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VOLATILITY MODELLING OF FOREIGN EXCHANGE  RATE :  

DISCRETE GARCH FAMILY VERSUS CONTINUOUS GARCH 

Yakup ARI , yakup.ari@yeditepe.edu.tr 

 

Non-linearity is the general characteristic of financial series. Thus,  common  non-linear models such as 

GARCH, EGARCH and TGARCH are used to obtain the volatility of data. In addition , continuous time 

GARCH (COGARCH) model that is the extansion and analogue of the discrete time GARCH process, is the new 

approach for volatility and derivative pricing. COGARCH has a single source variability like GARCH, but also 

it is constructed on driving Levy Process since increments of Levy Process is replaced with the innovations in 

the discrete time. In this study, the proper model for the volatility is shown to represent foreign exchange rate of 

USD versus TRY for different period of time from January 2009  to December 2011. 
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I . IN T R O DU C T I O N 

 

The modelling and forecasting the foreign exchange rates are important subject for the international 

financial markets.The  fluctations in supply and demand for the foreign currency, and the fluctations in 

interest rates are more effective on the foreign exchange rates.So, volatility modelling becomes one of 

the most important study for currency data. The volatility modelling of time series is highly utilised in 

predicting economic and business trends. The financial data are usually non-linear. Many forecasting 

methods have been developed for the non-linear  data in the last few decades; such as discrete 

conditional variance models GARCH, EGARCH and TGARCH are well-known. In 2004, 

-workers introduce a new model continuous GARCH that is the analogue of 

the discerete conditional variance model GARCH (COGARCH), is  constructed on driving Levy 

Process. 

 

I I .M E T H O DO L O G Y  

In this study, after differencing data  BDS test is done for testing the non-linearity of data that was first 

devised by W.A. Brock, W. Dechert and J. Scheinkman in 1987.According the test results the non-

linear models could be used. The best candidate discrete GARCH model is choosen by comparing the 

Akaike Information Criterias, Bayessian Information Criterias and their maximum-likelihood values. 

Gaussian, Student-t, Generalised Error Distribution (GED), Normal Inverse Gaussian (NIG) and 

Double Exponential distributions are used as conditional distributions for the error terms. GARCH 

diagnostics are done by the Jarque-Berra and Shapiro-Wilk normality tests, Ljung-Box test for 

standardized residuals and squared standardized residuals , Langrange Multiplier test. The COGARCH 

process is constructed on NIG Levy process. The discrete GARCH family models and COGARCH 

model are compared according to their volatiliy plot and qq-plots. 
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I I .I . G A R C H M O D E L 

Bollerslev (1986) proposes a useful extension known as the generalized ARCH (GARCH) model. For 

a log return series rt , we assume that the mean equation of the process can be adequatedly described 

by an ARMA model. Let at = rt be the mean-corrected log return. Then at follows a GARCH(m, s) 

model if 

 

where again { } is a sequence of iid random variables with mean 0 and variance 1.0, 0 > 0, 0, 

0, and   . Here it is understood that = 0 for i > m and = 0 for j > s. The 

latter constraint on + implies that the unconditional variance of at is finite, whereas its 

conditional variance evolves over time. (Tsay, 2002) 

I I .I I . E XPO N E N T I A L G A R C H M O D E L 

To overcome some weaknesses of the GARCH model in handling financial time series, Nelson (1991) 

proposes the exponential GARCH (EGARCH) model. In particular, to allow for asymmetric effects 

between positive and negative asset returns, he considers the weighted innovation 

 

where and are real constants. Both  and |  E(|  |) are zero-mean iid sequences with 

continuous distributions. Therefore, E[g( )] = 0. The asymmetry of g( ) can easily be seen by 

rewriting it as 

 

An EGARCH(m, s) model can be written as 

 

where 0 is a constant, B is the back-shift (or lag) operator such that Bg(_t ) =g(_t 1), and 1 + 1B + 

・ ・ ・ + 1B  ・ ・ ・ are polynomials with zeros outside the unit circle 

and have no common factors. By outside the unit circle, we mean that absolute values of the zeros are 

greater than 1. The model differs from the GARCH model in several ways. First, it uses logged 
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conditional variance to relax the positiveness constraint of model coefficients. Second, the use of g( ) 

enables the model to respond asymmetrically to positive and negative lagged values of at .(Tsay, 

2002) 

I I .I I I . T H R ESH O L D G AR C H M O D E L 

The threshold GARCH (TGARCH) model proposed by Zakoian (1994) and GJR GARCH model 

piecewise function. TGARCH is another GARCH variant that is capable of modeling leverage efects, 

threshold GARCH (TGARCH) model, which has the following form: 

    where        

That is, depending on whether  is above or below the threshold value of zero,  has diferent 

efects on the conditional variance  ; when  is positive, the total efects are given by ; 

when  is negative, the total efects are given by  . So one would expect   to be 

positive for bad news to have larger impacts. (Zivot, 2006) 

I I .I V . C O N T INU O US G A R C H  M O D E L    

I I .I V .I . Normal inverse Gaussian process (NI G) 

L = {Lt ; t 0}is an infnitely divisible continuous time stochastic process, , with 

stationary and independent increments.Levy processes are more versatile than Gaussian A c_adl_ag, 

adapted, real valued stochastic process L = {Lt ; t s called a Levy process .  

The normal inverse Gaussian process (NIG) is a Levy process  that has normal inverse 

Gaussian distributed increments. Specically, X(t) has a NIG  distribution with parameters  

 and  

The NIG  distribution has probability density function 

 

Where               
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I I .I V .I I . Continuous G A RC H  Model 

Nelson  introduce COGARCH model that includes two independent Brownian motions B(1) and B(2) 

)1(

ttt
dBdG

, 0t    

)2(222 )(
tttt

dBdt
, 0t    where 0 , 0 , and 0  are constants. 

seems a natural approach. In Kluppelberg et al. (2004, 2006) such amodel was suggested. 

shows that COGARCH model is analogue of the discrete time GARCH model, based on a single 

GARCH process. They iterated the volatility equation to get 

 

 

where u  denotes the integer part of u   

  

       

where  
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 > 0 and the process X will be referred to as the 

stochastic differential equation (SDE) The COGARCH process 0)(
tt

G
 is defined in terms of its 

stochastic differential dG , such that 

ttt
dLdG

   
2

t
d

= 
dt

t
)( 2

+ tt
LLd ,2

,  0t   where 0 , 0 , and 0  

are constants. The solution for the stochastic equation is 

2

0

2

0

2

0

22

1

2 )(
t

ts

s

t

sii
Lds

   

where the Levy process is constructed by using NIG process 

I I I . R ESU L TS 

The data is taken from web site of Turkish Central Bankwhich shows daily foreign exchange 

rate of  USD versus TRY for different period of time from January 2009  to December 2011. 

USD/TRY FOREIGN EXCHANGE RATE

January 2009 - September 2011

USD
/TRY

0 200 400 600

1.4
1.5

1.6
1.7

1.8
1.9

 
M in.          1st Qu.               Median                    M ean               3rd Qu.              Max.  

                   1.39510     1.50050               1.54740                  1.58038               1.61615            1.91570 

 

Dickey-Fuller and Phillips-Per ron unit root tests Show that tha data is not stationary .By 

taking the first difference it becomes stationary.  

USD / TRY

january 2009 -december 2011

usd/
TRY

0 200 400 600

-0.04
-0.02

0.0
0.02

0.04

 
M in.                   1st Qu.              M edian           M ean                 3rd Qu.             Max. 

-0.0479000000 -0.0079000000  0.0001000000 -0.0005127321  0.0070000000     0.0532000000 
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BDS T est for Independence and Identical Distr ibution  
Test Statistics = 

[ 0.01 ] [ 0.01 ] [ 0.02 ] [ 0.02 ] 

5.3947   5.2091   5.0984   4.7197 

6.4430   6.9627   7.0882   6.9264 

7.0720   8.4045   8.4096   8.3259 

7.4289   9.5891   9.4309   9.3674 

 

p-value = 

[ 0.01 ] [ 0.01 ] [ 0.02 ] [ 0.02 ] 

                    [ 2 ]    0        0        0        0 

                    [ 3 ]    0        0        0        0 

                    [ 4 ]    0        0        0        0 

                    [ 5 ]    0        0        0        0 

 

BDS tests results give that the data is not linear or independently and identically distributed. Although 

the data isnot linear conditional mena model ARMA(0,1) was construct for difference data and the 

coefficients of the mean model are not statistically significant. But all GARCH models are made up 

with include mean coefficient. Test for ARCH Effects is done by LM Test  which has a null 

hypothesis; ther is no no ARCH effects . The results statistics are t-Statistics:82.0833  and p.value  

0.0000. So, GARCH models can be used to model the data. First , it is started by GARCH model. Note 

cients and graphs will be given in this study. 

Comparing G A R C H Models 

 Gaussian Student-t Double Exponential 
 

NI G G E D 

A I C -4597 -4599 -4534 -4598 -4597 

BI C -4578 -4576 -4515 -4579 -4573 

L ikelihood 2302 2305 2271 2304 2303 

 

There are two improper GARCH model according the AIC, BIC and maximum likelihood value. They 

are student-t GARCH and NIG GARCH. But the qq-plot of two model points out the best one. NIG 

GARCH satisfies better fit on qq-line. 
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NIG GARCH parameters also satisfies the stationary condition before likely said the estimation of 

mean parameter is not statistically significant. NIG GARCH diagnostics show that there is no 

autocorellation between residuals. 

G A R C H Conditional Distribution:  Normal Inverse Gaussian  
 

Estimated coefficients: Value Std. E rror   t value    Pr(>|t|) 
C 0.000301     0.000388   0.77655 0.437422 

A 0.000004     0.000002   2.21845 0.026524 

A R C H(1) 0.100122     0.024791   4.03860 0.000054 

G A R C H(1) 0.869387     0.032246 26.96072 0.000000 
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Normal Inverse Gaussian G A R C H Diagnostics 

Normality Test: 
Jarque-Bera   P-value      

       17.22       0.0001952 
Shapiro-Wilk    P-value 

0.9868      0.6231 

L jung-Box test for 
standardized residuals: 
Statistic P-value  

 8.483  0.746         

L jung-Box test for 
squared 
standardized 
residuals: 
Statistic P-value  

     7.771  0.7962      

Lagrange multiplier test: 
  TR^2    P-value F-stat   P-value  

   6.684     0.88     0.609     0.9178 
 

T est for A R C H Effects: 
LM Test 

Null Hypothesis: no 
ARCH effects           

Test Stat 6.6679 

  p.value 0.8811 

 

The improper EGARCH whose conditional error distribution is gaussian, satisfies the conditionality . 

The followings are the results of Gaussian EGARCH. All the coefficients are statistically significant 

except estimated mean coefficient. 

Comparing E G A R C H Models 

 Gaussian Student-t Double Exponential 
 

G E D 

A I C -4592           -4591              -4528 -4526 

BI C -4569           -4568           -4510 -4503 

L ikelihood 2301 2300 2268 2268 

E G A R C H Conditional Distr ibution:  Gaussian 

Estimated Coefficients: Value Std. E r ror   t value    Pr(>|t|) 
C -0.0003988 0.0003979   -1.002 3.165e-001 

A -0.6248296 0.1787430   -3.496 5.007e-004 

A R C H(1) 0.2020199 0.0440169    4.590 5.206e-006 

G A R C H(1) 0.9479995 0.0174055   54.466 0.000e+000 

L E V(1) -0.3414637 0.1071940   -3.185 1.505e-003 

Gaussian E G A R C H Diagnostics 

Normality Test: 
Jarque-Bera      P-value 

       11.86         0.002656      
Shapiro-Wilk    P-value  

       0.9887        0.8465 

 

L jung-Box test for 
standardized residuals: 
Statistic   P-value  
      9.08  0.6961          

 

L jung-Box test for 
squared 
standardized 
residuals: 
Statistic    P-value  

    10.88    0.5394          
 

Lagrange multiplier test: 
  TR^2 P-value F-stat P-value  

 9.299  0.6772 0.8561  0.6945 
 

T est for A R C H Effects: 
LM Test 

Null Hypothesis: no 
ARCH effects           

Test Stat 9.2987 

  p.value 0.6772 
 

 

The TGARCH comparison indicate that the Gaussian TGARCH superior model from the other 

conditional distributions. In addition, the main parameters are significant again except the mean and 

the residuals have no autocorrelation is understood from TGARC diagnostics. 

Comparing T G A R C H Models 

 Gaussian Student-t Double Exponential 
 

G E D 

A I C -4602           -4601             -4534 -4532 

BI C -4578           -4574              -4511 -4504 

L ikelihood 2307 2306 2272 2272 

 
T G A R C H  Conditional Distr ibution:  Gaussian 

 
Estimated Coefficients: Value Std. E r ror   t value    Pr(>|t|) 

C -3.869e-004 4.041e-004   -0.9574 0.338696 

A 4.797e-006 1.812e-006    2.6467 0.008299 

A R C H(1) 5.225e-002 2.131e-002    2.4520 0.014435 

G A R C H(1) 8.727e-001 3.019e-002   28.9020 0.000000 

G A M M A(1)   7.727e-002 2.823e-002    2.7370 0.006347 
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Gaussian T G A R C H Diagnostics 

Normality Test: 
Jarque-Bera       P-value 

    11.88            0.002637  
Shapiro-Wilk      P-value  

     0.9882          0.8024 

 

L jung-Box test for 
standardized residuals: 
Statistic P-value  
     9.407  0.6679   

 

L jung-Box test for 
squared 
standardized 
residuals: 
Statistic P-value  

     8.418  0.7517          
 

Lagrange multiplier test: 
  TR^2 P-value F-stat P-value  

 7.072  0.8528 0.6491  0.8878 
 

T est for A R C H Effects: 
LM Test 

Null Hypothesis: no 
ARCH effects           

Test Stat 7.0718 

  p.value 0.8528 
 

 

Continuous Volatility Modeling 
 
The parameters of COGARCH model is obtained from the discrete GARCH model's parameters  

, ln , /   where  is the constant of GARCH model,  is the coefficient of 

GARCH term and  is the coefficient of ARCH term. The numerical solutions for 
t

dG  and 
2

t
d  

is done by using NIG process.  The exact solution of stochastic differential 

equation of  
2

t
d  brings the results of the COGARCH process. 
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The discrete GARCH models can be compared with NIG Levy Driven COGARCH model according 

to their conditional variance plots and qq-plot. 
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qq-plot of NIG GARCH 
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qq-plot of gaussian EGARCH 
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qq-plot of gaussian TGARCH 

 

qq-plot of NIG  COGARCH 
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As it is seen in the above figures discrete GARCH models capture the shocks and jumps better than 

continuous GARCH model, although COGARCH captures the jumps in the volatility at the right time, 

it almost figures out the same pattern with the other models.  

C O N C L USI O N 

The methodology to compare discrete models with a continuous model could not be the right way. The 

forecasting performance and the news impact curves of the models could be the way of opposing the 

models. The exponential COGARCH (Haug,2006) which is the extension of the COGARCH model, 

might be compared with discerete models. But, firstly the exact conditions for opposing the discrete 

models and their analogue model would be studied  
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