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Abstract

We study what topological assumptions should be added to the acyclicity of individual
best response improvements in order to ensure the existence of a (pure strategy) Nash
equilibrium as well as the possibility to reach a Nash equilibrium in the limit of a best
response improvement path. JEL Classification Number: C 72.
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1 Introduction

Cournot tâtonnement is the oldest and one of the most natural dynamic scenarios of individual
myopic adaptation in strategic games. It has been studied in various contexts and from various
viewpoints, see, e.g., Topkis (1979), Bernheim (1984), Moulin (1984), Vives (1990), Milgrom
and Roberts (1990), Kandori and Rob (1995), and Milchtaich (1996).

The introduction of the concept of a potential game by Monderer and Shapley (1996) stimu-
lated studies of similarities and dissimilarities between better and best response dynamics. Since
most important for Monderer and Shapley was the cardinal concept of an exact potential, they
defined every kind of a potential as a real-valued function. When Voorneveld (2000) introduced
a “best-response potential,” he followed their lead. For a finite game, the restriction to numeric
potentials is innocuous; in the general case, it is not so. Yet, nobody has demonstrated that the
possibility of a numeric representation has anything to do with dynamic properties.

Voorneveld’s definition is over-exacting in another respect too, viz. it followed Monderer and
Shapley’s concept of an ordinal potential rather than a generalized ordinal one. Meanwhile,
Monderer and Shapley (1996, Lemma 2.5) showed that it is the latter kind of a potential that
is most relevant to the convergence of adaptive dynamics. Kukushkin (2004, Section 6) defined
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a “Cournot potential” as a partial order on the set of strategy profiles the existence of which in
a finite game is equivalent to the “finite best response property” (Milchtaich, 1996). Naturally,
Voorneveld’s potential always defines a Cournot potential; the converse is generally wrong, even
in a finite game (Monderer and Shapley, 1996, the example on p. 129).

When attention is turned to infinite games, the acyclicity of (either better or best response)
improvements does not imply even the existence of a Nash equilibrium, to say nothing of the
convergence of adaptive dynamics. Nonetheless, the main theorem of Kukushkin (2011) showed
that in a game with compact strategy sets and “continuous enough” preferences, the acyclicity
of all individual improvements ensures the existence of a (pure strategy) Nash equilibrium
and the possibility to reach it (perhaps, approximately) with a unilateral improvement path.
The acyclicity of the best response improvements, however, does not ensure even the mere
existence of a Nash equilibrium even in a compact-continuous two-person game (Kukushkin,
2011, Example 1).

In this paper, we assume that the strategy sets are compact metric spaces, and study what
topological restrictions should be added to the definition of a Cournot potential in order to
ensure the existence of a (pure strategy) Nash equilibrium as well as the possibility to reach a
Nash equilibrium in the limit (or as a cluster point) of a best response improvement path. We
do not require the utility functions to be continuous, only assume that the best responses exist
everywhere; a well-known sufficient condition for this is the upper semicontinuity of each utility
function in own choice.

Roughly speaking, we consider two such additional requirements: “ω-transitivity” and con-
tinuity. The first ensures the existence of an equilibrium (as well as “transfinite convergence”
to equilibria of all best response improvement paths). The second, the possibility to reach the
set of Nash equilibria in the limit of a best response improvement path – an infinitary version
of the weak FBRP (Milchtaich, 1996) – and convergence to the set of Nash equilibria of all best
response improvement paths in the case of two players.

While the acyclicity of best response improvements can be shown by reductio ad absurdum,
as in Theorem 2 of Kandori and Rob (1995) or Theorem 1 of Kukushkin (2004), it is difficult to
imagine how the existence of, say, a continuous Cournot potential could be established without
producing one explicitly. Fortunately, there are natural classes of strategic games where this
is possible; two of them are briefly described in this paper. In the first example, “games with
structured utilities,” there is even an exact (at least, an ordinal) potential as defined by Monderer
and Shapley (1996), hence the behavior of all individual improvement paths is rather regular.
In the second, “aggregative games,” arbitrary improvements may lead nowhere. Sequential
Cournot tâtonnement in such games was recently considered by Jensen (2010), but his results
are not directly comparable to ours, see Section 9.3.

In Section 2, the basic definitions are given. Section 3 contains the main “positive” results;
Section 4, additional “positive” results which assume the uniqueness of the best responses.
In Section 5, we introduce two weaker notions of a potential, which broaden the scope of
applications. Sections 6 and 7 present known classes of games where the assumptions of (some
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of) our theorems are satisfied. Section 8 contains “negative” results, showing the impossibility
of easy generalizations. A discussion of various related questions in Section 9 concludes the
paper.

2 Preliminaries

Our basic model is a strategic game with ordinal utilities. It is defined by a finite set of players
N , and strategy sets Xi and ordinal utility functions ui : XN → R, where XN =

∏

i∈N Xi, for
all i ∈ N . We denote X−i =

∏

j∈N\{i} Xj for each i ∈ N . Given a strategy profile xN ∈ XN

and i ∈ N , we denote xi and x−i its projections to Xi and X−i, respectively; a pair (xi, x−i)
uniquely determines xN . In the case of #N = 2, we denote −i the partner/rival of player i.

Defining the best response correspondence Ri : X−i → 2Xi for each i ∈ N in the usual way,

Ri(x−i) := Argmax
xi∈Xi

ui(xi, x−i)

for every x−i ∈ X−i, we introduce the best response improvement relation on XN (i ∈ N ,
yN , xN ∈ XN):

yN ⊲
BR
i xN ⇋ [y−i = x−i & xi /∈ Ri(x−i) ∋ yi]; (1a)

yN ⊲
BR xN ⇋ ∃i ∈ N [yN ⊲

BR
i xN ]. (1b)

Every Nash equilibrium is a maximizer of ⊲
BR. If Ri(x−i) 6= ∅ for all i ∈ N and x−i ∈ X−i, then

every maximizer of ⊲
BR is a Nash equilibrium.

A Cournot path is a finite or infinite sequence 〈xk
N〉k=0,1,... such that xk+1

N ⊲
BR xk

N whenever
k ≥ 0 and xk+1

N is defined. A Cournot potential is an irreflexive and transitive binary relation
≻ on XN such that

∀xN , yN ∈ XN

[

yN ⊲
BR xN ⇒ yN ≻ xN

]

. (2)

The existence of a Cournot potential ensures the absence of Cournot cycles, i.e., Cournot paths
〈x0

N , x1
N , . . . , xm

N〉 such that m > 0 and x0
N = xm

N . If the game is finite, this fact implies that every
Cournot path, if continued whenever possible, reaches a Nash equilibrium in a finite number of
steps. Example 1 from Kukushkin (2011) shows that a compact-continuous game may admit a
Cournot potential and still possess no Nash equilibrium, to say nothing of the convergence of
Cournot paths.

Henceforth, we assume that each Xi is a compact metric space and endow XN with, say, the
maximum metric. We do not impose any explicit continuity-style restriction on the utilities; all
assumptions are formulated in terms of the best response correspondences. In particular, we
assume throughout that Ri(x−i) 6= ∅ for every i ∈ N and x−i ∈ X−i. The upper semicontinuity
of ui in own choice xi is sufficient for that though by no means necessary.
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We call a Cournot path 〈xk
N〉k inclusive if for each player i ∈ N , there holds xk

i ∈ Ri(x
k
−i) for

some k. A Cournot path 〈xk
N〉k is totally inclusive if, whenever xm

N is defined, the path 〈xk
N〉k≥m

is inclusive. Thus, a totally inclusive path either is infinite or ends at a Nash equilibrium.

A binary relation ≻ on a metric space X is called ω-transitive if it is transitive and the
conditions xω = limk→∞ xk and xk+1 ≻ xk for all k ∈ N always imply xω ≻ x0. (It is worth
noting that xω ≻ xk is valid for all k ∈ N under those conditions, once ≻ is ω-transitive.) A
relation ≻ is upper semicontinuous if all its lower contours, i.e., sets {x ∈ X | y ≻ x} (y ∈ X)
are open. A relation ≻ is continuous if its “graph,” {(x, y) ∈ X2 | y ≻ x}, is open. Clearly,
every continuous relation is upper semicontinuous. An upper semicontinuous relation need not
be ω-transitive; however, an upper semicontinuous Cournot potential can always be extended
to an ω-transitive one.

A (finite or infinite) sequence 〈xk
N〉k=0,1,... in XN converges to a subset Y ⊆ XN if either it is

finite and ends at xm
N ∈ Y or it is infinite and all its cluster points belong to Y .

3 Main theorems

Theorem 3.1. Let each Xi in a strategic game Γ be a compact metric space. Let Γ admit an
ω-transitive Cournot potential. Then Γ possesses a (pure strategy) Nash equilibrium.

Proof. By Theorem 1 from Kukushkin (2008), there exists a maximizer x0
N of the potential ≻

on XN . By (2), x0
N is also a maximizer of ⊲

BR on XN , i.e., a Nash equilibrium.

In most of the following results, we assume that each Ri is upper hemicontinuous. A sufficient
condition for that is the upper semicontinuity of ui in xN and continuity in x−i.

Theorem 3.2. Let Γ be a strategic game where #N = 2, each Xi is a compact metric space, and
each Ri is upper hemicontinuous. Let Γ admit an ω-transitive Cournot potential. Let 〈xk

N〉k∈N

be an infinite Cournot path. Then there is a Nash equilibrium among cluster points of the path.

Proof. We denote Xω ⊆ XN the set of cluster points of 〈xk
N〉k∈N and pick a maximizer xω

N of ⊲
BR

on Xω; it exists by Theorem 1 from Kukushkin (2008) since Xω is compact. If xω
i ∈ Ri(x

ω
−i) for

both i, we are home; let xω
i /∈ Ri(x

ω
−i). Since xω

N ∈ Xω, there is a strictly increasing sequence

〈kh〉h∈N such that xkh

N → xω
N . We denote yh

N := xkh+1
N (h ∈ N); without restricting generality,

yh
N → yω

N ∈ Xω. Since Ri is upper hemicontinuous, there holds xkh

i /∈ Ri(x
kh

−i) for all h large

enough; without restricting generality, for all h. Therefore, xkh

N ⊲
BR
−i xkh−1

N , hence yh
N ⊲

BR
i xkh

N ,

hence yh
i ∈ Ri(x

kh

−i). Since Ri is upper hemicontinuous, yω
i ∈ Ri(x

ω
−i). Thus, yω

N ⊲
BR
i xω

N ,
contradicting the choice of xω

N .

Considering implications of the presence of a continuous Cournot potential, we start with a
couple of auxiliary statements.
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Lemma 3.3. Let Γ be a strategic game where each Xi is a compact metric space. Let Γ admit
a continuous Cournot potential. Let 〈xk

N〉k∈N be an infinite Cournot path and Xω ⊆ XN be the
set of its cluster points. Then

∀yω
N , zω

N ∈ Xω
[

yω
N 6≻ zω

N

]

. (3)

Proof. By (2), we have xk+1
N ≻ xk

N for all k ∈ N, hence yω
N ≻ xk

N for all yω
N ∈ Xω and k ∈ N (the

ω-transitivity of ≻ is sufficient here). If we supposed that yω
N , zω

N ∈ Xω and yω
N ≻ zω

N , we would
have xk

N ≻ zω
N whenever xk

N is close enough to yω
N , i.e., a contradiction. (The last step would be

invalid without continuity.)

Lemma 3.4. Let a strategic game Γ satisfy all assumptions of Lemma 3.3, and let each Ri

be upper hemicontinuous. Let 〈xk
N〉k∈N be an infinite Cournot path, Xω ⊆ XN be the set of its

cluster points, and xω
N ∈ Xω. Then xω

i ∈ Ri(x
ω
−i) for at least two different players i ∈ N .

Proof. As in the proof of Theorem 3.2, we pick a strictly increasing sequence 〈kh〉h∈N such that
xkh

N → xω
N and denote yh

N := xkh+1
N (h ∈ N). Without restricting generality, xkh

i ∈ Ri(x
kh

−i) for
an i ∈ N and all h, yh

j ∈ Rj(y
h
−j) for an j ∈ N and all h, and yh

N → yω
N ∈ Xω. Note that

i 6= j since xkh

j /∈ Rj(x
kh

−j), and that yω
−j = xω

−j. By the upper hemicontinuity of Ri and Rj, we
have xω

i ∈ Ri(x
ω
−i) and yω

j ∈ Ri(y
ω
−j). Finally, an assumption that xω

j /∈ Rj(x
ω
−j) would imply

yω
N ⊲

BR xω
N , hence yω

N ≻ xω
N by (2), contradicting (3).

Theorem 3.5. Let Γ be a strategic game where #N = 2, each Xi is a compact metric space,
and each Ri is upper hemicontinuous. Let Γ admit a continuous Cournot potential. Then every
Cournot path converges to the set of Nash equilibria.

Immediately follows from Lemma 3.4.

Theorem 3.6. Let each Xi in a strategic game Γ be a compact metric space and each Ri be
upper hemicontinuous. Let Γ admit a continuous Cournot potential. Then for every x0

N ∈ XN

there exists a Cournot path starting at x0
N and converging to the set of Nash equilibria.

Proof. Given x0
N ∈ XN , we recursively define a Cournot path 〈xk

N〉k. If xk
N is a Nash equilibrium,

the process stops, and we are home. Otherwise, we define N∗(k) := {i ∈ N | xk
i /∈ Ri(x

k
−i)} and

X∗(k) :=
⋃

i∈N∗(k)

(

Xi × {xk
−i}

)

. Then we pick a maximizer xk+1
N = (xk+1

i∗ , xk
−i∗) of ≻ on X∗(k).

By (2), we have xk+1
i∗ ∈ R(xk

−i∗), hence xk+1
N ⊲

BR xk
N , hence xk+1

N ≻ xk
N .

Assuming the path infinite, we denote Xω ⊆ XN the set of its cluster points. Supposing, to
the contrary, that xω

i /∈ Ri(x
ω
−i) for xω

N ∈ Xω and i ∈ N , we pick yN ∈ XN such that yN ⊲
BR
i xω

N .
Now we have yN ≻ xω

N by (2), hence yN ≻ xk
N for each k ∈ N by the continuity of ≻ (upper

semicontinuity would be sufficient here). Then we pick a strictly increasing sequence 〈kh〉h∈N

such that xkh

N → xω
N ; without restricting generality, xkh

i /∈ Ri(x
kh

−i) for all h, hence i ∈ N∗(kh).

Since xω
−i = y−i, we have (yi, x

kh

−i) ≻ xkh+1
N for all h ∈ N large enough by the continuity of ≻,

which contradicts the choice of xkh+1
N since (yi, x

kh

−i) ∈ X∗(kh).
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Theorem 3.7. Let Γ be a strategic game where #N = 2 and each Xi is a compact metric space.
Let Γ admit a continuous Cournot potential. Then for every x0

N ∈ XN there exists a Cournot
path starting at x0

N and converging to the set of Nash equilibria.

Proof. Given x0
N ∈ XN , we recursively define a Cournot path 〈xk

N〉k in exactly the same way as
in the proof of Theorem 3.6. Assuming the path infinite, we again denote Xω ⊆ XN the set of
its cluster points.

Supposing, to the contrary, that xω
i /∈ Ri(x

ω
−i) for xω

N ∈ Xω and i ∈ N , we pick yN ∈ XN

such that yN ⊲
BR
i xω

N , hence yN ≻ xk
N for each k ∈ N by the continuity of ≻. Then we pick

a strictly increasing sequence 〈kh〉h∈N such that xkh

N → xω
N . Without restricting generality, we

may assume that either xkh

i /∈ Ri(x
kh

−i) for all h, or xkh

−i /∈ R−i(x
kh

i ) for all h. In the first case,
we obtain a contradiction in exactly the same way as in the proof of Theorem 3.6.

In the second case, we notice that xkh

N ⊲
BR
i xkh−1

N , hence i ∈ N∗(kh − 1), for each h. Since
xkh−1
−i = xkh

−i, we have (yi, x
kh−1
−i ) ≻ xkh

N for all h ∈ N large enough by the continuity of ≻, which

contradicts the choice of xkh

N since (yi, x
kh−1
−i ) ∈ X∗(kh − 1).

4 Unique best responses

Lemma 4.1. Let Γ be a strategic game where each Xi is a compact metric space and each Ri is
single-valued, i.e., Ri(x−i) = {ri(x−i)} for all i ∈ N and x−i ∈ X−i. If Γ admits a continuous
Cournot potential, then each ri is continuous.

Proof. Suppose the contrary: there are i ∈ N and a sequence xk
N ∈ XN such that xk

i = ri(x
k
−i)

for all k ∈ N and xk
−i → xω

−i, but xk
i does not converge to ri(x

ω
−i). Since Xi is compact, we may

assume xk
i → xω

i 6= ri(x
ω
−i). Denoting yN := (ri(x

ω
−i), x

ω
−i), we have yω

N ⊲
BR xω

N , hence yω
N ≻ xω

N

by (2), hence (ri(x
ω
−i), x

k
−i) ≻ xk

N for all k large enough by the continuity of ≻, which contradicts
the assumption xk

i = ri(x
k
−i).

Theorem 4.2. Let Γ be a strategic game where #N = 3, each Xi is a compact metric space,
and each Ri is single-valued. Let Γ admit a continuous Cournot potential. Let 〈xk

N〉k∈N be an
infinite inclusive Cournot path. Then there is a Nash equilibrium among cluster points of the
path.

Proof. As usual, we denote Xω ⊆ XN the set of cluster points of 〈xk
N〉k∈N and assume, to the

contrary, that Xω contains no Nash equilibrium. For each pair I ⊂ N , #I = 2, we denote
XI := {xN ∈ Xω | ∀i ∈ I [xi = ri(x−i)]}. By Lemma 3.4, Xω =

⋃

I XI . Whenever I 6= J ,
XI ∩ XJ consists of Nash equilibria, hence XI ∩ XJ = ∅ by our assumption. Since the path is
inclusive, at least two sets XI are nonempty. Since each XI is closed, there are open subsets
V I such that XI ⊆ V I for each I and V I ∩ V J = ∅ whenever I 6= J .
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Without restricting generality, we may assume that xk
N ∈

⋃

I V I for all k. Therefore, there

exist I 6= J and a strictly increasing sequence 〈kh〉h∈N such that xkh

N ∈ V J and xkh+1
N ∈ V I for

all h ∈ N. Again without restricting generality, we may assume that xkh+1
N ⊲

BR
i xkh

N for all h and
the same i ∈ N while xkh

N → xω
N ∈ XJ and xkh+1

N → yω
N ∈ XI . By the continuity, yω

i = ri(y
ω
−i),

hence i ∈ I. Now if i /∈ J , we have yω
N ⊲

BR
i xω

N , hence yω
N ≻ xω

N by (2), contradicting (3). If
i ∈ I ∩ J , we have xω

i = ri(x
ω
−i), yω

i = ri(y
ω
−i), and yω

−i = xω
−i, hence yω

N = xω
N , contradicting

XI ∩ XJ = ∅.

Remark. When #N = 2, Theorem 3.2 gives us a stronger statement under weaker assumptions
on Γ.

We call an infinite Cournot path 〈xk
N〉k∈N uniformly inclusive if there is a natural number

m ∈ N such that for each i ∈ N and each k ∈ N, there is h ∈ N such that k ≤ h ≤ k + m and
xh

i ∈ Ri(x
h
−i). Every infinite Cournot path generated by the sequential tâtonnement process as

defined by Moulin (1984, p. 87), see also Jensen (2010, Theorem 2), is uniformly inclusive.

Theorem 4.3. Let Γ be a strategic game where each Xi is a compact metric space, and each Ri

is single-valued. Let Γ admit a continuous Cournot potential. Then every uniformly inclusive
Cournot path converges to the set of Nash equilibria.

Proof. Let 〈xk
N〉k∈N be a uniformly inclusive infinite Cournot path and Xω ⊆ XN be the set

of its cluster points. Let xω
N ∈ Xω; we pick a strictly increasing sequence 〈kh〉h∈N such that

xkh

N → xω
N .

Claim 4.3.1. For each s ∈ N, the sequence 〈xkh+s
N 〉h converges to xω

N .

Proof of Claim 4.3.1. We argue by induction in s. For s = 0, the definition of 〈kh〉h∈N suffices.
The general induction step is identical with the case of s = 1. Let 〈k′

h〉h∈N be a subsequence of

〈kh〉h∈N such that x
k′

h
+1

N → yω
N ∈ Xω. Since N is finite, we may, without restricting generality,

assume that x
k′

h
+1

i = ri(x
k′

h
+1

−i ) and x
k′

h
+1

−i = x
k′

h

−i for an i ∈ N and all h. Then, yω
i = ri(y

ω
−i) and

yω
−i = xω

−i. An assumption that xω
i 6= ri(x

ω
−i) would contradict (3); therefore, yω

N = xω
N .

Let us fix i ∈ N . Since the path is uniformly inclusive, there is an s ∈ {0, . . . ,m} for each
h ∈ N such that xkh+s

i = ri(x
kh+s
−i ); without restricting generality, xkh+s

i = ri(x
kh+s
−i ) for all

h ∈ N and the same s. Since 〈xkh+s
N 〉h converges to xω

N , we have xω
i = ri(x

ω
−i). Since i ∈ N was

arbitrary, xω
N is a Nash equilibrium.

Remark. If #N = 2, then every infinite Cournot path is uniformly inclusive (with m =
1). Theorem 4.3 in this case does not add anything to Theorem 3.5, stronger assumptions
notwithstanding.
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5 Weaker concepts

To broaden the scope of applications, we introduce two weaker notions: a “partial Cournot
potential” and a “restricted Cournot potential.” The first leads to virtually the same results as
the basic version; the second has weaker implications, but still deserves some attention.

We call a subset Y ⊆ XN BR-absorbing if it satisfies the following three conditions.

1. If yN ⊲
BR xN and xN ∈ Y , then yN ∈ Y too.

2. If a Cournot path 〈x0
N , . . . , xm

N〉 is inclusive, then xm
N ∈ Y .

3. If 〈xk
N〉k∈N is an infinite Cournot path, xω

N is its cluster point, and xk
N ∈ Y for each k, then

xω
N ∈ Y .

We call an irreflexive and transitive binary relation ≻ on XN a partial Cournot potential if
there is a BR-absorbing subset Y ⊆ XN such that (2) holds whenever xN ∈ Y .

Theorem 5.1. All theorems of Sections 3 and 4 remain valid if the “Cournot potential” in each
of them is replaced with “partial Cournot potential.” Lemmas 3.3 and 3.4 remain valid in this
case if restricted to Cournot paths in Y .

Remark. Lemma 4.1 needs a more serious modification in this case.

A straightforward proof is omitted. Concerning Theorem 3.6, it is easy to see that an
inclusive Cournot path can be started from any strategy profile x0

N ∈ XN .

Given correspondences R∗
i : X−i → 2Xi such that

∅ 6= R∗
i (x−i) ⊆ Ri(x−i) (4)

for every i ∈ N and x−i ∈ X−i (“admissible best responses”), we define the admissible best
response improvement relation ⊲

BR∗ on XN by replacing (1) with

yN ⊲
BR∗
i xN ⇋ [y−i = x−i & xi /∈ Ri(x−i) & yi ∈ R∗

i (x−i)]; (5a)

yN ⊲
BR∗ xN ⇋ ∃i ∈ N [yN ⊲

BR∗
i xN ]. (5b)

We call an irreflexive and transitive binary relation ≻ on XN a restricted Cournot potential if
there are correspondences R∗

i : X−i → 2Xi \ {∅} such that (2) holds for ⊲
BR∗. A Cournot path

is admissible if xk+1
N ⊲

BR∗ xk
N for each relevant k.

Theorem 5.2. All theorems of Sections 3 and 4 remain valid if the “Cournot potential” in each
of them is replaced with “restricted Cournot potential,” the assumptions on Ri are shifted onto
R∗

i , and only admissible Cournot paths are allowed.

A straightforward proof is omitted.
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6 Games with structured utilities

A game with structured utilities (and additive aggregation) may have an arbitrary finite set of
players N and arbitrary sets of strategies whereas the utility functions satisfy certain structural
requirements. There is a set A of processes and a finite subset Υi ⊆ A of processes where
each player i ∈ N participates (given exogenously). With every α ∈ A, an intermediate utility
function is associated, ϕα : XN(α) → R, where N(α) = {i ∈ N | α ∈ Υi}. The “ultimate” utility
functions of the players are built of the intermediate utilities:

ui(xN) :=
∑

α∈Υi

ϕα(xN(α)), (6)

where i ∈ N and xN ∈ XN .

Defining P : XN → R by

P (xN) :=
∑

α∈A

ϕα(xN(α)), (7)

we immediately see that P is an exact potential (Monderer and Shapley, 1996): P (xN) =
∑

α∈Υi ϕα(xN(α)) +
∑

α∈A\Υi ϕα(xN(α)) = ui(xN) + Qi(x−i) for all i ∈ N and xN ∈ XN ; clearly,
it is a Cournot potential as well. If all functions ϕα are continuous, then P is continuous too.
If we additionally assume, e.g., each set Xi to be convex and each function ϕα strictly concave,
then the results of Section 4 become applicable.

Remark. A strategic game admits an exact potential if and only if it can be represented
as a game with structured utilities and additive aggregation rule (6), see Kukushkin (2007,
Theorem 5).

Utility functions satisfying (6) can be found in so called “network transmission games,” see,
e.g., Facchinei et al. (2011) and references therein, which are somewhat similar to Rosenthal’s
(1973) congestion games, but do not belong to the class. There is a directed graph with the set
of links E; each player i ∈ N is assigned a path πi ⊆ E in the graph (between a source and a
target) and sends a flow xi ∈ [0, bi] ⊂ R along the path, getting a reward wi(xi) depending on
her flow and bearing costs

∑

e∈πi
ce(

∑

j: e∈πj
xj) depending on the total flow through each link

in πi. Setting A := L∪N , Υi := πi ∪ {i}, ϕi(xi) := wi(xi) and ϕe(xN(e)) := −ce(
∑

j∈N(e) xj) for

each e ∈ E, we see that (6) holds for each player.

Another example is the Cournot oligopoly with a linear cost function (Monderer and Shapley,
1996). The structure of utilities (6) only holds where the “formal,” linear price is positive, so
we have to rely on Theorem 5.1.

Given continuous and strictly increasing mappings λi, µα : R → R, we may extend this
approach further, replacing (6) with

ui(xN) = λi

(

∑

α∈Υi

µα ◦ ϕα(xN(α))
)

, (8)
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for all i ∈ N and xN ∈ XN . Then P (xN) :=
∑

α∈A µα ◦ ϕα(xN(α)) is an ordinal potential, hence
a continuous Cournot potential again. This trick works, e.g., for the Cournot oligopoly with
identical linear cost functions (Monderer and Shapley, 1996; Kukushkin, 1994) or voluntary
provision of a public good with Cobb-Douglas utilities.

7 Aggregative games with increasing best responses

A rather general (though not the most general imaginable) definition of an aggregative game
sounds as follows: each Xi is a compact subset of R, and there are mappings σi : X−i → R such
that

ui(xN) = Ui(σi(x−i), xi) (9)

for all i ∈ N and xN ∈ XN . For each i ∈ N , we denote Si := σi(X−i) ⊂ R, and redefine the
best response correspondence:

Ri(si) := Argmax
xi∈Xi

Ui(si, xi).

Our assumption Ri(x−i) 6= ∅ is equivalent to Ri(si) 6= ∅ for each si ∈ Si.

We also assume that each player’s best responses are increasing in si (in a rather strong
sense):

[s′i > si & x′
i ∈ Ri(s

′
i) & xi ∈ Ri(si)] ⇒ x′

i ≥ xi (10)

for all i ∈ N and s′i, si ∈ Si. The following strict single crossing condition (Milgrom and
Shannon, 1994) is sufficient for (10):

[x′
i > xi & s′i > si & Ui(si, x

′
i) ≥ Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) > Ui(s

′
i, xi) (11)

for all i ∈ N , x′
i, xi ∈ Xi, and s′i, si ∈ Si.

If each σi is increasing in each xj, then the existence of a Nash equilibrium (but not the
acyclicity of the best response improvements) immediately follows from Tarski’s fixed point
theorem. Novshek (1985) was the first to notice that the existence also obtains in the case
of σi(x−i) = −

∑

j 6=i xj; this fact has nothing to do with Tarski’s theorem. Kukushkin (2004)
proved the impossibility of Cournot cycles in both Novshek’ case and when σi(x−i) =

∑

j 6=i xj.
Dubey et al. (2006) modified a trick developed by Huang (2002) for different purposes, providing
a tool for the construction of a continuous partial Cournot potential. A rather broad class of
aggregative games where the trick works is described in Jensen (2010); the class may be the
broadest possible although it is unclear how such a claim could be proven. (The technical
assumptions of Jensen’s main theorem, however, should have been much stronger.)

We describe the trick in some details for a case of intermediate generality (Kukushkin, 2005),
sufficient for many applications in economics. Let

σi(x−i) =
∑

j 6=i

aijxj, (12)
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with aij = aji ∈ R for all i 6= j. Assuming that each best response correspondence Ri is upper
hemicontinuous and satisfies (10), the approach of Huang-Dubey et al. recommends the following
steps. First, we pick a selection ri from each Ri, e.g., ri(si) := min Ri(si) for every si ∈ Si; then
we extend ri to the whole closed interval [min Si, max Si] preserving its monotonicity; finally,
we define

P (xN) :=
∑

i∈N

[

−xi · max Si +

∫ max Si

min Si

min{xi, ri(si)} dsi

]

+
1

2

[

∑

i,j∈N i 6=j

aij · xi · xj

]

.

Straightforward calculations show that P (yN) > P (xN) whenever yN ⊲
BR
i xN and xi ∈ X0

i :=
⋃

si∈Si
Ri(si). Therefore, P represents a continuous partial Cournot potential satisfying (2) on

Y :=
∏

i∈N X0
i .

Remark. When aij ≥ 0 for all j 6= i, we have a game with strategic complementarity; when
aij ≤ 0 for all j 6= i, a game with strategic substitutability. A more general situation with
coefficients of both signs is also possible.

The following weak single crossing condition (Shannon, 1995),

[x′
i > xi & s′i > si & Ui(si, x

′
i) > Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) ≥ Ui(s

′
i, xi) (13)

for all i ∈ N , x′
i, xi ∈ Xi, and s′i, si ∈ Si, ensures the monotonicity of Ri in a rather weak sense:

[s′i > si & x′
i ∈ Ri(s

′
i) & xi ∈ Ri(si)] ⇒ [min{x′

i, xi} ∈ Ri(si) or max{x′
i, xi} ∈ Ri(s

′
i)] (14)

for all i ∈ N and s′i, si ∈ Si. Since every Ri(si) is compact, (14) implies, by Theorem 3.2 from
Veinott (1989), the existence of an increasing selection ri from Ri. Defining R∗

i by the closure of
the graph of ri, we immediately see that R∗

i is upper hemicontinuous and satisfies both (4) and
(10). In other words, if the best responses are upper hemicontinuous and increasing in the sense
of (14), while aggregation rules σi belong to the class described in Jensen (2010), i.e., allow the
Huang-Dubey et al. trick to work, then the game admits a partial restricted Cournot potential.

8 “Counterexamples”

This section consists of examples showing the impossibility of easy generalizations.

Example 8.1. Let us consider a game where N := {1, 2}, Xi := [0, 1]∪{2}, and the preferences
are defined by these utility functions:

ui(xN) :=



















min{2xi − x−i,−2xi + x−i + 2}, xN ∈ [0, 1] × [0, 1];

1, xi = 2, x−i ∈ [0, 1[;

2, xi = 2, x−i = 1;

xi, x−i = 2.
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Each utility function ui is upper semicontinuous in xN and continuous in xi; the only disconti-
nuity in x−i happens when x−i = 1 and xi = 2. The best responses are easy to compute:

Ri(x−i) =

{

{2}, x−i ∈ {1, 2};

{2, x−i/2 + 1/2}, x−i ∈ [0, 1[.

There is a unique Nash equilibrium, (2, 2).

To define a Cournot potential, we introduce an auxiliary function on R
2: ψ(x, y) := min{x,

−x + y + 1}. Then we define a continuous function on XN :

P (xN) :=

{

max{ψ(xi, x−i), ψ(x−i, xi)}, xN ∈ [0, 1] × [0, 1];

2 + mini xi, otherwise.

Claim 8.1.1. If yN ⊲
BR xN , then P (yN) > P (xN), i.e., P represents a Cournot potential.

Proof of Claim 8.1.1. Let yN ⊲
BR
i xN ; if x−i = 2, we are home immediately. Let x−i ∈ [0, 1],

hence xi ∈ [0, 1] too, hence P (xN) ≤ 1. If yi = 2, then P (yN) ≥ 2 > P (xN).

Let xi ∈ [0, 1] and x−i ∈ [0, 1[; then yi = x−i/2+1/2 > x−i. We have ψ(yi, x−i) = yi > x−i ≥
ψ(x−i, yi), hence P (yN) = yi. Meanwhile, ψ(x−i, xi) ≤ x−i < yi and ψ(xi, x−i) < yi; therefore,
P (yN) > P (xN) again.

Since Ri are not upper hemicontinuous, neither Theorem 3.2, nor Theorem 3.5 is applicable
here. Indeed, a Cournot path converging to (1, 1), which is not an equilibrium, can be started
from every strategy profile in [0, 1[ × [0, 1[. On the other hand, Theorem 3.7 is applicable;
actually, the unique Nash equilibrium can be reached from every strategy profile after, at most,
two best response improvements.

Example 8.2. Let us consider a game where N := {1, 2, 3}, X1 := X2 := [0, 1], X3 := {0, 1},
and the preferences are defined by these utility functions: u3(xN) := 1 if xN = (1, 1, 1), u3(xN) :=
0 otherwise, whereas for i ∈ {1, 2}, ui(xN) := min{2xi − x3−i,−2xi + x3−i + 2}. Both functions
u1, u2 are continuous in xN ; u3 is upper semicontinuous in xN and continuous in x3. The
best responses are easy to compute: Ri(x−i) = {x3−i/2 + 1/2} for i = 1, 2, R3(x−3) = {1} if
x−3 = (1, 1), and R3(x−3) = X3 otherwise. There is a unique Nash equilibrium, (1, 1, 1).

To define a Cournot potential, we use the same auxiliary function on R
2: ψ(x, y) :=

min{x,−x + y + 1} and define a continuous function on XN by P (xN) := max{ψ(x1, x2),
ψ(x2, x1)} + x3.

Claim 8.2.1. If yN ⊲
BR xN , then P (yN) > P (xN), i.e., P represents a Cournot potential.

Proof of Claim 8.2.1. For players 1 or 2, the argument is the same as in the proof of Claim 8.1.1,
one only has to consider fewer cases. The situation yN ⊲

BR
3 xN is only possible when y−3 =

x−3 = (1, 1), x3 = 0 and y3 = 1.
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Every Cournot path started from [0, 1[ × [0, 1[ × {0} converges to (1, 1, 0), which is not an
equilibrium. Thus, the assumption #N = 2 in Theorem 3.2 is essential.

Example 8.3. In a plane with polar coordinates (ρ, ϕ) (ρ ≥ 0, 0 ≤ ϕ < 2π), we define a
compact subset

X :=
{

(ρ, ϕ) | 1 ≤ ρ ≤ 2
}

and a mapping f : X → X by

f(ρ, ϕ) :=

{

(

1, min{3ϕ/2, π + ϕ/2}
)

, ρ = 1;
(

(ρ + 1)/2, min{3ϕ/2, π + ϕ/2} ⊕ π/[1 − log2(ρ − 1)]
)

, ρ > 1;

where ⊕ denotes addition modulo 2π. Clearly, f is continuous and (1, 0) is its unique fixed
point. Defining X0 := {(ρ, ϕ) ∈ X | ρ = 1} and X∗ := X \ X0, we immediately see that fk(x)
converges to (1, 0) whenever x ∈ X0 and to X0 whenever x ∈ X∗.

Now we define a strategic game: N := {1, 2}, X1 := X2 := X, ui(xN) := −d(xi, f(x−i)),
where d denotes distance in the plane. Both utilities are continuous; the best responses are
unique, Ri(x−i) = {f(x−i)}. The strategy profile ((1, 0), (1, 0)) is a unique Nash equilibrium.

Then we define a function P : X × X → R in this way:

P (x1, x2) :=











0, ρ1 = ρ2 = 1 & ϕ1 = ϕ2 = 0;

mini ϕi + maxi ui(xN) − 2π, ρ1 = ρ2 = 1 & maxi ϕi > 0;

mini(1 − ρi) + maxi ui(xN) − 2π, otherwise.

The function is upper semicontinuous, but not continuous.

Claim 8.3.1. If x′
N ⊲

BR xN , then P (x′
N) > P (xN), i.e., P represents a Cournot potential.

Proof of Claim 8.3.1. Let x′
−i = x−i and x′

i = f(x−i) 6= xi, hence ui(x
′
N) = 0 ≥ u−i(x

′
N). If

x−i = (1, 0), then P (xN) < 0 = P (x′
N) and we are home.

Let ρ−i = 1 and ϕ−i > 0. Then ρ′
i = 1 and ϕ′

i > ϕ−i, hence P (x′
N) = ϕ−i − 2π. If ρi > 1,

then P (xN) < −2π < P (x′
N). If ρi = 1, then we consider two alternatives. If ϕi ≥ ϕ−i, then

maxi ui(xN) < 0, hence P (xN) < ϕ−i−2π = P (x′
N); if ϕi < ϕ−i, then P (xN) ≤ ϕi−2π < P (x′

N).

Finally, let ρ−i > 1. Then P (x′
N) = 1 − ρ−i − 2π. If ρi ≤ ρ−i, then x−i 6= f(xi), hence

P (xN) < 1 − ρ−i − 2π = P (x′
N). If ρi > ρ−i, then P (xN) ≤ 1 − ρi − 2π < P (x′

N).

We see that the assumptions of Theorem 3.2 are satisfied. Moreover, the potential is upper
semicontinuous and the best responses are single-valued. Meanwhile, every Cournot path started
from X∗ ×X∗ has an infinite number of cluster points besides the unique equilibrium, i.e., does
not converge to the set of equilibria. Thus, the continuity of the potential in Theorem 3.5 is
essential.
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Example 8.4. We consider a modification of Example 8.3 with the same subset X

X :=
{

(ρ, ϕ) | 1 ≤ ρ ≤ 2
}

of the plane with polar coordinates and a different continuous mapping f : X → X,

f(ρ, ϕ) :=
(

(ρ + 1)/2, ϕ ⊕ π/[1 − log2(ρ − 1)]
)

, (15)

where ⊕ again denotes addition modulo 2π. Defining X0 := {(ρ, ϕ) ∈ X | ρ = 1} and X∗ :=
X \ X0, we immediately see that f(x) = x whenever x ∈ X0, and fk(x) converges to X0

whenever x ∈ X∗.

Now we define a strategic game in exactly the same way as in Example 8.3: N := {1, 2},
X1 := X2 := X, ui(xN) := −d(xi, f(x−i)), where d denotes distance in the plane. Again, both
utilities are continuous; the best responses are unique, Ri(x−i) = {f(x−i)}. The set of Nash
equilibria of the game is {xN ∈ X0 × X0 | x1 = x2}.

Then we define a continuous function P : X × X → R by

P (xN) := min
i

(1 − ρi) + max
i

ui(xN).

An argument similar to the proof of Claim 8.3.1, but even simpler, shows that P represents
a Cournot potential. Meanwhile, the set of cluster points of any Cournot path started from
X∗ × X∗ is the whole set of Nash equilibria of the game. We see that the assumptions of
Theorem 3.5, even Theorem 4.3, do not ensure the convergence of every Cournot path to a
Nash equilibrium.

The following example is essentially due to Powell (1973).

Example 8.5. Let us consider a game where N := {1, 2, 3}, Xi := [−2, 2], and the preferences
of each player are defined by the same continuous utility function:

u(xN) :=
∑

i,j∈N, i6=j

xi · xj/2 −
∑

i∈N

[

max{xi − 1, 0,−1 − xi}
]2

.

Clearly, u is an exact potential of the game, hence a continuous Cournot potential as well. Note
that the game belongs to the class considered in Section 7 with σi(x−i) :=

∑

j 6=i xj; the strict
single crossing condition (11) is easy to check. Note also that u is concave in each xi.

The best responses are easy to compute; given i ∈ N and x−i ∈ X−i, we denote si :=
∑

j 6=i xj.

Ri(x−i) =































{2}, si ≥ 2;

{1 + si/2}, 0 < si ≤ 2;

[−1, 1], si = 0;

{−1 + si/2}, −2 ≤ si < 0;

{−2}, si ≤ −2.
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There are two Nash equilibria maximizing the utility/potential: (2, 2, 2) and (−2,−2,−2).
(0, 0, 0) is also a Nash equilibrium.

Fixing an arbitrary δ ∈]0, 1/4[, we consider a sequential Cournot path starting at x0
N :=

(1 + 4δ,−1 − 2δ, 1 + δ): x1
N = (−1 − δ/2,−1 − 2δ, 1 + δ); x2

N = (−1 − δ/2, 1 + δ/4, 1 + δ);
x3

N = (−1 − δ/2, 1 + δ/4,−1 − δ/8); x4
N = (1 + δ/16, 1 + δ/4,−1 − δ/8); x5

N = (1 + δ/16,−1 −
δ/32,−1− δ/8); x6

N = (1+ δ/16,−1− δ/32, 1+ δ/64) . . . Comparing x0
N and x6

N , we see how the
path will continue ad infinitum. Thus, it has six cluster points: (1,−1, 1), (−1,−1, 1), (−1, 1, 1),
(−1, 1,−1), (1, 1,−1), and (1,−1,−1), none of which is an equilibrium.

We see that Theorem 3.5 cannot be extended to n > 2, while Theorem 4.3 is wrong without
the uniqueness of the best responses.

Remark. Most likely, Theorem 4.2 does not hold for #N > 3, but I have failed so far to come
up with a fully developed example.

9 Concluding remarks

9.1. ω-transitivity of a Cournot potential alone ensures the “transfinite convergence” of every
Cournot path to Nash equilibria; a formal exposition can be found in Kukushkin (2010). The
concept might seem exotic, but there is something to it. If, e.g., we replace all Xi = [−2, 2] in
Example 8.5 with arbitrary finite subsets, then every Cournot path will reach an equilibrium in
a finite number of steps. Therefore, one can argue that the problem illustrated by the example
is just an artefact of the suboptimal way to introduce infinity: no such thing could happen with
transfinite paths.

9.2. It is worth stressing once again: None of the results of this paper needs a numeric potential;
moreover, in each of the “counterexamples” in Section 8, there is a numeric potential, which does
not help. The upper semicontinuity of a Cournot potential also seems not to ensure any better
properties of best response dynamics than just ω-transitivity. The same holds for the presence
of a “best-response potential” (Voorneveld, 2000). The only difference is that the continuity of
a best-response potential implies the upper hemicontinuity of all best response correspondences,
hence Theorem 3.6 absorbs Theorem 3.7, and Examples 8.1 or 8.2 become impossible.

9.3. Theorem 2 of Jensen (2010) is neither weaker, nor stronger than any result of this paper.
It establishes the convergence of sequential Cournot tâtonnement to Nash equilibria under an
assumption concerning paths were the players consecutively replace one best response with
another. The assumption is automatically satisfied if all best responses are single-valued, in
which case our Theorem 4.3 is a bit stronger. It is worth noting that Example 8.2 shows
Jensen’s theorem to be, strictly speaking, wrong (upper semiconinuity of utility functions is not
enough).
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9.4. The Cournot path leading nowhere in Example 8.5 needs a carefully chosen initial point.
It does not matter here since the only objective of the example is to demonstrate the invalidity
of straightforward extensions of Theorems 3.5 and 4.3. Powell (1973) also provides a more
complicated example where such paths can be started from every point in an open subset.

9.5. If we modify the constructions of Section 6, replacing the sum in (6) with the minimum,
cf. Germeier and Vatel’ (1974), then the leximin ordering on XN will be a potential in the sense
of (2) for coalition improvements, hence a Cournot potential as well. Since the ordering is not
continuous, our main results are inapplicable even though no counterexample is known. Funnily,
aggregative games of Section 7 with σi(x−i) = minj 6=i xj for all i ∈ N or σi(x−i) = −minj 6=i xj

for all i ∈ N also admit ω-transitive Cournot potentials. And the existence of a continuous
Cournot potential in every such game also remains neither proven, nor disproved so far.

9.6. Everything in this paper is about games with ordinal preferences. For applications of the
idea of potential games to the best responses in the context of cardinal utilities, see, e.g., Morris
and Ui (2004).
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