Volatility modelling of foreign exchange rate: discrete GARCH family versus continuous GARCH

Yakup Ari

Yeditepe University

May 2012

Online at https://mpra.ub.uni-muenchen.de/43330/
MPRA Paper No. 43330, posted 20 December 2012 16:50 UTC
VOLATILITY MODELLING OF FOREIGN EXCHANGE RATE:
DISCRETE GARCH FAMILY VERSUS CONTINUOUS GARCH

Yakup ARI, yakup.ari@yeditepe.edu.tr

Financial Economics, Yeditepe University, İstanbul, Turkey

Non-linearity is the general characteristic of financial series. Thus, common non-linear models such as GARCH, EGARCH and TGARCH are used to obtain the volatility of data. In addition, continuous time GARCH (COGARCH) model that is the extension and analogue of the discrete time GARCH process, is the new approach for volatility and derivative pricing. COGARCH has a single source variability like GARCH, but also it is constructed on driving Levy Process since increments of Levy Process is replaced with the innovations in the discrete time. In this study, the proper model for the volatility is shown to represent foreign exchange rate of USD versus TRY for different period of time from January 2009 to December 2011.

Keywords: volatility, Levy Process, COGARCH

I. INTRODUCTION

The modelling and forecasting the foreign exchange rates are important subject for the international financial markets. The fluctuations in supply and demand for the foreign currency, and the fluctuations in interest rates are more effective on the foreign exchange rates. So, volatility modelling becomes one of the most important study for currency data. The volatility modelling of time series is highly utilised in predicting economic and business trends. The financial data are usually non-linear. Many forecasting methods have been developed for the non-linear data in the last few decades; such as discrete conditional variance models GARCH, EGARCH and TGARCH are well-known. In 2004, Klüppelberg and her co-workers introduce a new model continuous GARCH that is the analogue of the discrete conditional variance model GARCH (COGARCH), is constructed on driving Levy Process.

II. METHODOLOGY

In this study, after differencing data BDS test is done for testing the non-linearity of data that was first devised by W.A. Brock, W. Dechert and J. Scheinkman in 1987. According the test results the non-linear models could be used. The best candidate discrete GARCH model is choosen by comparing the Akaike Information Criterias, Bayessian Information Criterias and their maximum-likelihood values. Gaussian, Student-t, Generalised Error Distribution (GED), Normal Inverse Gaussian (NIG) and Double Exponential distributions are used as conditional distributions for the error terms. GARCH diagnostics are done by the Jarque-Berra and Shapiro-Wilk normality tests, Ljung-Box test for standardized residuals and squared standardized residuals, Langrange Multiplier test. The COGARCH process is constructed on NIG Levy process. The discrete GARCH family models and COGARCH model are compared according to their volatility plot and qq-plots.
II.1. GARCH MODEL

Bollerslev (1986) proposes a useful extension known as the generalized ARCH (GARCH) model. For a log return series r_t, we assume that the mean equation of the process can be adequately described by an ARMA model. Let $at = r_t - \mu$ be the mean-corrected log return. Then at follows a GARCH(m, s) model if

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^{m} \alpha_i a_{t-i}^2 + \sum_{j=1}^{s} \beta_j \sigma_{t-j}^2$$

where again $\{\epsilon_t\}$ is a sequence of iid random variables with mean 0 and variance 1, $\alpha_0 > 0$, $\alpha_i \geq 0$, $\beta_j \geq 0$, and $\sum_{i=1}^{\max(m, s)} (\alpha_i + \beta_i) < 1$. Here it is understood that $\alpha_i = 0$ for $i > m$ and $\beta_j = 0$ for $j > s$. The latter constraint on $\alpha_i + \beta_i$ implies that the unconditional variance of at is finite, whereas its conditional variance σ_t^2 evolves over time. (Tsay, 2002)

II.11. EXPONENTIAL GARCH MODEL

To overcome some weaknesses of the GARCH model in handling financial time series, Nelson (1991) proposes the exponential GARCH (EGARCH) model. In particular, to allow for asymmetric effects between positive and negative asset returns, he considers the weighted innovation

$$g(\epsilon_t) = \theta \epsilon_t + \gamma [\epsilon_t - E(\epsilon_t)]$$

where θ and γ are real constants. Both ϵ_t and $|\epsilon_t| - E(\epsilon_t)$ are zero-mean iid sequences with continuous distributions. Therefore, $E[g(\epsilon_t)] = 0$. The asymmetry of $g(\epsilon_t)$ can easily be seen by rewriting it as

$$g(\epsilon_t) = \begin{cases}
(\theta + \gamma) \epsilon_t - \gamma E(\epsilon_t) & \text{if } \epsilon_t \geq 0, \\
(\theta - \gamma) \epsilon_t - \gamma E(\epsilon_t) & \text{if } \epsilon_t < 0.
\end{cases}$$

An EGARCH(m, s) model can be written as

$$a_t = \sigma_t \epsilon_t, \quad \ln(\sigma_t^2) = \alpha_0 + \frac{1 + \beta_1 B + \cdots + \beta_s B^s}{1 - \alpha_1 B - \cdots - \alpha_m B_m} g(\epsilon_{t-1})$$

where α_0 is a constant, B is the back-shift (or lag) operator such that $Bg(\epsilon_t) = g(\epsilon_{t-1})$, and $1 + \beta_1 B + \cdots + \beta_s B^s$ and $1 - \alpha_1 B - \cdots - \alpha_m B_m$ are polynomials with zeros outside the unit circle and have no common factors. By outside the unit circle, we mean that absolute values of the zeros are greater than 1. The model differs from the GARCH model in several ways. First, it uses logged
conditional variance to relax the positiveness constraint of model coefficients. Second, the use of \(g(t) \) enables the model to respond asymmetrically to positive and negative lagged values of \(at \). (Tsay, 2002)

II.III. Threshold GARCH Model

The threshold GARCH (TGARCH) model proposed by Zakoian (1994) and GJR GARCH model studied by Glosten, Jagannathan, and Runkle (1993) define the conditional variance as a linear piecewise function. TGARCH is another GARCH variant that is capable of modeling leverage effects, threshold GARCH (TGARCH) model, which has the following form:

\[
\sigma_t^2 = a_0 + \sum_{i=1}^{p} a_i \epsilon_{t-i}^2 + \sum_{i=1}^{q} \gamma_i S_{t-i-1} \epsilon_{t-i}^2 + \sum_{j=1}^{q} b_j \sigma_{t-j}^2
\]

where

\[
S_{t-i} = \begin{cases} 1 & \text{if } \epsilon_{t-i} < 0 \\ 0 & \text{if } \epsilon_{t-i} \geq 0 \end{cases}
\]

That is, depending on whether \(\epsilon_{t-i} \) is above or below the threshold value of zero, \(\epsilon_{t-i}^2 \) has different effects on the conditional variance \(\sigma_t^2 \); when \(\epsilon_{t-i} \) is positive, the total effects are given by \(a_i \epsilon_{t-i}^2 \); when \(\epsilon_{t-i} \) is negative, the total effects are given by \((a_i + \gamma_i) \epsilon_{t-i}^2 \). So one would expect \(\gamma_i \) to be positive for bad news to have larger impacts. (Zivot, 2006)

II.IV. Continuous GARCH Model

II.IV.1. Normal inverse Gaussian process (NIG)

\(L = \{L_t ; t \geq 0\} \) is an infinitely divisible continuous time stochastic process, \(L_t : \Omega \to \mathbb{R} \), with stationary and independent increments. Levy processes are more versatile than Gaussian A c_adl_ag, adapted, real valued stochastic process \(L = \{L_t ; t \geq 0\} \) with \(L_0 = 0 \) a.s. is called a Levy process.

The normal inverse Gaussian process (NIG) is a Levy process \(\{X(t)\}_{t>0} \) that has normal inverse Gaussian distributed increments. Specically, \(X(t) \) has a NIG \((\alpha, \beta, \delta t, \mu t) \) distribution with parameters \(\alpha > 0, |\beta| < \alpha, \delta > 0 \) and \(\mu \in \mathbb{R} \).

The NIG \((\alpha, \beta, \delta t, \mu t) \) distribution has probability density function

\[
f_{\text{NIG}}(x; \alpha, \beta, \delta, \mu) = \frac{\alpha \delta}{\pi} K_1(\alpha \sqrt{\delta^2 - (x - \mu)^2}) \exp \left\{ \delta \sqrt{\alpha^2 - \beta^2} + \beta (x - \mu) \right\}
\]

Where

\[
K_0(z) = \frac{1}{2} \int_0^\infty u^{\nu-1} \exp \left\{ -\frac{z}{2} (u + \frac{1}{u}) \right\} du
\]
Nelson introduce COGARCH model that includes two independent Brownian motions $B(1)$ and $B(2)$

$$dG_t = \sigma_t dB_t^{(1)}, \quad t \geq 0$$

$$\sigma_t^2 = (\beta - \eta \sigma_t^2) dt + \varphi \sigma_t^2 dB_t^{(2)}, \quad t \geq 0$$

where $\beta > 0$, $\eta \geq 0$, and $\phi \geq 0$ are constants.

Since empirical work indicates upwards jumps in the volatility, a model driven by a Lévy process seems a natural approach. In Kluppelberg et al. (2004, 2006) such a model was suggested. Klüppelberg shows that COGARCH model is analogue of the discrete time GARCH model, based on a single background driving Lévy process. COGARCH model has the basic properties of discrete time GARCH process. They iterated the volatility equation to get

$$\sigma_t^2 = \omega_0 \sum_{k=0}^{i-1} \prod_{j=k+1}^{i-1} (\delta + \lambda \epsilon_j^2) + \sigma_0^2 \prod_{j=0}^{i-1} (\delta + \lambda \epsilon_j^2)$$

$$= \omega_0 \int_0^t \exp \left\{ \sum_{j=|u|+1}^{i-1} \log(\delta + \lambda \epsilon_j^2) \right\} du + \sigma_0^2 \exp \left\{ \sum_{j=0}^{i-1} \log(\delta + \lambda \epsilon_j^2) \right\}$$

$$= \left[\omega_0 \int_0^t \exp \left\{ - \sum_{j=0}^{i-1} \log(\delta + \lambda \epsilon_j^2) \right\} du + \sigma_0^2 \right] \exp \left\{ \sum_{j=0}^{i-1} \log(\delta + \lambda \epsilon_j^2) \right\}$$

$$= \left[\omega_0 \int_0^t \exp \left\{ \eta (|u| + 1) - \sum_{j=0}^{i-1} \log(1 + \varphi \epsilon_j^2) \right\} du + \sigma_0^2 \right]$$

$$\times \exp \left\{ -\eta t + \sum_{j=0}^{i-1} \log(1 + \varphi \epsilon_j^2) \right\} ,$$

where $|u|$ denotes the integer part of $u \in \mathbb{R}$, $\eta := -\log(\delta)$ and $\phi := \lambda / \delta$, then suggested to replace the noise variables φ_i by the jumps $\Delta L_t = L_t - L_{t-}$ of a Levy process $L = (L_t)_{t \geq 0}$, which allowed them to define the volatility process σ_t^2 for all $t \geq 0$ by

$$\sigma_t^2 := \left(\omega_0 \int_0^t e^{X_s} ds + \sigma_0^2 \right) e^{-X_t}$$

where
\[X_t := \eta t - \sum_{0 < s < t} \log(1 + \varphi (\Delta L_s)^2) \]

The parameter space is given by \(\omega_0, \eta > 0 \) and \(\phi > 0 \) and the process \(X \) will be referred to as the auxiliary process. The COGARCH(1, 1) process \(G = (G_t)_{t \geq 0} \) is defined as the solution to the stochastic differential equation (SDE) The COGARCH process \((G_t)_{t \geq 0} \) is defined in terms of its stochastic differential \(dG \), such that

\[
dG_t = \sigma_G dL_t, \quad t \geq 0 \Rightarrow d\sigma_G^2 = (\beta - \eta \sigma_G^2)dt + \phi \sigma_G^2 d[L, L], \quad t > 0 \text{ where } \beta > 0, \eta \geq 0, \text{ and } \phi \geq 0
\]

are constants. The solution for the stochastic equation is

\[
\sigma_G^2 = \sigma_G^2 - \beta + \int_0^t \sigma_G^2 ds + \phi \sum_{0 < s < t} (\Delta L_s)^2 + \sigma_0^2
\]

where the Levy process is constructed by using NIG process

III. RESULTS

The data is taken from web site of Turkish Central Bank which shows daily foreign exchange rate of USD versus TRY for different period of time from January 2009 to December 2011.

![USD/TRY Foreign Exchange Rate](image)

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.39510</td>
<td>1.50050</td>
<td>1.54740</td>
<td>1.58038</td>
<td>1.61615</td>
<td>1.91570</td>
</tr>
</tbody>
</table>

Dickey-Fuller and Phillips-Perron unit root tests Show that the data is not stationary. By taking the first difference it becomes stationary.

![USD/TRY](image)

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0479000000</td>
<td>-0.0079000000</td>
<td>0.0001000000</td>
<td>-0.0005127321</td>
<td>0.0070000000</td>
<td>0.0532000000</td>
</tr>
</tbody>
</table>
BDS test results give that the data is not linear or independently and identically distributed. Although the data is not linear conditional mean model ARMA(0,1) was constructed for difference data and the coefficients of the mean model are not statistically significant. But all GARCH models are made up with include mean coefficient. Test for ARCH effects is done by LM Test which has a null hypothesis; there is no ARCH effects. The results statistics are t-Statistics:82.0833 and p.value 0.0000. So, GARCH models can be used to model the data. First, it is started by GARCH model. Note that only the best candidate models’ coefficients and graphs will be given in this study.

Comparing GARCH Models

<table>
<thead>
<tr>
<th></th>
<th>Gaussian</th>
<th>Student-t</th>
<th>Double Exponential</th>
<th>NIG</th>
<th>GED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>-497</td>
<td>-499</td>
<td>-4534</td>
<td>-4598</td>
<td>-4597</td>
</tr>
<tr>
<td>BIC</td>
<td>-4578</td>
<td>-4576</td>
<td>-4515</td>
<td>-4579</td>
<td>-4573</td>
</tr>
<tr>
<td>Likelihood</td>
<td>2302</td>
<td>2305</td>
<td>2271</td>
<td>2304</td>
<td>2303</td>
</tr>
</tbody>
</table>

There are two improper GARCH model according the AIC, BIC and maximum likelihood value. They are student-t GARCH and NIG GARCH. But the qq-plot of two model points out the best one. NIG GARCH satisfies better fit on qq-line.

NIG GARCH parameters also satisfies the stationary condition before likely said the estimation of mean parameter is not statistically significant. NIG GARCH diagnostics show that there is no autocorrelation between residuals.

GARCH Conditional Distribution: Normal Inverse Gaussian

| Estimated coefficients: | Value | Std.Error | t value | Pr(>|t|) |
|--------------------------|-------|-----------|---------|---------|
| C | 0.000301 | 0.000388 | 0.77655 | 0.437422 |
| A | 0.000004 | 0.000002 | 2.21845 | 0.026624 |
| ARCH(1) | 0.100122 | 0.024791 | 4.03860 | 0.000054 |
| GARCH(1) | 0.869387 | 0.032246 | 26.96072 | 0.000000 |
The improper EGARCH whose conditional error distribution is gaussian, satisfies the conditionality. The followings are the results of Gaussian EGARCH. All the coefficients are statistically significant except estimated mean coefficient.

Comparing EGARCH Models

<table>
<thead>
<tr>
<th></th>
<th>Gaussian</th>
<th>Student-t</th>
<th>Double Exponential</th>
<th>GED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>-4592</td>
<td>-4591</td>
<td>-4528</td>
<td>-4526</td>
</tr>
<tr>
<td>BIC</td>
<td>-4569</td>
<td>-4568</td>
<td>-4510</td>
<td>-4503</td>
</tr>
<tr>
<td>Likelihood</td>
<td>2301</td>
<td>2300</td>
<td>2268</td>
<td>2268</td>
</tr>
</tbody>
</table>

EGARCH Conditional Distribution: Gaussian

| Estimated Coefficients | Value | Std. Error | t value | Pr(>|t|) |
|------------------------|-----------|------------|---------|---------|
| C | -0.0003998| 0.0003979 | -1.002 | 3.165e-001 |
| A | -0.6248296| 0.1787430 | -3.496 | 5.007e-004 |
| ARCH(1) | 0.2020199 | 0.0440169 | 4.590 | 5.206e-006 |
| GARCH(1) | 0.9479995 | 0.0174055 | 54.466 | 0.000e+000 |
| LEV(1) | -0.3414637| 0.1071940 | -3.185 | 1.505e-003 |

Gaussian EGARCH Diagnostics

<table>
<thead>
<tr>
<th>Normality Test:</th>
<th>Jarque-Bera P-value 17.22 0.0001952</th>
<th>Shapiro-Wilk P-value 0.9868 0.6231</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ljung-Box test for standardized residuals: Statistic P-value 8.483 0.746</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ljung-Box test for squared standardized residuals: Statistic P-value 7.771 0.7962</td>
<td></td>
</tr>
<tr>
<td>Lagrange multiplier test: TR^2 P-value F-stat P-value 6.684 0.88 0.609 0.9178</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for ARCH Effects: LM Test Null Hypothesis: no ARCH effects Test Stat 0.3846 p-value 0.9211

The TGARCH comparison indicate that the Gaussian TGARCH superior model from the other conditional distributions. In addition, the main parameters are significant again except the mean and the residuals have no autocorrelation is understood from TGARCH diagnostics.

Comparing TGARCH Models

<table>
<thead>
<tr>
<th></th>
<th>Gaussian</th>
<th>Student-t</th>
<th>Double Exponential</th>
<th>GED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>-4602</td>
<td>-4601</td>
<td>-4534</td>
<td>-4532</td>
</tr>
<tr>
<td>BIC</td>
<td>-4578</td>
<td>-4574</td>
<td>-4511</td>
<td>-4504</td>
</tr>
<tr>
<td>Likelihood</td>
<td>2307</td>
<td>2306</td>
<td>2272</td>
<td>2272</td>
</tr>
</tbody>
</table>

TGARCH Conditional Distribution: Gaussian

| Estimated Coefficients | Value | Std. Error | t value | Pr(>|t|) |
|------------------------|-----------|------------|---------|---------|
| C | -3.869e-004| 4.041e-004| -0.9574 | 0.336966 |
| A | 4.797e-006 | 1.812e-006| 2.6467 | 0.008299 |
| ARCH(1) | 2.225e-002 | 2.131e-002| 2.5520 | 0.014435 |
| GARCH(1) | 8.727e+001 | 3.019e-002| 28.9020 | 0.000000 |
| GAMMA(1) | 7.727e-002 | 2.823e-002| 2.7370 | 0.006347 |
Continuous Volatility Modeling

The parameters of COGARCH model is obtained from the discrete GARCH model's parameters $\beta = \beta$, $\eta = \ln \delta$, $\phi = \lambda / \delta$ where β is the constant of GARCH model, δ is the coefficient of GARCH term and λ δ is the coefficient of ARCH term. The numerical solutions for dG_t and $d\sigma_t^2$ is done by using Lévy process driven by NIG process. The exact solution of stochastic differential equation of $d\sigma_t^2$ brings the results of the COGARCH process.

The discrete GARCH models can be compared with NIG Levy Driven COGARCH model according to their conditional variance plots and qq-plot.
GARCH model: sGARCH

GARCH model: eGARCH

GARCH model: fGARCH

fGARCH submodel: TGARCH

Theoretical Quantiles
Sample Quantiles

qq-plot of NIG GARCH

qq-plot of gaussian EGARCH

qq-plot of gaussian TGARCH

qq-plot of NIG COGARCH
As it is seen in the above figures discrete GARCH models capture the shocks and jumps better than continuous GARCH model, although COGARCH captures the jumps in the volatility at the right time, it almost figures out the same pattern with the other models.

CONCLUSION

The methodology to compare discrete models with a continuous model could not be the right way. The forecasting performance and the news impact curves of the models could be the way of opposing the models. The exponential COGARCH (Haug, 2006) which is the extension of the COGARCH model, might be compared with discrete models. But, firstly the exact conditions for opposing the discrete models and their analogue model would be studied

BIBLIOGRAPHY

Haug S., Exponential COGARCH and other continuous time models with applications to high frequency data, Ph.D. dissertation at Munich University of Technology, December 2006

J. C. Duan , “Augmented GARCH(p; q) process and its diffusion limit”, J. Econometrics, 79-97, 1997