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Abstract

Under the background of the electronic security trading platform Xetra oper-

ated by Frankfurt Stock Exchange, we consider the Xetra auction market system

(XAMS) from ‘bottom-up’, which the interaction among heterogeneous traders

and Xetra auction market mechanism generates non-equilibrium price dynamics.

First we develop an integrative framework that serves as general guidance for

analyzing the economic system from ‘bottom-up’ and for seamlessly transferring

the economic system into the corresponding agent-based model. Then we apply

this integrative framework to construct the agent-based model of XAMS. By

conducting market experiments with the computer implementation of the agent-

based model of XAMS, we investigate the role of the price setter who assumes

its trading behavior can manipulate the market price. The main finding is that

the introduction of the price setter in the setting of XAMS improves market

efficiency while does not significantly influence price volatility of the market.
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1 Introduction

Electronic security trading platforms operated by stock exchanges are prevail-

ing in global financial markets, e.g. Xetra (Frankfurt Stock Exchange), SETS

(London Stock Exchange), and Universal Trading Platform (NYSE Euronext).

This new generation of trading platforms enables market participants (brokers,

dealers, institutional and retail investors) to trade on electronic order books via

remote computer access. Electronic trading platforms explicitly stipulate mar-

ket mechanisms for determining the trading price and the trading volume even

when the market is not in equilibrium, e.g. see (Gruppe Deutsche Börse, 2003)

and (NYSE Euronext, 2010). On the other hand, market participants, especially

institutional investors, are competing against each other to utilize the knowledge

on market mechanisms and the real-time market data to generate trading strate-

gies in order to exploit the market for a profit. The interaction among market

participants and market mechanisms in electronic trading platforms generates

market dynamics with non-equilibrium trading prices.

It is a challenging task to establish a financial market model for the electronic

trading platform as financial market models in economic literature generally fol-

low the assumption of the market equilibrium, e.g. see (Sharpe, 1964) and (Mer-

ton, 1992). The construction of the financial market model for the electronic trad-

ing platform requires three aspects. First, it requires a formalization of the market

mechanism in the electronic trading platform which allows non-equilibrium trad-

ing prices. Market mechanisms vary in electronic trading platforms, although

they implement the same fundamental principle of maximum trading volume to

determine the trading price. In this work we focus on one specific electronic

trading platform – Xetra system operated by Frankfurt Stock Exchange.

According to (Gruppe Deutsche Börse, 2003), Xetra system is an order driven

system which traders participate in by submitting their order specifications such

as limit orders or market orders. A limit order in Xetra is an order specification

to buy or sell indicated shares of the security at a specific price called limit

price or better. A market order is an unlimited order specification to buy or

sell the indicated shares at the next trading price. There are two trading forms

in Xetra: continuous trading and Xetra auction, which associate with different

market mechanisms. Our target is on Xetra auction which belongs to the type

of multi-unit double auction. It mainly consists of the call phase and the price

determination phase. During the call phase, traders submit order specifications

and Xetra auction market mechanism (XAMM) collects these orders into a central

order book without giving rise to transactions. The price determination phase
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follows when the call phase stops randomly after a fixed time span. Given the

central order book, XAMM determines the trading price and the trading volume

in the price determination phase by applying Xetra auction trading rules specified

in (Gruppe Deutsche Börse, 2003). We follow this line to consider an explicit

formulation of XAMM to determine the trading price and the trading volume in

the Xetra auction market model.

The second aspect is on the role that the knowledge on XAMM and the real-time

market data play in trader’s investment decision process. XAMM determines the

trading price according to the central order book which is an aggregation of orders

submitted by traders. This implies that the trader could potentially influence the

current trading price by submitting its order. With the knowledge on XAMM and

the real-time market data of the central order book, the trader can discover the

relationship between the current trading price and the trading quantity quoted

in its order in a step functional form, see (Li, 2010). By integrating this function

into the trader’s investment decision to determine its quoted trading quantity,

the trader realizes in its investment decision the potential of manipulating the

trading price by submitting its order. The trader is then called the price setter as

it can manipulate the trading price through its trading behavior in the market.

For example, institutional traders which heavily rely on algorithmic trading or

automatic trading strategies most likely belong to this type of trader, see (Do-

mowitz & Yegerman, 2005). As algorithmic trading starts to prevail in global

electronic trading platforms, it is thus reasonable to include the formulation of

the price setter when developing the financial market model for the electronic

trading platform.

The last aspect is on how to model complex interactions among traders and

XAMM in the dynamics of Xetra auction market. The dynamic process of

complex interactions among economic entities can be modeled by applying the

methodology of Agent-based Computational Economics (ACE) that is a compu-

tational study on the dynamical economic system from ‘bottom-up’, see (Tesfat-

sion, 2006). Economists in this strand construct the ACE model for the economic

system by modeling the interaction of agents that represent economic entities in

the system. An agent in the ACE model is a bundle of computational processes

to represent the functionality of the economic entity. An ACE model is a collec-

tion of agents interacting with each other to generate the macroscopic behavior

of the economic system.

ACE researchers have successfully handled complex financial market systems and

have constructed agent-based financial market models with explicit forms of mar-

ket mechanisms to determine market prices and trading volumes. For instance,
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(Das, 2003) introduced an agent-based financial market model which adopted a

simple version of single-unit double auction as the explicit market mechanism to

generate the market dynamics. Although the market mechanism considered in

(Das, 2003) does not share the same type of auctions as XAMM that belongs to

the type of multi-unit double auction, the success of introducing explicit market

mechanism in the agent-based financial market model suggests the possibility of

applying the methodology of ACE modeling to construct the agent-based model

with an explicit formulation of XAMM. The investment decision process of the

price setter is essentially a computational process. This implies the feasibility of

applying the concept of agents to model the price setter in Xetra auction market.

Thus, it seems appropriate to employ the ACE modeling to construct the agent-

based model for Xetra auction market with the explicit formulation of XAMM

and of the price setter to investigate Xetra auction market dynamics.

The current difficulty of constructing agent-based models for financial market

systems is the lack of general principles that economists can apply to construct

agent-based models, see (LeBaron, 2006). In order to overcome this difficulty,

we work in section 2 to develop an integrative framework for ACE modeling that

serves as general principles to investigate economic systems from ‘bottom-up’

and to construct the corresponding ACE models. Then we apply this integrative

framework in section 3 to construct the ACE model of Xetra auction market

system (XAMS). With the implementation of the ACE model by employing the

computer programming language Groovy/Java, section 4 conducts the compu-

tational market experiment to simulate XAMS and preforms statistical analysis

on simulation results to investigate the impact of the price setter on Xetra auc-

tion market. 5 concludes with a brief discussion on implications and possible

extensions of our work.

2 Agent-Based Modeling of Economic System

In general, we follow the ACE modeling procedure that is depicted in Figure 1.

First, by applying the Agent-Based Modeling (ABM) method which considers

modeling the system as a collection of interacting agents, the ACE modeler an-

alyzes the economic system and constructs the corresponding ACE model which

is an abstracted representation of the economic system. Then the ACE modeler

employs computer programming languages to implement the ACE model as the

computer software system. After that, the ACE modeler initiates and executes

the software system to observe in the computer environment the evolution of the

software system which represents the dynamics of the economic system.
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Figure 1: The ACE modeling procedure.

As stated in (LeBaron, 2006), the current difficulty of constructing agent-based

models for economic systems is the lack of general principles that economists

can refer to when constructing agent-based models to represent economic sys-

tems. In this work, we aim at providing an integrative framework that serves as

general guidance for analyzing economic systems from ‘bottom-up’ and for seam-

lessly transferring economic systems into agent-based models. We start from

the perspective of systems theory and the methodology of ABM to investigate

an economic system from ‘bottom-up’ and to derive constructive aspects of the

economic system which serve as the foundation of the integrative framework for

ACE modeling.

2.1 Constructive Aspects of Economic System

Constructive aspects of economic system have the epistemic root in the system-

atic principle of economic phenomena and processes, i.e. economic phenomena

and processes can be regarded as states and evolutionary processes of the corre-

sponding economic systems.1

From systems theory and the methodology of ABM, an economic system from

‘bottom-up’ can be regarded as a dynamical open system which interacts with its

surrounding or environment in the society. An economic system is a collection

1The systematic principle of economic phenomena and processes is the specification of the

systems theory in the field of economics, see (Bertalanffy, 1993).

5



of economic entities (consumers, firms, commodities, markets, etc.) interacting

with each other such that the interactions of economic entities perform macro-

scopic behavior of the system given the influence from the environment. From

this understanding on economic systems, we extract four aspects, denoted as

constructive aspects of economic system, that require to be specified to

construct an economic system from ‘bottom-up’.

I. The scope of the economic system and its environment;

II. The interrelation between the economic system and its environment;

III. Elements of the economic system, which are economic entities considered

in the economic system;

IV. The structure of the economic system, which is the interrelation among

elements of the economic system.

To model an economic system, constructive aspects of economic system suggest

to formulate aspect I to IV of the economic system and their updating rules

(also called state transition rules) which represent the dynamics of the economic

system.

Economists normally specify the scope of the economic system and its environ-

ment when initiating their economic research. Consider the composite of the

economic system and its environment as the economic world and regard the inter-

relation between the economic system and its environment as information flows.2

Then one obtains the ACE world which integrates the ACE model of the economic

system and its environment with the information flows.

As observed in contemporary economic literature, economists tend to classify

economic entities into different types in order to investigate the characteristics

of each type. For example, (Pindyck & Rubinfeld, 2001) clusters microeconomic

entities into consumers, producers (firms), commodities, markets, etc. In prin-

ciple, this classification of economic entities regulates elements in the economic

system and the corresponding agents in the ACE model.

The structure of the economic system represents the information flows among

agents in the ACE model. One possibility to explicitly depict in the ACE model

the structure of the economic system is to apply the mathematical concept of

2The concept of information can be termed as diversified meanings. Here the information

is considered as quantitative representations of the economic world. Knowledge, methods, and

actions are regarded as information in this sense once they can be quantified.
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graph. We develop the diagram of the relationship for the ACE model which

nodes represent agents in the ACE model and which arcs visualize information

flows between agents.3 The diagram of the relationship visualizes the interrelation

between the economic system and its environment as the arcs which connect the

corresponding ACE model with its environment.

Now the crucial point is to model economic entities with the concept of agents.

Most economic entities investigated in economic research are concerned with the

functionality and behavior of individual or a group of people in economic world.

We denote all these economic entities interpreting the functionality of human

subject as active economic entities in the sense that they behave actively

to fulfill their needs and objectives. Economic entities which are not directly

involved with the functionality of human subject, e.g. commodities traded in

the markets, are classified as passive economic entities. Correspondingly, we

denote the agent representing the active economic entity as the active economic

agent and the agent representing the passive economic entity as the passive

economic agent.

An economic system can be treated as an economic entity that is used to con-

struct another economic system, whereas an element in the economic system can

be treated as an economic system. This property of system-element duality guar-

antees the hierarchy of economic systems, see (Potts, 2000). More importantly,

this property infers that one can consider the economic entity as a collection of

components whose interaction among each other provides the functionality of the

economic entity and thus one can model the economic entity by formulating its

constructive aspects.

2.2 Constructive Aspects of Active Economic Entity

In economic literature, active economic entities represent the functionality of

decision makers in the economic world. The concept of the decision maker has

been investigated in various fields in science which include psychology, sociology,

computer science, etc. As we are looking for the general framework to construct

the ACE model that is to be implemented as computer software system, we

employ the related concepts in computer science and combine with decision theory

3The diagram of the relationship for the ACE model serves the same purpose as the class

diagram which describes the static structure of objects in a system and their relationships

in Unified Modeling Language (UML), see (Blaha & Rumbaugh, 2004). Comparing with the

class diagram in UML, the diagram of the relationship for the ACE model emphasizes on the

connections of information flows among agents.
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in economics to model the active economic entity.

The skeleton of the decision maker is stated in the concept of the agent in arti-

ficial intelligence (AI), a subfield of computer science. An agent in this field is

“anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through actuators” (Russell & Norvig, 2003, p. 32).

Following this line, we develop a general pattern by integrating behavioral rules of

active economic entities investigated in economic research with the current con-

cept of the learning agent in AI, see (p. 53, ibid.). This general pattern, called

the module of active economic agent (MAEA), is regarded as construc-

tive aspects of the active economic entity and is composed of the submodule of

information acquirement, the submodule of storage, the submodule of learning,

the submodule of objectives, the submodule of forecasting, and the submodule of

action transmission. One applies MAEA to construct the corresponding active

economic agent from ‘bottom-up’ by specifying its submodules and the interre-

lation among submodules. We sketch the functionality of each submodule with

the structure of MAEA illustrated in Figure 2.

Figure 2: The structure of MAEA.

The environment in Figure 2 represents those parts that are out of the scope

of the active economic agent. The information flows between MAEA and the
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environment represent the interrelation of the agent with others in the economic

system.

The submodule of information acquirement establishes the connections with its

environment and collects information through the interrelations. The submodule

of storage stores the information about the state of the agent. It collects the

information transmitted from other submodules and sends out the information on

request. The submodule of forecasting generates the forecast on uncertain factors

that the agent considers. The submodule of objectives depicts the objectives

that the agent intends to achieve, selects the action plan based on its designated

objectives, and sends out the action plan to the submodule of action transmission

to realize the action. The submodule of action transmission receives action plans

from the submodule of objectives and realizes the action through its interrelations

with the environment. The submodule of learning considers the learning process

of the agent, which might not be constructed as it is not a compulsory piece when

modeling the agent in economic literature.

The state of the active economic agent evolves when the agent acts to fulfill its

objectives. The updating rules of the agent are thus the decision making process

that is presented by interactions among submodules.

The decision making process generally starts when the agent initiates its state.

The agent observes information via the submodule of information acquirement

and keeps the information in its memory via the submodule of storage. Then it

applies the submodule of learning to update itself, e.g. to update the forecasting

methods currently applied in the submodule of forecasting in order to provide

more accurate forecast on uncertain factors that the agent considers. After that,

the agent generates its subjective forecast via the submodule of forecasting, se-

lects the action plan to fulfill its objectives via the submodule of objectives,

and transmits the action to the economic system via the submodule of action

transmission. Finally, the agent receives from the environment the feedback of

its action. This general decision making process is illustrated in Figure 3 and

is worked as a benchmark for depicting the updating rules of active economic

agents.

2.3 Constructive Aspects of Passive Economic Entity

Passive economic entities do not behave actively to fulfill their objectives. They

mainly act as information providers that disseminate information to active eco-

nomic entities on request. We propose a general pattern named the module

of passive economic agent (MPEA) to construct passive economic agents.
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Figure 3: The general decision making process of active economic agent.

MPEA consists of a set of economic properties that represent the informa-

tion considered in the agent and associated operations such as the operation of

information update that is regarded as the updating rules of the agent.

2.4 Integrative Framework for ACE Modeling

The integrative framework for ACE modeling is a modeling process that applies

the constructive aspects of the economic system and of the economic entities to

translate the economic system into the corresponding ACE model. Given the

economic system in study, the integrative framework starts with specifying con-

structive aspects of the economic system. Then it applies MAEA and MPEA

as templates to formulate the corresponding economic agents in the economic

system. It models the updating rules of active economic agents with the decision

making process and the updating rules of passive economic agents with the op-

eration of information update. The updating rules of economic agents constitute

the updating rules of the ACE model. Given information flows between the ACE

model and its environment, the interactions among agents generate the dynamics

of the model.
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To explicitly present the dynamic process generated by the interactions among

agents in the ACE model, we assign in the form of the flowchart the diagram

of the interaction for the ACE model to describe the sequence of work-flows

and activities among agents.4 In summary, the integrative framework contains

the modeling procedure as follows:

1. Specify constructive aspects of the economic system;

2. Construct corresponding agents in the ACE model by applying MAEA and

MPEA respectively, model the decision making process of active economic

agents and the operation of information update in passive economic agents;

3. Present the diagram of the interaction to describe the sequence of workflows

and activities among agents for the dynamics of the ACE model.

3 ACE Model of Xetra Auction Market System

We apply the integrative framework to construct the ACE model of XAMS.

Consider an economic world with one risky asset market and one risk-free asset

market in trading period t ∈ {1, . . . , T}. The economic world applies Euro (e) as

the trading currency. The risky asset considered in the market has no dividend

and is traded in integer shares, i.e. traders can trade 19 shares of the risky asset

but not 19.81 shares. The risk-free asset is divisible in any trading quantity with

the trading price normalized to 1. It has a constant interest factor R which can

be interpreted as 1 + r with r denoting the nominal interest rate. N traders

participate in the economic world to trade in the risky asset market and the risk-

free asset market. The economic world has no transaction cost and no short sale

constraint for traders.

The risky asset market is a Xetra auction market that holds one Xetra auction

for each trading period to determine the market price and the trading volume

by XAMM. Xetra auction consists of the call phase and the price determination

phase. During the call phase, XAMM disseminates the real-time trading data

of the central order book in the market. Upon observing the real-time trading

data from the market, traders perform their investment decisions and submit

orders. XAMM then collects the submitted orders to the central order book and

4The diagram of the interaction serves as the flowchart version of the activity diagram

in Unified Modeling Language (UML) which is to represent the sequence of activities among

components in the system, see (Blaha & Rumbaugh, 2004).
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simultaneously updates the real-time trading data. The call phase stops randomly

after a fixed time span and the price determination phase follows to determine

Xetra auction price and the final transaction volumes. After that, XAMM cancels

the unexecuted part of the orders and conducts the settlement to complete the

payment for each transaction. After trading in Xetra auction market, traders

interact with the risk-free asset market and trade for the risk-free asset.

We focus on Xetra auction market and regard the risk-free asset market as the

environment of Xetra auction market. Given the information flows from the

risk-free asset market, the interactions among traders and XAMM provide the

functionality of Xetra auction market, i.e. determining the trading price and

reallocating the risky asset among traders. We apply the integrative framework

to construct the ACE model of XAMS. The first step is to consider constructive

aspects of XAMS.

Example 1 (Constructive aspects of XAMS).

I. XAMS considers economic entities which operate in the market, i.e. N

traders, XAMM, the numeraire employed in the market, and the risky asset

traded in the market. The environment of XAMS is the risk-free asset market.

II. XAMS connects to the risk-free asset market to request the information

of the interest factor R as well as to transmit trader’s trading request on the

risk-free asset. The risk-free asset market connects to XAMS to inform traders

the interest factor R as well as their realized trading quantities of the risk-free

asset. These information flows represent the interrelation between XAMS and

its environment.

III. XAMS is regarded as a dynamical system which implicitly contains the

concept of time. We apply the concept of the system clock to represent the

time horizon considered in the ACE model. Thus, elements of XAMS as well

as the corresponding ACE model are: N traders, XAMM, the numeraire, the

risky asset, and the system clock.

IV. Consider a decentralized market. Traders connect with XAMM in order

to perform the trading behavior, whereas there is no direct connection among

traders. Traders and XAMM connect to the numeraire, the risky asset, and

the system clock to have access to the associated information. Denote Xetra

auction market center in the ACE model as a composite of XAMM, the nu-

meraire, the risky asset, and the system clock. Then the structure of XAMS

follows the type of the star network, see Figure 4. Xetra auction market center
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as the central node in the star network connects with all other nodes of traders

in the ACE model.

…
…

…
…

..…
...

Risky

Asset
XAMM

System

Clock

Numeraire

Figure 4: The diagram of the relationship for the ACE model of XAMS.

Classify agents in XAMS as active economic agents of N traders and XAMM with

passive economic agents of the numeraire, the risky asset, and the system clock.

The second step of the integrative framework is to apply MAEA and MPEA to

construct these agents respectively.

We consider three types of traders in XAMS. The first type is the price setter who

assumes that, with the knowledge on XAMM and the real-time trading data, it

could manipulate the current trading price as well as its transaction volume by its

trading behavior. The second type is the price taker who believes that its trading

behavior has no impact on the market. The last type is the noise trader who is

assumed to act randomly in the market. Assume trader 1 in the ACE model as

the price setter, trader j ∈ {2, . . . , N − 1} as price takers, and trader N as the

noise trader. For simplicity, further assume that each trader submits at most one

order in each trading period with price setter and noise trader submitting the
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market order and price takers submitting the limit order. We apply MAEA to

construct trader 1 in Example 2, trader j ∈ {2, . . . , N − 1} in Example 3, and

trader N in Example 4 respectively.

Example 2 (Trader 1). As stated in Figure 4, trader 1 connects with Xetra

auction market center and the risk-free asset market. At the beginning of the

trading period t, trader 1 is with the initial endowment (y
(1)
0 [t], Z

(1)
0 [t]) where

y
(1)
0 [t] is the initial holding of the risk-free asset and Z

(1)
0 [t] is the initial holding

of the risky asset. Trader 1 obtains through its submodule of information ac-

quirement the interest factor R from the risk-free asset market and the real-time

data set I0[t] of the central order book from XAMM.

By applying the submodule of forecasting, trader 1 computes the expected mean

value qe(1)[t] of the risky asset price for the next trading period t+1 and its asso-

ciated variance V e(1)[t]. As trader 1 can manipulate the current trading price as

well as its transaction volume by submitting its market order, it performs its sub-

jective forecast P
e(1)
X [t](Qm) on the current Xetra auction price and Z

e(1)
X [t](Qm)

on the final transaction volume for period t which are functions with the control

variable Qm of the quoted trading quantity in its market order. The values of

P
e(1)
X [t](Qm) and Z

e(1)
X [t](Qm) are the trading price and the final transaction vol-

ume that XAMM would calculate by perceiving the trader’s market order with

quoted trading quantity Qm would be added to the current central order book in

the market.

With its forecast of {P
e(1)
X [t](Qm), Z

e(1)
X [t](Qm), q

e(1)[t], V e(1)[t]}, the trader has

the budget constraint:

P
e(1)
X [t](Qm) · Z

e(1)
X [t](Qm) + ye(1)[t] = 0, (1)

where ye(1)[t] is the trader’s expected trading quantity of the risk-free asset in

period t. The trader expects the portfolio holding after trading in period t as

(y
(1)
0 [t] + ye(1)[t], Z

(1)
0 [t] + Z

e(1)
X [t](Qm)). Complying with the budget constraint

(1), the trader considers the mean value mean(1)[t] of its future wealth at the end

of the trading period t as:

mean(1)[t] = {qe(1)[t]− R · P
e(1)
X [t](Qm)} · Z

e(1)
X [t](Qm)

+qe(1)[t] · Z
(1)
0 [t] +Ry

(1)
0 [t]. (2)

The associated variance var(1)[t] is as:

var(1)[t] = {Z
(1)
0 [t] + Z

e(1)
X [t](Qm)}

2 · V e(1)[t]. (3)
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We assume that trader 1 takes the linear mean-variance preference. The trader

presents its objective in the submodule of objectives as the portfolio selection

problem:

max
Qm∈Z

mean(1)[t]−
α1

2
var(1)[t] (4)

⇔ max
Qm∈Z

{qe(1)[t]− R · P
e(1)
X [t](Qm)} · Z

e(1)
X [t](Qm)

+qe(1)[t] · Z
(1)
0 [t] +Ry

(1)
0 [t]−

α1

2
{Z

(1)
0 [t] + Z

e(1)
X [t](Qm)}

2 · V e(1)[t],

where α1 is a constant measure of absolute risk aversion. Trader 1 solves this

portfolio selection problem (4) and obtains the integer maximizer Q
(1)
m [t] with

Q
(1)
m [t] > 0 denoting the trading quantity on the demand side and Q

(1)
m [t] <

0 denoting the trading quantity on the supply side. Then the trader submits

the market order with the quoted trading quantity Q
(1)
m [t] to XAMM via the

submodule of action transmission.

Trader 1 realizes the trading price PX [t] and its transaction volume Z
(1)
X [t] after

XAMM determines the trading price and the trading volume in the price deter-

mination phase. Then the trader completes with XAMM the payment for its

transaction.

After trading the risky asset, trader 1 attains from the risk-free asset market the

share y(1)[t] = −PX [t] · Z
(1)
X [t] of the risk-free asset. The portfolio holding that

the trader acquires after trading in period t is (y
(1)
0 [t] + y(1)[t], Z

(1)
0 [t] + Z

(1)
X [t])

and the trader’s initial endowment of the next trading period t+ 1 is

{

y
(1)
0 [t+ 1] = R(y

(1)
0 [t] + y(1)[t]),

Z
(1)
0 [t+ 1] = Z

(1)
0 [t] + Z

(1)
X [t].

(5)

The decision making process of trader 1 is illustrated in Figure 5.

Example 3 (Trader j = 2, . . . ,N− 1). Analogous to trader 1, trader j connects

with Xetra auction market center and the risk-free asset market. At the beginning

of the trading period t, trader j is with the initial endowment (y
(j)
0 [t], Z

(j)
0 [t]). The

trader obtains through its submodule of information acquirement the interest

factor R and the real-time order book data set I0[t].

By applying the submodule of forecasting, trader j computes the expected mean

value qe(j)[t] of the risky asset price for the next trading period t + 1 and its

associated variance V e(j)[t]. As the trader has to decide a limit price to quote in

its limit order, the trader conducts its subjective forecast P
e(j)
X [t] on the current
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Figure 5: The decision making process of trader 1 in Example 2.

Xetra auction price and regards its forecast as the limit price. The trader expects

it will realize from the market the quoted trading quantity Ql in its limit order.

With its forecast of {qe(j)[t], V e(j)[t], P
e(j)
X [t]}, the trader has the budget con-

straint:

P
e(j)
X [t] ·Ql + ye(j)[t] = 0, (6)

where ye(j)[t] is the trader’s expected trading quantity of the risk-free asset in

period t. The trader expects the portfolio holding after trading in period t as

(y
(j)
0 [t] + ye(j)[t], Z

(j)
0 [t] + Ql). Complying with the budget constraint (6), the

trader considers the mean value mean(j)[t] of its future wealth at the end of the
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trading period t as:

mean(j)[t] = {qe(j)[t]−R · P
e(j)
X [t]} ·Ql + qe(j)[t] · Z

(j)
0 [t] +Ry

(j)
0 [t]. (7)

The associated variance var(j)[t] is as:

var(j)[t] = {Z
(j)
0 [t] +Ql}

2 · V e(j)[t]. (8)

Assume that trader j takes the linear mean-variance preference. The trader

presents its objective in the submodule of objectives as the portfolio selection

problem:

max
Ql∈Z

mean(j)[t]−
αj

2
var(j)[t] (9)

⇔ max
Ql∈Z

{qe(j)[t]− R · P
e(j)
X [t]} ·Ql

+ qe(j)[t] · Z
(j)
0 [t] +Ry

(j)
0 [t]−

αj

2
{Z

(j)
0 [t] +Ql}

2 · V e(j)[t],

where αj is a constant measure of absolute risk aversion. Trader j solves this

portfolio selection problem (9) and obtains the integer maximizer Q
(j)
l [t]. Then

the trader submits its limit order with the price-quantity pair (P
e(j)
X [t], Q

(j)
l [t]) to

XAMM via the submodule of action transmission.

Trader j realizes the trading price PX [t] and its transaction volume Z
(j)
X [t] after

XAMM determines the trading price and the trading volume in the price deter-

mination phase. Then the trader completes with XAMM the payment for its

transaction.

After trading the risky asset, trader j attains from the risk-free asset market the

share of risk-free asset y(j)[t] = −PX [t] · Z
(j)
X [t]. The portfolio holding that the

trader acquires after trading in period t is (y
(j)
0 [t] + y(j)[t], Z

(j)
0 [t] + Z

(j)
X [t]) and

the trader’s initial endowment of the next trading period t + 1 is

{

y
(j)
0 [t + 1] = R(y

(j)
0 [t] + y(j)[t]),

Z
(j)
0 [t+ 1] = Z

(j)
0 [t] + Z

(j)
X [t].

(10)

The decision making process of trader j is illustrated in Figure 6.

Example 4 (Trader N). Consider trader N is with the initial endowment of

(y
(N)
0 [t], Z

(N)
0 [t]) at the beginning of the trading period t. Trader N obtains the

interest factor R from the risk-free asset market.
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Figure 6: The decision making process of trader j in Example 3.

The trader randomly selects Q
(N)
m [t] from the set Qrange of all possible trading

quantities considered by the noise trader. Then the trader constructs its market

order with the quoted trading quantity Q
(N)
m [t] and submits the order to XAMM.

Trader N realizes the trading price PX [t] and its transaction volume Z
(N)
X [t] after

XAMM determines the trading price and the trading volume in the price deter-

mination phase. Then the trader completes with XAMM the payment for its

transaction.

After trading the risky asset, trader N attains from the risk-free asset market the
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shares of the risk-free asset y(N)[t] = −PX [t] · Z
(N)
X [t]. The portfolio holding that

the trader acquires after trading in period t is (y
(N)
0 [t] + y(N)[t], Z

(N)
0 [t] +Z

(N)
X [t])

and the trader’s initial endowment for the next trading period t+ 1 is

{

y
(N)
0 [t+ 1] = R(y

(N)
0 [t] + y(N)[t]),

Z
(N)
0 [t+ 1] = Z

(N)
0 [t] + Z

(N)
X [t].

(11)

The decision making process of trader N is illustrated in Figure 7.
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Figure 7: The decision making process of trader N in Example 4.

XAMM is another type of active economic agent considered in the ACE model.

Its objective is to determine Xetra auction price and the final transaction volume

according to the central order book.
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Example 5 (XAMM). At the beginning of the trading period t, XAMM has his-

torical trading prices PX [i] for trading period i ∈ {−KXAMM +1, . . . , 0} with the

memory span KXAMM > 0. It contains trading information (I0[i], PX [i], ZX [i])

for trading period i ∈ {1, . . . , t − 1} where I0[i] is the order book data set

at the end of the call phase, PX [i] is the Xetra auction price, and ZX [i] =

{Z
(1)
X [i], . . . , Z

(N)
X [i]} is the collection of the final transaction volume Z

(j)
X [i] for

each trader j ∈ {1, . . . , N}. In summary, XAMM at the beginning of the trading

period t is with the historical trading information set

Infor[t− 1] =
{

(I0[t− 1], PX [t− 1], ZX [t− 1]), . . . , (I0[1], PX [1], ZX[1]),

PX [0], . . . , PX [−KXAMM + 1]
}

. (12)

During the call phase, XAMM works through the submodule of information ac-

quirement to collect order specifications {Q
(1)
m [t], . . . , (P

e(j)
X [t], Q

(j)
l [t]), . . . , Q

(N)
m [t]}

submitted by traders and stores this information via the submodule of storage.

It simultaneously disseminates the real-time order book data set I0[t].

The objective of XAMM is to determine in the price determination phase the

Xetra auction price PX [t] and the final transaction volumes ZX [t] = {Z
(1)
X [t], . . . ,

Z
(N)
X [t]} by applying Xetra auction trading rules stated in (Gruppe Deutsche

Börse, 2003), see the formulation in Appendix A. After determining Xetra auc-

tion price and the trading volume, XAMM cancels the unexecuted part of order

specifications and conducts the settlement process to complete the payment for

each transaction. Then XAMM closes the market until the next trading period

t+ 1. The updating rules of XAMM are depicted in Figure 8.

The numeraire, the risky asset, and the system clock are passive economic agents

considered in the ACE model. They act as information providers to provide on

request the information about the currency employed in the market, the security

traded in the market, and the time considered in the model. As the environment

of the ACE model, the risk-free asset market provides the trading on the risk-free

asset.

The last step in the integrative framework is to explicitly present the interactions

among agents in the ACE model. We consider dynamics of XAMS with T trading

periods. XAMM starts the call phase at the beginning of the trading period. It

disseminates to traders the real-time trading information of the central order book

and simultaneously collects order specifications submitted by traders. We assume

that traders submit their order specifications in a random sequence during the

call phase. To simplify our analysis, we further assume that price takers submit

limit orders prior to the price setter and noise trader submit their market orders.
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Figure 8: The updating rules of XAMM.

The call phase stops randomly after a fixed time span and is followed by the

price determination phase. XAMM determines in the price determination phase

the Xetra auction price and the final transaction volume. Then it cancels the

unexecuted part of the orders and conducts the settlement process to complete

the payment for each transaction. After trading in the Xetra auction market,

traders obtain the risk-free asset holdings via the interaction with the risk-free

asset market. XAMS iterates to the next trading period until it reaches the last

trading period T . The diagram of the interaction in Figure 9 explicitly illustrates

the work-flows of activities among agents in the market dynamics.
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Figure 9: The diagram of the interaction for the ACE model of XAMS.

4 Market Experiment

We implement the ACE model of XAMS by applying the computer language

Groovy/Java with the database back-end of Microsoft Access. Then we construct
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the market experiment and conduct the computer simulation of XAMS. The focus

of the market experiment is on the generated dynamics of Xetra auction price.

Specifically, we are concerned with:

1. whether the generated Xetra auction price is generically non market-clearing.

2. the impact of the price setter on the non market-clearing property and on the

volatility of the Xetra auction price in the market.

4.1 Experimental Setup

We setup the simulation profile for the Xetra auction market experiment by

initializing the parameters and by specifying the forecasting methods employed

by agents.

Model’s Parameters to Initialize

• T = 250 . . . time horizon. The time horizon approximates the time span of one

year when considering one auction for each trading day and 255 trading days

for Frankfurt Stock Exchange in the year of 2009.

• N = 22 . . . number of traders. Three types of traders are considered in the

model with 1 price setter, 20 price takers, and 1 noise trader.

• r . . . the interest rate of the risk-free asset. The interest rate is assumed to be

constant in each profile. According to the Eurostat5, the 3-months interest rate

in European Union (27 countries) for the period of October 2008 to September

2009 is in the range of [1.04%, 5.52%]. We choose r randomly from this range.

XAMM’s Parameters to Initialize

• {PX [0], . . . , PX [−KXAMM + 1]} . . . the historical trading prices. We consider

PX [0], . . . , PX [−KXAMM+1] as historical auction prices of the stock “Deutsche

Börse AG” listed in Xetra for the period from August 27, 2009 to November

04, 2009, with the memory span KXAMM = 100.6

5See http://epp.eurostat.ec.europa.eu.
6This historical data of the stock trading price is provided online by Deutsche Börse, see

http://deutsche-boerse.com.
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• rangep = 10% . . . the percentage of the price range. The Xetra platform re-

quires transactions executed under certain price range from the last traded

price Pref . While it does not publicly provide the information of the per-

centage of the price range, another electronic trading platform Euronext re-

quires the percentage of ±10%. We employ the setting in Euronext and choose

rangep = 10%. Thus, XAMM considers Xetra auction price in the range of

[Pref(1− 10%), Pref(1 + 10%)].

Trader’s Parameters to Initialize

• y
(j)
0 [1] . . . trader j’s initial risk-free asset holding at the beginning of the trading

period 1. We take y
(j)
0 [1] as a random positive number.

• Z
(j)
0 [1] . . . trader j’s initial risky asset holding at the beginning of the trading

period 1. We take Z
(j)
0 [1] as a random integer number. To simplify the anal-

ysis, we assume that the aggregated volume in the market is constant with
∑22

j=1Z
(j)
0 [1] = 1000.

• α(j) . . . the measure of absolute risk aversion in the trader’s utility function

with the linear mean-variance preference. α(j) is assumed to be constant in

each profile and is selected randomly from the range of (0, 2].

• Qrange . . . the set of the trading behavior for the noise trader j = 22 depicted

in Example 4.

We assume that the noise trader randomly chooses for each trading period the

trading behavior from the set of Qrange = { selling 1 unit, buying 1 unit }.

We keep the noise trader’s random choice of trading behavior for each period

the same in the benchmark market experiment as in the Xetra auction market

experiment.

Trader’s Forecasting Methods to Initialize

1. Forecasting Methods in Common

For each period t, trader j = 1 depicted in Example 2 and price takers j ∈

{2, . . . , 21} depicted in Example 3 compute the expected mean value qe(j)[t]

of the risky asset price for the next trading period t + 1 and its associated

variance V e(j)[t]. We assume two types of forecasting: the fundamentalist and

the chartist. The forecasting type remains unchanged in each profile after

trader j randomly chooses the forecasting type with equal probability.
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(a) The Fundamentalist

• qe(j)[t] . . . The fundamentalist believes the mean value and the asso-

ciated variance of the market price remain unchanged. It computes

qe(j)[t] as the mean value of the historical trading prices PX [0], . . . ,

PX [−KXAMM + 1] with

qe(j)[t] =
1

KXAMM

KXAMM
∑

n=1

PX [1− n].

• V e(j)[t] . . . The fundamentalist computes V e(j)[t] as the associated

variance of the historical trading prices PX [0], . . . , PX [−KXAMM + 1]

with

V e(j)[t] =
1

KXAMM − 1

KXAMM
∑

n=1

(PX [1− n]− qe(j)[t])2.

The fundamentalist has constant forecast of qe(j)[t] and V e(j)[t] for each

trading period.

(b) The Chartist

• qe(j)[t] . . . The chartist expects the trend of the price movement based

on the historical price movement. There are two types of chartists

in our simulation: the trend follower and the contrarian. The trend

follower expects the trading price will increase (decrease) given the

trading price increased (decreased) in the last trading period while

the contrarian expects the opposite. Let the indicator idc = 1 for

trend follower and idc = −1 for contrarian. With historical trading

prices PX [t−1] and PX [t−2], the forecasting of the chartist at period

t is

qe(j)[t] =















PX [t− 1](1 + idc · ω
(j)) if PX [t− 1] > PX [t− 2],

PX [t− 1] if PX [t− 1] = PX [t− 2],

PX [t− 1](1− idc · ω
(j)) if PX [t− 1] < PX [t− 2];

where ω(j) measures how aggressive of the price movement that the

trader expects.

idc and ω(j) are assumed to be constant after idc is chosen randomly

from {−1, 1} with equal probability and ω(j) is chosen randomly from

the range of (0, rangep].
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• V e(j)[t] . . . It is assumed that the chartist keeps V e(j)[t] constant in

the profile after it is chosen randomly from the range (0, 5].

2. Forecasting Method for Price Setter j = 1 depicted in Example 2

• P
e(1)
X [t] . . . the forecast on Xetra auction price in the current trading pe-

riod t. By applying formulation (16) in Appendix B, the price setter

computes the forecast P
e(1)
X [t](Q

(1)
m [t]) that is a function of the quoted

trading quantity Q
(1)
m [t] in its market order.

• Z
e(1)
X [t] . . . the forecast on the trader’s final transaction volume in the

current trading period t. By applying formulation (17) in Appendix B,

the price setter computes Z
e(1)
X [t](Q

(1)
m [t]) that is a function of the quoted

trading quantity Q
(1)
m [t] in its market order.

3. Forecasting Method for Price Taker j = 2, . . . , 21 depicted in Example 3

• P
e(j)
X [t] . . . the forecast on Xetra auction price in the current trading period

t. It is assumed that P
e(j)
X [t] is randomly chosen from the price range

[Pref(1− 10%), Pref(1 + 10%)] stipulated in XAMM.

4.2 Experimental Procedure

To investigate the market dynamics and the impact of the price setter in Xetra

auction market, we construct along with the Xetra auction market experiment

a benchmark market experiment. The benchmark market experiment has the

same setup as the Xetra auction market experiment except for the price setter

j = 1 depicted in Example 2. The benchmark market experiment replaces the

price setter j = 1 with the benchmark trader which follows the same setup as

depicted in Example 2 except for adopting the forecast Z
e(1)
X [t](Qm) = Qm and

P
e(1)
X [t](Qm) = Pref where Pref is the last traded price in Xetra auction market.

Thus, the benchmark trader considers its objective in the submodule of objectives

as the portfolio selection problem:

max
Qm∈Z

{qe(1)[t]− R · Pref} ·Qm + qe(1)[t] · Z
(1)
0 [t] +Ry

(1)
0 [t]

−
α1

2
{Z

(1)
0 [t] +Qm}

2 · V e(1)[t], (13)

where α1 is a constant measure of absolute risk aversion. As observed in (13), the

trader considers in its portfolio selection problem that the current trading price

and the trader’s final trading volume are independent of Qm. The benchmark
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trader is thus regressed to a price taker who has no manipulation on the current

trading price and on the trading volume by its market order.

We consider 50 rounds of market experiments. It starts with initiating 50 sim-

ulation profiles for each round of the market experiment with the index s ∈

{1, . . . , 50}. Then for each profile s, we conduct the benchmark market exper-

iment and the Xetra auction market experiment with 250 trading periods of

simulations.

4.3 Experimental Results
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Figure 10: The price dynamics in 50 profiles.

Price Dynamics. We consider the price dynamics for 250 trading periods gen-

erated in the market experiment. Figure 10 illustrates the price dynamics gener-

ated by all 50 simulation profiles. The blue color in this figure as well as in the

following figures is for the benchmark market experiment and the red color is for

the Xetra auction market experiment.

Figure 10 demonstrates the divergence of the price dynamics in the market ex-

periment. Consider the end-of-period trading price as the market price in the
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Figure 11: The histogram of the end-of-period trading price in the market exper-

iments.

last trading period t = 250. It ranges [0, 182.67] for all 50 benchmark market

experiments and [0, 205.39] for all 50 Xetra auction market experiments in the

simulation. The histogram of the end-of-period trading price depicted in Figure

11 illustrates the divergence emerges in both market experiments.

Property of Non-equilibrium Trading Price. We employ the percentage of

the non-equilibrium trading price percent
(s)
non to investigate the non-equilibrium

property of the trading price for each profile s ∈ {1, . . . , 50} with

percent(s)non =
♯{trading periods with non market-clearing trading price}

♯{trading periods with trading price}
.

Figure 12 shows the percentage for the benchmark market experiment and for

the Xetra auction market experiment in each profile. The lowest percentage of

non-equilibrium trading price is 41.82% and the highest percentage is 96.58% in

our simulation results, which implies that Xetra auction price generated in the

market experiments is generically non-equilibrium. This property can be easily

observed in Figure 12 where the blue line and the red line are far above the x-axis.

We conduct statistical test to investigate the impact of the price setter on the

percentage of the non-equilibrium trading price. We specifically test whether
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Figure 12: The percentage of non market-clearing price.

percent
(s)
non associated with the benchmark market experiment is greater than that

associated with the Xetra auction market experiment. We apply the nonpara-

metric statistical test – the Wilcoxon signed ranks test – and verbally present

the null hypothesis as: percent
(s)
non in the benchmark market experiment is no

greater than that in the Xetra auction market experiment. The test result has

p− value = 0.0659 < 0.1. Thus, we reject the null hypothesis with 90% level

of confidence and accept that percent
(s)
non in the benchmark market experiment

is greater than that in the Xetra auction market experiment. Thus, the Xe-

tra auction market experiment where the price setter participates has a higher

percentage of market equilibrium than the benchmark market experiment. This

implies that the introduction of the price setter increases the possibility of market

equilibrium and thus increases the market efficiency in Xetra auction market.

Intuitively, when Xetra auction market exists a surplus, i.e., the discrepancy

between the aggregate demand and the aggregate supply, the price setter could

submit a market order to accept the surplus without affecting the trading price

in the market. When the price setter would submit a market order exceeding the

surplus, the trading price would jump to an inferior position such that the trading

price would fall down when the price setter would submit a market order in the

sell side and vice versa. Thus the price setter has the incentive to meet but not

outnumber the surplus in the market. When the price setter submits its market

29



order to fully accept the surplus, Xetra auction market drives to equilibrium.

The introduction of the price setter thus increases the market efficiency in Xetra

auction market.

Price Volatility. We apply in this work the variance of the price dynamics

{P
(s)
X [1], . . . , P

(s)
X [250]} for each profile s to measure price volatility in the market

experiment. The variance of the price dynamics is formulated as:

V ar(s) =
1

249

250
∑

n=1

(P
(s)
X [n]− P

(s)
X )2,

where P
(s)
X is the mean value of {P

(s)
X [1], . . . , P

(s)
X [250]}. Figure 13 shows the

variance for the benchmark market experiment and for the Xetra auction market

experiment.
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Figure 13: The variance of the trading price dynamics.

We use the Wilcoxon signed ranks test to investigate the impact of the price setter

on the price volatility. The null hypothesis that we test is verbally presented as:

the variance on the price dynamics for the benchmark market experiment has

the same measure as that for the Xetra auction market experiment. The test

result has p− value = 0.8545. We can not reject the null hypothesis to accept
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that the variance on the price dynamics for the benchmark market experiment

is significantly different from that for the Xetra auction market experiment. It

seems that the introduction of the price setter does not significantly impact the

price volatility in Xetra auction market.

Intuitively the price setter influences the price volatility of Xetra auction market

in two different directions. The price setter exploits the market for a profit by

its aggressive trading behavior, which would increase the price volatility in Xetra

auction market. On the other hand, the introduction of the price setter increases

the possibility of market equilibrium. The increase in market efficiency would

allow traders to efficiently adjust their trading behavior to stabilize the market

in equilibrium, which implies a decrease in the price volatility of the market.

These two opposite impacts offset against each other so that the participation

of the price setter would not significantly influence the price volatility in Xetra

auction market.

5 Concluding Remarks

We have developed in this work the integrative framework for ACE modeling as

general guidance for analyzing economic systems from ‘bottom-up’ and for seam-

lessly transferring economic systems into the corresponding agent-based models.

By applying this integrative framework, we have constructed the agent-based

model of XAMS with the formulation of XAMM and of the price setter. The

success of developing the agent-based model of XAMS by applying the inte-

grative framework demonstrates that the modeling procedure and the modeling

templates applied in this framework are sufficiently applicable for analyzing the

economic system and for developing the corresponding agent-based model in a

step-by-step manner.

We have implemented the agent-based model with the computer software sys-

tem and have conducted the computer simulation for market experiments. By

investigating simulation results on market dynamics, we have discovered that

the introduction of the price setter improves market efficiency while does not

significantly influence price volatility in Xetra auction market.

The investigation of simulation results on market dynamics has validated the

property of non-equilibrium trading price in Xetra auction market. This finding

reveals the flexibility of the agent-based model in depicting non-equilibrium mar-

ket dynamics. Another flexibility of the agent-based modeling demonstrated in

our work is on the aspect of modeling active economic agents. We have applied
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MAEA to model heterogeneous traders in Xetra auction market with the mean-

variance preference in the submodule of objectives. Essentially the submodule

of objectives in MAEA presents the mechanism of selection that the agent em-

ploys to choose its action plan. By applying MAEA, one can easily extend the

model of traders by replacing the mean-variance preference with new criteria of

selection that allow more flavor of non-optimizing and adaptive behavioral rules.

One possibility is to introduce psychological patterns of decision making in the

trader’s submodule of objectives, which is open for the future work.
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A Xetra Auction Market Mechanism

The Xetra auction market mechanism is composed of the Xetra auction price

mechanism and the allocation mechanism to determine the Xetra auction price

and the trading volume respectively. Based on the description of the Xetra auc-

tion trading rules in (Gruppe Deutsche Börse 2003), Figure 14 illustrates the

Xetra auction price mechanism in which the subprocess Xetra-Auction-PDA(I0)

is depicted in Figure 15. The formulation of the Xetra auction allocation mech-

anism is illustrated in Figure 16.

START

GIVEN: order 

book data set 0

Limit order exists?

( 0=ø? )

Market orders

in both sides of the 

market?

RETURN: Pxetra = Pref

END

Vmax=0?

RETURN: no PXetra

SUBPROCESS:

Xetra-Auction-PDA( 0)

no

yes

yesyes

no

no

COMPUTE: Highest 

trading volume Vmax for 

all limit price p in 0

COMPUTE: the set of all 

volume maximizing prices 

V={p 0 | V(p) =Vmax}

RETURN: no PXetra

Figure 14: The flowchart of the Xetra auction price mechanism.
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Surplus on the 
demand side? 

Z ZP 0?

END

COMPUTE: the lowest 

surplus Zmin in V

Zmin={ | Z(p)| | p V }

START

COMPUTE: the lowest 

candidate price with surplus on 

the supply side

Pmax=min{p Z | Z(p)= � Zmin}

COMPUTE: the highest 

candidate price with surplus on 

the demand side

Pmin=max{p Z | Z(p) = Zmin}

RETURN:

PXetra=max{Pmin, min {Pref, Pmax}}

yes

no

yes

no

yes

no

yes

no

No Surplus? 

Z Z Z ZP P 0?

Surplus on the 
supply side? 

Z ZP 0?

RETURN: XetraP

Z ref Zmax P ,min P ,P

RETURN: Xetra ZP P

RETURN: Xetra ZP P

COMPUTE: The highest 
candidate price 

ZP max Z

COMPUTE: The lowest 
candidate price 

ZP min Z

Only one 

candidate price? 

# Z=1?

RETURN: XetraP ZP

for ZP Z

COMPUTE: the set of all 

candidate prices with the 

highest trading volume and 

the lowest surplus 

Z={p V | | Z(p)| =Zmin}

Figure 15: The flowchart of subprocess: Xetra-Auction-PDA(I0).

The function QV (Ord) in Figure 16 returns the quoted trading quantity of the

order Ord and the function RV (Ord) denotes the realized trading volume for the

order Ord.
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START
GIVEN: Trading volume 

Vmax>0 and Xetra 
auction price PXetra

END

RV(OrdD[i]) = min { DVdist,
QV(OrdD[i]) }

DVdist = Vmax

DVdist = max { DVdist -
RV(OrdD[i]), 0 }

i = 1

i = i+1

i points to the 
end of OrdD[ ]?

Sort the bid order sequence 
OrdD[ ] with index i ccording 

to time/price priority and 
market orders are prior to 

limit orders

Sort the ask order sequence 
OrdS[ ] with index j according 

to time/price priority  and 
market orders are prior to 

limit orders

RV(OrdS[j]) = min { SVdist,
QV(OrdS[j]) }

SVdist = Vmax

DVdist = max { DVdist -
RV(OrdS[j]), 0 }

j = 1

j = j+1

j points to the 
end of OrdS[ ]?

yesyes

no no

Figure 16: The flowchart of the Xetra auction allocation mechanism.

B Subjective Forecast of Price Setter

We present the price setter’s forecasting on the Xetra auction price and the final

transaction volume.7 Introduce a new notation “
[]

” to represent a closed half or

an open half of an interval. For example, for any real numbers a and b with

a < b,
[]

a, b
[]

:= [a, b] , [a, b) , (a, b] , or (a, b). For trading period t, consider the

central order book data set I0[t] in Xetra auction contains a series of limit prices

P1 ≤ P2 ≤ · · · ≤ PNl
and the reference price Pref that is the last trading price.

The excess demand function for the order book I0[t] is a step function with

ΦZ(p; I0[t]) =

Nl
∑

n=0

φZ
n1AZ

n
(p), (14)

7See Chapter 3 in (Li 2010) for comprehensive description.
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where φZ
n is a constant for n = 0, . . . , Nl and {AZ

0 , A
Z
1 , . . . , A

Z
Nl
} is a partition of

R+ with AZ
0 := [0, P1

[]

; AZ
n :=

[]

Pn, Pn+1

[]

for n = 1, . . . , Nl − 1; and AZ
Nl

:=
[]

PNl
,+∞).

The price setter is to submit the market order Q
(1)
m [t] with Q

(1)
m [t] > 0 denoting

a market order on the demand side and Q
(1)
m [t] < 0 denoting that on the supply

side. After the price setter submit its market order, the excess demand function

updates to the form

Φ
′

Z(Q
(1)
m [t], p; I0[t]) = ΦZ(p; I0[t]) +Q(1)

m [t]

=

Nl
∑

n=0

φZ
n1AZ

n
(p) +Q(1)

m [t]. (15)

The price setter expects to be the last trader submitting order to the market.

Then the price setter’s forecast P e
X(Q

(1)
m [t]) on the upcoming Xetra auction price

is the step function:

P e
X(Q

(1)
m [t]) =























P1 when Q
(1)
m [t] ∈ (−∞,−φZ

1 );

P ∗

n when Q
(1)
m [t] = −φZ

n , n ∈ {1, 2, . . . , Nl − 1};

Pn when Q
(1)
m [t] ∈ (−φZ

n−1,−φZ
n ), n ∈ {2, 3, . . . , Nl − 1};

PNl
when Q

(1)
m [t] ∈ (−φZ

Nl−1,+∞);

(16)

where for any n ∈ {1, 2, · · · , Nl − 1}

P ∗

n =















Pn CASE 1;

Pn+1 CASE 2;

max{Pn,min{Pref , Pn+1}} CASE 3;

for CASE 1: either AZ
n = [Pn, Pn+1) or A

Z
n = (Pn, Pn+1) with

|Φ
′

Z(−φZ
n , Pn; I0[t]) |<|Φ

′

Z(−φZ
n , Pn+1; I0[t]) |;

for CASE 2: either AZ
n = (Pn, Pn+1] or A

Z
n = (Pn, Pn+1) with

|Φ
′

Z(−φZ
n , Pn; I0[t]) |>|Φ

′

Z(−φZ
n , Pn+1; I0[t]) |;

for CASE 3: either AZ
n = [Pn, Pn+1] or A

Z
n = (Pn, Pn+1) with

|Φ
′

Z(−φZ
n , Pn; I0[t]) |=|Φ

′

Z(−φZ
n , Pn+1; I0[t]) | .

Consider the notation a+ := max{0, a} and a− := min{0, a} for any a ∈ R. The

price setter’s forecast Ze
X(Q

(1)
m [t]) on the its final transaction volume is as:

Ze
X(Q

(1)
m [t]) = max{(−φZ

0 )
−,min{Q(1)

m [t], (−φZ
I+J)

+}}. (17)
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