
Munich Personal RePEc Archive

Estimating dynamic causal effects with

unobserved confounders: a latent class

version of the inverse probability

weighted estimator

Bartolucci, Francesco and Grilli, Leonardo and Pieroni, Luca

University of Perugia

8 October 2012

Online at https://mpra.ub.uni-muenchen.de/43430/

MPRA Paper No. 43430, posted 26 Dec 2012 14:55 UTC



Estimating dynamic causal effects with unobserved

confounders: a latent class version of the inverse

probability weighted estimator

Francesco Bartolucci∗, Leonardo Grilli† and Luca Pieroni‡

August 7, 2012

Abstract

We consider estimation of the causal effect of a sequential binary treatment

(typically corresponding to a policy or a subsidy in the economic context) on a

final outcome, when the treatment assignment at a given occasion depends on the

sequence of previous assignments as well as on time-varying confounders. In this

case, a popular modeling strategy is represented by Marginal Structural Models;

within this approach, the causal effect of the treatment is estimated by the Inverse

Probability Weighting (IPW) estimator, which is consistent provided that all the

confounders are observed (sequential ignorability). To alleviate this serious limita-

tion, we propose a new estimator, called Latent Class Inverse Probability Weighting

(LC-IPW), which is based on two steps: first, a finite mixture model is fitted in or-

der to compute latent-class-specific weights; then, these weights are used to fit the

Marginal Structural Model of interest. A simulation study shows that the LC-IPW

estimator outperforms the IPW estimator for all the considered configurations, even

in cases of no unobserved confounding. The proposed approach is applied to the

estimation of the causal effect of wage subsidies on employment, using a dataset

of Finnish firms observed for eight years. The LC-IPW estimate confirms the ex-

istence of a positive effect, but its magnitude is nearly halved with respect to the

IPW estimate, pointing out the substantial role of unobserved confounding in this

setting.
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1 Introduction

In many fields, including Economics, longitudinal studies are often designed to assess the

causal effect of a dynamic treatment on an outcome measured at the end of the period.

In the economic context, this treatment corresponds to a policy or, as in the application

motivating this paper, to a subsidy for firms satisfying a certain requirement. We consider

the common case of a binary treatment assigned repeatedly over time, for example an

incentive to firms. The analysis is complicated by the fact that, usually, the treatment

assignment at a given occasion (time point or interval) depends on the sequence of previous

assignments, as well as on time-varying confounders, namely covariates varying in time

and affecting both the treatment assignment and the outcome. In such cases, conditioning

on the observed sequence of time-varying confounders yields biased results (Robins et al.,

2000). A popular solution is represented by Marginal Structural Models (MSMs); see

Robins (1999), Robins et al. (2000), Gill and Robins (2001), and Cole and Hernan (2008).

A MSM is a regression model for the relationship between the outcome and the se-

quence of treatment assignments: the time-varying confounders are not included in the

model, but their distorting effect is neutralized by weighting each observation with the

inverse of the probability of the sequence of observed treatments. Such a probability is

the product of the occasion-specific probabilities of being assigned to treatment condi-

tional on the history, namely previous treatment assignments and previous values of the

confounders. The resulting Inverse Probability-of-Treatment Weighted or simply Inverse

Probability Weighted (IPW) estimator of the causal effect is consistent under quite general

assumptions. Note that the method involves the specification of two models: an outcome

model and a treatment model for estimating the weights. Both models are subject to mis-

specification, with different consequences on the results (Lefebvre et al., 2008; Lefebvre

and Gustafson, 2010). The IPW method can be implemented using standard software for

regression or specific routines, such as the R package ipw (van der Wal and Geskus, 2011).

The issue of casual effects of dynamic treatments has been initially considered in

Epidemiology, where the main methods are MSM coupled with IPW (Robins et al., 2000)

and sequential propensity score adjustment (Achy-Brou et al., 2010). Recently, Lechner
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(2009) and Lechner and Miquel (2010) considered the estimation of dynamic causal effects

in Economics. Their approach focuses on non-parametric identification and estimation of

dynamic causal effects defined either on the whole population or on specific subsets, such

as the treated subjects.

The IPW estimator for a MSM yields valid results provided that all the confounders

are observed (sequential ignorability or dynamic conditional independence). To alleviate

this serious limitation, we propose an extension of the IPW estimator to account for

unobserved pre-treatment confounders. Specifically, we assume that the unobserved con-

founders are summarized by a discrete latent variable, thus we estimate the probabilities

of treatment using a finite mixture (or latent class) model. The new estimator, called

Latent Class IPW (LC-IPW), is based on two steps. First, we fit a finite mixture model

to treatment indicators and covariates in order to classify the subjects into a small num-

ber of groups that we name latent classes ; subjects in the same latent class are assumed

to have the same behavior in terms of the effect of the unobserved confounders. Second,

for each subject the weight is computed according to the assigned latent class, and the

IPW estimator is applied. Standard errors for the resulting estimates, and correspond-

ing confidence intervals, are obtained by non-parametric bootstrap. We implemented the

proposed estimator by combining existing software for latent class modeling and inverse

probability weighting.

To assess the properties of the proposed LC-IPW estimator, we rely on a simulation

study with a continuous outcome, a sequential binary treatment and some observed and

unobserved covariates (potential confounders). The LC-IPW estimator outperforms both

the IPW and the OLS regression estimators for all the considered combinations of sample

size, number of occasions, distribution of the unobserved confounder and direction of

confounding. It is worth to note that LC-IPW may be more accurate than IPW even when

there is no unobserved confounding, which is consistent with results on over-adjustment

in inverse probability weighting (Rotnitzky et al., 2010).

The proposed approach is illustrated by estimating the effect of firms’ subsidies on

employment using a dataset of Finnish firms covering the period 1995-2002. This is an

instance of sequential binary treatment with time-varying covariates. In this application,
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the standard IPW method yields a positive estimate of the causal effect of subsidies. The

proposed LC-IPW method confirms the existence of a positive effect, but its magnitude is

nearly halved, pointing out the substantial role of unobserved confounding in this setting.

The article is organized as follows. In Section 2, we review the standard IPW method,

whereas in Section 3 we introduce the LC-IPW method to account for unobserved con-

founding. In Section 4, we show the results of a simulation study of the performance of

the LC-IPW estimator compared with conventional estimators. In Section 5 we illustrate

the new method through an application about subsidies on employment. Section 6 offers

some concluding remarks.

2 Standard inverse probability weighting

Consider a random sample of n units observed at T consecutive occasions (time points or

intervals). In general, we denote each subject by i, i = 1, . . . , n, and each occasion by t,

t = 1, . . . , T , although, to simplify the notation, we will usually omit the subject index i.

Moreover, we adopt the following notation: Y is the outcome of interest (measured after

the last occasion), St is the binary indicator of treatment at occasion t, V is a column

vector of pre-treatment covariates (measured before the first occasion), and X t is a col-

umn vector of time-varying covariates (possibly including the outcome variable measured

during the observation period). We use the subscript 1 : t to denote a column vector ob-

tained by stacking vectors of variables measured from occasion 1 until occasion t, namely

S1:t = (S1, . . . , St)
′ and X1:t = (X ′

1, . . . ,X
′
t)

′. Lowercase letters denote realizations of

these variables.

The covariates V and X t are confounders, namely they simultaneously affect both St

and Y . Following the potential outcome approach, the outcome Y has a potential version

for each treatment sequence, denoted with Y (s1:T ). The vector Y (all) contains all these

potential outcomes (2T in case of a sequential binary treatment with T occasions). For

any subject, the observed outcome is the potential outcome corresponding to the observed

treatment sequence. This basic assumption is known as the observation rule (Lechner and

Miquel, 2010) or the consistency assumption (Cole and Hernan, 2008).
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The history of a variable is the set of variables determined before it, thus potentially

affecting it. We solve the simultaneity issue by postulating, as in Lechner and Miquel

(2010), that St is determined before X t. Therefore, the history of St includes V , X1:t−1

and S1:t−1, whereas the history of X t includes V , X1:t−1 and S1:t (for t = 1 both X1:t−1

and S1:t−1 vanish). At the last occasion X t is not a confounder since it does not affect

any treatment indicator, thus XT can be ignored (note that in some applications the

outcome Y is a just one of the variables included in XT ).

Figure 1 shows the causal Directed Acyclic Graph (DAG) for two occasions (T = 2),

where the ordering of the variables from left to right reflects the time ordering (the graph

does not include X t at t = 2 because it is not a confounder).

Figure 1: Causal DAG for two occasions (T = 2) without unobserved confounders.

The DAG in Figure 1 makes it clear the double nature of X1: it is a post-treatment

variable relative to S1 (as it is determined after S1), whereas it is a confounder relative to

S2 (as it affects both S2 and Y ). This explains the difficulties in getting unbiased estimates

of treatment effects: in fact, one should condition on X1 because it is a confounder; at

the same time, one should not condition on X1 because it is a post-treatment variable

(Rubin, 2005). The IPW estimation method of Robins et al. (2000) solves this controversy

as it adjusts for time-varying confounders without conditioning on them.
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In the spirit of Robins et al. (2000), we specify a MSM, namely a model for the

relationship between the potential outcome Y (s1:T ) and the treatment indicators s1:T . In

the continuous case, we may specify a linear model:

E(Y (s1:T )) = β0 + g(s1:T )
′β1, (1)

where g(s1:T ) is a function summarizing the treatment sequence, such as the scalar s+ =
∑T

t=1 st or the vector (s+, I(sT = 1))′. Under the identification assumptions discussed

below, the parameters of interest β1 have a causal interpretation, allowing us to make

inference on average treatment effects on the whole population (note that, in the context

of sequential treatments, the causal effects are sometimes called dynamic). For example,

the average causal effect of always treated versus never treated is

E(Y (1,1,...,1))− E(Y (0,0,...,0)) = [g(1, 1, . . . , 1)− g(0, 0, . . . , 0)]′β1, (2)

which simplifies to Tβ1 if g(s1:T ) = s+.

The first assumption for the identification of causal effects is the Stable Unit Treatment

Value Assumption (SUTVA) of Rubin (1974), which implies that the potential outcomes

of a given subject only depend on the treatment sequence of that subject, thus excluding

any interference with other subjects (Achy-Brou et al., 2010).

The second assumption, indifferently called random assignment (Achy-Brou et al.,

2010), common support requirement (Lechner and Miquel, 2010), or positivity (Cole and

Hernan, 2008), states that the conditional probability of being assigned to treatment is

neither zero nor one:

0 < Pr(St = 1 | S1:t−1,X1:t−1,V ) < 1, t = 1, . . . , T. (3)

In general, a statement conditional on a set of variables is intended to hold for any

admissible combination of values of the variables after the conditioning bar.

The third assumption rules out unobserved confounders. This is usually the more

difficult assumption to justify in an observational study. In a static setting, namely
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with a single occasion of administration of the treatment, it states that the treatment

indicator is independent of the potential outcomes given the observed covariates. This

is called ignorability in the literature on causal inference (selection on observables in

Economics or exchangeability in Epidemiology); see Rubin (2005). In a dynamic setting

with a sequential treatment, the ignorability assumption is formulated in a recursive way.

The Sequential Ignorability Assumption (SIA) is written as

St⊥Y (all) | S1:t−1,X1:t−1,V , t = 1, . . . , T. (4)

In Lechner and Miquel (2010) the SIA, supplemented with the common support require-

ment, is called Weak Dynamic Conditional Independence Assumption (whereas the strong

version rules out observed confounders). The SIA states that, conditionally on the his-

tory up to occasion t − 1, the treatment assignment at occasion t is independent of the

potential outcomes: therefore, for each sub-population defined by the history up to the

previous occasion, the treatment is assigned as if it was randomized.

In the following, SUTVA and random assignment will be taken as true and we will

focus on SIA and its modification.

Under SIA, the causal parameters of a MSM can be consistently estimated by the

IPW method: subject i is weighted by the inverse of the probability of its observed

treatment sequence, namely
∏T

t=1 Pr(Sit = sit | si,1:t−1,xi,1:t−1,vi). The occasion-specific

probabilities are usually estimated through a pooled logistic regression, namely a standard

logistic regression applied to the subject-occasion dataset (any subject contributes with

one record for each occasion where it is observed).

The efficiency of the IPW estimator may be unsatisfactory when the weights have a

high variability. In particular, subjects with tiny probabilities have large weights which

increase the variance. A common method to improve the efficiency is to use stabilized

weights (Robins et al., 2000):

wi =

∏T

t=1 Pr(Sit = sit | si,1:t−1)
∏T

t=1 Pr(Sit = sit | si,1:t−1,xi,1:t−1,vi)
. (5)

The probabilities at the numerator are estimated with the same approach used for the
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denominator, except that the set of regressors is restricted to the treatment indicators.

3 The proposed approach: latent class inverse prob-

ability weighting

We extend the IPW method with the aim of introducing a consistent estimator of causal

effects in the presence of a pre-treatment unobserved confounder. To represent such a

confounder, we extend the DAG in Figure 1 by adding a further node U pointing at all

existing nodes. The extended DAG is shown in Figure 2.

Figure 2: Causal DAG for two occasions (T = 2) with a pre-treatment unobserved con-
founder U .

We assume that the confounder is a categorical latent variable U with categories c =

1, . . . , k corresponding to the different latent classes or mixture components. Therefore,

the population is divided into a finite number of latent classes having different parameters

for the distribution of the observed variables. It is worth noting that the number of latent

classes k and their probabilities πc = Pr(U = c) are parameters to be estimated, thus

the approach is flexible enough to satisfactorily approximate also continuous unobserved

confounders.
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We relax the ignorability assumption (SIA) defined in (4) by requiring that the inde-

pendence holds within the latent classes induced by the unobserved confounder U . We

call it the Latent Class Sequential Ignorability Assumption (LC-SIA):

St⊥Y (all) | S1:t−1,X1:t−1,V , U, t = 1, . . . , T. (6)

Clearly, LC-SIA is weaker than SIA because the independence statement is conditional

on U , thus in general it does not hold marginally (namely, if U is ignored). Therefore,

under LC-SIA the standard IPW estimator may be biased, but it is possible to devise

a suitable modification to correct it. A route, noted by Robins et al. (2000) but never

implemented, consists in computing the weights using probabilities conditioned on U :

Pr(Sit = sit | si,1:t−1,xi,1:t−1,vi, Ui = ci). (7)

Since the latent class ci of subject i is unknown, it has to predicted on the basis of the

available data. For this end, we fit an auxiliary latent class model for the treatment

indicators and the observed covariates. Therefore, we propose a two-step estimation

procedure:

1. fit an auxiliary latent class model to assign subjects to latent classes;

2. fit a MSM, such as the one in equation (1), using weights computed with the latent-

class-specific probabilities (7).

3.1 First step: auxiliary finite mixture model

In order to assign subjects to latent classes, we fit a finite mixture model for the treatment

indicators and the observed covariates. For this end, the joint distribution of the observed

variables is written as follows:

f(v,x1:T , s1:T ) =
k

∑

c=1

f(v,x1:T , s1:T | c)πc. (8)
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Conditionally on the latent class, the joint distribution of the observed variables is recur-

sively factorized as follows:

f(v,x1:T , s1:T | c) = f(v|c)
T
∏

t=1

f(st | s1:t−1,x1:t−1,v, c)f(xt | s1:t,x1:t−1,v, c). (9)

For every probability or density function in (9), we have to choose a suitable model. For

the component f(st | s1:t−1,x1:t−1,v, c) we use logistic regression:

f(st | s1:t−1,x1:t−1,v, c) = pst
t|c(1− pt|c)

(1−st) (10)

with

pt|c = Pr(St = 1 | s1:t−1,x1:t−1,v, c) = expit(η
(1)
t|c +s′1:t−1η

(S)
t|c +x′

1:t−1η
(X)
t|c +v′η

(V )
t|c ), (11)

where expit(x) = exp(x)/(1 + exp(x)). Note there are specific parameters for every

combination of occasion t and latent class (or mixture component) c.

The other components of the distribution (9), namely f(v|c) and f(xt | s1:t,x1:t−1,v, c),

should be modeled according to the nature of the variables: for example, for continuous

variables the simplest choice is a multivariate normal regression model.

Under random sampling, the log-likelihood of the auxiliary latent class model is the

sum over subjects of the logarithm of the joint distribution (8):

ℓ(θ) =
n

∑

i=1

log[f(vi,xi,1:T , si,1:T )], (12)

where θ is the vector of all model parameters. These parameters can be estimated by

maximizing ℓ(θ) by means of an EM algorithm implemented along the same lines as in .

For reasons of computational efficiency, we have written a MATLAB code, but the auxiliary

model could be fitted by existing software for latent class or mixture models, for example

the R package flexmix (Grün and Leisch, 2008) and by the Stata package fmm by Kit

Baum1.

1The series of MATLAB" functions are available from the authors upon request.
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Once the parameters have been estimated, every subject is assigned to a latent class

on the basis of the estimated posterior probabilities q̂ic, c = 1, . . . , k, where

q̂ic =
f̂(vi,xi,1:T , si,1:T | c)π̂c

∑k

c=1 f̂(vi,xi,1:T , si,1:T | c)π̂c

. (13)

Subject i is assigned to the latent class ĉi with the highest estimated posterior probability.

Even if the aim is to estimate the probabilities of the treatment indicators, the auxiliary

latent class model is a model for both the treatment indicators S1:T and the covariates V

andX1:T . Indeed, modeling the covariates is not necessary, but it yields better predictions

of the latent classes, thus increasing the precision of the weighted estimator of the causal

effect.

The choice of the number of latent classes k is a critical issue. The most popular

method is based on the Bayesian Information Criterion (BIC) of Schwarz (1978); see

McLachlan and Peel (2000), Chapter 6, among others. This criterion is based on the

minimization of the index

BICk = −2ℓ(θ̂k) + log(n)#park,

where ℓ(θ̂k) is the maximum log-likelihood of the model with k components and #park

denotes the number of free parameters. This index accounts for the goodness-of-fit of the

model (measured by the log-likelihood) and the model complexity (in terms of number

of free parameters). An alternative criterion to select the number of latent classes is the

Normalized Entropy Criterion (NEC) of Celeux and Soromenho (1996); see also Biernacki

et al. (1999). The NEC explicitly accounts for the quality of the classification, in addition

to the goodness-of-fit, since it is based on the minimization of the index

NECk =
−
∑n

i=1

∑k

c=1 q̂ic log(q̂ic)

ℓ(θ̂k)− ℓ(θ̂1)
,

with NEC1 ≡ 1.

In practice, we recommend to select the number of latent classes by considering both

BIC and NEC. In fact, even if BIC should be regarded as the main criterion, we noted
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that it sometimes leads to a large number of classes, with some classes containing few

sample units: this situation is potentially harmful since the parameter estimates for small

classes may be unreliable with negative effects on the stability of the weights. Therefore,

we suggest to also consider NEC, which may tend to select a smaller number of latent

classes. In practice, NEC is used as a counterpart to check whether BIC leads to choose

an excessive number of latent classes; when, as in the application illustrated in Section 5,

there is a significant difference between the model selected by BIC and that selected by

NEC, we prefer the second one. On the contrary, in the simulation study of Section 4 we

relied solely on BIC since, as we experimented, the two criteria yielded similar results.

3.2 Second step: weighted estimation of the causal model

The second step of the proposed LC-IPW method entails fitting the MSM (1) with a

modified IPW procedure where the weight of each subject is computed conditionally on

the assigned latent class. Specifically, the stabilized weights (5) become

wi,ĉi =

∏T

t=1 Pr(Sit = sit | si,1:t−1, Ui = ĉi)
∏T

t=1 Pr(Sit = sit | si,1:t−1,xi,1:t−1,vi, Ui = ĉi)
. (14)

The probabilities at the denominator are estimated by using the logistic models in equa-

tions (10) and (11) after assigning the latent class and replacing parameters with maxi-

mum likelihood estimates. Such estimates are available from the model fitted in the first

step. The probabilities at the numerator are computed in a similar way, but without

conditioning on the covariates and the latent classes. The standard errors and corre-

sponding confidence intervals can be computed via non-parametric bootstrap (Efron and

Tibshirani, 1994): the method consists in resampling with replacement and repeating the

whole estimation process, including the estimation of the finite mixture auxiliary model.

As will be clear in the application, these confidence interval may be used to test that the

treatment has no causal effect on the target variable.
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4 Simulation study

In order to study the performance of the proposed LC-IPW estimator and to make com-

parisons with conventional estimators, we carried out a simulation study with an unob-

served pre-treatment covariate U having different roles (confounder or not) and different

distributions (discrete or continuous). The number of occasions and the sample size in-

clude values comparable to those of the application, about subsidies received by a group

of firms, which will be illustrated in Section 5. In the following, we first describe the

simulation design and then we discuss the results.

4.1 Design

The simulation design is based on a model for T = 4 or T = 8 occasions with a continuous

outcome Y , a sequential binary treatment St, a pre-treatment continuous covariate V ,

a time-varying continuous covariate Xt, and an unobserved pre-treatment covariate U .

The covariates always affect the outcome and later values of the time-varying covariates;

however, we introduced parameters regulating the effect of the covariates on the treatment

indicators, so that the covariates may be confounders (if they also affect the treatment

indicators) or not (if they do not affect the treatment indicators, a case sometimes called

pure predictors of outcome).

The data generating model is as follows:

logitPr(Sit = 1) =







−1 + uiφ1(4/T ) + viφ2(4/T ), t = 1,

−1 + uiφ1(4/T ) + xi,t−1φ2(4/T )− si,t−1, t = 2, . . . , T,

Xit =







−0.25 + ui/2 + vi + sit + ǫit, t = 1,

−0.25 + ui/2 + xi,t−1 + sit + ǫit, t = 2, . . . , T − 1,

Yi = ui/2 + xi,T−1 + siT − 0.25 + ǫiT ,

where ǫit are iid N(0, 0.25) and Vi are iid N(0, 1). The level of confounding is regulated by

the parameters φ1 = −0.5, 0, 0.5 (unobserved confounding via U), and φ2 = −0.5, 0, 0.5

(observed confounding via V and Xt).

For the unobserved pre-treatment covariate U we used several alternative distributions:
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(i) LC2: discrete Uniform on {−1, 1}; (ii) LC3-type1: discrete Uniform on {−
√
1.5, 0,

√
1.5};

(iii) LC3-type2: discrete Uniform on {−2, 0, 2}; (iv) Normal: standard Normal; (v) Uni-

form: continuous Uniform on the interval (−
√
3,
√
3). Note that the previous distributions

have all mean 0 and variance 1, except LC3-type2 which has variance equal to 8/3.

Regardless of the distribution of U and the values of φ1 and φ2, the MSM for the

outcome is

E(Y (s1:T )) = β0 + s+β1,

where β1 = 1 for both T = 4 and T = 8 (the intercept is β0 = −1 for T = 4 and β0 = −2

for T = 8, but it is not considered later on since it is not of direct interest).

Concerning the sample size, we considered n = 1000 and n = 4000. Overall, for the

number of configurations considered for distribution every of U is 36 (2× 2× 3× 3 values

of n, T , φ1, φ2). For each of these configurations we generated 1000 random samples

and fitted the MSM with four estimation methods: (i) OLS (least squares unweighted

regression), (ii) IPW (with stabilized weights), (iii) LC-IPW (with stabilized weights and

a number of latent classes chosen by BIC and NEC in order to prevent an excessive

number of classes), (iv) true weights (similar to LC-IPW except that true weights are

used instead of estimated weights).

The results for the last estimator, which is feasible only in a simulation setting, allows

us to assess the impact of estimating the weights on the performance of the LC-IPW

estimator.

4.2 Results

Tables 1 to 5 summarize the simulation results for the causal parameter β1 = 1 using the

four estimators under consideration. Each table refers to a distribution of the unobserved

potential confounder U and reports the median bias and MAE (Median Absolute Error)

for the 36 configurations defined by n, T , φ1, and φ2. The choice of median-based summary

measures is suggested by the asymmetry of the sampling distributions that we observed

to be strong in certain cases.

In the following, we first comment the results for U having a discrete distribution with
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two mass points (LC2) and then we discuss the other discrete cases (LC3-type1, LC3-

type2) and continuous cases (Normal, Uniform). In order to easily assess the results, for

each considered distribution we also computed the number of cases in which the proposed

LC-IPW estimator outperforms the IPW estimator, in terms of median bias or MAE,

and the average of the difference between the absolute median bias, or MAE, of the first

estimator with respect to the second. These results are reported in Table 6.
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Table 1: Simulation results (Median Bias and MAE) for U discrete with two mass points
(LC2) with T = 4, 8 and n = 1000, 4000

Median Bias MAE
T = 4 T = 8 T = 4 T = 8

φ1 φ2 Method 1000 4000 1000 4000 1000 4000 1000 4000

-0.5 -0.5 OLS -1.785 -1.786 -2.362 -2.355 1.785 1.786 2.362 2.355
IPW -0.591 -0.531 -0.500 -0.372 0.596 0.532 0.544 0.398
LC-IPW -0.159 -0.087 -0.199 -0.086 0.233 0.137 0.296 0.167
true weights -0.140 -0.062 -0.202 -0.073 0.242 0.142 0.318 0.173

-0.5 0.0 OLS -0.960 -0.958 -1.043 -1.040 0.960 0.958 1.043 1.040
IPW -0.549 -0.540 -0.407 -0.409 0.549 0.540 0.407 0.409
LC-IPW -0.016 -0.010 -0.002 0.000 0.045 0.021 0.034 0.019
true weights -0.005 0.004 0.000 0.002 0.079 0.043 0.097 0.048

-0.5 0.5 OLS 0.302 0.304 0.932 0.928 0.302 0.304 0.932 0.928
IPW -0.525 -0.530 -0.497 -0.505 0.525 0.530 0.497 0.505
LC-IPW 0.007 -0.001 0.009 0.004 0.056 0.030 0.085 0.046
true weights 0.017 0.001 0.017 0.000 0.088 0.041 0.121 0.057

0.0 -0.5 OLS -1.399 -1.399 -2.090 -2.091 1.399 1.399 2.090 2.091
IPW -0.051 -0.026 -0.088 -0.054 0.125 0.075 0.187 0.110
LC-IPW -0.061 -0.026 -0.099 -0.055 0.124 0.070 0.194 0.108
true weights -0.046 -0.022 -0.081 -0.042 0.148 0.082 0.221 0.127

0.0 0.0 OLS 0.004 0.000 0.000 0.003 0.070 0.037 0.090 0.045
IPW -0.001 0.001 0.000 0.004 0.045 0.021 0.051 0.027
LC-IPW -0.001 0.000 0.000 0.001 0.029 0.013 0.026 0.013
true weights 0.006 0.000 0.001 0.003 0.070 0.037 0.090 0.046

0.0 0.5 OLS 1.047 1.049 1.525 1.524 1.047 1.049 1.525 1.524
IPW 0.033 0.020 0.047 0.020 0.097 0.061 0.153 0.074
LC-IPW 0.036 0.019 0.047 0.017 0.098 0.054 0.138 0.070
true weights 0.033 0.014 0.044 0.021 0.109 0.065 0.162 0.079

0.5 -0.5 OLS -0.511 -0.508 -1.418 -1.420 0.511 0.508 1.418 1.420
IPW 0.442 0.454 0.315 0.332 0.442 0.454 0.315 0.332
LC-IPW -0.013 -0.002 -0.048 -0.010 0.071 0.039 0.114 0.069
true weights -0.024 -0.003 -0.026 -0.006 0.109 0.059 0.162 0.089

0.5 0.0 OLS 0.964 0.963 1.059 1.047 0.964 0.963 1.059 1.047
IPW 0.571 0.571 0.508 0.497 0.571 0.571 0.508 0.497
LC-IPW 0.016 0.012 0.008 0.002 0.053 0.027 0.050 0.024
true weights 0.013 0.004 0.018 0.005 0.086 0.038 0.101 0.049

0.5 0.5 OLS 1.394 1.394 1.784 1.785 1.394 1.394 1.784 1.785
IPW 0.637 0.601 0.692 0.632 0.638 0.601 0.694 0.632
LC-IPW 0.134 0.075 0.110 0.045 0.188 0.114 0.206 0.116
true weights 0.121 0.053 0.107 0.046 0.188 0.112 0.228 0.130

First of all consider the situation of no confounding at all (φ1 = φ2 = 0), a situation

in which all the estimators are expected to be unbiased. Under the LC2 model for the

distribution of U , in fact, the median bias is always very close to 0. Moreover, as may be
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Table 2: Simulation results (Median Bias and MAE) for U discrete with three mass points
(LC3-type1) with T = 4, 8 and n = 1000, 4000

Median Bias MAE
T = 4 T = 8 T = 4 T = 8

φ1 φ2 Method 1000 4000 1000 4000 1000 4000 1000 4000

-0.5 -0.5 OLS -1.775 -1.778 -2.349 -2.346 1.775 1.778 2.349 2.346
IPW -0.569 -0.524 -0.490 -0.399 0.576 0.524 0.526 0.418
LC-IPW -0.216 -0.138 -0.208 -0.128 0.271 0.174 0.349 0.209
true weights -0.156 -0.088 -0.223 -0.114 0.252 0.156 0.351 0.214

-0.5 0.0 OLS -0.965 -0.959 -1.042 -1.043 0.965 0.959 1.042 1.043
IPW -0.540 -0.535 -0.407 -0.406 0.540 0.535 0.407 0.406
LC-IPW -0.056 -0.005 -0.002 0.005 0.064 0.024 0.046 0.023
true weights -0.013 -0.002 -0.007 -0.002 0.087 0.043 0.104 0.049

-0.5 0.5 OLS 0.302 0.305 0.934 0.926 0.302 0.305 0.934 0.926
IPW -0.543 -0.546 -0.506 -0.516 0.543 0.546 0.506 0.516
LC-IPW -0.052 0.020 0.022 0.015 0.069 0.037 0.088 0.046
true weights 0.010 0.003 0.010 0.002 0.084 0.048 0.115 0.064

0.0 -0.5 OLS -1.400 -1.397 -2.086 -2.087 1.400 1.397 2.086 2.087
IPW -0.062 -0.030 -0.132 -0.051 0.134 0.067 0.221 0.120
LC-IPW -0.026 -0.036 -0.142 -0.051 0.123 0.070 0.229 0.119
true weights -0.058 -0.029 -0.118 -0.057 0.157 0.080 0.250 0.124

0.0 0.0 OLS 0.009 -0.001 -0.007 -0.001 0.070 0.035 0.090 0.042
IPW 0.005 0.000 0.003 -0.001 0.043 0.021 0.055 0.026
LC-IPW 0.033 0.001 0.001 0.000 0.041 0.016 0.032 0.014
true weights 0.009 -0.001 -0.008 0.000 0.071 0.034 0.091 0.042

0.0 0.5 OLS 1.043 1.048 1.522 1.518 1.043 1.048 1.522 1.518
IPW 0.029 0.013 0.054 0.019 0.104 0.059 0.142 0.084
LC-IPW 0.066 0.018 0.068 0.018 0.108 0.054 0.141 0.076
true weights 0.036 0.017 0.061 0.017 0.112 0.067 0.152 0.093

0.5 -0.5 OLS -0.512 -0.512 -1.421 -1.421 0.512 0.512 1.421 1.421
IPW 0.462 0.466 0.325 0.326 0.462 0.466 0.325 0.326
LC-IPW 0.090 -0.023 -0.057 -0.033 0.099 0.047 0.132 0.075
true weights -0.023 -0.012 -0.039 -0.023 0.112 0.059 0.166 0.085

0.5 0.0 OLS 0.953 0.958 1.048 1.046 0.953 0.958 1.048 1.046
IPW 0.564 0.562 0.497 0.493 0.564 0.562 0.497 0.493
LC-IPW 0.137 0.003 0.001 -0.003 0.137 0.029 0.054 0.024
true weights 0.010 0.002 0.008 0.004 0.085 0.045 0.099 0.049

0.5 0.5 OLS 1.387 1.387 1.776 1.775 1.387 1.387 1.776 1.775
IPW 0.611 0.588 0.675 0.627 0.613 0.588 0.678 0.628
LC-IPW 0.233 0.096 0.138 0.067 0.258 0.127 0.237 0.135
true weights 0.119 0.067 0.131 0.060 0.195 0.118 0.250 0.135

expected, the MAE decreases with n, while it increases with the number of occasions T ,

with the notable exception of LC-IPW, whose MAE seems to be less sensitive to T . It

also worth noting that in this case the MAE of the LC-IPW estimator tends to be smaller
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Table 3: Simulation results (Median Bias and MAE) for U discrete with three mass points
(LC3-type2) with T = 4, 8 and n = 1000, 4000

Median Bias MAE
T = 4 T = 8 T = 4 T = 8

φ1 φ2 Method 1000 4000 1000 4000 1000 4000 1000 4000

-0.5 -0.5 OLS -2.662 -2.664 -3.570 -3.569 2.662 2.664 3.570 3.569
IPW -1.207 -1.103 -1.399 -1.048 1.210 1.106 1.442 1.113
LC-IPW -0.692 -0.453 -1.025 -0.630 0.749 0.510 1.123 0.773
true weights -0.575 -0.399 -1.010 -0.637 0.664 0.478 1.152 0.787

-0.5 0.0 OLS -2.083 -2.077 -2.468 -2.465 2.083 2.077 2.468 2.465
IPW -1.071 -1.060 -0.834 -0.825 1.071 1.060 0.834 0.825
LC-IPW -0.096 -0.053 -0.021 -0.007 0.160 0.083 0.123 0.056
true weights -0.063 -0.030 -0.017 -0.012 0.198 0.102 0.201 0.098

-0.5 0.5 OLS -0.088 -0.083 1.761 1.746 0.101 0.083 1.761 1.746
IPW -1.097 -1.094 -1.093 -1.112 1.097 1.094 1.093 1.112
LC-IPW -0.009 -0.009 0.052 0.020 0.091 0.048 0.191 0.104
true weights 0.006 0.003 0.039 0.022 0.126 0.074 0.222 0.123

0.0 -0.5 OLS -2.336 -2.338 -3.647 -3.651 2.336 2.338 3.647 3.651
IPW -0.152 -0.074 -0.384 -0.220 0.248 0.147 0.597 0.370
LC-IPW -0.140 -0.083 -0.397 -0.229 0.235 0.143 0.602 0.375
true weights -0.140 -0.074 -0.394 -0.226 0.268 0.166 0.594 0.380

0.0 0.0 OLS 0.017 -0.002 -0.014 -0.002 0.101 0.050 0.136 0.066
IPW 0.006 -0.001 0.004 0.000 0.062 0.030 0.081 0.038
LC-IPW -0.003 0.000 0.000 -0.001 0.029 0.014 0.034 0.014
true weights 0.018 -0.001 -0.018 -0.001 0.103 0.050 0.137 0.066

0.0 0.5 OLS 1.759 1.762 2.758 2.754 1.759 1.762 2.758 2.754
IPW 0.102 0.049 0.214 0.142 0.205 0.121 0.413 0.258
LC-IPW 0.117 0.051 0.245 0.142 0.197 0.109 0.402 0.252
true weights 0.112 0.051 0.218 0.132 0.218 0.130 0.428 0.255

0.5 -0.5 OLS -0.194 -0.191 -2.689 -2.698 0.196 0.191 2.689 2.698
IPW 1.039 1.040 0.648 0.683 1.039 1.040 0.648 0.683
LC-IPW 0.004 0.006 -0.129 -0.061 0.108 0.060 0.288 0.163
true weights -0.009 -0.007 -0.106 -0.056 0.155 0.085 0.314 0.186

0.5 0.0 OLS 2.070 2.077 2.470 2.467 2.070 2.077 2.470 2.467
IPW 1.307 1.294 1.187 1.182 1.307 1.294 1.187 1.182
LC-IPW 0.094 0.052 0.015 0.008 0.155 0.089 0.126 0.061
true weights 0.058 0.020 0.030 0.007 0.185 0.103 0.202 0.098

0.5 0.5 OLS 2.143 2.144 2.797 2.799 2.143 2.144 2.797 2.799
IPW 1.337 1.295 1.738 1.590 1.338 1.295 1.742 1.592
LC-IPW 0.543 0.348 0.744 0.442 0.593 0.405 0.891 0.579
true weights 0.487 0.298 0.727 0.458 0.561 0.357 0.871 0.567

than that of the IPW estimator and of the estimator based on the true weights. Even if

less frequently, this phenomenon is also observed about the median bias.

We then consider the situations of observed confounding only (φ1 = 0, φ2 6= 0), again

18



Table 4: Simulation results (Median Bias and MAE) for U continuous (Normal) with
T = 4, 8 and n = 1000, 4000

Median Bias MAE
T = 4 T = 8 T = 4 T = 8

φ1 φ2 Method 1000 4000 1000 4000 1000 4000 1000 4000

-0.5 -0.5 OLS -1.753 -1.753 -2.325 -2.323 1.753 1.753 2.325 2.323
IPW -0.524 -0.472 -0.478 -0.375 0.529 0.474 0.515 0.394
LC-IPW -0.322 -0.231 -0.369 -0.215 0.350 0.247 0.413 0.272
true weights -0.197 -0.115 -0.315 -0.171 0.276 0.180 0.402 0.247

-0.5 0.0 OLS -0.945 -0.943 -1.040 -1.039 0.945 0.943 1.040 1.039
IPW -0.518 -0.510 -0.402 -0.399 0.518 0.510 0.402 0.399
LC-IPW -0.094 -0.078 0.001 -0.010 0.102 0.080 0.073 0.034
true weights -0.013 -0.005 -0.003 -0.005 0.096 0.052 0.109 0.056

-0.5 0.5 OLS 0.303 0.310 0.927 0.920 0.303 0.310 0.927 0.920
IPW -0.588 -0.595 -0.518 -0.542 0.588 0.595 0.518 0.542
LC-IPW -0.043 -0.040 0.075 0.027 0.073 0.045 0.133 0.059
true weights 0.001 0.004 0.027 0.004 0.087 0.046 0.133 0.065

0.0 -0.5 OLS -1.389 -1.386 -2.066 -2.062 1.389 1.386 2.066 2.062
IPW -0.063 -0.032 -0.152 -0.086 0.137 0.075 0.219 0.143
LC-IPW -0.041 -0.023 -0.129 -0.086 0.126 0.075 0.215 0.144
true weights -0.068 -0.031 -0.142 -0.078 0.154 0.087 0.247 0.153

0.0 0.0 OLS 0.009 0.002 -0.002 0.003 0.071 0.036 0.085 0.043
IPW 0.000 0.002 0.002 0.001 0.043 0.021 0.051 0.026
LC-IPW 0.052 0.023 0.082 0.038 0.058 0.027 0.083 0.038
true weights 0.009 0.001 -0.003 0.002 0.071 0.036 0.085 0.043

0.0 0.5 OLS 1.037 1.040 1.498 1.502 1.037 1.040 1.498 1.502
IPW 0.047 0.018 0.071 0.045 0.108 0.065 0.180 0.103
LC-IPW 0.110 0.047 0.186 0.095 0.141 0.073 0.225 0.124
true weights 0.041 0.015 0.064 0.043 0.112 0.071 0.186 0.111

0.5 -0.5 OLS -0.516 -0.510 -1.407 -1.409 0.516 0.510 1.407 1.409
IPW 0.498 0.505 0.308 0.334 0.498 0.505 0.308 0.334
LC-IPW 0.155 0.090 0.036 0.018 0.157 0.091 0.128 0.075
true weights -0.017 0.000 -0.046 -0.019 0.109 0.058 0.173 0.094

0.5 0.0 OLS 0.951 0.948 1.044 1.038 0.951 0.948 1.044 1.038
IPW 0.540 0.538 0.489 0.483 0.540 0.538 0.489 0.483
LC-IPW 0.189 0.127 0.168 0.077 0.190 0.127 0.169 0.078
true weights 0.029 0.013 0.029 0.003 0.104 0.049 0.114 0.058

0.5 0.5 OLS 1.368 1.369 1.753 1.752 1.368 1.369 1.753 1.752
IPW 0.563 0.531 0.618 0.578 0.563 0.532 0.625 0.579
LC-IPW 0.307 0.201 0.334 0.194 0.315 0.208 0.365 0.228
true weights 0.164 0.078 0.222 0.121 0.221 0.132 0.298 0.190

under the LC2 model. Obviously, the OLS estimator is biased (even strongly in certain

cases), whereas all the weighted estimators have a reduced median bias that, in absolute

value, decreases with n and increases with T . A similar behavior is observed for the
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Table 5: Simulation results (Median Bias and MAE) for U continuous (Uniform) with
T = 4, 8 and n = 1000, 4000

Median Bias MAE
T = 4 T = 8 T = 4 T = 8

φ1 φ2 Method 1000 4000 1000 4000 1000 4000 1000 4000

-0.5 -0.5 OLS -1.768 -1.772 -2.340 -2.338 1.768 1.772 2.340 2.338
IPW -0.548 -0.511 -0.509 -0.367 0.554 0.513 0.543 0.394
LC-IPW -0.222 -0.146 -0.275 -0.127 0.271 0.177 0.359 0.220
true weights -0.152 -0.094 -0.273 -0.116 0.245 0.166 0.365 0.233

-0.5 0.0 OLS -0.950 -0.954 -1.040 -1.043 0.950 0.954 1.040 1.043
IPW -0.529 -0.530 -0.406 -0.405 0.529 0.530 0.406 0.405
LC-IPW -0.057 -0.016 0.026 0.019 0.070 0.028 0.054 0.029
true weights -0.011 -0.001 -0.003 -0.003 0.086 0.047 0.102 0.052

-0.5 0.5 OLS 0.306 0.306 0.924 0.926 0.306 0.306 0.924 0.926
IPW -0.551 -0.554 -0.509 -0.520 0.551 0.554 0.509 0.520
LC-IPW -0.051 0.004 0.052 0.036 0.079 0.034 0.107 0.055
true weights 0.015 0.003 0.014 0.009 0.090 0.047 0.131 0.061

0.0 -0.5 OLS -1.392 -1.396 -2.089 -2.083 1.392 1.396 2.089 2.083
IPW -0.063 -0.028 -0.135 -0.063 0.126 0.070 0.229 0.132
LC-IPW -0.022 -0.018 -0.092 -0.055 0.121 0.066 0.210 0.123
true weights -0.059 -0.025 -0.123 -0.064 0.144 0.079 0.243 0.142

0.0 0.0 OLS 0.001 0.003 0.009 0.002 0.066 0.034 0.090 0.044
IPW 0.004 0.000 0.007 0.002 0.044 0.022 0.054 0.026
LC-IPW 0.047 0.015 0.076 0.025 0.050 0.020 0.076 0.026
true weights 0.001 0.004 0.008 0.001 0.066 0.034 0.089 0.044

0.0 0.5 OLS 1.045 1.046 1.512 1.513 1.045 1.046 1.512 1.513
IPW 0.048 0.019 0.052 0.026 0.102 0.061 0.154 0.084
LC-IPW 0.090 0.038 0.147 0.055 0.119 0.062 0.189 0.094
true weights 0.048 0.020 0.057 0.024 0.111 0.065 0.170 0.088

0.5 -0.5 OLS -0.506 -0.510 -1.410 -1.418 0.506 0.510 1.410 1.418
IPW 0.469 0.473 0.322 0.330 0.469 0.473 0.322 0.330
LC-IPW 0.125 0.018 0.031 -0.008 0.128 0.040 0.119 0.072
true weights -0.015 -0.006 -0.029 -0.020 0.103 0.053 0.161 0.090

0.5 0.0 OLS 0.957 0.954 1.043 1.039 0.957 0.954 1.043 1.039
IPW 0.561 0.554 0.493 0.490 0.561 0.554 0.493 0.490
LC-IPW 0.159 0.045 0.119 0.032 0.159 0.047 0.120 0.036
true weights 0.015 -0.001 0.008 -0.003 0.097 0.044 0.102 0.050

0.5 0.5 OLS 1.381 1.382 1.770 1.768 1.381 1.382 1.770 1.768
IPW 0.591 0.573 0.629 0.609 0.593 0.574 0.635 0.610
LC-IPW 0.240 0.143 0.239 0.114 0.265 0.162 0.301 0.162
true weights 0.113 0.078 0.119 0.078 0.198 0.128 0.253 0.157

MAE. It is again worth observing that, even if the latent class adjustment is not needed,

the LC-IPW estimator is, in most cases, more efficient than both the standard weighted

estimator and the infeasible estimator with true weights.
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Table 6: Summary of the comparison between the LC-IPW estimator and IPW estimator
in terms of median bias and MAE; for every distribution the table shows the number of
times the LC-IPW outperforms the IPW estimator in terms of median bias and MAE and
the corresponding average differences (in absolute value for the median bias)

distribution Better LC-IPW Average difference
median bias MAE median bias MAE

LC2 31/36 34/36 -0.3094 -0.2816
LC3-type1 29/36 33/36 -0.2881 -0.2651
LC3-type2 29/36 34/36 -0.6030 -0.5565
Normal 28/36 26/36 -0.2253 -0.2169
Uniform 28/36 29/36 -0.2638 -0.2489

Finally, in the presence of unobserved confounding (φ1 6= 0), both the OLS and the

IPW estimators tend to be severely biased, whereas the LC-IPW estimator usually has a

small bias (always lower than the bias of the competing estimators); even when LC-IPW

has not a negligible bias (for instance when φ1 = φ2 = −0.5 and φ1 = φ2 = 0.5), this

bias decreases with the sample size n (while the bias of IPW is stable). Therefore, for

some model specifications the good asymptotic properties of LC-IPW may show up only

in very large samples. In any case, LC-IPW represents a striking improvement over IPW

in terms of bias and accuracy for any configuration and sample size. This conclusion is

confirmed by the result in Table 6 which shows that, under the distribution LC2 for U ,

the proposed estimator outperforms the IPW estimator in 31 cases (in terms of median

bias) and in 34 cases (in terms of MAE) out of 36.

The previous findings are confirmed for alternative distributions of the unobserved

covariate U , both discrete (Tables 2 and 3) and continuous (Tables 4 and 5). In particular,

also with the help of the summary statistics in Table 6, we conclude that under the LC3

distribution the results are very similar than under the LC2 distribution. This is rather

plausible since under both models the latent variable U has, by assumption, the same

variance. On the other hand, the advantage of the LC-IPW estimator over the IPW

estimator considerably increases under the LC3-type2 distribution, since in this case the

distribution of U has a higher variance, and then the effect of the unobserved confounding

is more significant. Regarding the continuous distributions, we observe that the proposed

estimator has a reduced advantage over the IPW estimator with respect to the LC2 and
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LC3 cases, in which the distribution of U has the same variance. However, it is worth

noting that, even in these cases, the proposed method allows us to strongly reduce the bias

in estimating the causal effect due to the unobserved confounding. For these continuous

cases, a detailed analysis of the simulation results (not reported here) reveals that the

required number of latent classes is limited, not larger than six. Specifically, for any

configuration of n, T , φ1 and φ2, the number of latent classes k is selected by jointly use

BIC and NEC, separately for each of the 1000 samples, thus generating a Monte Carlo

distribution of k. In our simulations for U Normal and U Uniform, the modal value of

k ranges from 2 to 5; higher values of k are selected for U Normal (as compared to U

Uniform) and for larger sample sizes.

The efficiency of the LC-IPW estimator in the case of no unobserved confounding may

appear as surprising, but it is in line with the simulation results of Lefebvre et al. (2008),

who compared the performance of the IPW estimator under different specifications of the

model for the treatment indicators. Their baseline specification includes only confounders,

namely predictors of both treatment and outcome. The key result is that, in terms of

mean squared error and then efficiency, adding pure predictors of treatment is deleterious,

whereas adding pure predictors of outcome is beneficial. To see the connection with our

simulations, note that φ1 = 0 corresponds to the latent variable U affecting Y and X t

but not St, thus it is a pure predictor of outcome: IPW ignores U , whereas LC-IPW

accounts for U through the latent classes. The efficiency of the LC-IPW estimator in

this situation is also consistent with theoretical results on over-adjustment in inverse

probability weighting (Rotnitzky et al., 2010).

Another apparently odd result is the higher efficiency of LC-IPW with respect to the

infeasible estimator with true weights. This is due to the flexibility of the estimated

weights which account for the patterns in the realized sample, a phenomenon already

noted in several settings; see, among others, Rosenbaum (1987).

22



5 Application: effect of wage subsidies on employ-

ment

We illustrate the LC-IPW method outlined in Section 3 through an application to a

dataset extracted from the registers compiled by the Finnish Tax Authority from 1995 to

2002. These registers cover the whole population of firms that pay taxes in Finland and

also contain information about the received subsidies.

In our application, the research question concerns the effect of wage subsidies on

employment, a labor market policy mainly proposed to achieve the aim of long term

unemployment reductions. This is an instance of a sequential binary treatment with time-

varying covariates, where conventional estimators are likely to be biased due to unobserved

confounders, namely latent traits of the firms affecting both the subsidy receipt and

observed variables such employment and profit. Therefore, we estimate the effect of the

subsidies bythe LC-IPW approach and compare it with the results of OLS regression and

the conventional IPW.

5.1 Description of the dataset

Our dataset refers to a sample of n = 1640 Finnish firms (manufactures and services)

between 20 and 200 employees in the period 1995-2002. Although several types of subsidies

are available for firms (e.g. investment and R&D subsidies), the most common type is

represented by wage subsidies, which were receivedat least once by about 65% of the firms

in the sample. This result depends on the wide eligibility to wage subsidies for Finnish

firms that only excludes firms that are non-profitable or threatened of bankruptcy. A

firm is eligible to receive a wage subsidy if it just demonstrates that the job is new. For

a discussion on the wage subsidy scheme in Finland, see Kangasharju (2007). Note that

the subsidy is partial because it complements private wages, in line with the idea that

subsidized jobs should tend to exploit public wage incentives to fill the gap between the

wage that the firm is willing to pay and the unionized wage level.

The dataset includes for every firm the following variables measured at every year:

employment (number of employees), wage (total and per employee), fixed capital, sales
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and profit.

In this application the number of occasions is T = 8, the treatment variable St is an

indicator taking the value 1 if the firm receives a wage subsidy in year t, the outcome is

the employment at the end of the period Y , whereas the potential confounders X t are all

the variables measured at the end of year t (possibly including lagged values).

Table 7 shows the observed distribution of the 3121 subsidies by year: the percentage

of firms receiving a subsidy falls from 35% in 1995 to about 14% in the last two years.

Table 8 reports the observed distribution of the number of subsidies during the eight

years: 65% of the firms were subsidized at least once, but less than 14% were subsidized

more than 4 times.

Table 7: Subsidized firms by year

Year Number Percentage
1995 582 35.49
1996 448 27.32
1997 491 29.94
1998 450 27.44
1999 383 23.35
2000 293 17.87
2001 242 14.76
2002 232 14.15
Total 3121 100.00

Table 9 compares subsidized firms (receiving the subsidy at least once in the period)

and non-subsidized firms by listing the mean and standard deviation of the variables

Table 8: Observed distribution of subsidies

Number of subsidies % firms % cumulative
0 34.94 34.94
1 18.54 53.48
2 15.18 68.66
3 10.24 78.90
4 7.44 86.34
5 6.16 92.50
6 4.09 96.59
7 1.71 98.29
8 1.71 100
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measured at the last occasion (year 2002): subsidized firms are larger in terms of number

of employees and fixed capital, but they have lower profitability and lower wage per

employee.

Table 9: Descriptive statistics about firms in 2002 (monetary variables in thousands of
Euros)

Variable Subsidized (1067) Non-subsidized (573)
Mean St.dev. Mean St.dev.

Employment 73.57 74.72 60.78 55.74
Wage (total) 1900 2775 1702 1872
Wage (per employee) 24 16 28 14
Fixed capital 3113 15400 2605 9788
Sales 11100 37800 10800 26800
Profit 470 2365 625 3691

5.2 Estimation of the casual effect

The subsidies are expected to affect all the variables considered here. Our focus is on

the effect on employment, which represents the aim of the public policy. Therefore, we

specify a Marginal Structural Model (MSM) for the effect of the subsidies on the number

of employees at the end of the period. We fit two versions of the model:

• M1: E(Y (s)) = β0 + s+β1

• M2: E[log(Y (s))] = β∗
0 + s+β

∗
1

where s+ =
∑T

t=1 st is the number of years receiving a subsidy. The two versions of the

model differ for the scale of the response (raw vs logarithmic): the parameter β1 in M1 is

the causal effect of subsidies on employment expressed as an absolute variation, whereas

β∗
1 in M2 is the same effect expressed as an approximate relative variation.

As a benchmark, Table 10 reports the results for both M1 and M2 using OLS and

IPW (standard inverse probability weighting), where the 95% confidence intervals are

obtained via non-parametric bootstrap. As expected, the estimates of the causal effect

of subsidies on employment are positive and statistically significant. The OLS estimates

are β̂1 = 6.6 (every year receiving a subsidy entails an average increase of 6.6 employees)

and β̂∗
1 = 0.075 (the average relative variation is about 7.5%).
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Table 10: Results for the Marginal Structural Models M1 and M2 using the OLS and IPW
methods

OLS IPW
Model Parameter Estimate 95% Conf.Int. Estimate 95% Conf.Int.
M1 β0 62.385 57.853 68.187 67.958 63.306 72.365

β1 6.596 3.754 8.986 3.932 2.207 6.052
M2 β∗

0 3.822 3.776 3.876 3.889 3.837 3.945
β∗
1 0.075 0.054 0.091 0.048 0.034 0.064

The confounding generated by the observed variables can be controlled by the stan-

dard IPW method. To compute the weights, the treatment indicators St are modeled

by a logistic regression with a dummy variable for each year and the following covariates

measured at years t−1 and t−2: treatment indicator, log(employment), log(wage per em-

ployee), log(fixed capital), log(sales), and sign(profit) n

√

|profit|. The last transformation

is a sort of log-transformation which, however, maintains the sign (positive or negative)

of the original variable. The method could be implemented using only the covariates at

year t− 1; however, we added a further time lag to properly account for time dependen-

cies (note that the model for S1 has no covariates, whereas the model for S2 only has

covariates measured at t = 1).

The results of the IPW method are reported in the right-most part of Table 10. The

estimate of the causal effect is positive and statistically significant but, compared to OLS,

the magnitude is much lower: the estimated effect of each year receiving a subsidy on the

employment at end of the period is 3.9 employees (from model M1) or about 5% (from

model M2). A positive causal effect is in line with the hypothesis that, exploiting wage

subsidies, firms decrease the marginal cost of additional labor, allowing to employ workers

who would not otherwise have been employed. The IPW estimate is about one half of

the estimate obtained by Kangasharju (2007) using a slightly larger dataset. Therefore,

we argue that the reduction in the magnitude of the IPW estimate is due the capacity of

this method to adjust for observed time-varying confounders.

The simulation study of Section 4 showed that unobserved pre-treatment confounders

may severely bias the IPW estimator. In this application it is likely that certain charac-

teristics of firms, such as type of organization and management, strongly affect both the
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employment and the receipt of subsidies. These characteristics can be viewed as unob-

served pre-treatment confounders since they are unmeasured and normally change very

slowly over time. This kind of confounding can be removed by the LC-IPW method.

The implementation of the LC-IPW method is based on the following auxiliary model:

(i) the treatment indicators St are modeled by a separate logistic model for every latent

class (or mixture component) with the same regressors used for the IPW method; (ii)

these regressors are modeled by a separate multivariate regression for every latent class,

which includes the lagged versions of these variables and the treatment indicators for the

present and the previous occasion (with the exception of the first two occasions). These

models have been fitted with a number of latent classes k from 1 to 5. The results of this

preliminary analysis are reported in Table 11 in terms of log-likelihood and fit indexes

BIC and NEC defined in Section 3: BIC favors a solution with at least k = 5 classes,

whereas NEC favors a solution with k = 4 classes.

Table 11: Selection of the number of latent classes for the auxiliary model

k log-lik. BICk NECk

1 -74380 150100 1.000
2 -70672 143920 0.015
3 -68416 140645 0.010
4 -66589 138227 0.008
5 -65275 136837 0.016

Table 12 reports the estimates of the parameters of the Marginal Structural Models

M1 and M2 for k from 1 to 5, so as to perform a sensitivity analysis with respect to the

number of latent classes. We also report confidence intervals obtained via non-parametric

bootstrap, which may be used to test the hypothesis that the causal effect is equal to

0. Note that the LC-IPW estimates for the single-class solution k = 1 are indeed IPW

estimates and thus they are equal to those in Table 10. As the number of latent classes

increases, the LC-IPW methods increases the adjustment for unobserved confounding and

the estimates of the causal effects β1 and β∗
1 diminish monotonically up to k = 4, which is

the solution suggested by the NEC index. The estimates increase for k = 5, but this could

be a consequence of the instability of the estimated weights. Therefore, we choose the

solution with k = 4 classes, yielding β̂1 = 2.2 (every year receiving a subsidy entails an
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average increase of 2.2 employees) and β̂∗
1 = 0.035 (the average relative variation is about

3.5%). The bootstrap confidence intervals confirm that the causal effects are statistically

significant.

Table 12: Results for the Marginal Structural Models M1 and M2 using the LC-IPW
method

Model k Parameter Estimate 95% Conf. interval
M1 1 β0 67.958 63.458 72.967

β1 3.932 2.217 6.140
2 β0 69.079 65.033 74.328

β1 3.024 1.361 5.294
3 β0 69.450 64.174 74.230

β1 2.551 0.846 5.139
4 β0 70.280 65.032 75.385

β1 2.156 0.257 4.499
5 β0 68.725 64.037 77.441

β1 2.959 0.238 6.166
M2 1 β∗

0 3.889 3.844 3.940
β∗
1 0.048 0.033 0.062

2 β∗
0 3.890 3.841 3.942

β∗
1 0.044 0.028 0.060

3 β∗
0 3.893 3.844 3.939

β∗
1 0.038 0.020 0.057

4 β∗
0 3.900 3.846 3.955

β∗
1 0.035 0.015 0.063

5 β∗
0 3.884 3.831 3.973

β∗
1 0.042 0.012 0.072

On the basis of the LC-IPW estimates we still conclude that subsidized jobs stimulated

employment in Finland firms. Unlike Hujer et al. (2002) for Germany and Dahlberg and

Forslund (2005) for Sweden, that using similar data found no increase in employment, we

estimate a small positive effect, a result qualitatively in accordance with specific inves-

tigations in Finland (Hämäläinen and Ollikainen, 2004). However, even if the proposed

LC-IPW method confirms the existence of a positive effect, its magnitude is substantially

reduced with respect to OLS (no control for confounding) and IPW (controlling for ob-

served confounders only). For example, β1 is estimated to be 6.6 using OLS, 3.9 using

IPW (a 41% reduction) and 2.2 using LC-IPW (an additional 44% reduction). Those

results point out the substantial role of both observed and unobserved confounding in
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this setting.

Different arguments may help to explain these results. The prevalent interpretation is

that, as the subsidy is partial, their use reflects different unobserved abilities of the firm on

employment and managerial and financial policies. That is, the actions of more efficient

firms in managerial terms are postulated to be positively correlated with the exploiting

of wage subsidies as a long run strategy of firm. Thus, while individually firms contribute

to the total employment performance heterogeneously, this result appears to be affected

by the ability to substitute in an inter-temporal perspective private employment with

that subsidized from the public sector. This implies that accounting for unobserved pre-

treatment confounders through the proposed LC-IPW method should reduce the potential

upward bias in the estimates, a prediction consistent with the findings of Table 12.

6 Conclusions

In this paper, we consider an extension of the Inverse Probability Weighting (IPW) es-

timator for Marginal Structural Models (Robins et al., 2000), which may be used for

causal inference in the presence of certain forms of unobserved confounding with sequen-

tial binary treatments. The proposed extension, called Latent Class Inverse Probability

Weighting (LC-IPW), is based on two steps: first, a finite mixture model is fitted in order

to compute latent-class-specific weights; then, these weights are used to fit the Marginal

Structural Model of interest. The properties of the LC-IPW estimator are studied by sim-

ulation under different scenarios, whereas its empirical implementation is demonstrated

by an application based on a dataset of Finnish firms observed for eight years, where it

is of interest to estimate the causal effect of a form of wage subsidy on employment.

The main advantage of the proposed LC-IPW method over the standard IPW method

is that it properly corrects for unobserved pre-treatment confounders. This conclusion

is rather obvious for the case in which: (i) this type of confounding may be represented

by a discrete latent variable having a reduced number of levels, corresponding to latent

classes in the population of interest, and (ii) provided that the auxiliary finite-mixture

model to compute the weights, and singling out these latent classes, is correctly specified.
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However, as shown by the simulation, the reduction of the bias due to the adoption of

the proposed approach may also be consistent with unobserved confounding due to latent

variables having a continuous distribution.

Even if it may be rather surprising, another relevant advantage of the LC-IPW method

is that it may reduce the bias of the standard IPW method even in the absence of un-

observed confounding. This is clearly shown by our simulation results and is coherent

with some results available in the literature (e.g., Lefebvre et al., 2008). This leads to

the important conclusion that the use of the proposed method is advisable even if we are

not sure of the presence of unobserved confounding, provided that the sample size is large

enough and we do not use an excessive number of latent classes.

Finally, as an advantage we also have to consider that the proposed method may be

readily available software for finite mixture models. We mention, in particular, the R

package flexmix (Grün and Leisch, 2008) and the Stata package fmm by Kit Baum,

which may be use to fit the auxiliary model. We recall that fitting this model is the most

challenging part of the proposed approach. In any case, we make available our Matlab

implementation to the reader upon request.

Obviously, the advantages of the proposed LC-IPW method over the standard IPW

method are at the cost of a greater complexity in formulating the auxiliary finite-mixture

model for the weights and, in particular, in choosing the number of the mixture com-

ponents (latent classes), denoted by k. However, suitable criteria, such as the Bayesian

Information Criterion (Schwarz, 1978) or the Normalized Entropy Criterion (Celeux and

Soromenho, 1996), may effectively drive this choice. Moreover, as shown in the applica-

tion about wage subsidy, trying different values of k may be useful from a perspective of

sensitivity analysis. It is also important to recall that this complexity may imply that the

advantages of the proposed method over the IPW method are consistent only with large

sample sizes. This happens for certain configurations of the generating model adopted in

the simulation study. However, as clarified above, there are no strong reasons to advise

against the use of the proposed estimator even when there is no unobserved confounding.

As a further development, we consider of interest methods to compute standard errors

for the estimates of the causal parameters, which are more direct to use with respect to the
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bootstrap method. Obviously, these methods must take also into account the uncertainty

on the auxiliary model parameters. As an extension, it may also be of interest the adop-

tion of the proposed approach even in connection with the longitudinal propensity score

method (Achy-Brou et al., 2010). Moreover, we think that it is also possible to account for

time-varying unobserved confounders by using a latent Markov model (Bartolucci et al.,

2010) to compute the weights. Finally, we consider of interest to adopt, even within the

proposed approach, methods to increase the stability of the weights and the efficiency of

the resulting estimator of causal effects, such as truncation (Cole and Hernan, 2008). We

expect that this technique may lead to advantages in the presence of a small sample or an

excessive number of latent classes, when the weights may be unstable due to the reduced

number of sample units assigned to some of these classes.
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