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A Truthful Two-Stage Mechanism for Eliciting
Probabilistic Estimates with Unknown Costs

Athanasios Papakonstantinou and Alex Rogers and Enrico H. Gerding and Nicholas R. Jennings1

Abstract. This paper reports on the design of a novel two-stage

mechanism, based on strictly proper scoring rules, that motivates

selfish rational agents to make a costly probabilistic estimate or fore-

cast of a specified precision and report it truthfully to a centre. Our

mechanism is applied in a setting where the centre is faced with mul-

tiple agents, and has no knowledge about their costs. Thus, in the

first stage of the mechanism, the centre uses a reverse second price

auction to allocate the estimation task to the agent who reveals the

lowest cost. While, in the second stage, the centre issues a payment

based on a strictly proper scoring rule. When taken together, the two

stages motivate agents to reveal their true costs, and then to truth-

fully reveal their estimate. We prove that this mechanism is incentive

compatible and individually rational, and then present empirical re-

sults comparing the performance of the well known quadratic, spher-

ical and logarithmic scoring rules. We show that the quadratic and

the logarithmic rules result in the centre making the highest and the

lowest expected payment to agents respectively. At the same time,

however, the payments of the latter rule are unbounded, and thus the

spherical rule proves to be the best candidate in this setting.

1 INTRODUCTION

In a world where information can be distributed over systems owned

by different stakeholders and accessed by multiple users, it is impor-

tant to develop processes that will evaluate this information and will

give some guarantees to its quality. This is particularly important in

cases where the information in question is a probabilistic estimate

or forecast whose generation involves some cost. Examples include

estimates of quality of service within a reputation system, or fore-

casts of future events such as weather conditions, where such costs

could represent the computational task of accessing and evaluating

previous interactions records, or that of running a large scale weather

prediction model. Now, when the provider of such information is a

rational selfish agent, it may have an incentive to misreport its es-

timate, or to allocate less costly resources to its generation, if it can

increase its own utility by doing so (e.g. by being rewarded for a more

precise estimate than it actually provides). Thus, a centre attempting

to elicit such information is presented with three challenges. First, it

must identify the agent who can provide an estimate of the required

precision at the lowest cost. Second, it must incentivise this agent to

allocate sufficient costly resources in order to provide an estimate of

the required precision. Finally, it must incentivise this agent to truth-

fully report the estimate that has been generated.

Against this background, a number of researchers have proposed

the use of ‘strictly proper scoring rules’ to address these challenges
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[1, 5]. Mechanisms using these rules reward accurate estimates or

forecasts by making a payment to agents based on the difference be-

tween an event’s predicted and actual outcome (observed at some

later stage). Such mechanisms have been shown to incentivise agents

to truthfully report their estimates in order to maximise their ex-

pected payment [6]. More recently, strictly proper scoring rules have

been used in computer science to promote the honest exchange of

beliefs between agents [7], and within reputation systems to pro-

mote truthful reporting of feedback regarding the quality of a service

experienced [2]. Furthermore, Miller et al. have shown that when

the agents’ costs are known, it is possible to use an appropriately

scaled strictly proper scoring rule to induce agents to commit costly

resources to generate estimates of any required precision [4].

While these approaches are effective in the specific cases that they

consider, they all rely on the fact that the cost of the agent provid-

ing the estimate or forecast is known by the centre. This is not the

case in our scenario where these costs represent private information

known only to each individual agent (since they are dependent on

the specific computational resources available to the agent). Thus,

in addressing this shortcoming, we contribute to the state of the art

by presenting a novel two-stage mechanism which relaxes this as-

sumption. The first stage of the mechanism incentivises agents’ to

truthfully reveal their costs to the centre, thus allowing it to select the

agent with the lowest cost. The second stage then incentivises this

agent to generate an estimate with a minimum required precision,

and to truthfully report this estimate to the centre. In more detail, in

this paper we extend the state of the art in the following ways:

• We describe a novel two-stage mechanism in which a centre uses

a reverse second price auction in the first stage to elicit the true

costs of agents, and hence identify the agent that can provide an

estimate with a specified precision at the lowest cost. An appropri-

ately scaled strictly proper scoring rule is then used in the second

stage of the mechanism to incentivise this agent to generate and

truthfully report the estimate.

• We formally prove that this mechanism is incentive compatible in

both costs and estimates revealed, and that it is individually ratio-

nal. That is, agents will truthfully report both costs and estimates

to the centre, and willingly participate within the mechanism.

• We empirically evaluate our mechanism by comparing the

quadratic, spherical and logarithmic scoring rules in a setting

where costs depend linearly on precision. We show that while the

logarithmic rule results in the centre making the lowest expected

payment to the agent, this payment is unbounded. The other rules

are bounded, but result in higher expected payments. Hence, we

find that the spherical rule is preferred in our setting.

The rest of this paper is organised as follows: In section 2 we de-

scribe our model, and in section 3 we present background on strictly
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proper scoring rules. In section 4 we detail our mechanism and for-

mally prove its economic properties, before empirically evaluating it

in section 5. We conclude and discuss future work in section 6.

2 INFORMATION ELICITATION PROBLEM

We now describe our model in more detail. Specifically, we assume

that there is a centre interested in acquiring a probabilistic estimate

or forecast (such as an expected quality of service within a reputa-

tion system, or a forecast temperature in a weather prediction setting)

with a minimum precision θ0, henceforth referred to as the required

precision2. We assume that there are N ≥ 2 rational, risk neutral

agents who can provide the centre with an unbiased but noisy es-

timate or forecast, x, of precision θ. We model the agents’ private

estimates as Gaussian random variables such that x ∼ N(x0, 1/θ),

where x0 is the true state of the parameter being estimated. Note that

this true state is unknown to both the centre and the agents at the

time that the estimate is requested, but becomes available to the cen-

tre at some time in the future. For example, in a reputation system

the actual quality of service received is only known once the service

has been procured, and in a weather forecasting setting the actual

weather that occurs is observed by the centre at some later date.

The agents incur a cost in producing their estimate, and we assume

that this cost is a function of the precision of the estimate, c(θ). While

the centre has no information regarding the agents’ cost functions,

we assume that all cost functions are convex (i.e. c′′i (θ) ≥ 0), and

we note that this is a realistic assumption in all cases where there

are diminishing returns as the precision increases. We do not assume

that all agents use the same cost function, but we do demand that the

costs of different agents do not cross (i.e. the cost ordering of agents

is the same over all precisions).

Given this model, the challenge is to design a mechanism that en-

ables the centre to identify the agent that can provide the estimate

or forecast at the lowest cost, and to provide a payment to this agent

such that it is incentivised to generate the estimate or forecast with a

precision at least equal to the required one and to report it truthfully.

3 STRICTLY PROPER SCORING RULES

As discussed in the introduction, the problem described above has

previously been addressed through the use of strictly proper scor-

ing rules as payments in the case that the agents’ cost functions

are known to the centre [2, 4]. Before we proceed to the analy-

sis of our mechanism which is designed for cases where the cen-

tre has no knowledge about the costs, we give a brief description

of strictly proper scoring rules. As described earlier, such rules are

used to calculate a payment to an agent depending on the difference

2 Note that we assume that the centre derives no additional benefit if the
estimate is of precision greater than θ0.

between an event’s predicted and actual outcome. Much of the litera-

ture of strictly proper scoring rules concerns three specific rules, the

quadratic, spherical and logarithmic rules, given by:

1. Quadratic: S(x0|r(x0)) = 2r(x0) −
∫ ∞
−∞ r2(x)dx

2. Spherical: S(x0|r(x0)) = r(x0)/(
∫ ∞
−∞ r2(x)dx)1/2

3. Logarithmic: S(x0|r(x0)) = log r(x0)

In each case, S(x0|r(x0)) is the payment given to an agent after it

has reported its estimate (represented as probability density function

r(x)) and x0 is the actual outcome observed.

3.1 An Incentive Compatible Mechanism

It is a standard property of strictly proper scoring rules that an agent

will maximise its expected score (and hence the payment it receives)

by reporting its true probabilistic estimate to the centre [1, 3]. Thus,

mechanisms based upon them are incentive compatible. Using this

result, we can calculate the score that the agent expects to receive,

given that it has generated an estimate of precision θ and has truth-

fully reported it to the centre (as it is incentivised to do).

To do so, we first note that, in our case, where estimates are

represented by Gaussian distributions, we can replace r(x0) with

N (x0; x, 1/θ), and derive new expressions for each of the three scor-

ing rules shown above (these are presented in the first row of table 1).

We can then simply integrate over the expected outcome to derive the

agents expected score, S(θ). These results are shown in the second

row of table 1, and form the basis of the calculations and proofs that

we present in the following sections.

3.2 Eliciting Effort with Known Costs

It should now be noted that the above scoring rules will still be in-

centive compatible if they undergo an affine transformation. Indeed,

Miller et al. show that by using appropriate scaling parameters, and

given knowledge of an agent’s costs, it is possible to induce an agent

to make and truthfully report an estimate with a specified precision,

θ0 [4]. In this case, an agent’s expected payment, P (θ), is given by:

P (θ) = αS(θ) + β (1)

and the expected utility of the agent is given by:

U(θ) = αS(θ) + β − c(θ) (2)

The centre can now choose the value of α such that the agent’s util-

ity (its payment minus its costs) is maximised when it produces and

truthfully reports an estimate of the required precision, θ0. To do so,

it solves dU/dθ|θ0
= 0 to give:

α =
c′(θ0)

S
′
(θ0)

(3)



In rows three and four of table 1 we present this result, and the deriva-

tive of the expected score that is required to calculate it, for each of

the three strictly proper scoring rules presented earlier.

3.3 An Individually Rational Mechanism

Finally, we now note that in order for an agent to incur the cost of

producing an estimate, it must expect to derive positive utility from

doing so. Thus, the centre can use the constant β to ensure that it

makes the minimum payment to the agent, while still ensuring that

the mechanism is individually rational. When costs are known, the

centre can do so by making the agents indifferent between producing

the estimate or not, by ensuring that U(θ0) = 0, thus giving:

β = c(θ0) − c′(θ0)

S
′
(θ0)

S(θ) (4)

Again, row five of table 1 shows this result for each scoring rule.

4 TRUTH ELICITATION MECHANISM FOR
UNKNOWN COSTS

In the previous section we discussed how the centre can motivate

agents to make a probabilistic estimate or a measurement of a spe-

cific precision. However, this analysis assumed the agents’ costs are

known. In this section we relax this assumption and present a novel

two-stage mechanism which first incentivises the agents to reveal

their true costs to the centre, and then, based on this information,

induces an agent to produce an estimate of at least the required pre-

cision. In more detail, in the first stage the centre asks the agents to

submit their cost functions and then it assigns the estimation task to

the agent with the lowest cost. Then, in the second stage, the cen-

tre uses a strictly proper scoring rule as before, but now uses the

second-lowest cost reported by the agents to scale the scoring rule

(i.e., set α and β). This is akin to a reverse second-price or Vickrey

auction, where the agents’ rewards are equal to the second-lowest re-

ported costs. However, in this case the reward is determined by the

scoring rule, and hence depends on the actual estimate produced. In

particular, this requires the scaling parameters α and β to be chosen

carefully in order to incentivise the agents to reveal their true costs in

the first stage. In more detail, our mechanism proceeds as follows:

1. First Stage

• The centre announces that it needs an estimate of required pre-

cision θ0, and asks all agents i ∈ {1, . . . , N}, where N ≥ 2,

to report their cost functions ĉi(θ).3

• The centre assigns the forecast or estimate to the agent who

reported the lowest cost at the required precision, i.e., agent i
such that ĉi(θ0) = mink∈{1,...,N}ĉk(θ0).

2. Second Stage

• The centre announces a scoring rule αS(x0; x, θ) + β, where:

(1) S(x0; x, θ) is a strictly proper scoring rule, (2) S(θ) is

strictly concave as a function of precision θ,4 and (3) α and

β are determined using equations 3 and 4 respectively, but now

based on the second-lowest reported cost functions (i.e. ĉj(θ)
such that ĉj(θ0) = mink 6=iĉk(θ0)).

3 We note that in practise the centre only requires ĉi(θ0) and c′i(θ0). How-
ever, for notational convenience we request the agents to reveal their entire
cost function.

4 We note that the quadratic, spherical, and logarithmic scoring rules satisfy
both of these properties (see row 2 of table 1).

• The agent selected in the first stage produces an estimate x with

precision θ and reports x̂ and θ̂ to the centre.

• Once the actual outcome has been observed, the centre then

gives the following payment to the agent:

P (x0; x̂, θ̂) = αS(x0; x̂, θ̂) + β (5)

4.1 Economic Properties of the Mechanism

Having detailed the two-stages of the mechanism, we now identify

and prove its economic properties. Specifically, we show that:

1. The mechanism is incentive compatible in the first stage w.r.t. the

costs. Specifically, truthful revelation of agents’ cost functions is

a weakly dominant strategy.

2. The mechanism is incentive compatible w.r.t. the selected agent’s

reported measurement and precision in the second stage.

3. The mechanism is individually rational.

4. The centre motivates the selected agent to make an estimate with a

precision which is at least as high as θ0, the precision required by

the centre. We refer to actual precision produced as the ‘optimal

precision’ (from the perspective of the agent) θ∗.

We now formally prove these properties. To do so, we first derive

two lemmas which are then used in the proofs that follow. The first

lemma shows that, if the true costs of the agent performing the mea-

surement are less than the costs which are used to scale the scoring

rule, the optimal precision θ∗ will be greater than θ0. Let these cost

functions be denoted by ct(θ) and cs(θ) respectively. More formally:

Lemma 1. If ct(θ0) < cs(θ0), where ct(θ) is the agent’s true cost

function, and cs(θ) is the cost function used to scale the scoring func-

tion, then θ∗ > θ0.

Proof. By scaling the scoring function using equations 3 and 4 and

cs(θ), the agent’s expected utility becomes:

U(θ) =
c′s(θ0)

S
′
(θ0)

(S(θ) − S(θ0)) + (cs(θ0) − ct(θ)) (6)

Now, the optimal precision θ∗ which maximises his expected utility

is formally denoted by θ∗ = argmaxθU(θ). Therefore, U
′
(θ∗) = 0,

and thus we have:

S
′
(θ∗)

S
′
(θ0)

=
c′t(θ

∗)

c′s(θ0)
. (7)

Let f(θ) = S
′
(θ)/S

′
(θ0) and g(θ) = c′t(θ)/c′s(θ0). Since S(θ) is

(strictly) concave it is easy to show that f ′(θ) ≤ 0 for θ ≥ θ0 and

f ′(θ) < 0 for θ > θ0. Furthermore, since ct(θ) is convex g′(θ0) ≥ 0
for θ ≥ θ0. Now, since f is decreasing and g is increasing, when

ct(θ0) = cs(θ0) clearly the only point which satisfies equation 7 is

where θ∗ = θ0. If ct(θ0) < cs(θ0), on the other hand, it is easy

to verify that g(θ0) < 1, since we assumed the cost functions to be

non-crossing. Hence, since f(θ0) = 1, the only solution where the

two function meet is where θ > θ0, and thus, θ∗ > θ0.

The next lemma shows that, if the true costs of the agent doing

the measurement are higher than the costs used for the scaling of the

scoring function, then the agent’s utility will always be negative.

Lemma 2. If ct(θ) > cs(θ) then U(θ) < 0 for any θ.



Table 2. Comparison of Quadratic, Spherical and Logarithmic Scoring Rules

Scoring Rule: Quadratic Spherical Logarithmic
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Note that costs are given by linear functions, c(θ) = cθ, and c1 and c2 are the lowest and second lowest costs.

Proof. Concavity of the expected score S(θ) implies:

S
′
(θ0)(θ − θ0) ≥ S(θ) − S(θ0)

Similarly, convexity of the cost function cs(θ) gives:

c′s(θ0)(θ − θ0) ≤ cs(θ) − cs(θ0).

By performing basic manipulations this results in:

c′s(θ0)

S
′
(θ0)

(S(θ) − S(θ0)) + cs(θ0) − cs(θ) ≤ 0

Furthermore, since ct(θ) > cs(θ), the following holds, for any θ:

U(θ) =
c′s(θ0)

S
′
(θ0)

(S(θ) − S(θ0)) + cs(θ0) − ct(θ) < 0

Having presented these two key lemmas, we now proceed to prove

the four economic properties of our mechanism.

Theorem 1. Truthful revelation of agents’ cost functions in the first

stage of the mechanism is a weakly dominant strategy.

Proof. We prove this by contradiction. Let ct(θ) and ĉ(θ) denote an

agents’ true and reported cost functions respectively. Furthermore,

let cs(θ) denote the cost function used to scale the scoring function

if the agent wins (i.e. if ĉ(θ0) < cs(θ0)). Now, suppose that the agent

misreports, but this does not affect whether the agent wins or not. If

the agent loses then the payoff is alway zero. If the agent wins the

payoff is unaffected, since it is calculated from the second-lowest

cost. Therefore, there is no incentive to misreport.

Suppose that the agent misreports, and now it does affect whether

the agent wins or not. There are now two cases: (1) ct(θ0) > cs(θ0)
and ĉ(θ0) < cs(θ0) (the agent wins by misreporting but would have

lost when truthful), and (2) ct(θ0) < cs(θ0) and ĉ(θ0) > cs(θ0) (the

agent loses by misreporting but would have won when truthful).

Case (1). Since the true cost ct(θ0) > cs(θ0), it follows directly

from lemma 2 that the expected utility U(θ) is strictly negative, irre-

spective of θ. Therefore, the agent could do strictly better by report-

ing truthfully in which case the expected utility is zero.

Case (2). In this case the agent would have won by being truthful,

but now receives a utility of zero. To show that this type of misre-

porting is suboptimal, we need to show that, when ct(θ0) < cs(θ0),

an agent benefits from being selected and generating the (optimal)

estimate (i.e. U(θ∗) > 0 when ct(θ0) < cs(θ0)). Now, since θ∗

is optimal by definition, then U(θ∗) ≥ U(θ0). From the expected

utility in equation 6 we have, U(θ0) = cs(θ0) − ct(θ0) > 0 when

ct(θ0) < cs(θ0), and hence U(θ∗) > 0 at true costs reporting.

Theorem 2. The mechanism is incentive compatible w.r.t. the agent’s

reported measurement and precision in the second stage.

Proof. The proof for this theorem follows directly from the defini-

tion of the strictly proper scoring rules (see section 3).

Theorem 3. The two-stage mechanism is individually rational.

Proof. From theorem 1 we can assume that agents report their true

cost functions in the first stage. Since agents who do not win in the

first stage receive zero utility, we only need to consider the case of the

selected agent with cost function ct(θ) ≤ cs(θ). From equation 6, it

follows that U(θ0) = cs(θ0) − ct(θ0) ≥ 0. Lemma 1 shows that

the agent may produce an estimate θ∗ > θ0. Since θ∗ is optimal by

definition, then U(θ∗) ≥ U(θ0), and thus U(θ∗) ≥ 0.

Theorem 4. For the agent selected in the first stage of the mecha-

nism, it is optimal to produce an estimate with a precision equal or

higher than the precision required by the centre, i.e., θ∗ ≥ θ0.

Proof. This proof follows directly from Lemma 1. In more detail,

given that the agents reveal their true cost functions, we have ct(θ) ≤
cs(θ). Therefore, from lemma 1 it follows that θ∗ ≥ θ0.

Note that these proofs indicate that the two stages of the mecha-

nism are inextricably linked and cannot be considered in isolation of

one another. Indeed, apparently small changes to the second stage of

the mechanism can destroy the incentive compatibility property of

the first stage. For example, it is important to note that our mecha-

nism is more precisely known as interim individually rational, since

the utility is positive in expectation. In any specific instance, the

payment could actually be negative if the prediction turns out to

be far from the actual outcome. An alternative choice for the sec-

ond stage of the mechanism would be to set β such that the pay-

ments are always positive, thus making the mechanism ex-post in-

dividually rational. However, this would then violate the incentive-

compatibility property since the agents could then receive positive

payoffs by misreporting their cost functions. Likewise, it might be

tempting to imagine that the centre could use the revealed costs of the

agents in order to request a lower precision, confident in the knowl-

edge that the selected agent will actually produce an estimate of the

required precision. However, by effectively using the lowest revealed

cost within the payment rule in this way, the incentive-compatibility

property of the mechanism would again be destroyed.

5 EMPIRICAL EVALUATION

Having proved the economic properties of the mechanism in the gen-

eral case with any convex cost function, we now present empirical re-

sults for a specific scenario in which costs are linear functions, given

by ci(θ) = ciθ, where the value of ci is drawn from a uniform distri-

bution ci ∼ U(1, 2) and θ0 = 1. Within this scenario our intention is

to compare the performance of the three scoring presented earlier. To

this end, for a range from 2 to 20 agents participating in the mecha-

nism, we simulate the mechanism 106 times and, for each iteration,

record the payment made to the agent who provided the estimate
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and the precision of this estimate. In figures 1 and 2 we present the

means of these results (and note that the standard error in both means

is much smaller than the symbol size).

Consider first figure 1 which shows the mean payment made by the

centre. We note that, as expected, as the number of agents increases,

the mean payment decreases toward the lower limit of the uniform

distribution from which the costs were drawn. Furthermore, note that

there is a fixed ordering over the entire range, with the payment re-

sulting from the quadratic scoring rule being the highest, and that of

the logarithmic scoring rule being the lowest.

In this figure, we also show the mean of the lowest and second low-

est costs evaluated at the required precision θ0 (denoted by c1θ0 and

c2θ0 respectively). The first cost represents the minimum payment

that could have been made if the costs of the agents were known to

the centre. While, the second represents the payment that would have

been made, had the agent produced an estimate of the required preci-

sion rather than its own optimal precision. The gap between c1θ0 and

c2θ0 represents the ‘information rent’ that must be paid in the case

that costs are unknown. The gap between c2θ0 and the mean pay-

ment of any particular scoring rule represents the loss that the centre

has to cover due to the agent making a more precise estimate than

required. The goal in selecting scoring rules is clearly to minimise

this gap, and it can be seen that the logarithmic scoring rule is clos-

est to achieving this goal. The reason for this can be seen in figure

2 where the precision of the estimates that were actually made are

shown. Note that in this figure the logarithmic scoring rule is shown

to induce agents to produce estimates closer to the required precision

than both the spherical and the quadratic scoring rules. The same or-

dering as observed in these figures (when averaged over costs drawn

from a uniform distribution) is also seen in analytical results for any

specific values for the lowest and second lowest costs (see table 2).

Based solely on these results, it can be considered that the log-

arithmic scoring rule presents the best choice for the centre in this

case. However, it is important to note that the logarithmic scoring

rule is unbounded. That is, in the event that the agent’s estimate is

far from the actual outcome, then a payment based on the logarith-

mic scoring rule will go to −∞ since the agent’s probability density

function goes to 0 in this case (see row 1 of table 1). Thus, given

this additional observation, it is clear that the spherical scoring rule

represents a better choice since its payments are only slightly greater

than that of the logarithmic, but it has finite bounds.

6 CONCLUSIONS

In this paper we introduced a novel two-stage mechanism based on

strictly proper scoring rules that motivates selfish rational agents to

make a costly probabilistic estimate or forecast of a specified preci-

sion and report it truthfully to a centre. We applied the mechanism

in a setting in which the centre is faced with multiple agents but has

no knowledge about their costs, and we proved that it was incentive

compatible and individually rational. We also empirically evaluated

our mechanism, and in comparing the quadratic, spherical and loga-

rithmic scoring rules, showed that the logarithmic one minimises the

centre’s expected payment, but is unbounded. Thus, we proposed the

use of the spherical rule as the best compromise between achieving

minimal payments with finite bounds.

Our future work consists of two main tracks. First, we would like

to explore the design of alternative strictly proper scoring rules, with

the intention of minimising the loss that the centre has to cover, as

a result of agents making an estimate of precision higher than the

required one. In this respect the value of c2θ0, shown in figure 1,

represents a bound on the ultimate performance of the mechanism.

Second, we would like to extend our mechanism to the case where the

centre procures estimates from more than one agent, and then fuses

them together. When costs are convex, procuring several low preci-

sion estimates may be more cost effective than procuring a single

high precision estimate. Indeed, Miller et al. have shown how scor-

ing rules can be used to score one agent’s estimate against another’s,

and thus in this case there is no need to wait until the actual event’s

outcome is revealed before making payments to agents [4]. However,

in such a case, it is an open question as to whether it is possible to de-

sign a mechanism that incentives multiple agents to truthfully reveal

their costs and estimates.
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