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This research is devoted to analysis of efficiency estimation in presence of spatial relationships and spatial heterogeneity in 

data. We presented a general specification of the spatial stochastic frontier model, which includes spatial lags, spatial autoregressive 

disturbances and spatial autoregressive inefficiencies. Maximum likelihood estimators are derived for two special cases of  

the spatial stochastic frontier. Small-sample properties of these estimators and comparison with a standard non-spatial estimator 

were implemented using a set of Monte Carlo experiments. Finally, we tested our estimators on a real-world data set of European 

airports and discovered significant spatial components in data. 
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Introduction 

 

During the last three decades the theoretical and empirical interest to spatial aspects of  

the economy is significantly increased [1]. New economic geography postulates an important role of 

spatial interactions between economic units. Economic activity is heterogeneously distributed across 

space and its spatial structure is considerably determined by forces of spatial interaction like spatial 

competition or spatial conglomeration of businesses. Thus spatial relationships become an essential 

component of contemporary economic models, and spatial econometrics, which incorporates spatial effects 

into classical statistical approaches, is a thriving branch of modern econometrics [2]. 

Estimation of economic efficiency is an extensive research area, where econometric models are 

intensively used. Stochastic frontier model [3], one of the most popular approaches to empirical research 

of efficiency, is widely used. Nevertheless a standard form of the stochastic frontier model doesn’t take 

spatial effects into account and a theory of its spatial modifications is weakly developed. 

Influence of spatial interaction on units’ efficiency is even more important factor for transport enterprises 

like airports, sea ports, and coach terminals. Increasing people mobility and enhancing road network not 

only increase transport terminals accessibility, but make them ‘closer’ to their neighbour competitors and 

intensify spatial effects. Spatial competition among terminals and heterogeneity of a spatial 

structure exert growing influence on their efficiency, and should be included into benchmarking 

approach [4], [5]. 

A specification of a spatial stochastic frontier model per se is insufficiently researched subject.  

In this research we consider a general form of the spatial stochastic frontier model with all types 

of spatial components – spatial lags, spatial autoregressive disturbances and spatial autoregressive 

inefficiencies.  

Different econometric techniques (maximum likelihood, two-step least squares, general method of 

moments) can be adapted estimation of this model. In this article we develop a maximum likelihood 

estimator for different forms of the stochastic frontier model. Derived maximum likelihood estimator 

formulas are tested on the base of simulated data to discover its properties on limited samples. 

Airport benchmarking attracted significant scientific and practical attention after industry 

liberalisation in the nineties [4], [6]. Spatial interactions between European airports and spatial 

heterogeneity of the industry structure are widely acknowledged and should be included into airport 

benchmarking techniques. In this research the spatial stochastic frontier model is applied to a data set of 

European airports and significant spatial effects are discovered. 
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Specifications of a Spatial Stochastic Frontier Model 
 

A classical stochastic frontier model is usually presented in a matrix form as [3]: 
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where  
y is an (n x 1) vector of a dependent variable, output (n is a size of the sample);  
X  is an (n x k+1) matrix of explanatory variables, inputs (k is a number of explanatory variables);  
�  is a (1 x k+1) vector of unknown coefficients (model parameters); 
�  is an (n x 1) vector of composite error terms; 
v  is an (n x 1) vector of independent identically distributed (i.i.d.) error terms; 
u  is an (n x 1) vector of inefficiency terms with non-negative values. 

 

The classical stochastic frontier model doesn’t include any spatial dependencies and assumes that 
all objects in a sample are independent. This assumption is too restrictive in some practical cases. Spatial 
effects can be presented almost in all components of the classical model: 
- spatial influence of neighbours’ output values on a given unit’s output (spatial lags); 
- spatial influence of neighbours’ input values on a given unit’s output; 
- spatial relationship between neighbour unit’s error terms (spatial heterogeneity); 
- spatial correlation between efficiency of neighbour units. 

We define a general spatial stochastic frontier model, including all these effects into the classical 
stochastic frontier model specification:  
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where  
W1y is a spatial lag vector of output values (with a coefficient �); 
W2X is a spatial inputs-output lag vector (with a coefficient �); 
W3v are spatial errors (with a coefficient �); 
W4u are spatial inefficiency lags (with a coefficient �). 

Matrices W1, W2, W3, and W4 represent levels of spatial dependency between units (spatial weights) 
and can be different for every spatial component. All spatial weights matrices have zero values on the main 
diagonal (to prevent self-dependency). Construction of these matrices is usually research-specific and can 
be based on geographical distances, travel times, etc. 

Estimation of the general spatial stochastic frontier model’s parameters is a complicated task, which 
is related with identification problems, computation performance issues and requires a significant volume 
of data. In this research we consider two special cases of the general spatial stochastic frontier model. 

Let apply following constraints on the general spatial stochastic frontier model: 

,0=γ  (3) 

,0=ξ  (4) 

.0=η  (5) 

Under these constraints the model includes only spatial lags for unit’s outputs, all other spatial effects 
are excluded:  
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Following LeSage [7] notation for naming of spatial models, this model is a mixed first-order spatial 

autoregressive-regressive stochastic frontier model. We will refer this model as a spatial autoregressive 

stochastic frontier (SARSF) model. 
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Another model we consider in this research includes spatial relationship of a symmetric error term 

v as well as spatial lags. Suppressing the constraint (4), we obtain the following model specification: 
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We will refer this model as a mixed first-order spatial autoregressive-regressive stochastic frontier 

model with spatial autoregressive disturbances (SARARSF). 

 

Maximum likelihood estimator for spatial stochastic frontier models 
 

A wide range of statistical methods is used for estimation of spatial model parameters. The most 

popular are maximum likelihood estimator [7], [8], two-step least squares [9], and generalised method of 

moments [10], [11]. In this research we derive maximum likelihood estimators for SARSF and 

SARARSF models, test them with Monte Carlo experiments and apply to a real dataset of European 

airports. 

The maximum likelihood estimator requires an assumption about distributions of error and 

inefficiency components. The distribution of the symmetric error term v is usually set to normal, and the 

distribution of the non-negative inefficiency term u is selected from half-normal [12], truncated normal [13], 

or gamma [14]. We consider the simplest normal-half-normal type of the composite error term �: 
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The probability density function for this case is well known: 
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� and � are standard normal probability density and cumulative distribution functions accordingly. 

 
Maximum Likelihood Estimator for the SARSF Model  

 

Derivation of the maximum likelihood estimator formula for the SARSF model (6) is quite 

straightforward. According to the model specification, the composite error terms vector can be expressed 

as: 

( ) βρε XyWI −−= 1 . 

Using the multivariate change of variables formula and the Jacobian matrix, we can produce the 

probability density function for y: 
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Now the log-likelihood function can be easily obtained: 
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Maximum Likelihood Estimator for the SARARSF Model  
 

Derivation of the maximum likelihood estimator formula for the SARARSF model (7) requires 

some technical efforts. We follow the procedure, described in Kumbhakar and Lovell [3] to produce  

the probability density function and likelihood function. 
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Initial model specification includes the distribution of the error term in an implicit form: 
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Straightforward transformations give us: 
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So the error term has a multivariate normal distribution with a covariance matrix � and its 

respective probability density function is given as:  
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The half-normal probability density function is given as: 
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We omit the derivation details of the composite error term’s probability density. Finally the probability 

density function of the composite error term � is obtained as: 

( ) ( )( ) ( )ΘΩΦ= ,,,,2 00 εϕµεε n
f , (15) 

where �(x, mean, covariance) and �(x, mean, covariance) are multivariate probability density and 

cumulative distribution functions with a mean vector mean and a covariance matrix covariance, 
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This finding conforms to the results presented in [15]. 

Using the density function (16) and following the same logic as in (10), we obtained the respective log-

likelihood function for the SARARSF model: 

( ) ( )( ) ( )( ) ( )( ),detln,,ln,,ln,,,| 1~~ WICyLogL uv ρεϕµερσσβ −+Θ+ΩΦ+= 00  (16) 

Maximisation of the log-likelihood function with respect to its parameters is a separate computational 

problem. 

 

Monte Carlo experiments 
 

In order to discover additional information about properties of the derived estimators on limited 

samples, we organised two Monte Carlo studies, completely based on artificial data. The first study is 

devoted to comparison of the classical stochastic frontier and the SARSF model in presence of spatial 

lags. The second study is used to compare SARSF and SARARSF model estimators in presence of both 

spatial lags and spatial errors. 

Both studies are based on a series of 100 experiments and a generated sample of 100 units. The sample 

size was chosen for practical purposes – application to a set of international airports in Europe, which 

have approximately this size. 

Spatial settings were modelled as a ”rook” spatial weights matrix for spatial lags (W1) and as a “queen” 

spatial weights matrix for spatial errors (W2). 

 

Study 1. Stochastic frontier without spatial components vs. the SARSF model 
 

The first study was repeated 7 times for different values of �: 0,  ± 0.1, ± 0.5, ± 0.9. Higher values 

of  � correspond to stronger spatial effects.  

The results of the first study are presented in the Table 1. 
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Table 1. Simulation results for the classical stochastic frontier (SF) and the spatial autoregressive stochastic frontier (SARSF) estimators.* 
  
 �0 �1 �2 �3   �v �u � 

Real values 10 1 -2 3 20 100  

 

 

 

0 

SF 1.769 

(1.3E-04) 

1.002 

(7.0E-01) 

-2.001 

(7.6E-01) 

3.001 

(8.9E-01) 

21.937 

(2.4E-01) 

91.544 

(1.1E-03) 

- 

SARSF 2.338 

(5.0E-04) 

0.996 

(4.8E-01) 

-2.004 

(4.7E-01) 

2.994 

(2.7E-01) 

19.676 

(8.5E-01) 

89.465 

(5.5E-05) 

0.004 

(1.1E-01) 

 

 

 

0.1 

SF -10.774 

(9.5E-13) 

1.001 

(9.1E-01) 

-2.008 

(1.1E-01) 

3.013 

(1.2E-02) 

35.581 

(1.2E-13) 

82.302 

(1.1E-07) 

- 

SARSF -1.321 

(8.3E-06) 

1.006 

(2.5E-01) 

-2.002 

(7.3E-01) 

2.996 

(5.4E-01) 

23.039 

(9.0E-02) 

86.259 

(2.2E-05) 

0.103 

(1.7E-01) 

   

-0.1 

SF 4.527 
(3.2E-02) 

0.998 
(6.6E-01) 

-2.005 
(3.1E-01) 

3.011 
(3.1E-02) 

32.342 
(3.1E-10) 

86.649 
(5.1E-05) - 

SARSF -2.079 
(3.0E-07) 

0.995 
(3.4E-01) 

-2.005 
(3.6E-01) 

3.001 
(8.8E-01) 

23.242 
(8.8E-02) 

86.277 
(2.7E-06) 

-0.098 
(5.1E-01) 

   

0.5 

SF -92.485 
(3.0E-34) 

1.054 
(8.2E-05) 

-2.138 
(9.2E-15) 

3.225 
(8.1E-26) 

142.612 
(4.0E-71) 

40.556 
(2.9E-39) - 

SARSF -11.746 
(6.0E-09) 

0.999 
(8.5E-01) 

-1.990 
(3.5E-02) 

3.001 
(8.0E-01) 

28.926 
(2.0E-04) 

71.537 
(1.9E-09) 

0.499 
(5.2E-01) 

   

-0.5 

SF 4.313 
(2.4E-01) 

1.065 
(1.3E-05) 

-2.181 
(2.6E-20) 

3.269 
(4.9E-32) 

146.612 
(3.1E-71) 

46.783 
(3.5E-32) 

- 

SARSF 1.561 
(9.4E-05) 

0.999 
(9.0E-01) 

-1.996 
(4.4E-01) 

3.002 
(7.7E-01) 

21.000 
(5.2E-01) 

90.037 
(1.5E-04) 

-0.498 
(3.3E-01) 

   

0.9 

SF -636.538 
(1.5E-30) 

1.442 
(1.0E-11) 

-2.936 
(8.8E-26) 

4.347 
(3.6E-38) 

545.887 
(5.3E-57) 

148.401 
(5.8E-04) 

- 

SARSF 1.269 

(6.9E-03) 

0.999 

(8.8E-01) 

-1.996 

(5.2E-01) 

2.988 

(3.6E-02) 

20.292 

(8.9E-01) 

88.623 

(9.7E-03) 

0.892 

(1.5E-02) 

   

-0.9 

SF 91.309 

(2.3E-10) 

1.668 

(1.1E-17) 

-3.221 

(6.6E-31) 

4.727 

(4.5E-41) 

686.998 

(2.3E-66) 

156.142 

(6.6E-06) 

- 

SARSF 11.080 

(5.6E-01) 

0.995 

(3.1E-01) 

-2.005 

(3.6E-01) 

3.007 

(2.2E-01) 

10.839 

(1.4E-12) 

108.119 

(2.3E-02) 

-0.898 

(1.8E-02) 

* Values in brackets are p-values for Student’s test of a hypothesis “an average estimate equals to a corresponding real value” 

 
The classical stochastic frontier without spatial components estimator became biased in presence of spatial 

lags (as expected), and the bias becomes significant for higher values of �. Sensitivity of the model’s � parameters 
to changes of spatial settings is relatively lower – almost no bias for � = 0.1 (although the bias should be proved 

theoretically). Estimates of the standard deviations �v and �u are more susceptible to spatial effects. As these 

parameters are critical to estimation of inefficiency levels, this finding is important for understanding of 

unrecorded spatial effects on estimated efficiency values. According to simulation results, a standard deviation of 
the error term v is overestimated, and a standard deviation of the inefficiency term u is underestimated. This leads 

to a false conclusion about lower inefficiency values of data units in presence of spatial effects. 

The SARSF estimator identifies spatial lags and other data generation process parameters correctly. 

 

Study 2. The SARSF model vs. the SARARSF model 
 

The second study was repeated 3 times for different values of parameters � (spatial lags) and � (spatial 
errors). 

The results of this study are presented in the Table 2. 
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Table 2. Simulation results for the spatial autoregressive stochastic frontier (SARSF) and the spatial autoregressive stochastic 

frontier with spatial autoregressive disturbances (SARARSF) estimators.* 

  
 �1 �2 �3 � � 

Real values 1 -2 3   

  0.5 0 

SARSF 1.000 

(9.8E-01) 

-2.007 

(1.4E-01) 

2.992 

(1.3E-01) 

0.500 

(8.2E-01) 

- 

SARARSF 0.995 

(4.5E-01) 

-1.992 

(1.7E-01) 

2.988 

(7.0E-02) 

0.488 

(6.9E-04) 

0.091 

(2.6E-02) 

  0 0.5 

SARSF  1.021 

(3.4E-01) 

-1.993 

(6.5E-01) 

2.989 

(4.7E-01) 

0.040 

(1.1E-02) 

- 

SARARSF  0.998 

(9.2E-01) 

-2.014 

(2.0E-01) 

3.008 

(5.0E-01) 

0.012 

(3.2E-02) 

0.561 

(1.2E-01) 

  0.5 0.5 

SARSF 0.993 

(2.3E-01) 

-1.993 

(2.0E-01) 

2.992 

(1.4E-01) 

0.518 

(8.2E-07) 

- 

SARARSF  0.998 

(7.4E-01) 

-2.000 

(9.3E-01) 

2.995 

(4.1E-01) 

0.501 

(7.8E-01) 

0.469 

(4.5E-02) 

* Values in brackets are p-values for the Student test of a hypothesis “an average estimate equals to a corresponding real value” 

 
Application to Airports 

 

We applied both SARSF and SARARSF specifications of the spatial stochastic frontier model to a data 

set of European airports.  

Significant demand for airports benchmarking attracted academic researchers to this problem. 

There are more than a hundred research papers, published during last two decades, and devoted to airports 

efficiency estimation. The most significant reports are the Global Airport Performance Benchmarking 

Reports produced by Air Transport Research Society [16], the Airport Performance Indicators and 

Review of Airport Charges reports by Jacobs Consulting, the Airport Service Quality programme by 

Airports Council International. Some local authorities which control the airport sector also provide their 

own benchmarking reports, e.g. Civil Aviation Authority (UK) [17], and others. Many related researches 

are also executed within the bounds of the German Airport Performance research project, a joint study 

between three German universities.  

Despite intensified research of efficiency in the airport industry and obvious geographical issues, 

spatial effects are rarely included into consideration [6]. 

There are many different approaches to understanding of airport business, a set of used resources 

and a output of airport activity [18]. In this research we used a number of transferred passengers of a main 

result of airport activity and infrastructure units (gateways, check-ins) as airport resources. The production 

function used in this research is estimated in the form: 
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where  

Passengers is a total number of passengers carried by an airport (both departure and arrival); 

Runways and CheckIns are numbers of airport’s runways and check-ins respectively. 

Other airport infrastructure characteristics are excluded due to a multicollinearity problem. 

A matrix of spatial weights W was constructed on the base of Euclidean distances. Realising all 

shortcomings of this approach, we think that general influence of spatial effects will be estimated 

correctly. 

 

Spatial relationships and spatial heterogeneity in airport industry 

Presence of both spatial relationships and spatial heterogeneity in the airport industry is widely 

acknowledged in literature (see [6] for a related literature review). Spatial relationships are usually 

presented in a form of spatial competition. Theory of spatial competition is well developed, but rarely 
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applied to airports. Scientific and government interest to spatial competition among airports was raised 

after industry liberalisation in earlier nineties. Taking spatial interactions between airports into account is 

acknowledged to be critically important for estimation of airports efficiency levels. A wide range of 

instruments like overlapping catchment areas, a network connectivity index and other were suggested, but 

the spatial econometric models can be highlighted as the most theoretically supported methodology. 

Spatial heterogeneity is a very import drawback in airport efficiency research. Region-specific 

settings can significantly affect airports activity, but their inclusion into a model is not straightforward. 

There are some sources of regional heterogeneity of airport activity: 

- Climate. Airport activity can be significantly affected by a climate. For example, snow-belt 

airports have to spend additional efforts on runway service, which reduce their production in 

relation with airports located in a region with softer weather conditions. Mapping this 

difference out the model will lead to incorrect (underestimated) values of snow-belt airports’ 

efficiency.  

- Economics. Economic situation in European countries is very heterogeneous. Significantly 

different income per capita and price levels define different demand to air transport.  

- Region attractiveness. Regions also are not equal in relation to their demand for air transport. 

Business activities, required air flights, tourism attractiveness significantly vary across Europe.  

A standard approach to include these factors into the model is based on a set of region-specific 

dummy variables, and looks weak in case of a complex spatial structure. Spatial effects are usually not 

limited with country borders, so using of an administrative division in this case is not well-grounded. 

Nevertheless, spatial structure should be included into efficiency estimation to prevent a bias in efficiency 

estimates. 

 

Data 

The study data set includes characteristics of 122 European airports in 2009. The characteristics 

include: 

- A number of passengers carried (direct transit passengers are excluded). This indicator is used 

as the main output of airport’s activity. 

- Airport infrastructure – a number of check-in facilities, gates, runways, and parking spaces are 

used as input resources of airports’ activity.  

 

Estimation results 

Six different model specifications were tested for the data set: 

- classical regression (OLS estimates); 

- classical stochastic frontier (SF estimates); 

- classical spatial lag model (SAR estimates); 

- classical spatial error model (SEM estimates); 

- spatial autoregressive stochastic frontier (SARSF estimates); 

- spatial autoregressive stochastic frontier with spatial autoregressive disturbances (SARARSF 

estimates). 

The results are presented in the Table 3. 
 

Table 3. Estimation results of different model specifications* 

 OLS SF SAR SEM SARSF SARARSF 

�0 12.073 

(<2E-16) 

12.498 

(<2E-16) 

6.980 

(6.9E-02) 

12.092 

(<2E-16) 

12.50 

(<2E-16) 

12.120 

(<2E-16) 

�1 0.658 

(6.3E-06) 

0.669 

(7.3E-07) 

0.649 

(1.3E-06) 

0.658 

(7.7E-07) 

0.668 

(9.4E-07) 

0.653 

(5.7E-07) 

�2 0.813 

(<2E-16) 

0.785 

(<2E-16) 

0.803 

(<2E-16) 

0.809 

(<2E-16) 

0.786 

(<2E-16) 

0.796 

(<2E-16) 

�v 0.514 0.549 0.501 0.501 0.444 0.494 

�u - 0.248 - - 0.400 0.005 

� - - 0.331 

(2.1E-01) 

- 0.0001 

(9.4E-01) 

0.0002 

(9.0E-01) 

� - - - 0.480 

(2.6E-01) 

- 0.132 

(4.7E-08) 

* Values in brackets are significance  
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Standard SF estimates show significant inefficiency in data (inefficiency variance �u = 0.248, which 

is comparable with the error term variance �u). SARSF model supports this conclusion, showing 

insignificant spatial lags and significant inefficiency. But taking spatial heterogeneity into account 

(SARARSF model) produces alternative results. The model demonstrates significant spatial heterogeneity 

in data (which is expected for airport industry), and this spatial component supplants inefficiency – it 

becomes insignificant. This result is expected due to incompleteness of the production function components 

(only infrastructure metrics are included), but from our opinion the general findings are very important 

for analysis. Generally, imperfection of the production frontier can produce incorrect conclusions about 

inefficiency term, when including spatial components into the model can partly improve the situation.  

Estimates of input elasticises (coefficient �1 for a number of runways and coefficient �2 for  

a number of check-ins) are quite stable for all models, which is quite reasonable in absence of significant 

spatial lags. 

 
Conclusions 

 

We presented a general specification of the spatial stochastic frontier model which includes spatial 

lags, spatial autoregressive disturbances and spatial autoregressive inefficiencies. These spatial 

components describe present spatial relationships and spatial structure of study units and critically 

important for econometric models, specifically for efficiency estimation. 

Maximum likelihood estimators are derived for two specific cases of the spatial stochastic frontier – 

a spatial autoregressive stochastic frontier and spatial autoregressive stochastic frontier with spatial 

autoregressive disturbances. Small sample properties of the derived estimates are investigated with a set 

of Monte Carlo experiments. We discovered that for a sample of size 100 both estimators provide stable 

correct results for unknown parameters of a production function. Further small-sample studies are 

necessary for more definite conclusion about the estimators. Additional research is necessary to assess  

the influence of spatial components on efficiency estimates and investigate properties of the presented maximum 

likelihood estimators. 

We tested our estimators on a real-world data set of European airports. We discovered significant 

spatial components in data, which proves our initial hypothesis about presence of spatial relationships and 

spatial heterogeneity in airport industry.  
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