Chalabi, Yohan and Scott, David J and Wuertz, Diethelm (2012): Flexible distribution modeling with the generalized lambda distribution.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_43333.pdf Download (1MB) | Preview |
Abstract
We consider the use of the generalized lambda distribution (GLD) family as a flexible distribution with which to model financial data sets. The GLD can assume distributions with a large range of shapes. Analysts can therefore work with a single distribution to model almost any class of financial assets, rather than needing several. This becomes especially useful in the estimation of risk measures, where the choice of the distribution is crucial for accuracy. We introduce a new parameterization of the GLD, wherein the location and scale parameters are directly expressed as the median and interquartile range of the distribution. The two remaining parameters characterize the asymmetry and steepness of the distribution. Conditions are given for the existence of its moments, and for it to have the appropriate support. The tail behavior is also studied. The new parameterization brings a clearer interpretation of the parameters, whereby the distribution's asymmetry can be more readily distinguished from its steepness. This is in contrast to current parameterizations of the GLD, where the asymmetry and steepness are simultaneously described by a combination of the tail indices. Moreover, the new parameterization can be used to compare data sets in a convenient asymmetry and steepness shape plot.
Item Type: | MPRA Paper |
---|---|
Original Title: | Flexible distribution modeling with the generalized lambda distribution |
Language: | English |
Keywords: | Quantile distributions; Generalized lambda distribution; Shape plot representation |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General |
Item ID: | 43333 |
Depositing User: | Yohan Chalabi |
Date Deposited: | 20 Dec 2012 12:05 |
Last Modified: | 28 Sep 2019 02:18 |
References: | J. Aldrich. R. A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science, 12(3):162-176, Aug. 1997. W. H. Asquith. L-moments and TL-moments of the generalized lambda distribution. Computa- tional Statistics & Data Analysis, 51(9):4484-4496, May 2007. O. E. Barndorff-Nielsen and K. Prause. Apparent scaling. Finance and Stochastics, 5:103-113, 2001. M. Bigerelle, D. Najjar, B. Fournier, N. Rupin, and A. Iost. Application of lambda distribu- tions and bootstrap analysis to the prediction of fatigue lifetime and confidence intervals. International Journal of Fatigue, 28(3):223-236, Mar. 2006. A. Bowley. Elements of Statistics. Scribner, New York, 1920. R. C. H. Cheng and N. A. K. Amin. Estimating parameters in continuous univariate distributions with a shifted origin. Journal of the Royal Statistical Society. Series B (Methodological), 45 (3):394-403, 1983. C. J. Corrado. Option pricing based on the generalized lambda distribution. Journal of Futures Markets, 21(3):213-236, 2001. B. Dengiz. The generalized lambda distribution in simulation of M/M/1 queue systems. Journal of the Faculty of Engineering and Architecture of Gazi University, 3:161-171, 1988. F. Downton. Linear estimates with polynomial coefficients. Biometrika, 53(1/2):129-141, 1966. E. A. Elamir and A. H. Seheult. Trimmed L-moments. Computational Statistics & Data Analysis, 43(3):299-314, 2003. E. Elton, M. Gruber, and C. Blake. Survivor bias and mutual fund performance. Review of Financial Studies, 9(4):1097-1120, 1996. P. Embrechts, C. Klueppelberg, and T. Mikosch. Modelling extreme events for insurance and finance. Springer, Berlin, 1997. J. J. Filliben. The probability plot correlation coefficient test for normality. Technometrics, 17(1):111-117, Feb. 1975. R. A. Fisher. On the mathematical foundations of theoretical statistics. Lond. Phil. Trans. (A), 223:1-33, 1922. B. Fournier, N. Rupin, M. Bigerelle, D. Najjar, and A. Iost. Application of the generalized lambda distributions in a statistical process control methodology. Journal of Process Control, 16(10):1087-1098, 2006. B. Fournier, N. Rupin, M. Bigerelle, D. Najjar, A. Iost, and R. Wilcox. Estimating the parameters of a generalized lambda distribution. Computational Statistics & Data Analysis, 51(6):2813-2835, 2007. D. Freedman and P. Diaconis. On the histogram as a density estimator: L2 theory. Probability Theory and Related Fields, 57(4):453-476, Dec. 1981. M. Freimer, G. Kollia, G. Mudholkar, and C. Lin. A study of the generalized Tukey lambda family. Communications in Statistics-Theory and Methods, 17(10):3547-3567, 1988. W. Gilchrist. Statistical modelling with quantile functions. CRC Press, 2000. J. Glattfelder, A. Dupuis, and R. Olsen. Patterns in high-frequency FX data: discovery of 12 empirical scaling laws. Quantitative Finance, 11(4):599-614, 2011. J. Hastings, Cecil, F. Mosteller, J. W. Tukey, and C. P. Winsor. Low moments for small samples: A comparative study of order statistics. The Annals of Mathematical Statistics, 18(3):413-426, 1947. D. Hogben. Some properties of Tukey's test for non-additivity. Unpublished Ph.D. thesis, Rutgers-The State University, 1963. A. H. Jessen and T. Mikosch. Regularly varying functions. Publ. Inst. Math., Nouv. Ser., 80(94): 171-192, 2006. B. L. Joiner and J. R. Rosenblatt. Some properties of the range in samples from Tukey's symmetric lambda distributions. Journal of the American Statistical Association, 66(334): 394-399, 1971. Z. Karian and E. Dudewicz. Fitting statistical distributions: the generalized lambda distribution and generalized bootstrap methods. Chapman & Hall/CRC, 2000. Z. Karian and E. Dudewicz. Comparison of GLD fitting methods: superiority of percentile fits to moments in L2 norm. Journal of Iranian Statistical Society, 2(2):171-187, 2003. Z. A. Karian and E. J. Dudewicz. Fitting the generalized lambda distribution to data: a method based on percentiles. Communications in Statistics - Simulation and Computation, 28(3): 793-819, 1999. J. Karvanen and A. Nuutinen. Characterizing the generalized lambda distribution by L-moments. Computational Statistics & Data Analysis, 52(4):1971-1983, Jan. 2008. J. Karvanen, J. Eriksson, and V. Koivunen. Maximum likelihood estimation of ICA model for wide class of source distributions. In Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop, volume 1, pages 445-454, 2000. T. Kim and H. White. On more robust estimation of skewness and kurtosis. Finance Research Letters, 1(1):56-73, Mar. 2004. R. King and H. MacGillivray. Fitting the generalized lambda distribution with location and scale-free shape functionals. American Journal of Mathematical and Management Sciences, 27(3-4):441-460, 2007. R. A. R. King and H. L. MacGillivray. A starship estimation method for the generalized $\lambda$ distributions. Australian & New Zealand Journal of Statistics, 41(3):353-374, 1999. S. Kullback. Information theory and statistics. John Wiley and Sons, New York, 1959. A. Lakhany and H. Mausser. Estimating the parameters of the generalized lambda distribution. Algo Research Quarterly, 3(3):47-58, 2000. A. Luceno. Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators. Computational Statistics & Data Analysis, 51(2):904-917, Nov. 2006. B. Mandelbrot. The variation of certain speculative prices. The Journal of Business, 36(4):394-419, 1963. J. J. A. Moors. A quantile alternative for kurtosis. Journal of the Royal Statistical Society. Series D (The Statistician), 37(1):25-32, 1988. U. A. Mueller, M. M. Dacorogna, R. B. Olsen, O. V. Pictet, M. Schwarz, and C. Morgenegg. Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis. Journal of Banking & Finance, 14(6):1189-1208, 1990. D. Najjar, M. Bigerelle, C. Lefebvre, and A. Iost. A new approach to predict the pit depth extreme value of a localized corrosion process. ISIJ international, 43(5):720-725, 2003. A. Negiz and A. Cinar. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal, 43(8):2002-2020, 1997. A. Ozturk and R. Dale. A study of fitting the generalized lambda distribution to solar-radiation data. Journal of Applied Meteorology, 21(7):995-1004, 1982. A. Ozturk and R. Dale. Least-squares estimation of the parameters of the generalized lambda- distribution. Technometrics, 27(1):81-84, 1985. S. Pal. Evaluation of nonnormal process capability indices using generalized lambda distribution. Quality Engineering, 17(1):77-85, 2004. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. J. S. Ramberg and B. W. Schmeiser. An approximate method for generating asymmetric random variables. Commun. ACM, 17(2):78-82, 1974. J. S. Ramberg, P. R. Tadikamalla, E. J. Dudewicz, and E. F. Mykytka. A probability distribution and its uses in fitting data. Technometrics, 21(2):201-214, May 1979. B. Ranneby. The maximum spacing method. An estimation method related to the maximum likelihood method. Scandinavian Journal of Statistics, 11(2):93-112, 1984. R. Schnidrig and D. Wuertz. Investigation of the volatility and autocorrelation function of the USD/DEM exchange rate on operational time scales. In High Frequency Data in Finance Conference (HFDF-I), Zurich, 1995. D. W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605-610, 1979. S. Shapiro, M. Wilk, and H. Chen. A comparative study of various tests for normality. Journal of the American Statistical Association, 63(324):1343-1372, 1968. S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples). Biometrika, 52(Part 3-4):591-611, Dec. 1965. H. Shore. Comparison of generalized lambda distribution (GLD) and response modeling methodology (RMM) as general platforms for distribution fitting. Communications In Statistics-Theory and Methods, 36(13-16):2805-2819, 2007. H. A. Sturges. The choice of a class interval. Journal of the American Statistical Association, 21(153):65-66, Mar. 1926. S. Su. A discretized approach to flexibly fit generalized lambda distributions to data. Journal of Modern Applied Statistical Methods, 4(2):408-424, 2005. S. Su. Numerical maximum log likelihood estimation for generalized lambda distributions. Computational Statistics & Data Analysis, 51(8):3983-3998, May 2007. S. Su. Fitting GLD to data via quantile matching method. In Z. Karian and E. Dudewicz, editors, Handbook of Fitting Statistical Distributions with R. CRC Press/Taylor & Francis, 2010. A. Tarsitano. Fitting the generalized lambda distribution to income data. In COMPSTAT'2004 Symposium, pages 1861-1867. Physica-Verlag/Springer, 2004. A. Tarsitano. Comparing estimation methods for the FPLD. Journal of Probability and Statistics, 2010. J. W. Tukey. The practical relationship between the common transformations of percentages or fractions and of amounts. Technical Report Technical Report 36, Statistical Research Group, Princeton, 1960. J. W. Tukey. The future of data analysis. The Annals of Mathematical Statistics, 33(1):1-67, Mar. 1962. J. Van Dyke. Numerical investigation of the random variable $y = c(u\lambda - (1 - u)\lambda)$. Unpublished working paper, National Bureau of Standards, 1961. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/43333 |
Available Versions of this Item
-
An asymmetry-steepness parameterization of the generalized lambda distribution. (deposited 03 Apr 2012 12:42)
- Flexible distribution modeling with the generalized lambda distribution. (deposited 20 Dec 2012 12:05) [Currently Displayed]