pi
d d A Aγ− + −

=
Λ Λ∏ …    (45) 
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Changing variables from Λ  to ′Σ = ΛΛ  we get the intersubjective orbital prior for 

the standard VAR specification 

 

1 1 2 2( ) ( ) ( ) ( )t t t p t p ty A y A y A yγ γ γ γ υ− − −− = − + − + + − +"    (46) 

 

where 1| , (0, )t ty Nυ − Σ…∼ , which reads 

 

1( , , , , )pd d dA dAπ γΣ ∝… [1 ] 1

1
| |

m i

i

−

=
Σ∏ 6

1( )( )( ) ( )pd d A AγΣ …    (47) 

 

The model (46) was called the steady–state VAR by Villani (2009), thus the 

“marginal” prior for Σ  i.e. [1 ] 1

1
| |

m i

i

−

=
Σ∏ 6 , could be used in the framework of Villani 

(2009) (instead of the Jeffreys’ prior adopted by him). Although (47) looks unhandy 

from the computational point of view, a method to sample from the joint posterior of 

the normal model under the prior (47) may be constructed using some results in 

Berger and Sun (2007). For example, the full conditional posterior of Σ  under the 

prior (47) allows for the exact sampling from (which facilitates the Gibbs sampling). 

Hence the sampling algorithm for the model (46) given by Villani (2009) requires 

only slight modification. 

We note in passing that the “marginal” prior for Σ  i.e. [1 ] 1

1
| |

m i

i

−

=
Σ∏ 6 , is 

exactly the prior recommended by Eaton and Sudderth (2010), proposition 4.1, for an 

m −variate normal model with mean 0 and covariance Σ  (written in a more elegant 

form). However their motivation for this prior was based on coherence requirements 

in the sense of Heath and Sudderth (1978) and Stone’s (1976) strong inconsistency 

arguments. See also Kocięcki (2011) for some further discussion. 

 As a final digression concerning VAR model, we note that if we accept the 

orbital decomposition of the parameter space as the “appropriate” parameterization 

then we should design a version of Minnesota prior for maximal invariants 
1

iA it A−= Λ Λ , for 1, ,i p= …  (instead of iA  in the original Minnesota prior, see e.g. 

Litterman (1986)). This prior for 
iAt  could be accompanied with the “marginal” prior 

for Σ  i.e. [1 ] 1

1
| |

m i

i

−

=
Σ∏ 6 . At the conceptual level it looks promising, since the original 

Minnesota prior needs for scaling the prior of each iA  by variances of the error 

components, which appear as the ratios of diagonal elements from Σ , see e.g. 

Litterman (1986). But Λ  is the Choleski square root of Σ  i.e. ′Σ = ΛΛ , hence 

eliciting the prior for −Λ Λ1
iA  we implicitly scale the prior by ratios of variance 
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components in a way that is dictated by our orbital decomposition. Whether it could 

lead to better forecasting is an interesting empirical question. 

 

XI. ERROR CORRECTION MODEL 

Consider the following Error Correction Model (ECM) 

 

 1 1 1( ) ( ) ( )t t t p t p ty y A y A yγ αβ γ γ υ− − −Δ − = + Δ − + + Δ − +"    (48) 

 

where : ( )m rα ×  with rank( ) rα = , : ( )r mβ ×  with rank( ) rβ = , and 

1| , (0, )t ty Nυ − Σ…∼ . In particular, Bayesian analysis of this specification of ECM was 

recently given by Villani (2009) who called it the steady–state Vector ECM and 

found some compelling arguments for it (e.g. the model (48) allows for explicit 

modeling of the growth rates since ( )tE y γΔ = ).  

In accordance with recent Bayesian cointegration literature represented by 

Strachan and Inder (2004), Villani (2005) and Koop et al. (2006), we should impose 

semiorthogonal restrictions on cointegrating vectors i.e. Irββ ′ = . This is a 

consequence of considering the row space of β  as the basic object of inference. 

Denote the latter as { }spρ β=  which is an element of the so–called Grassmann 

manifold. The restriction Irββ ′ =  and the model structure implies that the only 

sensible group transformation on the sample space is mO . It is so because 1) there is 

no traditional constant in the specification (48) hence the largest sensible group is 

mGL  and 2) as will be clear in a moment, the induced action of a group mGL  on the 

cointegrating vectors is gβ ′ , for any mg GL∈ . But the latter will remain to be 

semiorthogonal only if mg O∈ . 

Consider the following reparameterization of (48) 

 

1 1 1( ) ( ) ( )t t t p t p ty y A y A y HDλγ αβ γ γ ε− − −Δ − = + Δ − + + Δ − + ⋅"   (49) 

 

where 1| , (0, I )t t my Nε − …∼ , H  is an orthogonal matrix with positive elements on the 

diagonal, 1( , , )mD diagλ λ λ= …  with 1 0mλ λ> > >" . Noting that 
2cov( )t HD Hλυ ′≡ Σ = , there is a 1–1 correspondence between Σ  and ,H Dλ .  

It may be shown that the model (49) is mO –invariant with the induced action 

on the parameter space defined as 
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1 1( , , , , , , , ) : ( , , , , , , , )p pg A A H D g g g gAg gA g gH Dλ λγ α β γ α β ′ ′ ′=D … …   (50) 

 

for all mg O∈ . The G −Θ  freeness assumption is always satisfied (proof: 

ImgH H gHH HH g′ ′= ⇒ = ⇒ = , an identity element in mO ) and G −Y  freeness 

holds provided that all rows of y  are linearly independent (which is the case for 

almost all y  when T m≥ ). Furthermore 

 

Lemma 8: 1 1( , , , , , , , ) ( , , , , , , )p pt A A H D H H H H AH H A H Dλ λγ α β γ α β′ ′ ′ ′=… …  is maximal 

mO − invariant. 

Proof: see appendix 7. 

 

The corresponding cross section is 

 

1 1( , , , , , , , ) ( ( , , , , , , , ))p pz A A H D s t A A H Dλ λγ α β γ α β= =… …  

1( , , , , , , I , )p mH H H H AH H A H Dλγ α β′ ′ ′ ′= …    (51) 

 

Noting that 

 

1 1( , , , , , , , ) ( , , , , , , I , )p p mA A H D H H H H H AH H A H Dλ λγ α β γ α β′ ′ ′ ′=… D …  (52) 

 

and by uniqueness of the orbital decomposition i.e. ( )g zθ θ= D , we can easily 

identify the group element g H≡ .  

Let us denote t Hγ γ′= , t Hα α′= , t Hβ β= , 
iA it H AH′= . Note that Irt tβ β′ =  

and due to these restrictions it makes no sense to define the Lebesgue measure ( )dtβ  

on r m×\  (which is equal to zero in such a case). We can do that only for functionally 

independent elements in tβ . But following James (1954) it is easier to work with 

differential forms than to choose independent elements in tβ . We can define the (left 

and right) invariant probability measure on the space { | I }r m

rt t tβ β β
× ′∈ =\  which 

will be denoted as [ ]dtβ , see e.g. Muirhead (1982), pp. 69–72. The latter possesses 

natural interpretation of the “flat” or uniform invariant measure that will satisfy 

I
[ ] 1

rt t
dt

β β
β′ =

=∫ . Note that [ ] [ ]dt dβ β= , where [ ]dβ  is the invariant probability 

measure on the space { | I }r m

rβ ββ× ′∈ =\ , that is 
I
[ ] 1

r

d
ββ

β
′=

=∫ . Importantly using 

[ ] [ ]dt dβ β=  as the “marginal” prior probability measure is essentially equivalent to 
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imposing a uniform prior on the Grassmann manifold, see e.g. Strachan and Inder 

(2004). Hence we are fully consistent with the recent cointegration literature. Bearing 

in mind the above discussion the intersubjective orbital measure on G ×T  is given 

by the following product measure 

 

1
( , ) ( )( )( )[ ]( ) ( )( )

m pO A Adg dt dH dt dt dt dt dt dDγ α β λπ ν= …     (53) 

 

Since 2HD Hλ ′Σ =  we can change variables from 
1

, , , , , , ,
pA AH t t t t t Dγ α β λ…  to 

1, , , , , ,pA Aγ α β Σ…  with the Jacobian 
1
2 12 | | ( )m

i ji j
χ χ−− −

>
Σ −∏ , where iχ  are 

eigenvalues of Σ  ordered as 1 0mχ χ> > >… . Hence the intersubjective orbital prior 

on Θ  is 

 

1( , , , , , , )pd d d dA dA dπ γ α β Σ ∝…
1
2 1

1| | ( ) ( )( )[ ]( ) ( )( )i j pi j
d d d dA dA dχ χ γ α β− −

>
Σ − Σ∏ … (54) 

 

The “marginal” prior for Σ  i.e. 
1
2 1| | ( )i ji j

χ χ− −

>
Σ −∏ , is very similar to Bernardo’s 

reference prior for multivariate normal model obtained by Yang and Berger (1994), 

yet in such a form it probably did not appear in the literature. The Bernardo’s 

reference prior results if instead of the Lebesgue measure ( )dDλ  we use the 

“marginal” prior for Dλ  in the form 1| |Dλ
− ( )dDλ . In such a case  

 

1( , , , , , , )pd d d dA dA dπ γ α β Σ ∝… 1 1
1| | ( ) ( )( )[ ]( ) ( )( )i j pi j

d d d dA dA dχ χ γ α β− −

>
Σ − Σ∏ … (55) 

 

Then the “marginal” prior for Σ  i.e. 1 1| | ( )i ji j
χ χ− −

>
Σ −∏ , is exactly the Bernardo’s 

reference prior for multivariate normal model as suggested by Yang and Berger 

(1994). Thus although the Bernardo’s reference prior is not the intersubjective orbital 

prior for ECM it is the orbital prior in general. In fact since the measure for Dλ  

comprises the element in the product measure for a cross section, its particular form 

is irrelevant to avoid the marginalization paradoxes i.e. whatever measure for Dλ  we 

use we are free of the marginalization paradox. Overall, our theory finds some further 

rationale for the Bernardo’s reference prior is the context of ECM. On the other 

hand, the Jeffreys’ prior for Σ  i.e. 
1
2( 1)| | m− +Σ , has no fundamental justification. 

Interestingly, Ni and Sun (2003,2005) using various evaluation criteria found that the 

Bernardo’s reference prior dominates the Jeffreys’ prior in VAR models. Whether 

such a conclusion is correct in the case of ECM requires serious investigation. Note 
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however that all arguments presented in section VI “speak” in favor of the 

Bernardo’s reference prior. 

 The algorithms to sample from the full conditional posterior under the prior 

(54) or (55), were given e.g. by Ni and Sun (2003,2005), Berger and Sun (2007). 

Now consider the following traditional specification of ECM 

 

 1 1 1t t t p t p ty c y A y A yαβ υ− − −Δ = + + Δ + + Δ +"     (56) 

 

where, as before, Imββ ′ =  and 1| , (0, )t ty Nυ − Σ…∼ . Replacing tυ  with tHDλ ε⋅  it 

may be shown that the largest group under which the model (56) is invariant and the 

stabilizer is a compact space is mO . Hence the model (56) is mO –invariant with the 

induced action on the parameter space 

 

1( , , , , , , , )pg c A A H Dλα βD … 1: ( , , , , , , , )pgc g g gAg gA g gH Dλα β ′ ′ ′= …   (57) 

 

for all mg O∈ . Note that the action on the parameter space is the same as in the case 

of (49) (which is (50) if you put c γ= ). As a consequence all results and remarks 

concerning the model (49) apply here (reading c γ= ) and need not be repeated. 

 On the other hand consider the ECM specification 

 

1 1 1( ) ( ) ( ) ( )t t t p t p ty y A y A yγ α β μ γ γ υ− − −Δ − = − + Δ − + + Δ − +"   (58) 

 

where Imββ ′ =  and 1| , (0, )t ty Nυ − Σ…∼ . This is the general specification of the 

ECM preferred by Clements and Hendry (1999) since it allows for explicit modeling 

of the growth rates (i.e. ( )tE y γΔ = ) and means of the cointegrating relations (i.e. 

1( )tE yβ μ− = ). Again one may show that the model is mO –invariant with the induced 

action on the parameter space defined as 

 

1 1( , , , , , , , , ) : ( , , , , , , , , )p pg A A H D g g g gAg gA g gH Dλ λγ μ α β γ μ α β ′ ′ ′=D … …  (59) 

 

for all mg O∈ 12. Since the model fulfills the G −Θ  freeness assumption (always), we 

can write the orbital decomposition  

                                                 
12 mO  is the largest group under which the model (58) is invariant yet the stabilizer is a compact 

space. 
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1 1( , , , , , , , , ) ( , , , , , , , I , )p p mA A H D H H H H H AH H A H Dλ λγ μ α β γ μ α β′ ′ ′ ′=… D …  (60) 

 

To save the space we give the ultimate result i.e. intersubjective orbital prior for 

(58)13 

 

1( , , , , , , , )pd d d d dA dA dπ γ μ α β Σ ∝…  

∝
1
2 1

1| | ( ) ( )( )( )[ ]( ) ( )( )i j pi j
d d d d dA dA dχ χ γ μ α β− −

>
Σ − Σ∏ …  (61) 

 

where the notation is explained earlier. 

We note in passing that the Bernardo’s reference prior  

 

1( , , , , , , , )pd d d d dA dA dπ γ μ α β Σ ∝…  

∝ 1 1
1| | ( ) ( )( )( )[ ]( ) ( )( )i j pi j

d d d d dA dA dχ χ γ μ α β− −

>
Σ − Σ∏ …  (62) 

 

although not the intersubjective orbital prior, is the orbital prior for the model (58).  

 

XII. CONCLUSION AND SUMMARY 

 The main motivation for this work was to propose the alternative non–

informative prior in the context of general time–series models, since both the Jeffreys’ 

and Bernardo’s reference prior are not well suited for this purpose. To this end, we 

exploited the fact that many standard econometric time–series models are invariant 

under some group of transformations (in short, they are invariant models). 

We presented a unified approach to eliciting non–informative or partially non–

informative prior for invariant models. We recommended to apply the orbital 

decomposition on the parameter space. The latter comprises two components: group 

element and maximal invariant. When dealing with invariant models and there is a 

need for non–informative or partially non–informative prior we suggested independent 

joint prior for a group element and a maximal invariant, which we called the orbital 

prior. Such a theoretical construct was seriously motivated and resemblance with the 

framework of Chamberlain and Moreira (2009) was indicated.  

                                                 
13

 Although β  and γ  in (58) are connected by the equation 0βγ =  (see e.g. Clements and Hendry 

(1999), p. 153), the elicitation of the independent prior for ,β γ  is in line with that suggested by 

Villani (2009), provided that we project the marginal prior e.g. for γ , down to the subspace 0βγ = . 
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To apply the orbital prior in practice, the original parameterization of a model 

should be appropriately chosen. It follows that the natural parameterization is 

motivated by invariance arguments. The reason is that in some parameterizations the 

crucial assumption (i.e. G −Θ  freeness) may be violated, so as the orbital 

decomposition does not exist, or the “wrong” parameterization entails difficult 

sampling from the resultant posterior. This fact may be considered as a drawback of 

our approach.  

 Special case of orbital prior is the intersubjective orbital prior, which in fact is 

the other name for the non–informative prior in invariant models. The intersubjective 

orbital prior is the prior induced by the product measure of the right invariant Haar 

measure for a group element and the Lebesgue measure for maximal invariant. Such 

a choice was justified intuitively and theoretically. 

 We derived the orbital and intersubjective orbital prior in many specific 

models including AR, VAR, SVAR and ECM. However the latter list could be 

broadened by e.g. Linear State–Space , Linear Panel Data or Instrumental Variables 

models. The invariance of the last two models was noticed by Chamberlain and 

Moreira (2009) and Chamberlain (2007), respectively. In some sense they exploited 

this invariance to propose “appropriate” prior setup, which shares some common 

ground with the framework of the present paper. 

 In order to balance the orbital prior with other alternatives we should mention 

that whereas the orbital prior may be used only in models that are invariant under 

some group of transformations, the Jeffreys’ or Bernardo’s reference prior may be in 

principle used (also) in other situations. 

As a useful form of summary, for reader’s convenience, appendix 8 contains all 

orbital and intersubjective orbital priors derived for specific models considered in the 

paper. 
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APPENDICES 

 

Appendix 1 (proof of lemma 2): 

Let us denote ( , ) ( ( , ))f g t f g tϕ∗ = . Since G  acts trivially on the maximal 

invariant i.e. T , we have ( , )g tθ = ⇒ : ( , )g gg tθ =D . Then  

( ) ( )f g dθ π θ
Θ

=∫ D  

( ( , )) ( ) ( )G
G

f g g t dg dtϕ ν λ
×

= ∫ D T
T

 

( , ) ( ) ( )G
G

f gg t dg dtν λ∗

×
= ∫ T

T
 

1( ) ( , ) ( ) ( )l G
G

g f g t dg dtν λ− ∗

×
= Δ ⋅ ∫ T

T
 [see e.g. Nachbin (1965), p. 78] 

1( ) ( ) ( )l g f dθ π θ−

Θ
= Δ ⋅ ∫  

where ()lΔ ⋅  is the (left–hand) modulus of G  (see e.g. Wijsman (1990), p. 122, 

Nachbin (1965), p. 78). Since ()lΔ ⋅  is a continuous function that satisfies 

1 2 1 2( ) ( ) ( )l l lg g g gΔ = Δ Δ  (e.g. Wijsman (1990), p. 122), it is a multiplier (see section II 

for the definition of multiplier). Hence Gν λ⊗ T  is relatively invariant (equality of 

lines 3 and 4) and so is π  (equality of lines 1 and 5). 
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Appendix 2 (proof of proposition 1): 

Let ( )z θ  be a given element of a cross section Z  in the orbit Orbθ . Assume 

we have chosen another cross section 1Z  which has an element 1( )z θ  in Orbθ . Since 

each orbit is a transitive set and the action of G  on Θ  is free we must have 

1( ) ( ) ( ( ))z g z g s tθ θ θ= =D D , where g G∈  is unique and fixed. Let us omit in the 

notation the dependence of 1, ,z z t  on θ  e.g. 1z g z= D . Then we have two orbital 

decompositions g zθ = D  and 1g zθ = D  (it is understood that for given θ , g G∈  is 

not the same in the two decompositions). Note that ( )z s t=  and 1 ( ) ( )z g s t s t= ≡D  

(they both are bijective functions of the same maximal invariant t ). Using RC we 

can write g zθ = D  as ( , )g tθ ϕ=  and 1g zθ = D  as 1( , )g tθ ϕ= . Then for all 

integrable f  and B Θ∈ B  and using (4) we have  

( ) ( )
B
f d

θ
θ π θ

∈
=∫  

( , )
( ( , )) ( ) ( )G

g t B
f g t dg dt

ϕ
ϕ ν λ

∈
= ∫ T  [ since ϕ  is bijective 1( , )g t Bϕ−∈ ⇔ ( , )g t Bϕ ∈  ] 

( ) ( ) ( )G
g z B

f g z dg dtν λ
∈

= ∫ D
D T  

1
1

1
1( ) ( ) ( )G

gg z B
f gg z dg dtν λ

−

−

∈
= ∫ D

D T   [ since 1
1 1z g z z g z−= ⇔ =D D  ] 

1
1( ) ( ) ( )G

g z B
f g z dg dtν λ

∈
= ∫ D

D T   [ by definition of Gν , see section II ] 

1
1

( , )
( ( , )) ( ) ( )G

g t B
f g t dg dt

ϕ
ϕ ν λ

∈
= ∫ T  

In particular when f  is an indicator function of a set B Θ∈ B  i.e. 

1 1( ( , )) ( ( , ))Bf g t g tϕ ϕ= 1 , ( ( , )) ( ( , ))Bf g t g tϕ ϕ= 1  and ( ) ( )Bf θ θ= 1  then 

1 1
1( ) ( ) ( ) ( ) : ( )G GB B Bν λ ϕ ν λ ϕ π− −⊗ = ⊗ =T T , for any B Θ∈ B . 

 

Appendix 3 (proof of lemma 4): 

Let us rewrite the model G –invariance condition ( ) ( )gP Y gB P Y Bθ θ∈ = ∈D  as 

1( ) ( )gP Y B P Y g Bθ θ
−∈ = ∈D , where 1[ , , ]TY Y Y= … . By proving the latter we explicitly 

derive the induced action of mG AL=  on the parameter space. Denoting y  a 

realization of Y  we have 
1 1
2 2

1

1( ) (2 ) | |mT T

Y g B
P Y g Bθ π

−

− −−

∈
′∈ = ΛΛ ×∫  

11
2 1 1 1 11

exp{ ( ) ( ) ( )}( )
T

t t p t p t t p t pt
y c Ay A y y c Ay A y dy−

− − − −=
′ ′× − − − − − ΛΛ − − − −∏ " "  

1 1
2 2( ) (2 ) | |mT T

g Y B
P g Y Bθ π − −

∈
′= ∈ = ΛΛ ×∫ D

D  

1 1 1 11
2 1 11

exp{ ( [ ] [ ]) ( )
T

t t p t pt
g g y c A g g y A g g y− − − −

− −=
′ ′× − − − − − ΛΛ ×∏ D D " D  

1 1 1

1 1( [ ] [ ])}( )t t p t pg g y c A g g y A g g y dy− − −
− −× − − − −D D " D  
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Let us introduce the random variables 1[ , , ]TZ Z Z= …  defined as 

1[ , , ]TZ g Y wY k wY k= = + +D … . Taking into account the Jacobian 

( )J y z→ = | | Tw −  (z  is a realization of Z ) we get 

1( ) ( ) ( )P Y g B P g Y B P Z Bθ θ θ∗
−∈ = ∈ = ∈D

1 1
2 2(2 ) | ( )( ) |mT T

Z B
w wπ − −

∈
′= Λ Λ ×∫  

1 1 1 11
2 1 11

exp{ ( [ ] [ ]) ( )
T

t t p t pt
g z c A g z A g z− − − −

− −=
′ ′× − − − − − ΛΛ ×∏ D D " D  

1 1 1

1 1( [ ] [ ]) }( )t t p t pg z c A g z A g z dz− − −
− −

′− − − −D D " D  

Since 1 1 1( , )g w w k− − −= −  it follows 1 1 1:t i t ig z w z w k− − −
− −= −D  for 0,1, ,i p= … . 

Inserting the latter into the above pdf and rearranging we obtain 
1 1
2 2( ) (2 ) | |mT T

Z B
P Z Bθ π∗

− −∗ ∗

∈
′∈ = Λ Λ ×∫  

11
2 1 1 1 11

exp{ ( ) ( ) ( ) }( )
T

t t p t p t t p t pt
z c A z A z z c A z A z dz∗ ∗ ∗ ∗ ∗ − ∗ ∗ ∗

− − − −=
′′ ′× − − − − − Λ Λ − − − −∏ " "

where 1

1
(I )

p

m ii
c wc w A w k∗ −

=
= + −∑ , 1

i iA wAw∗ −= ; for 1, ,i p= … , and w∗Λ = Λ  

Hence as mAL  acts on the sample space the structure of SVAR model is preserved. 

We must only show that the transformed parameters θ∗  conform to some action of 

mAL  on the parameter space i.e. 1( , , , , )pg g c A Aθ θ∗ = ≡ ΛD D … . To this end we must 

check that the operation 1( , , , , )pg c A A ΛD …  is a left group action of mAL  on Θ . First 

since the identity element in mAL  is (I , 0)me =  we get  

1 11
(I , 0) ( , , , , ) : (I I (I )I 0, I I , , I I , I )

p

m p m m m i m m m m p m mi
c A A c A A A

=
Λ = + − Λ =∑D … …  

1( , , , , )pc A A= Λ…  

The second defining property of the left group action is that  

1 2 1 1 2 1( ( , , , , )) ( ) ( , , , , )p pg g c A A g g c A AΛ = ΛD … D …  for every 1 2, mg g AL∈ . Indeed this 

holds but we omit the proof since it is a routine exercise. 

Putting Z Y≡  in ( )
g

P Z Bθ θ∗= ∈D  (Z  and Y  are equivalent symbols for a random 

variable in m\  that obeys the SVAR process) we conclude that SVAR model is 

mAL –invariant with the action on the sample space 1: ( , , )Ty g y wy k wy k= + +6 D …  

and the induced action on the parameter space  
1 1 1

1 1 11
( , , , , ) ( , , , , ) : ( (I ) , , , , )

p

p p m i pi
c A A g c A A wc w A w k wAw wA w w− − −

=
Λ Λ = + − Λ∑… 6 D … …

 

Appendix 4 (proof of lemma 5): 

We have to show that Stab { | } { }y mg AL g y y e= ∈ = =D  if the rows [ , ]Ty ′ ′ ′1  

are linearly independent. Equivalently, since the identity element in mAL  is (I , 0)m , 

Stab { ( , ), , | } {(I , 0)}m

y m T mg w k w GL k wy k y= = ∈ ∈ + ⋅ = =1\ . We note 
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Twy k y+ ⋅ =1 ⇔
10 1 T Tm

y yw k

×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
1 1 , where , m

mw GL k∈ ∈ \ . Immediate conclusion is 

that when all rows of [ , ]Ty ′ ′ ′1  are linearly independent then [ , ]Ty ′ ′ ′1  possesses its right 

inverse which gives 

10 1 T Tm

y yw k

×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
1 1 ⇒ 1

1
I0 1 m

m

w k
+

×

⎡ ⎤
⎢ ⎥ =
⎢ ⎥⎣ ⎦

Imw⇒ =  and 0k =  

 

Appendix 5 (proof of lemma 6): 

We shall analyze the stabilizer in each case. Since  

1, , , , 1 1Stab { | ( , , , , ) ( , , , , )}
pc A A m p pg AL g c A A c A AΛ = ∈ Λ = Λ =… D … …  

1 1 1
1 11

{ , | ( (I ) , , , , ) ( , , , , )}
pm

m m i p pi
w GL k wc w A w k wAw wA w w c A A− − −

=
= ∈ ∈ + − Λ = Λ∑\ … …

we get 1 1 Imw w w− −Λ = Λ ⇒ ΛΛ = ΛΛ ⇒ = . Inserting Imw =  into the first 

parameter component we obtain 
1 1

(I ) (I ) 0
p p

m i m ii i
c A k c A k

= =
+ − = ⇒ − =∑ ∑ . If 

1
(I )

p

m ii
A

=
−∑  is nonsingular i.e. 

1
rank(I )

p

m ii
A m

=
− =∑ , then 0k = . Hence 

1, , , ,Stab
pc A A Λ…  is the singleton (I , 0)mg = , which is the identity element in mAL  and 

lemma a) follows. 

When 
1

I 0
p

m ii
A

=
− =∑ , the equation 

1
(I ) 0

p

m ii
A k

=
− =∑  is satisfied for any 

mk ∈ \ . In this case the stabilizer comprises all (I , )m

mg ∈ \  which is not equal to 

identity element in mAL . Lastly if 
1

1 rank(I )
p

m ii
A r m

=
≤ − = <∑ , we can write 

1
I

p

m ii
A αβ

=
− =∑ , where : ( )m rα ×  is of full column rank and : ( )r mβ ×  is of full 

row rank. In such a case 
1

(I ) 0
p

m ii
A k

=
− =∑ 0kβ⇒ = . Note that β  constitute 

cointegrating vectors. Then 0 0k kβ = ⇒ =  provided that only the vector 0k =  lies 

in the null space of β  (recall that the null space of a matrix A  is 

null{ } { | 0}A x Ax= = ). This is the case if dim{null{ }} 0β = . But since 

1 rank( ) r mβ≤ = < , dim{null{ }} 0m rβ = − > . Thus there must be other vectors 

except 0k =  that lie in null{ }β . Overall, 
1, , , ,Stab

pc A A Λ…  in the case 

1
0 rank(I )

p

m ii
A m

=
≤ − <∑  can not be equal to (I , 0)m , the identity element in mAL . 

This proves b). 

 

Appendix 6 (proof of lemma 7): 

Take two elements in the same orbit e.g. 1, , , ,pc A A Λ…  and 

1 1 1
1 11

( , , , , ) : ( (I ) , , , , )
p

p m i pi
g c A A wc w A w k wAw wA w w− − −

=
Λ = + − Λ∑D … … . By 

construction 1 1 1
1 1 2( , , , , ) ( , , , )p pt c A A A A A− − −Λ = Λ Λ Λ Λ Λ Λ… …  and 

1 1 1 1 1 1 1
1 11

( (I ) , , , , ) (( ) , ,( ) )
p

m i p pi
t wc w A w k wAw wA w w w wAw w w wA w w− − − − − − −

=
+ − Λ = Λ Λ Λ Λ =∑ … …
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1 1
1( , , )pA A− −= Λ Λ Λ Λ… . Hence t  is mAL − invariant. On the other hand assume 

1 1( , , , , ) ( , , , , )p pt c A A t c A AΛ = Λ… … , it follows 1 1 1 1 1( )i i i iA A A A− − − − −Λ Λ = Λ Λ ⇒ = ΛΛ ΛΛ . 

We must decide whether there is a mg AL∈  such that 

1 1( , , , , ) ( , , , , )p pg c A A c A AΛ = ΛD … … . Putting 1( , )g k−
∗= ΛΛ , where 

1 1 1

1
(I ) ( )

p

m ii
k A c c− − −
∗ =
= ΛΛ − ΛΛ −∑ , one can check that 

1
1 1 1( , , , , ) ( , ) ( , , , , ) ( , , , , )p p pg c A A k c A A c A A−

∗Λ ≡ ΛΛ Λ = ΛD … D … … . We conclude that 

1, , , ,pc A A Λ…  and 1, , , ,pc A A Λ…  lie on the same orbit, which proves maximal 

mAL − invariance. 

 

Appendix 7 (proof of lemma 8): 

Take two elements in the same orbit e.g. 1, , , , , , ,pA A H Dλγ α β …  and  

1 1( , , , , , , , ) : ( , , , , , , , )p pg A A H D g g g gAg gA g gH Dλ λγ α β γ α β ′ ′ ′=D … … . By construction 

1 1( , , , , , , , ) ( , , , , , , )p pt A A H D H H H H AH H A H Dλ λγ α β γ α β′ ′ ′ ′=… …  and 

1( , , , , , , , )pt g g g gAg gA g gH Dλγ α β ′ ′ ′ =…  

1(( ) ,( ) , ( ),( ) ( ), ,( ) ( ), )pgH g gH g g gH gH gAg gH gH gA g gH Dλγ α β′ ′ ′ ′ ′ ′ ′= =…  

1( , , , , , , )pH H H H AH H A H Dλγ α β′ ′ ′ ′= …  

Hence t  is mO − invariant. On the other hand assume 

1 1( , , , , , , , ) ( , , , , , , , )p pt A A H D t A A H Dλ λγ α β γ α β=… … , it follows H Hγ γ′ ′=  

HHγ γ′⇒ = . Let us denote h HH ′= . Hence hγ γ= . By applying the same 

procedure to all components in ()t ⋅  we have hα α= , hβ β ′=  and i iA hAh ′= . Thus 

using the definition of group action on the parameter space in our case we obtain 

1 1 1( , , , , , , , ) ( , , , , , , , ) : ( , , , , , , , )p p pA A H D h A A H D h h h hAh hA h hH Dλ λ λγ α β γ α β γ α β ′ ′ ′= =… D … …

since mh O∈  we conclude that 1( , , , , , , , )pA A H Dλγ α β …  and 1( , , , , , , , )pA A H Dλγ α β …  lie 

on the same orbit, which proves maximal mO − invariance. 
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Appendix 8 (Orbital priors for all models considered in the paper): 

Table 1: AR(p) model 

Specification Intersubjective orbital prior Orbital prior Validity 

1 1 2 2t t t p t p ty c y y yβ β β σ ε− − −= + + + + + ⋅"  1 1
1 11

( , , , , ) | 1 | ( )( )( ) ( )
p

p i pi
d dc d d d dc d dπ σ β β σ β σ β β− −

=
∝ −∑… …  1 1

1 11
( , , , , ) | 1 | ( )( ) ( , , )

p

p i pi
d dc d d d dc d dπ σ β β σ β σ π β β− −

=
∝ − ⋅∑… …  

1
1

p

ii
β

=
≠∑  

1 1( ) ( ) ( )t t p t p ty y yγ β γ β γ σ ε− −− = − + + − + ⋅"  1
1 1( , , , , ) ( )( )( ) ( )p pd d d d d d d dπ σ γ β β σ σ γ β β−∝… …  1

1 1( , , , , ) ( )( ) ( , , )p pd d d d d d d dπ σ γ β β σ σ γ π β β−∝ ⋅… …  always 

1| , (0,1)t ty Nε − …∼  

 

 

Table 2: VAR(p) model 

Specification Intersubjective orbital prior Orbital prior Validity 

1 1 2 2t t t p t p ty c Ay Ay A y υ− − −= + + + + +"  
1( , , , , )pd dc dA dAπ Σ ∝… 1

1
| det(I ) |

p

m ii
A −

=
−∑

[1 ] 1
11

| | ( )( )( ) ( )
m i

pi
d dc dA dA−

=
Σ Σ∏ 6 …  

1
( , , , , )

pA Ad dc dt dtπ Σ ∝… 1

1
| det(I ) |

i

p

m Ai
t −

=
−∑

1

[1 ] 1

1
| | ( )( ) ( , , )

p

m i

A Ai
d dc dt dtπ−

=
Σ Σ ⋅∏ 6 …  

1
rank(I )

p

m ii
A m

=
− =∑

 

1 1( ) ( )t t p t p ty A y A yγ γ γ υ− −− = − + + − +"  
1( , , , , )pd d dA dAπ γΣ ∝… [1 ] 1

1
| |

m i

i

−

=
Σ∏ 6

1( )( )( ) ( )pd d A AγΣ …  1
( , , , , )

pA Ad d dt dtπ γΣ ∝…

1

[1 ] 1

1
| | ( )( ) ( , , )

p

m i

A Ai
d d dt dtγ π−

=
Σ Σ ⋅∏ 6 …  

always 

1| , (0, )t ty Nυ − Σ…∼ , 1

iA it A−= Λ Λ , for 1, ,i p= … , where mLT +Λ ∈  comes from the Choleski decomposition ′Σ = ΛΛ , [1 ]iΣ 6  is a leading principal submatrix of Σ  consisting the first i  rows and 

columns of Σ . 

 

 

Table 3: SVAR(p) model 

Specification Intersubjective orbital prior Orbital prior Validity 

1 1 2 2t t t p t p ty c Ay Ay A y ε− − −= + + + + + Λ"  1( , , , , )pd dc dA dAπ Λ ∝…
1

11
| | | det(I ) | ( )( )( ) ( )

pm

m i pi
A d dc dA dA− −

=
Λ − Λ∑ …  

1
( , , , , )

pA Ad dc dt dtπ Λ ∝…

1

1

1
| | | det(I ) | ( )( ) ( , , )

i p

pm

m A A Ai
t d dc dt dtπ− −

=
Λ − Λ ⋅∑ …  

1
rank(I )

p

m ii
A m

=
− =∑  

1 1( ) ( )t t p t p ty A y A yγ γ γ ε− −− = − + + − + Λ"  1( , , , , )pd d dA dAπ γΛ ∝… 1| | ( )( )( ) ( )m

pd d A Aγ−Λ Λ …  
1

( , , , , )
pA Ad d dt dtπ γΛ ∝…

1
| | ( )( ) ( , , )

p

m

A Ad d dt dtγ π−Λ Λ ⋅ …  always 

0 1 1 2 2t t t p t p tA y c Ay Ay A y ε− − −= + + + + +"  0 1( , , , , )pdc dA dA dAπ ∝…
( 1) 1

0 0 0 11
| | | det( ) | ( )( )( ) ( )

pm p

i pi
A A A dc dA dA dA− + −

=
−∑ …  

10( , , , , )
pA Adc dA dt dtπ ∝� �…

1

( 1) 1
0 01

| | | det(I ) | ( )( ) ( , , )
i p

pm

m A A Ai
A t dc dA dt dtπ− + −

=
− ⋅∑ � � �…

 

0 1
rank( )

p

ii
A A m

=
− =∑  

0 1 1( ) ( ) ( )t t p t p tA y A y A yγ γ γ ε− −− = − + + − +"  
0 1( , , , , )pd dA dA dAπ γ ∝… ( 1)

0 0 1| | ( )( )( ) ( )m p

pA d dA dA dAγ− + …  
10( , , , , )

pA Ad dA dt dtπ γ ∝� �…

10 0| | ( )( ) ( , , )
p

m

A AA d dA dt dtγ π− ⋅ � �…  

always 

1| , (0, I )t t my Nε − …∼ , 
1

iA it A−= Λ Λ , 1
0iA it AA−=� ; for 1, ,i p= … , mGLΛ ∈ , 0 mA GL∈ . 
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Table 4: ECM(p) 

Specification Intersubjective orbital prior Orbital prior Validity 

1 1 1t t t p t p ty c y A y A yαβ υ− − −Δ = + + Δ + + Δ +"  1( , , , , , , )pdc d d dA dA dπ α β Σ ∝…
1
2 1

1| | ( ) ( )( )[ ]( ) ( )( )i j pi j
dc d d dA dA dχ χ α β− −

>
Σ − Σ∏ …  

1
( , , , , , , , )

pc A AdH dD dt dt dt dt dtλ α βπ ∝…  

1
( ) ( , , , , , , )

m pO c A AdH dD dt dt dt dt dtλ α βν π⋅ …  

In particular (Bernardo’s reference prior): 

1( , , , , , , )pdc d d dA dA dπ α β Σ ∝…
1 1

1| | ( ) ( )( )[ ]( ) ( )( )i j pi j
dc d d dA dA dχ χ α β− −

>
Σ − Σ∏ …  

always 

1 1 1( ) ( ) ( )t t t p t p ty y A y A yγ αβ γ γ υ− − −Δ − = + Δ − + + Δ − +"  1( , , , , , , )pd d d dA dA dπ γ α β Σ ∝…
1
2 1

1| | ( ) ( )( )[ ]( ) ( )( )i j pi j
d d d dA dA dχ χ γ α β− −

>
Σ − Σ∏ …  

1
( , , , , , , , )

pA AdH dD dt dt dt dt dtλ γ α βπ ∝…  

1
( ) ( , , , , , , )

m pO A AdH dD dt dt dt dt dtλ γ α βν π⋅ …  

In particular (Bernardo’s reference prior): 

1( , , , , , , )pd d d dA dA dπ γ α β Σ ∝…
1 1

1| | ( ) ( )( )[ ]( ) ( )( )i j pi j
d d d dA dA dχ χ γ α β− −

>
Σ − Σ∏ …  

always 

1 1 1( ) ( ) ( ) ( )t t t p t p ty y A y A yγ α β μ γ γ υ− − −Δ − = − + Δ − + + Δ − +"  1( , , , , , , , )pd d d d dA dA dπ γ μ α β Σ ∝…
1
2 1

1| | ( ) ( )( )( )[ ]( ) ( )( )i j pi j
d d d d dA dA dχ χ γ μ α β− −

>
Σ − Σ∏ …  

1
( , , , , , , , , )

pA AdH dD d dt dt dt dt dtλ γ α βπ μ ∝…  

1
( ) ( , , , , , , , )

m pO A AdH dD d dt dt dt dt dtλ γ α βν π μ⋅ …  

In particular (Bernardo’s reference prior): 

1( , , , , , , , )pd d d d dA dA dπ γ μ α β Σ ∝…
1 1

1| | ( ) ( )( )( )[ ]( ) ( )( )i j pi j
d d d d dA dA dχ χ γ μ α β− −

>
Σ − Σ∏ …  

always 

1| , (0, )t ty Nυ − Σ…∼ , Irββ ′ = , 1 0mχ χ> > >…  are eigenvalues of Σ , mH O∈  and diagonal Dλ  comes from the spectral decomposition 2HD Hλ ′Σ = , ct H c′= , t Hγ γ′= , t Hα α′= , t Hβ β= , 

iA it H AH′= ; for 1, ,i p= … , [ ]dx  is invariant probability measure on the space { | I }r m

rx xx× ′∈ =\ . 

 

 


