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This paper considers the maximum likelihood estimation of panel
data models with interactive effects. Motivated by applications in eco-
nomics and other social sciences, a notable feature of the model is that
the explanatory variables are correlated with the unobserved effects.
The usual within-group estimator is inconsistent. Existing methods
for consistent estimation are either designed for panel data with short
time periods or are less efficient. The maximum likelihood estima-
tor has desirable properties and is easy to implement, as illustrated
by the Monte Carlo simulations. This paper develops the inferential
theory for the maximum likelihood estimator, including consistency,
rate of convergence and the limiting distributions. We further ex-
tend the model to include time-invariant regressors and common re-
gressors (cross-section invariant). The regression coefficients for the
time-invariant regressors are time-varying, and the coefficients for the
common regressors are cross-sectionally varying.

1. Introduction. This paper studies the following panel data models
with unobservable interactive effects:

Yit = a; + i B + - + ik Bre + N fe + €t

i=1,.,N;jt=1,2,...T

where y;; is the dependent variable; z; = (%1, ..., Titx ) is a row vector of
explanatory variables; «; is an intercept; the term A, f; 4 e;; is unobservable
and has a factor structure, \; is an r x 1 vector of factor loadings, f; is a
vector of factors, and e;; is the idiosyncratic error. The interactive effects
(X, f¢) generalize the usual additive individual and time effects, for example,
if \j =1, then o + N, fy = i + fi.

AMS 2000 subject classifications: Primary 60F12, 60F30; secondary 60H12
Keywords and phrases: factor error structure, factors, factor loadings, maximum likeli-
hood, principal components, within-group estimator, simultaneous equations
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A key feature of the model is that the regressors x;; are allowed to be corre-
lated with (v, As, ft). This situation is commonly encountered in economics
and other social sciences, in which some of the regressors x;; are decision
variables that are influenced by the unobserved individual heterogeneities.
The practical relevance of the model will be further discussed below. The
objective of this paper is to obtain consistent and efficient estimation of 5 in
the presence of correlations between the regressors and the factor loadings
and factors.

The usual pooled least squares estimator or even the within-group estima-
tor is inconsistent for 3. One method to obtain a consistent estimator is to
treat (o, A, fi) as parameters and estimate them jointly with 3. The idea
is “controlling through estimating” (controlling the effects by estimating
them). This is the approach used by [8], [23] and [31]. While there are some
advantages, an undesirable consequence of this approach is the incidental pa-
rameters problem. There are too many parameters being estimated, and the
incidental parameters bias arises (Neyman and Scott, 1948). [1], [2] and [17]
consider the generalized method of moments (GMM) method. The GMM
method is based on a nonlinear transformation known as quasi-differencing
that eliminates the factor errors. Quasi-differencing increases the nonlinear-
ity of the model especially with more than one factor. The GMM method
works well with a small 7. When T is large, the number of moment equations
will be large and the so called many-moment bias arises. [27] considers an
alternative method by augmenting the model with additional regressors ¥,
and Z;, which are the cross-sectional averages of y;; and x;. These averages
provide an estimate for f;. A further approach to controlling the correlation
between the regressors and factor errors is to use the Mundlak-Chamberlain
projection ([24] and [14]). The latter method projects a; and A; onto the re-
gressors such that \; = co+ 1241+ - -+ epxzip + 14, where ¢5 (s =0,1,...,T)
are parameters to be estimated and 7; is the projection residual (a similar
projection is done for «;). The projection residuals are uncorrelated with
the regressors so that a variety of approaches can be used to estimate the
model. This framework is designed for small 7', and is studied by [9].

In this paper we consider the pseudo-Gaussian maximum likelihood method
under large N and large T'. The theory does not depend on normality. In
view of the importance of the MLE in the statistical literature, it is of both
practical and theoretical interest to examine the MLE in this context. We
develop a rigorous theory for the MLE. We show that there is no incidental
parameters bias despite large N and large T

We allow time-invariant regressors such as education, race and gender
in the model. The corresponding regression coefficients are time-dependent.
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Similarly, we allow common regressors, which do not vary across individuals,
such as prices and policy variables. The corresponding regression coefficients
are individual-dependent so that individuals respond differently to policy or
price changes. In our view, this is a sensible way to incorporate time-invariant
and common regressors. For example, wages associated with education and
with gender are more likely to change over time rather than remain constant.
In our analysis, time invariant regressors are treated as the components of
A; that are observable, and common regressors as the components of f; that
are observable. This view fits naturally into the factor framework in which
part of the factor loadings and factors are observable, and the maximum
likelihood method imposes the corresponding loadings and factors at their
observed values.

While the theoretical analysis of MLE is demanding, the limiting dis-
tributions of the MLE are simple and have intuitive interpretations. The
computation is also easy and can be implemented by adapting the ECM
(expectation and constrained maximization) of [22]. In addition, the max-
imum likelihood method allows restrictions to be imposed on A; or on f;
to achieve more efficient estimation. These restrictions can take the form of
known values, being either zeros, or other fixed values. Part of the rigorous
analysis includes setting up the constrained maximization as a Lagrange
multiplier problem. This approach provides insight on which kinds of re-
strictions are binding and which are not, shedding light on efficiency gain
resulting from the restrictions.

Panel data models with interactive effects have wide applicability in eco-
nomics. In macroeconomics, for example, y;; can be the output growth rate
for country ¢ in year t; x; represents production inputs, and f; is a vec-
tor of common shocks (technological progress, financial crises); the common
shocks have heterogenous impacts across countries through the different fac-
tor loadings A;; e; represents the country-specific unmeasured growth rates.
In microeconomics, and especially in earnings studies, y;; is the wage rate
for individual ¢ for period ¢ (or for cohort t), x; is a vector of observable
characteristics such as marital status and experience; \; is a vector of un-
observable individual traits such as ability, perseverance, motivation and
dedication; the payoff to these individual traits is not constant over time,
but time varying through f;; and e;; is idiosyncratic variations in the wage
rates. In finance, y;; is stock ¢’s return in period t, x;; is a vector of observ-
able factors, f; is a vector of unobservable common factors (systematic risks)
and )\; is the exposure to the risks; e;; is the idiosyncratic returns. Factor
error structures are also used as a flexible trend modeling as in [20]. Most
of panel data analysis assumes cross-sectional independence, e.g., [6], [12],
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and [18]. The factor structure is also capable of capturing the cross-sectional
dependence arising from the common shocks f;.

Throughout the paper, the norm of a vector or matrix is that of Frobenius,
ie., [|A] = [tr(A’A)]Y/? for matrix A; diag(A) is a column vector consisting
of the diagonal elements of A when A is matrix, but diag(A) represents
a diagonal matrix when A is a vector. In addition, we use ¥; to denote
vy — % Z;le vt for any column vector vy and M., to denote % Zthl w0y for
any vectors wy, v¢.

2. A common shock model. In the common-shock model, we assume
that both y; and z;; are impacted by the common shocks f; so the model
takes the form

Yit = i + i1 B1 + Ti2f2 + - + Tiek B + N ft + i

(2.1) - ,
Titk = Wik + VipSt + Vitk

for k =1,2,..., K. In across-country output studies, for example, output y;,
and inputs x; (labor and capital) are both affected by the common shocks.

The parameter of interest is 5 = (01, ..., Bx)’. We also estimate a;, A;, ik
and v;; (k= 1,2...., K). By treating the latter as parameters, we also allow
arbitrary correlations between (a;, A;) and (u, i ). Although we also treat
ft as fixed parameters, there is no need to estimate the individual f;, but
only the sample covariance of f;. This is an advantage of the maximum
likelihood method, which eliminates the incidental parameters problem in
the time dimension. This kind of the maximum likelihood method was used
for pure factor models in [3], [4], and [10]. By symmetry, we could also
estimate individuals f;, but then we only estimate the sample covariance of
the factor loadings. The idea is that we do not simultaneously estimate the
factor loadings and the factors f; (which would be the case for the principal
components method). This reduces the number of parameters considerably.
If N is much smaller than T' (N < T'), treating factor loadings as parameters
is preferable since there are fewer number of parameters.

Because of the correlation between the regressors and regression errors
in the y equation, the y and x equations form a simultaneous equation
system; the MLE jointly estimates the parameters in both equations. The
joint estimation avoids the Mundlak-Chamberlain projection and thus is
applicable for large N and large T

Throughout the paper, we assume the number of factors r is fixed and
known. If not, the information criterions developed by [11] can be used to de-
termine it. So \; and f; are r x 1 vectors. Let xi = (i1, Tit2, -+ » Titk )y Yiz =
(it Yi2s - - - ViK)s Vitw = (Vit1, Vir2, - -+ 5 Viee)' and g = (a1, pio, - -+ 5 pik)’-
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The second equation of (2.1) can be written in matrix form as
Tiy = fiz + Viz fi T Vit

Further let I'y = (Ni,%iz), 2t = (Yat, Tit)'s €t = (eat, vig,)'s i = (o, i)
Then model (2.1) can be written as

1 _ !
lo b ]Zit—/ﬁi+rgft+5it
K
Let B denote the coefficient matrix of z; in the preceding equation. Let
= (Zit’ Zét? T 72?\/1&)/7 I'= (F17F27 T vFN)la €t = (5/1t75/2t’ U >€/Nt)/ and
= (ph, ph, -+, ). Stacking the equations over i, we have
(22) (IN@B)Z,: :M+Fft+€t

To analyze this model, we impose the following assumptions.

2.1. Assumptions. Assumption A: The f; is a sequence of constants.
Let My = 71 Zthl ftft’, where f; = fi— % Zthl ft- We assume that M =
Tlgréo My is a strictly positive definite matrix.

REMARK 2.1. The non-randomness assumption for f; is not crucial. In
fact, f; can be a sequence of random variables such that E(||f;||*) < C < oo
uniformly in ¢ and f; is independent of €4 for all s. The fixed f; assumption
conforms with the usual fixed effects assumption in panel data literature
and, in certain sense, is more general than random f;.

Assumption B: The idiosyncratic error terms e;; = (e, vl,,) are as-
sumed such that

B.1 The e;; is independent and identically distributed over ¢ and uncorre-
lated over i with E(e;) = 0 and E(e},) < oo for all i = 1,--- , N and
t=1,---,T. Let ¥, denote the variance of e;.

B.2 v, is also independent and identically distributed over ¢ and uncorre-
lated over i with E(v;s;) = 0 and E(||vig||*) < oo for alli=1,--- | N
and t =1,---,7T. We use X, to denote the variance matrix of v;z;.

B.3 ej is independent of vjg, for all (7, 7,¢,s). Let ¥;; denote the variance
matrix ;. So we have ¥;; = diag(Xiie, Xiiz), a block-diagonal matrix.

REMARK 2.2. Let X.. denote the variance of &, = (¢}, -+ ,€’y;)". Due to
the uncorrelatedness of e;; over i, we have ¥, = diag(211, Y22, , ZnN),
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a block-diagonal matrix. Assumption B is more general than the usual as-
sumption in the factor analysis. In a traditional factor model, the variance
of the idiosyncratic error terms are assumed to be a diagonal matrix. In the
present setting, the variance of €; is a block-diagonal matrix . Even without
explanatory variables, this generalization is of interest. The factor analy-
sis literature has a long history to explore the block-diagonal idiosyncratic
variance, known as multiple battery factor analysis, see [32]. The maximum
likelihood estimation theory for high dimensional factor models with block
diagonal covariance matrix has not been previously studied. The asymp-
totic theory developed in this paper not only provides a way of analyzing
the coefficient G, but also a way of analyzing the factors and loadings in the
multiple battery factor models. This framework is of independent interest.

Assumption B allows cross-sectional heteroskedasticity. The maximum
likelihood method will simultaneously estimate the heteroskedastic variances
and other parameters. This assumption assumes the independence and ho-
moskedasticity of the error terms over time and uncorrelatedneess over the
cross section. Extension to more general heteroscedasticity and correlation
patterns can be considered by our method. The model with more general er-
ror covariance structure, known as approximate factor models in the sense of
[15], has been extensively investigated by the recent literature, such as [11],
[7], [30] among others. This literature largely focuses on the principal com-
ponents method and for pure factor models without explanatory variables.
The analysis of the maximum likelihood method for our model is already
challenging, the extension to approximate factor models is not considered in
this paper.

Assumption C: There exists a positive constant C sufficiently large such
that

Cl|Ij|<Cforallj=1,---,N.

c2C 1t < Tmin(2j5) < Tmaz(2j) < C for all j = 1,---, N, where
Tmin(2jj) and Tmaez(Xj4) denote the smallest and largest eigenvalues
of the matrix X, respectively.

C.3 there exists an r X r positive matrix ) such that Q) = A}im NIYEMT,

where I' is defined earlier. o

Assumption D: The variances X; for all i and My; are estimated in a
compact set, i.e. all the eigenvalues of S and M #¢ are in an interval [C 1.0
for a sufficiently large constant C.

REMARK 2.3. Assumption D requires that part of the estimators be
estimated in a compact set. This assumption is usually made for theoretical
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analysis, especially when dealing with nonlinear objective functions, e.g.,
[19], [25], and [33]. The objective function considered in this paper exhibits
high nonlinearity.

2.2. Identification restrictions. It is a well-known result in factor analysis
that the factors and loadings can only be identified up to a rotation. The
models considered in this paper can be viewed as extensions of the factor
models. As such they inherit the same identification problem. We show that
identification conditions can be imposed on the factors and loadings without
loss of generality. To see this, model (2.2) can be rewritten as

(IN®B)zy =p+Tfi + e

(2.3) =+ +T(fi = f) +e
P 1/2 —-1/2 —
=(+Tf)+ (FMf]{ R) (R/Mff P(f~ f)) + &t
where R is an orthogonal matrix, which we choose to be the matrix consist-
ing of the eigenvectors of M }]{ T YT M ;f/ ? associated with the eigenvalues

arranged in descending order. Treating y + I'f as the new p*, M }]{ ’R as
the new I'* and R’Mﬂlﬂ(ft — f) as the new f7, we have

(IN & B)Zt = ,u,* + F*ft* + &

with & S0 fF = 0,4 3/ ff#' = I, and £T¥S'T* being a diagonal
matrix. Given the above analysis, we can impose in (2.2) the following re-
strictions, which we refer to as IB (Identification restrictions for Basic mod-
els).

IBl. My =1,

1B2. %F’ YT = D, where D is a diagonal matrix with its diagonal ele-
ments distinct and arranged in descending order.

IB3. f=7%0fi=0.

REMARK 2.4. The requirement that the diagonal elements of D are dis-
tinct in IB2 is not needed for the ML estimation of 3, but it is needed for
the identification of factors and factor loadings. Under this requirement, the
orthogonal matrix R in (2.3) can be uniquely determined up to a column
sign change. This assumption does simplify the analysis for the MLE of 3.

2.3. Estimation. The objective function considered in this section is

o 1 o
(2.4) L= |2 - ﬁtr[(IN ® B)M(Iy @ B2,
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where ¥, = TMyT" + ¥.. and M., = £ 3L, 44, Here ¥, is the matrix
consisting of the parameters other than (3, the latter is contained in B;
M., is the data matrix. The objective function (2.4) can be regarded as
the likelihood function (omitting a constant). Note that the determinant
of Iy ® B is 1, so the Jacobian term does not depend on B. If ¢; and f;
are independent and normally distributed, the likelihood function for the
observed data has the form of (2.4). Here recall that f; are fixed constants
and €; are not necessarily normal, (2.4) is a pseudo-likelihood function.
For further analysis, we partition the matrix X,, and M., as

yioy2 ... ypIN MY M2 MLV
. _ 2?; 2?3 - E;N o~ M2 M?f o M2N
ENl ENZ . ENN M'Nl M.N2 .. MNN

zz z= = zz z= z=

where for any (i,7), ¥ and M2 are both (K + 1) x (K + 1) matrices.
Let 3,1 and ¥.. denote the MLE. The first order condition for 3 satisfies

1 et f,. R A T Y. .
(25) ﬁ Z Z Z”el{(yzt - xztﬂ) - A;GZF]ZJJI [ y']t j}/. Jtﬁ ] }xit = 0
i=11=1 j=1 Jt
where G = (M 501 +IS1T) 1. The first order condition for T; satisfies
N A A A RN A e
(2.6) S ESG(BMIB -$1) =o.
i=1

Post-multiplying f];f; on both sides of (2.6) and then taking summation
over j, we have

N N
) S5O (BMLB - SL)ST =0
i=1j=

The first order condition for ¥;; satisfies
(2.8) BMUB — 5 =W,

where W is a (K + 1) x (K + 1) matrix such that its upper-left 1 x 1 and
lower-right K x K submatrices are both zero, but the remaining elements
are undetermined. The undetermined elements correspond to the zero el-
ements of ;. These first order conditions are needed for the asymptotic
representation of the MLE.
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2.4. Asymptotic properties of the MLE. As N tends to infinity, the num-
ber of parameters goes to infinity, which makes consistency proof more dif-
ficult. Following [10], we establish the following average consistency results
which serve as the basis for subsequent analysis.

PROPOSITION 2.1 (Consistency). Let 6 = (3,1, 5..) be the solution by
mazimizing (2.4). Under Assumptions A-D and the identification conditions
1B, when N, T — oo, we have

1M . »
= %6 — Zal? 50
N &

The derivation of Proposition 2.1 requires considerable work. The results
of 6—6 % 0 and D S 25 =242 2 0 can be directly derived by working
with the objective function because they are free of rotational problems. To
prove + SN (0 —T)E N T —T4) 2 0, we have to invoke the identification
conditions. In addition, the identification condition used in this section has
so-called sign problem. So the estimator r having the same signs as those
of I is assumed.

In order to derive the inferential theory, we need to strengthen Proposition
2.1. This result is stated in the following theorem.

THEOREM 2.1 (Convergence rate). Under the assumptions of Proposi-
tion 2.1, we have

Q

( 1/2T 1/2)+O( )

—-p=
1 N
NZ il I8 = Tall* = 0p(T7H)

N
1 o _
5 2 18 = Bil* = 0,(17)
i=1

[8] considers an iterated principal components estimator for model (2.1).
His derivation shows that, in the presence of heteroscedasticities over the
cross section, the PC estimator for 3 has a bias of order O,(N~!). As a
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comparison, Theorem 2.1 shows that the MLE is robust to the heteroscedas-
ticities over the cross section. So if N is fixed, the estimator in [8] is incon-
sistent unless there is no heteroskedasticity, but the estimator here is still
consistent.

Although I' and X, are not the parameters of interest and their asymp-
totic properties are not presented in this paper, Theorem 2.1 has implica-
tions for the limiting distributions of these parameters. Given that B -0
has a faster convergence rate, the limiting distributions of Vech(f‘i —T) and
Vech(iii—Zii) are not affected by the estimation of 3, and are the same as the
case of without regressors. If we use f; = (XN, IS0~ (2N, 155 By
to estimate f;, then the limiting distribution of ft — ft is also the same as
in pure factor models. The asymptotic representations on these estimators
are implicitly contained in the appendix.

Now we present the most important result in this section. Throughout
let M(X) denote the project matrix onto the space orthogonal to X i.e.
M(X) =T - X(X'X)~IX.

THEOREM 2.2 (Asymptotic representation). Under the assumptions of
Proposition 2.1, we have

R 1 N T
=5 =07 33 Sl i+ Op (T2 40, (N T Y2) 10, (N 12T )
i=1t=1

—152(p,q)

ite “iix

where Q is a K x K matriz, whose (p,q) element Qp, = % Zfil by
with ng&q) being the (p,q) element of matrix Yi,.

REMARK 2.5. In appendix A.3, we show that the asymptotic expression
of 3 — 3 can be alternatively expressed as

a[MXIME)X] - o[ MXME)X] \

(290 pB-p8= : : :
tr[MXgM@E)X]] - tr[MXgM(F) X

tr[M X1 M(F)e']
X : +Op(T™2) + Op(NT'T712) 4+ Oy(NT2T7)
tr[M Xg M(F)e’]
where X = (i) is N x T (the data matrix for the kth regressor, k =
1,2,...,K); e = (en) is N x T; M = S > M(Se*A)Se/? with B =
diag{X11e, Yoo, -+, Enne} and A = (A, Ao, oo, AN) S F = (f1, fo oo, fr)s
F = (17,F) where 17 is a T' x 1 vector with all 1’s.
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REMARK 2.6. Theorem 2.2 shows that the asymptotic expression of B—p3
only involves variations in e;; and v;,. Intuitively, this is due to the fact that
the error terms of the y equation share the same factors with the explanatory
variables. The variations from the common factor part of zy, (i-e., 7 ft) do
not provide information for @ since this part of information is offset by the
common factor part of the error terms (i.e., \,f;) in the y equation.

COROLLARY 2.1 (Limiting distribution).  Under the assumptions of The-
orem 2.2, if VN /T — 0, we have

VNT(B-8) % N@©,2 )

where Q = lim Q, and Q is also the limit of

N, T—o0
. tr[MX M(F)X]] - tr[MX M(F) XY
Q= plim — : : :
tr[MXgM(F)X{] - tr[MXgM(F)X]

REMARK 2.7. The covariance matrix {2 can be consistently estimated
by

M XAME)X]] - [ MXME) XY
NT _ : _ : _ : _ ;
G XeME)X]] - M X e M(F)X]

where X}, is the N x T data matrix for the kth regressor,
(2.10) M=3%!-%

F=(1p,7) with = (f1, fo,..., fr) and
~ N A A A~ N A A A~
(2.11) fr= 0O T )OO 18 Bey).

Here f, f\, 21‘1‘, iee and B are the maximum likelihood estimators.

REMARK 2.8. We point out that the condition v N/T — 0 is only
needed for the limiting distribution to be of this simple form. The MLE
for 3 is still consistent under fixed N, but the limiting distribution will be
different.
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3. Common shock models with zero restrictions. The basic model
in section 2 assumes that the explanatory variables x;; share the same factors
with y;;. This section relaxes this assumption. We assume that the regressors
are impacted by additional factors that do not affect the y equation. An
alternative view is that some factor loadings in the y equation are restricted
to be zero. Consider the following model

Vit = 0 + i1 1 + Tiofa + -+ + Tk B + Vigr + eq

(3.1)
Titk = [k + Vg + Vit + viek

for Kk = 1,2,--- , K, where ¢; is an r; X 1 vector representing the shocks
affecting both y;; and z;, and h; is an ro X 1 vector representing the shocks
affecting @ only. Let Ai = (4,07,,1)s vax = (31,7i)" and fo = (g4, ht)',
the above model can be written as

Yit = G + i1 1 + Tiofa + - + Tk B + Noft + e
Titk = fik + VigSt + Vitk

which is the same as model (2.1) except that A\; now has r; free parameters
and the remaining ones are restricted to be zeros. For further analysis, we
introduce some notations. We define

Ff:(w277191777qu)7 F?:(OTQXDFY'?IP'%’%LK%
19 = (r9,19,...,1%), = (rhrh TRy,

We also define G and H similarly as F, ie., G = (g91,92,...,97), H =
(hi,ha, ..., hp)". This implies that F = (G, H). The presence of zero restric-
tions in (3.1) requires different identification conditions from the previous
model.

3.1. Identification conditions. Zero loading restrictions alleviate rota-
tional indeterminacy. Instead of 72 = (71 + r2)? restrictions, we only need
to impose 7% + 1179 + r3 restrictions. These restrictions are referred to as 17
restrictions (Identification conditions with Zero restrictions). They are

171 My = I,

172 %Fg’Egang = D; and %Fh’zgslfh = D, where Dy and D, are both
diagonal matrices with distinct diagonal elements in descending order.

1Z3 17.G = 0 and 1/,H = 0.

In addition, we need an additional assumption for our analysis.
Assumption E: U = (1, ¢}, ...,¢)) is of full column rank.
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Identification conditions IZ are less stringent than IB of the previous sec-
tion. Assumption E says that the factors g; are pervasive for the y equation.
We next explain why 72 + r17r9 + 73 restrictions are sufficient. Let R be an
r X r invertible matrix, which we partition into

Ri1 R
R p—
[Rm R22‘|

where R11 is 71 X1 and Ry is r9 X79. The indeterminacy arises since equation
(2.2) can be written as

(In®B)zy=p+Tfi+e = p+ (TR)(Rfr) +e

If we treat 'R as a new I' and R™!f; as a new f;, we have observationally
equivalent models. However, in the present context there are many zero re-
strictions in I'. If I'R is a qualified loading matrix, the same zero restrictions
should be satisfied for I'R. This leads to WRy5 = 0. If ¥ is of full column
rank, then left-multiplying (¥/¥)~10’ gives Ry2 = 0. This implies that we
need r% +riry + r% restrictions for full identification since R11, Ro1 and Rog
have r2 + 7179 + 73 free parameters. As a comparison, if there are no restric-
tions in T, we need 72 = (ry +72)? restrictions. Thus, zero loadings partially
remove rotational indeterminacy. Notice IZ1 has %r(r + 1) restrictions and
172 has 371(r1 — 1) 4+ 4ra(rg — 1) restrictions. The total number of restric-
tions is thus $r(r+1) + $r1(r1 — 1) + 3r2(ra — 1) = r§ + 13 + 172, the exact
number we need.

3.2. Estimation. The likelihood function is now maximized under three
sets of restrictions, i.e. %I‘Q’E;I‘g = Dy, %I‘h’Z;Fh = Dy and ® = 0
where ® denotes the zero factor loading matrix in the y equation. The like-
lihood function with the Lagrange multipliers is

1 1 _

1 1
+tr [Tl(ﬁrg’zggrg —Dy)| +tr [TQ(NF’VEE—;F" — Dy)| + te[ 130,

where ¥, =TTV + X..; Tq is 7y x r; and Yo is 79 X r9, both are symmetric
Lagrange multipliers matrices with zero diagonal elements; T3 is a Lagrange
multiplier matrix of dimension ro X V.
Let U= 32 (Iy ® B)M..(Iy ® B') — $..]%2". Notice U is a symmetric
matrix. The first order condition on 'Y gives
%fg’tu + T%fg’ig; _o.
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Post-multiplying 9 yields
1 [9U9 + Y 1 9IS =
N 'N = 0

Since %fg’[[}fg is a symmetric matrix, the above equation implies that
Y1 LTS is also symmetric. But +T9'S1TY is a diagonal matrix. So
the (4, 7)th element of T %f‘g'f];alf‘g is Y1 4d1j, where T 4 is the (4, j)th el-
ement of T1 and dy; is the jth diagonal element of Dy. Given Y4 %fg’flgglf‘g
is symmetric, we have T ;di; = Y1 jidy; for all ¢ # j. However, T is also
symmetric, so Tl,z’j = Tl,ji' This gives Tl,ij (dlj—dli) = 0. Since dlj 75 dy; by
172, we have Y14 = 0 for all ¢ # j. This implies T; = 0 since the diagonal
elements of Y7 are all zeros.

Let T = (Vs b+ YR with vfy = (W4l 4fi), and B =
diag{¥112, Y22z, - -+ » NNz}, & block diagonal matrix of NK x NK dimen-
sion. We partition the matrix U and define the matrix U as

Uir U -+ Uin @11 @12 e @1N

Ui Uz -+ Uan _ U1 Uz -+ Uan
U= . } . ) , U= ) } . )

Uni Un2 -+ Unn Uni Une -+ Uny

where Uy; is a (K +1) x (K +1) matrix and Uy is the lower-right K x K block
of Uy. Notice U is also a symmetric matrix. Then the first order condition
on I'" gives

1 ape 1 g

NPZ’U - TQNF’;’E;; =0.
Post-multiplying fﬁ yields

Txr T

J P 1o g
NPQ’UFQ - Tgﬁrﬁ’zflrh =0.

Notice %fg’ SoArh = %fh’ ST = Dy. By the similar arguments in deriv-
ing T1 = 0, we have T9 = 0. The interpretation for the zero Lagrange mul-
tipliers is that these constraints are non-binding for the likelihood. Whether
or not these restrictions are imposed, the optimal value of the likelihood
function is not affected, and neither is the efficiency of B In contrast, we
cannot show T3 to be zero. Thus if & = 0 is not imposed, the optimal value
of the likelihood function and the efficiency of 3 will be affected. In Section
2, we did not use the Lagrange multiplier approach to impose the identifi-

cation restrictions. Had it been used, we would have obtained zero valued
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Lagrange multipliers. This is another view of why these restrictions do not
affect the limiting distribution of 3. See Remark 2.4.
Now the likelihood function is simplified as

(32) L = ——In|S.| -

SN tr|(In ® B)M=(Iy ® B)SZ!| + tr[T59].

1
2N
The first order condition on I' is
(33) I"S2N (I ® B)Ma(Iy © B') — S2]87 = W/,

where W is a matrix having the same dimension as I', whose element is zero
if the counterpart of I' is not specified to be zero, otherwise undetermined
(containing the Lagrange multipliers). Post-multiplying I" gives

'S (In @ B)M.(Iy ® B') — S8 = W'T.
By the special structure of W and f, it is easy to verify that W’ I’ has the

form
l 07‘1 X7r1 07’1 XT9 ‘|

X 01”2 XTro

However, the left hand side of the preceding equation is a symmetric matrix,
so is the right side. It follows that the subblock “x” is zero, i.e. W’ I =0.
Thus, 'S (In © B)YM..(Iy ® B') = £..]82'T = 0. (This equation would
be the first order condition for My if it were unknown.) This equality can
be simplified as

(3.4) "SIy ® B)M..(Iy ® B') — $..]S2'T = 0,

because I'32! = GIVS ! w1th G=(1 + f:’ﬁ];;f‘)*l. Next, we partition the
matrix G = (I + 17! F) and H = (I"S'T)~! as follows

C}H Gn C?m i_ Hl _ 12111 1?12
Ga G Gaol’ Hy Hy Hal’
where Gn, H11 areArl X T, while Ggg, HQQ are 19 X 1.
Notice ;' = 3! — BTG and V321 = GIVS!. Substitute

these results into (3.3) and use (3.4), the first order condltlon for 1; can be
simplified as

N
(3.5) G Y T8 (BMIB — ¥9)x: T, =0,
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where [ [1{ 41 18 the first column of the identity matrix of dimension K + 1.
Similarly, the first order condition for v;, = (71,72, -, VjK) is

N
(3.6) Z YBMIB - S9)s e, =0,

where -, is a (K + 1) x K matrix, obtained by deleting the first column

of the identity matrix of dimension K + 1.
The first order condition for ¥ is

N
BMEB - 38 — TGS 03 (BMLIB — 31 )
(3.7) =1

where W is defined following (2.8).
The first order condition for 3 is

1 L& o a s an [ G — gl
Nizz {yzt_xztﬁ) )\GZF 2;1[ ]t j’;l, Jt ]}xltzo,
i=1t=1 7j=1

Jt

which is the same as in Section 2.

We need an additional identity to study the properties of the MLE. Recall
that, by the special structures of W and I , the three submatrices of W’ r
can be directly derived to be zeros. The remaining submatrix is also zero,
as shown earlier. However, this submatrix being zero yields the following
equation (the detailed derivation is delivered in Appendix B)

1o L o a e el X
(38.9) NGZ ;erizif(BMéB, = 30)85 kg = 0.
1=1)=

These identities for the MLE are used to derive the asymptotic representa-
tions.

3.3. Asymptotic properties of the MLE. The results on consistency and
the rate of convergence are similar to those in the previous section, which
are presented in Appendixes B.1 and B.2. For simplicity, we only state the
asymptotic representation for the MLE here.
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PROPOSITION 3.1 (Asymptotic representation). Under Assumptions A-
E and the identification restriction 17, we have

1 N T 1 N T
(ﬂ 5 ﬁ o ; iie eztvzt:r: ﬁ ; ; E“e ’mehtezt
1 N T 1 N
“NT Z Z Ene <N Z ¥j Eﬂe'yﬂ> heit
i=1t=1 =1

t
+ 0,(T73/%) + O,(NTIT~Y2) 4 O,(N~YV2T7Y),

where P° is a K x K symmetric matriz with its (p,q) element equal to
tr(]:1]7//]\4:[1}1)_|_l ZN melZfEpr;zq)’ Fh [’71p7 ’y2p7 A 775{7})],; ’7‘;7:% = [/7‘;7/1’ R 77‘?[(] )‘
My = & SN, 55100 and N = 2‘1/2M(2;;/2\p)z;§/2.

Proposition 3.1 is derived under the identification conditions 1Z. In Ap-
pendix B.3 of the supplement, we show that for any set of factors and fac-
tor loadings (¢, ik, gt, ht), it can always be transformed into a new set
(O, V5 97, b)), which satisfies 1Z, and at the same time, leaving ® = 0 in-
tact. Given the asymptotic representation in Proposition 3.1, together with
the relationship between the two sets, we have the following theorem, which
doesn’t depend on IZ.

THEOREM 3.1. Under Assumptions A-E, we have

1

PUI—8) = 1233 Sitestie + 1 33 Sk lthien
i=1t=1 i=1t=1
1 1 1_ht *
Zzzuew (N Zw] ]Je'y]ac)hteit
171 t=1 7=1

+ Op(T‘3/ )+ Op(NT'T712) + O (NPT
where ' R
hf = hy — HG(G'G) gy
P is a K x K symmetric matriz with its (p,q) element equal to

1 h h
St [NITh T M(G)HTY | + Zzugzg’j

where G = (17, G); Tyy = & SN iS5l M = 52 P M(Se P o) 2 Th =
(Vs W -+ s V)
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REMARK 3.1. In Appendix B.3, we also show that the asymptotic ex-
pression of 3 — 3 in Theorem 3.1 can be expressed alternatively as

-1

p-p= : :
[MXKM(@) o [MXKM(@) K]
tr[M X1 M(G)e']
x : + Op(T™2) + Op(NT'T12) 4 Oy (NPT,
tr[M Xg M(G)e/]

where X}, and e are defined below (2.9) and G = (17, G). Notice M is defined
as Ye 1/2/\/1(2;21/2‘11) ;61/2, which is equal to Eeel/zM(E;el/ZA) ;61/2 since
A = (V,0nxr,) in the present context.

REMARK 3.2. The alternative expression in the preceding remark can
be explained in an intuitive way. Notice that the first equation of (3.1) can
be written as

Y = X161+ Xofa+ -+ Xk + VG + alf +e.
Post-multiplying M (17), we have
YM(r) = XiM(1p)B1 + -+ -+ XeM(17) B + \I’G/M(lT) +eM(1rp).

Pre-multiplying M(Z;el/ 2\11) =/? and post-multiplying M[M(17)G]|, and
noticing M(17) MM (17)G] = M(G), we have

MEPOS Y M(G) = M(E20)S 2 X M@G)By - - -
+ M08 2 X e M(G) B + M(SZ20)S Y 2e M(G).

The error term of the above equation, M(X _1/2\11) e_el/ze/\/l(G), is asymp-
totically homoscedastic and uncorrelated over the cross section and over
time. Applying the ordinary least squares (OLS) to the above equation, we
will obtain the same limiting result. Of course, this method is infeasible
because A, Y., and G are unobservable. The maximum likelihood method
amounts to making the unobservable factors and factor loadings observable.

Given Theorem 3.1 and Remark 3.1 we have the following corollary.
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COROLLARY 3.1 (limiting distribution). ~ Under Assumptions A-E, if VN /T —
0, we have

VNT(B-8) % N(O,P ),
where P = lim P, and P is also the probability limit of

N, T—oc0
[ SEM@)X] e a{XME@)X]
P = plim — : : :
N,T—>ooNT . P ’ . o
tr[MXKM(G)Xﬂ s tr[MXKM(G)X}(]

REMARK 3.3. Compared with the model in Section 2, ﬁ is more efficient
under the zero loading restrictions. The reason is intuitive. In the previous
model, only variations in v;;, provide information for 4. But in the present
case, variations in %hk, h: of z;; also provide information for 3. This can also
be seen by comparing the limiting variances of Corollaries 2.1 and 3.1. Notice

the projection matrix now only involves G instead of F; and G is a submatrix
of .

REMARK 3.4. The covariance matrix P can be estimated by the same
method as in estimating Q; see Remark 2.7.

REMARK 3.5. Consider additional cases of zero restrictions. If yﬁﬁ =0
for all 4, then model (3.1) reduces to the common shock model of Section 2
with g; as the common shocks only. If zero restrictions are imposed in the x
equation only instead of the y equation, i.e.,

Vit = ; + i1 B1 + Tirofor + - + Tk B + Vigr + O + e,

/
Tithe = Mk + Vit + Vitk-

it can be shown that B obtained by imposing 73; = 0 has the same asymp-
totic representation as in Theorem 2.2; the zero restriction ’y{}c = 0 does not
improve the efficiency of (. Finally, consider the following restricted model:

Yit = @i + Tin 1 + T2l + -+ + Tk Bk + Vig + eit,
Titk = Hik + Ve + Vit

Here the y and x equations do not share the same factors, though g; and
ht are correlated. In comparison with model (3.1), the above model imposes
extra zero restrictions in the x equation. Again, it can be shown that the
zero restrictions in the x equation do not improve the efficiency of ﬁ That
is, the estimator with the additional restrictions has the same asymptotic
representation as in Theorem 3.1.



20 BAI J. AND K. LI

4. Models with time-invariant regressors and common regres-
sors. In this section, we extend the basic model in section 2 to include time-
invariant regressors and common regressors. Examples of time-invariant re-
gressors include gender, race and education; and examples for common re-
gressors include price variables, unemployment rate, or macroeconomic pol-
icy variables. These types of regressors are important for empirical applica-
tions.

We first consider the model with only time-invariant regressors:

Vit = ; + i1 B1 + Tigofa + - + ik B + Vigr + dihe + e

(4.1) o y

Tik = Mik + Vipgt + Vi he + vik
for k = 1,2,---, K, where g; is an ri-dimensional vector and h; is an r9-
dimensional vector. Let f; = (g;,h};)’, an r-dimensional vector. The key

point of model (4.1) is that the ¢;’s are known (but not zeros). We treat
¢; as new added time-invariant regressors, whose coefficient h; is allowed
to be time-varying. The parameters of interest, besides (, include h; for
all t. The model in the previous section can be viewed as & = 0, where
O = (¢p1, 2, -+ ,dn)". However, the earlier derivation is not applicable here
because now ® is a general matrix with full column rank, which provides
more information (restrictions) on the rotation matrix. Thus the number
of restrictions required to eliminate rotational indeterminacy is even fewer
than in Section 3. This point can be seen in the next subsection.
We define the following notation for further analysis:

Fzg (¢i>7ig17' e 77igK)a F? = (¢i7%'hla"' a%hK)a r; = (F?/7F?I)I7
A= ()\17)\27 to a)\N)la V= (¢17¢27 o 7¢N),a )‘l = (¢;7¢;),7
® (¢17¢27"' 7¢N)/-

Then equation (4.1) has the same matrix expression as (2.2). Note that
A = [¥, ] is the factor loading matrix for the N x 1 vector (y1¢, yat, -, YynT) -

4.1. Identification Conditions. We make the following identification con-
ditions, which we refer to as 10 (Identification conditions with partial Ob-
servable fixed effects), to emphasize the observed fixed effects.

I01. We partition the matrix My as

M —
i thg Mpp

and impose My, = 0 and Myy = I, .
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102. %Fg’ Y9 = D, where D is a diagonal matrix with its diagonal
elements distinct and arranged in desecending order.
103. 17,G =0 and 1/H = 0.

These restrictions can be imposed without loss of generality, as argued
later and more formally in Appendix C.3. In addition, we make the following
assumption.

Assumption F: The loading matrix A = [¥, @] is of full column rank.

Now we use the method in Section 3.1 to show that IO is enough to achieve
full identification. Let R be the rotation matrix partitioned in the same way
as in Section 3.1. If there exists some matrix I'T, which shares the same
structure with T, satisfying I'T = 'R, then we must have WRs + ®Rop = ®
because @ is given. This is equivalent to

Ry | Ris |
vl xR ]

So if matrix A is of full column rank, then pre-multiplying (A’A)~A’ gives
Ri5 = 0and Ryo = I. Thus only R1; and R1s are undetermined. This implies
that we only need 7“% + 1179 restrictions. The number of restrictions implied
by 101 and 102 is exactly r? + 7175. So there is further reduction in the
number of restrictions to eliminate rotational indeterminacy.

4.2. Estimation. For clarity, in this subsection, we use ®* to denote the
observed value for ®. Recall that ¥, = I'MyI" 4 X.., where I contains
the factor loading coefficients (including ®); Mjs contains the sub-blocks
Mg, Mgy, and Mpy; Y. contains the heteroskedasticity coefficients. The
regression coefficient 3 is contained in matrix B. The maximization of the
likelihood function is now subject to four sets of restrictions, Mgy, = 0, My =
I,,, ® = ®*, and %Fg’ Y19 = D. The likelihood function augmented with
the Lagrange multipliers is

B 1 1 / —1
InL=-—ln|oa| - ﬁtr{(IN ® B)M(Iy ® B)SZ| + tr[T1 M|+

[ To(My — I,,)] +tr [’rg(%rg'z;;rg - D) + tr[ru(@ - 9],

where Y1,YT9, T3 and Y4 are all Lagrange multipliers matrices; Y1 is an
ro X 1 matrix; Yo is an r1 X r1 symmetric matrix; T3 is an rq X r{ symmetric
matrix with all diagonal elements zeros; T4 is an ro X N matrix; and >, =
I'MyI" + 3. Using the same arguments in deriving T = 0 in Section 3,
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we have T3 = 0. Then the likelihood function is simplified as

_ 1 1 P
L= - n[Ss ﬁtr[(IN @ B)M(Iy © B2
+tr[T 1 Mg,| + tr[To(Myg — Ip))] + tr[T4(P — O¥)].
The first order condition for I' gives

MyT'S2(Iy © B)Mo(In ® B') =382 = W,

(4.2)

where W is defined in (3.3). Pre-multiplying M f and post-multiplying T,
and by the special structures of W and I', we have
1., - A S Tele 0 0
—T'S MIN®B)M,.(In®B') =% | T =— ST N .
But the first order condition for My gives
1o ec - - & 11 T T
—I'S7 Iy @ BIM(Iy® B) — S8 T = | 2 L.
N Tl 0T2><'I‘2

Comparing the proceeding two results and noting that the left hand side is
a Symmetric matrix, we have IS [(Iy @ B)YM . (Iy ® B') — X ]X2'T = 0.
But I"32! can be replaced by F’EEE (see (S.2) in Appendix). Thus

(4.3) "SIy ® B)M.(Iy ® B') — 2.5 T = 0.

The above result implies that T1 =0, To =0, Tﬁl\il =0 and Y)® =
The first order condition for ¥;; is the same as (3.7), i.e

N
BMEB - 38 — TGS DS (BMEB - $1)
=1
(4.4) v A
=Y (BMLB - SIS TG, = W,
=1

where W is defined following (2.8).
The first order condition on 3 is the same as (3.8), i.e

4 5 NT ZZ { ylt_xltB S\QGZf‘ XA: [ yjt ;I-fl}jtﬁ ] }jfit = 0.

i=1t=1 Jt

We need an additional identify for the tpeoretlcal analysis in the appendix.
The preceding analysis shows that & T,¥ = 0 and +Y}® = 0. They imply

10 TS GRS BMIE S8 =
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4.3. Asymptotic properties. The following theorem states the asymptotic
representation for G — [.

PRrROPOSITION 4.1.  Under Assumptions A-D and F, and under the iden-
tification condition 10, we have

N T
- 1
Qo(ﬁ_ﬂ)zﬁz < £ Eueeztvztac NT;; ”eﬁymhtezt
N T
- Ly ysam ( Z)‘ S b
NT‘1t1 zzez Jj = jje ljx ?
1= =

—I—Op(T_3/2) +Op(N_1T_1/2) +Op( _1/2T_1),

where Q¥ is a K x K symmetric matriz with its (p,q) element equal to
tr[ My TV NITE] 4+ L 5N 12 IxPD. N = 2P ML A)SS Th =

ite zw ’

1
Vs Y Vi T = % iy MiZe A and Al = [y, A%, .. ,'VJK]-

Proposition 4.1 is derived under the identification conditions 10. In Ap-
pendix C.3, we show that for any set of factors and factor loadings (¥, vk, gt, ht),
we can always transform it to another set (¢, 4%, g7, hy) which satisfies 10,
and at the same time, still maintains the observability of ® (i.e., ® is un-
transformed). This is in agreement with the Lagrange multiplier analysis, in
which T; =0 (j = 1,2, 3); the only binding restriction is & = ®*. Using the
relationship between the two sets, we can generalize Proposition 4.1 into the
following theorem, which does not depend on I10.

THEOREM 4.1. Under Assumptions A-D and F, we have

Q(ﬁ - B) = Z Z Z“e €itVitg + NT Z Z Zmel h,ht €it

zltl i=1t=1

Z Z Zuel)‘; ( Z )‘] ﬂ;'y]hé) hiei

i=1t=1
+0p(T‘3/2) + Op(N 1T‘I/Z) + Op(NTH2T7H)
where _ o
hi = h —HG(G'G) g3

Q is a K x K symmetric matriz with its (p,q) element equal to

tr[MIPMH M(G)HLY] + = E:E%m n{pa),

T 7
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and M, FZ and Iy are defined in Proposition 4.1.

REMARK 4.1. In Appendix C.3 we show that the asymptotic expression
of B — [ in Theorem 4.1 can be expressed alternatively as

wMXIMC)X]] - e[ MXMG)XL] |

f-p= : : :

tr[MXKM(@)Xﬂ tr[MXKM(@)XK]
tr[MXlM(@)e']

x : + O0,(T73/%) + O,(NTIT~Y2) 4 O,(N~YV2T7Y),
tr[M Xg M(G)e']

where X} and e are defined below (2.9) and G = (17, G).

REMARK 4.2. The expression in Remark 4.1 has a similar intuitive ex-
planation as in Section 3. The first equation of (4.1) can be written as

Y = X101+ XafB2 + -+ + X Bk + VG + OH' + alf + e.
Pre-multiply del/ ? to eliminate the heteroscedasticity
S P =S X0 By 4 -+ B X B
+ 2 V206 + 220 + 2 2atk + 2 2.

Both ® and 17 are observable. Pre-multiplying M(Ee_el/ 2CI)) and post-multiplying
M(17), we eliminate ®H' and alp. Thus

ME2R)S 2y M(17) = M(S120)S 12X M(17) B+ - -4+ M(S20)
xS 2 X e M(17) B+ M (S22 S 2UG M (1) +M(S20) 82 2e M(17).

Notice that both M( _1/2®) «/* ¥ and G'M(17) are unobservable. Pre-
multiply M[M(Eeel/2¢)2661/2 VU] and post-multiply M[M(17)G] to elimi-

nate the unobservable common factors. Using the result that M(17)M[M(17)G] =
M(G) and MIM(Eed?®)Se 2 UM (S 2D) = M(Se/?A), we have

MELPNZPY M(C) = MEL PN P XMG) B+ -

+M(EPNEZ2X e M(G) B + M(EZ2A) S 2e M(G).

The error term of the above equation, M (%, See/ N el 2eM(G G), is asymp-

totically homoscedastic and uncorrelated over the cross section and over
time. Applying OLS to the above equation, we have the same asymptotic
expression. Again, this operation is infeasible in practice, but the MLE makes
it asymptotically feasible.
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From Theorem 4.1, we obtain the following corollary.

COROLLARY 4.1. Under the conditions of Theorem 4.1, if \/N/T — 0,
we have

VNT(B - ) % N(0,@ 7,

where Q = Nlim Q, which has an alternative expression
b 4}%

tr[MXM(G)X]] - tr[MX;M(G)X}]

’ tr[MXKM(@)X{] tr[MXKM(@)XK]

REMARK 4.3. Compared with the model in Section 2, B is more effi-
cient with observable fixed effects (time-invariant regressors). The reason is
provided in Remark 3.3.

We next consider estimating h;. It is worth emphasizing that unlike
the asymptotic theory for 3, where the identification conditions in IO are
inessential but facilitate the theoretical analysis, the asymptotic theory of
Bt depends on the identification conditions, without which h; is not identifi-
able. In what follows, we assume that the underlying parameters satisfy 10.
We estimate h; by the following formula:

he = [@/SME0E 0] [0S EMEL S (1%, )],

where Y: = (y1¢, yot, - -+, ynt)  and Y, =Y — 71 Zle Y Xy isan N x K
matrix with its (i, k) element z;, and Xy = X; — 77! Z?:l X;. Now we state
the limiting result for hy.

THEOREM 4.2. Under Assumptions A-D, F, and the identification con-
ditions 10, if VN /T — 0, then

VN~ ) % N (0, [hm Nq>z€;/2/\/t( i ) e I 1).

N—oo

Theorem 4.2 also has an intuitive explanation. Consider the first equation
of (4.1), which can be written as

Yt:Xtﬁ—i-‘l/gt—FCI)ht—l-a—Fet.
First remove « from the above equation, this gives (Note 17.G = 0, 17.H = 0)

Yy = X8+ Ugy + Phy + &4
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Then pre-multiplying M (% 1/2\11)26_61/2, we have

M( 1/2\11) 1/2(Yt_Xtﬁ) ( 1/2\11) I/Q(I)h —|—M( 1/2\11) 1/2

The error term, M (X, _1/ 2\P)Ze_el/ 2ét, is asymptotically homoscedastic and
uncorrelated. Applymg OLS to the above equation, we obtain the same
limiting result as stated in Theorem 4.2.

Theorem 4.1 shows that 3 — G is O,(N~Y2T~1/2) 4+ 0,(T~3/?). But the
convergence rate of th — hy is only Vv/N. So under the conditions v N /T — 0,
we can treat 3 as known. The limiting distribution of hy — hy is the same as
the case of a pure multiple battery factor model (without regressors) with
known loading ®. The asymptotic representations of 1/31 —; and gy — g¢ can
also be derived by the same arguments for hy — hy. These results share the
common feature that the limiting representations for one set of parameters
are identical to the situation in which the remaining parameters can be
treated as observable.

4.4. Models with time-invariant regressors and common regressors. In
this subsection, we consider the joint presence of time-invariant regressors
and common regressors. Consider the following model

Vit = Ti1 1 + TigoB2 + - + Tk Brc + Vigr + Pihe + Kidy + e

(4.7)
Titk = Vipgt + Vit + Yods + vitk

fork=1,2,--- , K, where g;, hy and d; are r; x 1, 7o x 1 and r3 x 1 vectors,
respectively. A key feature of model (4.7) is that d; and ¢; are observable for
all 7 and t. We call ¢; the time-invariant regressors because they are invariant
over time and d; the common regressors because they are the same for all
the cross-sectional units. In this model, the time-invariant regressors have
time-varying coefficients, and the common regressors have heterogeneous
(individual-dependent) coefficients. The parameters of interest now, besides
the coefficient (3, include k; and hy. If d; = 1, k; plays the role of «; in (4.1).
So the model here is more general.

Similarly as the previous subsection, we make the following assumption:

Assumption G: The matrices (¥, ®,K) and (G,H, D) are both of full
column rank, where K = (k1, k2,...,6n) and D = (dy,da, ..., dr)".

Let \i = (¢, ¢L), vik = (’Vzk’%k)l and &; = (ki,7%). The model can be
written as

1 _/
[O I}é ]Zitzfgft+5§dt+€it,
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where z;,I';, €4 are defined in Section 2; Let A = (41,02, ,0n)’, then we
have
(48) (IN & B)Zt — Adt = Fft + &¢,

where the symbols I', z;, B, e; are defiend in Section 2.
The likelihood function can be written as

1
InL = —ﬁhﬂzzz‘

T
> [(Un ® B)z — Ady)'S2 (In ® B)z — Ady).
2NT P

Take ¥, and 3 as given, A maximizes the above function at
. T d 1
A=(Iy®B) (> zd) (> dsd,) .

Substituting A into the above likelihood function, we obtain the concen-
trated likelihood function

1
InL=—o oS- tr|(Iy ® B)ZM(D)Z'(Ix ® B)2Z!],

2NT
where Z = (21,22, , 27),D = (dy,dz,- - - ,dr)’, and M(D) = I7—D(D'D) =D,
a projection matrix. Consider (4.8), which is equivalent to
(I ® B)Z =TF + AD' +¢,
where € = (e1,¢€9,...,er). Post-multiplying M(D) on both sides, we have
(In ® B)ZM(D) = TF M(D) + e M(D).

If we treat ZM (D) as the new observable data, F' M(D) as the new unob-
servable factors, the preceding equation can be viewed as a special case of
(4.1). Invoking Theorem 4.1, which does not need IO (the factors F' M(D)
may not satisfy 10), we have the following theorem:

THEOREM 4.3. Under Assumptions A-D and G, the asymptotic repre-
sentation of B in the presence of time invariant and common Tegressors is

R(B - ﬁ) Z Z Eue €itVity + NT Z Z Zuel h/ht €it

11t1 i=1t=1

1 Z Z EZZ;A;HAA Z )\ ]]e h/ h*ezt

i=11t=1
+ 0p<T—3/2> +0y(N™ 1T—1/2> + 0N,
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where
hf = hy — HD(D'D)1d; — H M(D)G[G' M(D)G] (g, — G'DID'D)dy);

R is a K x K symmetric matriz with its (p,q) element equal to
“rh h
tr[MT)H' M (B)HT}] sz (),

where by = (g;,d})" and B = (by,ba,--- ,br) = (G,D), a matriz of T x
(r1 + r3) dimension; M = 2.261/2/\/1(26 1/2/\)2;61/2; FZ = (y{‘p, 'ngv . ,'yfl\,p)’;
H)\/\ - N Zz 1)‘ EmelA;

REMARK 4.4. The asymptotic expression of B — 3 can be alternatively
expressed as

tr[MX M(B)X]] - tr[MX;M(B) X ]
B-pB= : : :
tr[MXgMB)X]] - tr[MXgM(B)X}]
tr[M X, M(B)e/]
X : + O0,(T73/%) + O,(NTIT~Y2) 4+ O,(N~V/27 7Y,
tr[M X g M(B)e']

If D = 1p, the abovg asymptotic result reduces to the one in Theorem 4.1
since B = (17,G) = G.

Given Theorem 4.3 and Remark 4.4, we have the following corollary.

COROLLARY 4.2. Under Assumptions A-D and G, if \/N/T — 0, then

VNT (5~ 6) S NOR ™),

where R = lTim R, and R can also be expressed as
y L —00
, trMX MB)X]] - tr[MX M(B)X%]
R = plim — : : :
N,T—o0 NT

tr[MXKM(IBa)Xﬂ tr[MXKM(B)X%]
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We next consider the estimation of h; and k;. Again, we emphasize that
the estimation of h; and k; is meaningful only when they are identifiable.
To identify them, we impose the following 10" conditions.

The identification conditions IQ’: The identification conditions 10
hold. In addition, My = ~ Y[, fid, = 0 with f, = (g, h})".

Under the identification conditions I0’, we estimate f; by
fr= WEL DTSN (Y, - XiD),
where Y; is the tth column of the matrix Y M(D), X; is an N x K matrix
with its kth column equal to the tth column of the matrix X;M(D) and

A = (U, ®) (note ® is observable). The estimator hy is included in f,. After
obtaining the estimators ﬁ wz, Jt, ht, we estimate k; by

T 1 T N “ ~
o= [ Yoy [ diie — waf — G — Sihn)].
t=1 t=1

The following Theorem states the limiting results on hy and &;.

THEOREM 4.4. Under Assumptions A-D and G, together with the iden-
tification conditions 10/,

1. Under N /T — 0, we have

VN (hy — ht)—>N( [hm ;]@’2;61/2/\/1( ~12y)y 1/2<1>} 1),

N—oo

2. Under \/T/N — 0, we have
. d 1 it
\/T(Iii — K"i) — N(O, Eiie [:Flgréo T ; dtdt} )

5. Computing algorithm. To estimate the model by the maximum
likelihood method, we adapt the ECM (Expectation and Conditional Maxi-
mization) procedures of [22]. The ECM procedure here can be viewed as the
extension of the EM algorithm for the pure factor models considered by [29].
The E-step of the ECM algorithm is the same with the usual EM algorithm,
but the M-step is broken into a sequence of maximizations instead of simul-
taneously maximization over the full parameter space. In the M-step, we
split the parameter § = (8,1, .., Mys) into two blocks, 01 = (I', X, M)
and 0y = (3, and update 9@ to ngﬂ) given 9§k) and then update 0§k) to
Qékﬂ) given ngﬂ), where %) is the estimated value at the kth iteration.
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Because different models have different restrictions which lead to different
identification conditions, we explain how to estimate each model under dif-
ferent identification conditions.

5.1. Basic Model. In this case, My = I.. So the parameters to be esti-

mated reduce to § = (4,I', ¥..). Let o) = (BR), ) Eg;)) be the estimated
value at the kth iteration. We update I'®) according to

(5.1) T = [Ti (z0f{12,6®) }[Ti B £ 2.09)]
where
(5.2) = éE(ftft/ 12,60) = I, - T (5®)~1r®)
+F(’“)’(£§”)>1(IN © B®) M, (Iy ® B®')(20) 17,
1 T
(53) 5 2 BfZ.0) = (I BY)M(iy & BO) W) 1T,

with Z( ) — NG Eg;). We update 22’2) and B(k) according to
B+ = Dg{ <IN(K+1) — F(kﬂ)r(k)/(gg))*l)
x (In ® BW)M..(Iy © BP)},
N T 1

B = (30 Y () )

i=1t=1
& (k k+1 k
(sz;t zze+ N~ yit - )‘E " ),ft( )))’

i=1t=1

(5.5)

where ft(k) is the transpose of the ¢-th row of
FE) = B(F|2,00) = Z/(Iy @ B®)(2®)~11®

where Z = (21,29, , 47) with 2, = 2z — T L ST | z4; Dg(-) is the operator
that sets the entries of its argument to zeros if the counterparts of E(ee})

are zeros.
Putting together, we obtain #(F+1) = (F(k+1),ﬁ(k+1), Eé’é“)).
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5.2. Basic model with restrictions. Again we need not estimate Myy.

We update T'(%) by two steps. In the first step, we calculate <+ accord-
ing to (5.1). Let T~ "7, E(g:9)|Z,0%)) be the left-upper r; x | submatrix
of T=* S E(fif11Z,0%)). Let Z be the N x 7| matrix whose i-th row is the
first 71 elements of the ((i—1)(K +1)+1)-th row of T=' 27 E(2.f{|Z,0%)
fori=1,2,---, N. Then calculate

~

g+l — = [ Z gtg,’le,O(k))}

In the second step, T**1) is obtained by replacing the ((i —1)(K +1)+1)-th
row of the first step T**+1) with (¢(k+1)/ O1xp,) for i = 1,2,--- | N, where
@D(kﬂ) 1s the transpose of the ith row of W*+1 We update E( ) by (5.4)

)

and G*)

0 = (S st ) (S )

i=1t=1 i=1t=1

where ng) = TRk 4 Z(k) ( ) is the transpose of the first r1 elements
of the ¢-th row of F*) with

F&) = E(F|Z,0%)) = Z/(Iy @ B®) (¢ ~11®),
This gives §(+1) = (T(+1) gh+1), Eggﬂ))-

5.3. Models with the time-invariant and common regressors. The iden-
tification restrictions are such that we only need to estimate Mjp,. Let
o) — (6(k),F(k),Z§’§),M,(L’Z)) be the estimator of the kth iteration. We
update T'®) by two steps. First calculate T+ as in (5.1). Notice that
fr = (g}, h})". Once we have obtained T-* "L E(f;/|Z,0%)), then

1 ¢ k 1< k 1< K

t=1 t=1

are all known. Let Z be the N X r; matrix, whose i-th row is the first r;
elements of the ((i — 1)(K + 1) + 1)-th row of ~ >/ E(zf/|Z,0() for
i=1,2,---,N. Because the factor loadings ® is known we calculate

N

W0~ [z 615" Bl 2.00)] [ 3" Bz, 0]
t=1
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Then we obtain T*+1) by replacing the ((i — 1)(K + 1) + 1)-th row of the
first step T with A% = (5 @) for i = 1,2, -+ | N, where y*™
is the transpose of the ith row of W1 We update zg’é) by (5.4), 3%) by
(5.5) and M}(LZ) according to

1 T
M = T > E(hihy) 2,6M))
t=1

This gives §(-+1) = (T(+1) glh+1), 25:’;“), M}(L]ZH)).

For the model with both time-invariant and common regressors, we first
post-multiply M(D) = I+ — D(D'D) "D’ on the data matrix Z and apply
the preceding procedures on ZM(ID). Then all the estimators are obtained.

The above iteration continues until ||§*+1) —9(*)|| is smaller than a preset
error tolerance. For the initial values, the iterated PC estimators of [8] are
used.

6. Finite sample properties. In this section, we consider the finite
sample properties of the MLE. Data are generated according to

Yit = 0 + Tip1 B1 + Tirefa + Wigr + Gihy + Kidy + e,

(6.1)
Titk = Mk + Vg + Ve + Ads + Vi, k=12

The dimensions of g¢, hy, d; are each fixed to 1. We set 81 = 1 and (s = 2.
We consider four types of DGP (data generating process), which correspond
to the four models considered in the paper.

DGPI: ¢i,/‘ii7%}2 and 'yflk are fixed to zeros; aj, uik,¥; and g4 are generated
from N(0,1) and ~j, = ¢¥; + N(0,1).

DGP2: ¢;, k; and 'ng are fixed to zeros; a;, Wik, Vi, 'yﬁc, g; and h; are generated
from N(0,1); v = ¢ + N(0,1).

DGP3: k; and ’yzdk are fixed to zeros; ay, iik, Vi, ¢i, g and hy are generated
from N(0,1); 79 = ¥; + N(0,1) and v = ¢; + N(0,1). Here ¢; is
observable.

DGPJ: iy, pig, Vi, @i, Kiy g and hy are generated from N(0,1); d; = 1+ N (0, 1),
9 =i + N(0,1), v& = ¢; + N(0,1) and 7% = k; + N(0,1). Here ¢;
and d; are observable.

Using the method of writing (2.2), we can rewrite (6.1) as

(IN® B)zt = pu+ Loy + &
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where ¢; = g; for DGP1; ¢; = (g4, ht)’ for DGP2 and DGP3; ¢; = (g, he, dy)’
for DGP4 and L is the corresponding loadings matrix. Let ¢; be the ith row
of L. We generate the cross sectional heteroscedasticity =, an N(K +1) x 1
vector, according to

- i .
:izl_lniLfibi’ 121,2,,N(K+1)

where 7; is drawn from Ulu, 1 —u] with u = 0.1. A similar way of generating
heteroscedasticity is also used in [13] and [16]. Let T = diag(Y1, Te,..., Tw)
be an N(K + 1) x N(K + 1) block diagonal matrix, in which Y; = diag{1,
(M!M;)~'2M;} with M; being a K x K standard normal random matrix
for each 7. Once Y is generated, the error term e;, which is defined as
(Ehes gy - -+ s ElNy) With g5 = (e4t, Vit1, vir2)', is calculated by e; = /diag(=Z) Yey,
where €, is an N(K + 1) x 1 vector with all its elements being iid N (0, 1).
Once ¢; is obtained, we use

2= (IN®B) Nu+ Lo + &)

to yield the observable data.

Tables 1-4 report the simulation results based on 1000 repetitions. Bias
and root mean square error (RMSE) are computed to measure the perfor-
mance of the estimators. For the purpose of comparison, we also report the
performance of the within-group (WG) estimators and Bai’s iterated prin-
cipal components estimators (PC).

It is seen from the simulations that the WG estimators are inconsistent.
The bias of the WG estimators shows no signs of decreasing as the sample
size grows. The iterated PC estimators are consistent, but biased. As the
sample size becomes large, the bias decreases noticeably. However, when
the sample size is moderate, the bias of the iterated PC estimators is still
pronounced. In comparison, the ML estimators are consistent and unbiased.
For all the sample sizes, the biases of the ML estimators are very small
and negligible. In addition, the RMSEs of the ML estimators are always the
smallest among the three estimators, illustrating the efficiency of the ML
method. The same patten is observed for all of the four models considered.

7. Conclusion. This paper considers estimating panel data models with
interactive effects, in which explanatory variables are correlated with the
unobserved effects. Standard panel data methods (such as the within-group
estimator) are not suitable for this type of models. We study the maximum
likelihood method and provide a rigorous analysis for the asymptotic theory.
While the analysis is difficult, the limiting distributions of the MLE are sim-
ple and have intuitive interpretations. The maximum likelihood method can
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incorporate parameters restrictions to gain efficiency, a useful feature in view
of the large number of parameters under large N and large T. We analyze
the restrictions via the Lagrange multiplier approach. This approach can
reveal what kinds of restrictions are binding and lead to efficiency gain. We
allow the model to include time invariant regressors and common regressors.
The coefficients of the time invariant regressors are time dependent, and the
coeflicients of the common regressors are cross-section dependent. This is a
sensible way for modelling the effects of such variables in panel data context
and fits naturally into the framework of interactive effects. The likelihood
method is easy to implement and perform very well, as demonstrated by the
Monte Carlo simulations.



Table 1: The performance of WG, PC and ML estimators in the basic model

WG PC MLE
B2 B2 B B2
N T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
50 75 0.1568 0.1616 0.1571 0.1622 | 0.0203 0.0445 0.0194 0.0440 | 0.0001 0.0024 0.0000 0.0021
100 75 | 0.1566 0.1598 0.1545 0.1574 | 0.0055 0.0196 0.0051 0.0199 | -0.0001 0.0011 -0.0001 0.0011
150 75 | 0.1546 0.1568 0.1543 0.1666 | 0.0025 0.0119 0.0032 0.0121 | 0.0000 0.0008 0.0000 0.0007
50 125 | 0.1557 0.1601 0.1577 0.1622 | 0.0165 0.0371 0.0162 0.0378 | 0.0000 0.0016 0.0000 0.0017
100 125 | 0.1554 0.1577 0.1557 0.1584 | 0.0043 0.0161 0.0051 0.0173 | 0.0000 0.0008 0.0000 0.0009
150 125 | 0.1546 0.1565 0.1557 0.1575 | 0.0022 0.0100 0.0019 0.0105 | 0.0000 0.0005 0.0000 0.0006
Table 2: The performance of WG, PC and ML estimators in the model with zero restrictions.
WG PC MLE
B2 B2 B1 B2
N T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
50 75 | 0.1084 0.1122 0.1097 0.1137 | 0.0090 0.0223 0.0083 0.0230 | 0.0000 0.0011  0.0000 0.0012
100 75 | 0.1076  0.1097 0.1075 0.1097 | 0.0029 0.0109 0.0022 0.0107 | 0.0000 0.0006 0.0000 0.0006
150 75 | 0.1082 0.1100 0.1076 0.1092 | 0.0008 0.0064 0.0008 0.0067 | 0.0000 0.0004 0.0000 0.0004
50 125 | 0.1092 0.1127 0.1087 0.1119 | 0.0088 0.0209 0.0084 0.0208 | 0.0000 0.0009 -0.0001 0.0009
100 125 | 0.1084 0.1102 0.1096 0.1114 | 0.0024 0.0090 0.0027 0.0090 | 0.0000 0.0005 0.0000 0.0004
150 125 | 0.1074 0.1087 0.1076 0.1090 | 0.0011 0.0053 0.0009 0.0053 | 0.0000 0.0003 0.0000 0.0003
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Table 3: The performance of WG, PC and ML estimators in the model with time-invariant regressors

WG PC MLE
B B2
N T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
50 75 0.1568 0.1598 0.1557 0.1588 | 0.0170 0.0329 0.0186 0.0351 | -0.0002 0.0046 0.0001 0.0045
100 75 | 0.1540 0.1557 0.1542 0.1560 | 0.0047 0.0155 0.0048 0.0148 | -0.0002 0.0028 0.0001  0.0028
150 75 | 0.1538 0.1551 0.1541 0.1554 | 0.0019 0.0094 0.0024 0.0097 | -0.0002 0.0021  0.0000  0.0022
50 125 | 0.1568 0.1595 0.1567 0.1594 | 0.0157 0.0294 0.0156 0.0300 | 0.0001  0.0042 0.0002 0.0038
100 125 | 0.1554 0.1568 0.1543 0.1557 | 0.0045 0.0132 0.0040 0.0123 | 0.0001 0.0022 -0.0001 0.0021
150 125 | 0.1553 0.1565 0.1542 0.1553 | 0.0015 0.0069 0.0016 0.0072 0.0000 0.0016 -0.0001 0.0016

Table 4: The performance of WG, PC and ML estimators in the model with time-invariant regressors and common regressors

WG PC MLE
5 B2
N T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
50 75 0.1777 0.1802 0.1796 0.1820 | 0.0193 0.0310 0.0194 0.0317 | 0.0001 0.0064 0.0002 0.0064
100 75 0.1772 0.1785 0.1880 0.1813 | 0.0062 0.0158 0.0065 0.0161 | -0.0002 0.0035 -0.0002 0.0035
150 75 0.1775 0.1785 0.1779 0.1789 | 0.0032 0.0101 0.0027 0.0104 0.0002 0.0028 -0.0001 0.0029
50 125 | 0.1791 0.1815 0.1811 0.1833 | 0.0191 0.0305 0.0199 0.0320 | -0.0001 0.0043 0.0000 0.0044
100 125 | 0.1790 0.1802 0.1787 0.1799 | 0.0053 0.0138 0.0060 0.0141 | -0.0001  0.0030 0.0000 0.0027
150 125 | 0.1788 0.1796 0.1778 0.1787 | 0.0019 0.0068 0.0020 0.0069 0.0000 0.0023 0.0000 0.0021

9¢
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PANEL DATA MODELS WITH INTERACTIVE EFFECTS 1
SUPPLEMENT TO “THEORY AND METHODS OF PANEL DATA
MODELS WITH INTERACTIVE EFFECTS”

This supplement provides the detailed proofs for the propositions and
theorems in the main text.
We first introduce the symbols to be used in this supplement.

Table 1: The symbols used in the supplement

H = in)! H =01
Hy =N-H

G =My +1's )™ AG = (M;ﬁl + Ve D!
Gy =N-G

A =@ -I)S 'TH

i = (@, 0k k)"

Wpqg = N1 Z’f\;l ’Yipzi_iel%{q R

v =N A, Op = NI ARG,

& =N'2N T3ty & =N12N sty

xe =N12N Diycley Xe =Ny N D%glen

From (A+B)™' = A™' = A™'B(A+ B)™!, we have H = G(I — M;;'G)~".
From X, = TMyI" + X.., we have
(S.1) 22 =3 =S T (M + s D) s = 20 - sl Ters,
and
(S2) ISt =TSt — VS T(My! + 1/8' D) V8! = My G/
APPENDIX A: TECHNICAL MATERIALS FOR SECTION 2
APPENDIX A.1: PROOF OF PROPOSITION 2.1

The following six lemmas are useful for the proof of Proposition 2.1. The
proofs of these six lemmas do not involve the special structure of the factor
loadings and the identification conditions, they still hold in the context of
Sections 3 and 4.

LEMMA A.1. LetY and Z be two real symmetric matrices, which have
the orthogonal reduction

PYP=Dy QZQ=Dy

where Dy (Dyz) is a diagonal matriz with its diagonal elements arranged in
an increasing (descending) order. Then we have tr(Y Z) > tr(Dy Dy).
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LEMMA A.2. Let Q be an r X r matrix satisfying
QQ, = Ir
QVQ=D

where V is an r X v diagonal matriz with strictly positive and distinct ele-
ments, arranged in decreasing order, and D is also diagonal. Then Q) must
be a diagonal matriz with elements either —1 or 1 and V = D.

Lemma A.1 is given in Theobald (1975) and Lemma A.2 is given in [10].
To prove Proposition 2.1, we use a superscript “*” to denote the true pa-
rameters, for example I'* Zg‘g, etc. The variables without the superscript “*”
denote the function arguments (input variables) in the likelihood function.

LEMMA A3. Let 6 = (6,1',%c) and © be the parameter set such that

Assumption D is satisfied and (3 is in a compact set. Then we have

a) sup —tr|BI*— ' B'Y 0,(1
(a) HESN[ ;f” 2 =001)

T
(b) ggg Ntr[ gstet ¥ B'Y, } =0,(1)

where B = (Iy @ B)(Iy ® B*)~!

PrOOF OF LEMMA A.3. Consider (a). Recall

(1 -p Lo (1 (0 BBy
B_<O IK) SO Bl—<OIK>.Let L_<0 0 )

Then we have B = (Ix ® B)(Iy ® B*)™! = Iy ® (Ix4+1 — L). Now the left
hand side of (a) is equal to

1 & e 1 & . e
tr[NT;r freez] _ztr[NT; (In ® L)T* f7=(32 !

T

tr[ ! Z(IN ® L) fe;(In @ L)' S|

NT

Consider the first term of the above equation. Notice that

(A1) Z |7 2‘1/2H = g:tr(Hl/QI‘,-Z;ilF;Hl/2>
=1
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N

tr [HW(Z riz;ilr;)ﬂl/?] = te(HV2H 1 HY?) = ¢
=1

The last equation is due to the definition of H. So Lemma A.2 of [10] holds in

the present context. Using their arguments, we can prove supycg tr {ﬁ Zle

r= t*egzz—;] = 0p(1). The second term can be proved to be o,(1) uniformly

on O similarly as the first since we can treat (Iy ® L)I'* as a new I'* because
of the boundedness of 3. Now consider the third term, which is equivalent
to

K K | NT
Z Z(ﬁp - ﬁ;)( (ﬁ Z Z Eue UZtPFYZq )
p=1qg=1 i=1t=1
K K N N T
722 By—B:)(Bg—B (NT 2121;%2“9;@ ST = artas,
p=1q=1 =11 t=

Consider aq. By the Cauchy-Schwarz inequality, the term NT Z 1 Zt 12
VitpVia S is bounded in norm by

ite

N N .
(Rl (5 X Iy S eoi])
1= P —

The first factor is Op(1) due to Assumptions C and D. The second factor
is O,(T~1/?). So the above expression is O,(T~'/?). Noticing K is a finite
number and |3, — ;] is bounded, we have a; = Op(Tfl/z).

Consider as. We will show

N N T

(A.2) Z Z Z UzipzuelA;G)‘ by giV;Kcllft = Op(T_1/2)

zl]ltl

By the Cauchy-Schwarz inequality, the left hand side above is bounded in
norm by

1 X1 &
(727 X vt
=1 t=1

)" (]

N
S ) (5 i)
j=1

with U = (I, H1/2M 1H1/2) 1. The first factor is O,(T~1/?), the third is
O(1) and |U| < 1. Con51der the term SN | 2N HY/2||2, which, due to the

ite 7\

boundedness of ¥, by Assumption D, is bounded by C N, || 2_1/2)\'1—[1/2 12,

ne

which is further bounded by C SN | (|52 H1/2||2 = Cr by (A.1). Given
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these results, we prove (A.2). Furthermore |3, — 3;| is bounded, so we have
ag = O,(T~'/?). Then (a) follows.
Consider (b). The left hand side of (b) can be written as

1 & 1 1 &
tr [ﬁ ;(gteg—zga)zz—;] —tr [Ngg'z;;] —2tr [ﬁ ;(IN@@L)(QE;_E;)E;;}
1 —Io—1 1 d / * / —1
42 tr[N(IN ® L)ee's;! | + tr[ﬁ S (v @ L)(eie} — L) (Iv @ )32
t=1

1
(A.3) —tr[N(IN ® L)EE'(In ® L')3Z}] = by — by — 2bg + 2bs + bs — b

where L is defined in result (a). The term b; is equal to
1 & 1 &
/ * —1 /5y —1 / * —1
tr[—NT ;(atat -S| - tr[—NT ;r e CEAES »l b ve]

The first term is tr[5y S0 37 (exely — £%)E5;"], which is bounded in
norm by (ignore the trace)

iN 7121/2lN1T.{_*'
(N;Hz” 12) (N;HT;(%% %)

uniformly on ©. The second term is equal to the trace of

1 N N 1 T
S HIE LS e T
i=1j=1 t=1

24 1/2 B
) =0T

with €51 = eugie — E(eudy;) and U = (I, + HY2M ' H'/?)~!. The above
expression is bounded in norm by

N X ooy 1 N N T 9
—1y
(I 121 (5 o e )
i=1 i=1j=1 " t=1
The term YN, £} H'/2||2 is bounded by O YN, =21 °THY?||? = Or
by (A.1). So the above expression is O,(T~'/2) uniformly on ©. This shows
that by is O,(T~"/2) uniformly on ©.
Consider by. By S2! < 21, by is bounded by tr[+£2'S2!], which is
equivalent to

Nl =

1 1 / —1 d
v (Gr )= (7 Xew)

i=1 t=1 s=1
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which is O, (T ~1) uniformly on © due to the boundedness of ¥;;. So by is
Op(T~1) uniformly on ©.
Consider b3, which is equal to

K | NT
Z(ﬁp - ﬁ;)ﬁ Z Z Xl eivit
=1 =1 t=1
| NN 1z
—tr [ﬁ Z Z FZE;IT Z[Lgit?[jt (LErLtE[ )] IF;G]
i=1j=1 =1

The first term of the above expression is bounded in norm by

K | 1/2
Zlfﬂp—ﬂm(]\;z zze) ( Z‘T Zeltvﬂp‘ )
p:

which is Op(T_l/ 2) due to the boundedness of ¥;;. and 3. The term inside
the trace operator of the second term can be written alternatively as

K N N T
> (B B*)NT > HUAE! T Z[ﬁz‘ﬂp — B(Lyp) |25 T HY U
=1 i=1j=1 t=1
with
Vitp€jt  VipUjt1l - VipVUjtK
0 0 . 0
E/ij - . . .
0 0 . 0

which is bounded in norm by

2,1/2
Z 13,5, |(Z 155" T P) [z >y HT W—Ewmu |l
i=1j=1
with U = (I, + HY2M ;' HY/*)~1. The term gz zgil S Y Ly —
E(Lip)]||? is Op(T™1). From this, the above term is O,(T~/?) uniformly
on ©. This gives by = O,(T~/2) uniformly on ©.
Consider b4, which is equal to

1 K 1 1 g 1 I
sz:;wp—%;zﬂe(ﬁw<ﬁ;vﬁpﬂ

t=1

K

—u[ 34, Z)\Z m( Zvnp)(g:l( Z%t) 5756

p:l t=1
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The first term is Op(7T~!) uniformly on ©. The second term inside the trace
operator is bounded in norm by

K

N i v 11 Z
> 18 = Byl (X 1H T )(NZ‘TZW@
i=1 i=1 t=1

p=1

2 1/2
)

1 XN 1 & 1/2
X(NZHT;%%HQ) ]|

with U = (I, + H/2M ' H'/?)~! which is Op(T™") uniformly on ©. So by
is O, (T~1) uniformly on ©.
Consider b5, which is equal to

> e Wipvitg — E(uipvitg)]

N
=1t=1

K K 1
p;lq;l(ﬁp - ﬁp)(ﬁq - /Bq)ﬁ

7

K

K T
> (Bp=83)(By—5 [ ZZ)\ Sie = T Z Uupvjtq—E(vitpvjtq)]Eﬂe%G}
1g=1

p= 7,1]1

The first term is bounded in norm by
* 1 al —2 1/2
z g =51 1o~ 351y o)

T T 2, 1/2
v (% > (% > ivitg — E(invitq)]) ) : }

i=1 t=1

which is Op(Tfl/ 2) by the boundedness of 3. For the second term, the trace
is equal to the trace of

~ Z Z H'Y2NS;) T Z[szp%tq E(vigjeg)|S 5o Ny HY U
i=1j=1 t=1

which is bounded in norm by

1L 2. 1/2

1

(z IS (3 (e bt — o) )
i=17=1 t=1

where U = (I, H1/2Mff1H1/2) 1. The above is O,(T~'/2) uniformly on ©.

So the second term is O, (T~/?) because 3 is bounded. Thus bs = O,(T~/?)

uniformly on ©.
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Consider bg. Since 2! < EEEI, we have

1 i B K 1 9
bo < tr| - (In @ D)z (Iy © L)E | = Zl S ( Zl(ﬂp -5z ;vﬂp)
j= p= =
which is O,(T~!) uniformly on ©.
Summarizing all the results, we obtain (b). O

LEMMA A.4.  Under Assumptions A-D, if |3 — 5*| = 0,(1), then
L[ rE e = o[ st 1
NT[ ff zz}_Nr[ ff zz}—i_op()
where B = (Iy @ B)(Iy ® B*)™! = Iy ® (BB*™1).

PrROOF OF LEMMA A.4. Using the notations in result (a) of Lemma A.3,
the left hand side is equal to

1 * * Tok/xa—1 T * * Tok/x—1
ST METTE| - 2u[(Iy © DI MET S
ttr[(Iy ® LT MjT (Iy @ L)S7
Given || — 5| = op(1), it suffices to prove
—2tr[(Iy@L)D* M TS24t [ (Iv@ L)D* M T (I L) 21| = 0 (15-6)

We use ¢ and ¢o to denote the two terms of the above expression. Consider
c1, which is equal to (omitting -2)

K 1 )
tr[zl(ﬂp NZ JJE)\; j;JM;f}

hS]

K

—tr { Z Z Zue i ,Mff Z FJ ZJJIF/ G}

p=1 j=1
The first term of the above equation is O,(]|3 — 8||) by the boundedness of

A5 Yips i)]je. The second term is equivalent to

K
tr| 3 (B, - 3 ZHl/ZEm N M erzﬂlr’ aYu
=1 J=1

=
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with U = (I + fIl/QMﬁlfII/Q)_I. Ignore the trace, the term is bounded in
norm by

K R N R L
R{CEAID S F:EE
=1

p=1

N
) (e Sl
=1

<(y LI 1) e - 1

where we use the fact that |[HY2\32 < |HY?T;35Y. The above ex-
pression is Op(]|5 — ﬁ*||) So we have ¢; = O,(||6 — B*])).

Consider ¢y. Since 32! < 32!, we only need to explore the term tr[(Iy ®
L)F*MffI‘*’(IN ® L )E 11, which is equivalent to

tr { Z Z(BP o ﬁ; Z 5 JeVJp'Y*/Mff}

p=1¢g=1
The above is Op(||B — 3*||?) due to the boundedness of Vips Mp, jje. So we
have ¢z = Op([|8 — 5*[1%).

Combining the results on ¢; and ¢y, we have Lemma A .4. O

LEMMA A.5.  Under Assumptions A-D,

1 & . -
() Hy | 2 %l | (I = A) = [N'V2H2|? - 0p(T)
t=1
1 N N T L R
(b) HTZZZFE ejeSy TG H = |[NV2HY2|12 . 0y (T71/2)
i=1j=1t=1

_ ||N1/2ﬁ1/2|| . Op(N_1/2 {% i Hflu - EiiH?}l/Z)
i=1

where €1 = Eitéz-t — E(ait%t). The symbols of A, Hx and %¢ are defined in
Table 1.

PROOF OF LEMMA A.5. Consider (a). By the definitions of A, Hy and
Xt, the left hand side of (a) is equivalent to

| NT
fzzrizi_il@tf ZF] ]Jlr/

i=1t=1

big
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By the Cauchy-Schwarz inequality, term Zé\le jzﬂlr’ H is bounded in
norm by

(% ZHFJ £51217) (lez‘”%'ﬂmn) S

The first factor 4 Z =1 1T ;1/2”2 0,(1) by the boundedness of 3. The

second factor is \/r by (A.1). So we have Z] 115 ler/ = |NY2ZHY2) .
Op(1). . »
Also, the term H% SN L T8 ey £ is bounded in norm by

2\ 1/2
)

1/2 £71/2 al A12AA—1/221/21N 1T %/
CINYREM2| - (YRS 1) (5 2 | 5 30 et
i=1 i=1 t=1

which is || NY2HY2| - O,(T~'/?). Combining results, we have (a).
Consider (b). The left hand side of (b), by the Cauchy-Schwarz inequality,
is bounded in norm by

N
1NN

YL )(NzZZHTZ%H "

j=1 i=17=1

CHNl/Qf{l/2H2 . (

which is || NY2HY2||? . 0,(T~/?). So (b) follows.
Consider (c). The left hand side of (c) is bounded by

1/2 1/2 2 *
1B ZHHWrz P12 sa 12 186 - S5
=1

N
2 r1/27 —1/2 2 %
< CIHV2IES AR P12 180 - 25
=1

By SN, | HYT, zA3_1/2||2 = r, we have, for all i, |[H/2I; 2_1/2” < /r. So
the above equation is bounded by C\f||H1/2|| ZZ 1 HH1/2F E_I/QH ||f)“ _
Y%|l. By the Cauchy-Schwarz inequality, This term is bounded by

N
C\f\ﬁHNl/QHl/QH (ZHHl/zrz—m ) ( Z”E” 2MH2)1/2

which is | NV2HY2||. Oy (N2 £ SN |25 — Zii[|2]H/?). So (c) follows. O
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LEMMA A.6. Let &= |NYV2HY2||2.0,(||8 — B*|)). Under Assumptions
A-D,

ol S .
(0) Hy[7 Y &(B— )3 —37)E] fin = £- 0,13 - 51)
where Xt,ét, Hy and A are defined in Table 1.

PROOF OF LEMMA A.6. Consider (a). By the definitions of & and A |
the left hand side of (a) is equivalent to

R N o 1 N T R [N A, A
(Y ST (T > f (B - B3, T H)
=1

The term H N | T35 'T# has already been proved to be |NY2HY2|.0,(1)
in Lemma A.5(a). By the definition of [;; and the fact @i, = ’ﬁ;ft* + Vitp,

1 N T ~
Tz;ft*(ﬁ_ﬁ*) tzjjlrlH Z Mff217]p ]JlA/
J=1i= J
K . 1 N T
+> (Bp—8 fZth*u]ipz NoH = dy + dy
p=1 j=1t=1

where 74, can be replaced by vjg, since % ST, ff = 0. Term d; is bounded
in norm by

L& 71/2 1/2
M- 32 1B~ 651 (57 ZH S
p=1

1/2 A
(ZHEJ;”A’HW|| )iy

Notice

N
SIS = Sl S — o] ()
J=1 =
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(A.4) { 25\ f]ji)\; 25\ f] i Z%x mvﬂ - } <.

But % N ||’yjp le/2||2 = Op(1) by the boundednegs of i]]je, we have dy =
||N1/2H1/2H (ﬁ 3). Consider ds. Ignore fo:l(ﬁp — B3,), the remaining
expression is bounded in norm by

N N
1/23 12| 2,1 1 x N2 12 2
(Z IS5 S E ) (g ol X ol )
= =
which is || NY2HY2| - O,(T~'/?). So dy is bounded in norm by
K A A A A
D218y = Byl NV Op(T7H2) = INYVEHY2 - 0,118 = 5711

Given the results on d; and da, (a) follows.
Consider (b). The left hand side of (b) is equivalent to

i(g:fi - (Zz S5V i

t=1

H

H\H

by the same arguments in (a), the above expression is equal to
K

R O [PELE
> Gy —B;‘)HTZZDE#&J Z%p le)‘/
i=11=1

p=1

K N N T
~ S 1 A A
+> (B - ﬁp)HTZZZFZE LeivjpX i NiH = ds +da,  say

LS I LA N .
S By = BH Y Y TS e (Y v SNl )
p=1 i=1t=1 j=1

since it is of smaller order than dy4. Consider ds. Ignore Z{le(@p — By), the
remaining expression is bounded in norm by

o(y Imers ) (lezjgi/QA’H\l )"

=1



12 BAI J. AND K. LI

X 71 NE l }T ft*sit N E || ]p le/2 /2||N1/2ﬁ1/2”2
N T
i=1 t=1

which is || N1/2H/2||2.0,(1). Given this result, it follows ds = || N'/2H/?|2.
O,(|8 — B*||). Consider dy. Ignore fozl(ﬁp — f3;), the remaining expression
is equal to

1
H Z Z | D D o Z [Eitvjtp— B (cirviny) | X5 N H+H Z 0335 Eeiviy) S5 N H
i=17=1 =1

The first term of the above expression is bounded in norm by

(ZHHWP ) (Zuz;i”XHH)

=1

(R NR 2\1/2 1/2 F71/2)12
% (13 o0 |7 Slewvion — Bleavip)l|| ) INV2HY
i=1j=1 t=1

which is || NY/2HY2|? . 0,(T~'/?). The second term is bounded in norm by

O (smp 1 Dl (1T )

=1

1/2 A~
(Z ”2in/2)\/ H1/2|| ) / ||N1/2H1/2||2

Notice sup || E(gitvitp)|| < [sup(E||5 it| )1/2][sup(Ev2- )1/?], which is bounded
<N

by Assumption B. So the above expression is ||N1/2H1/2||2 -Op(N~1). Thus,

N N T
HZ 33 > TSt Syl i H = [NV2HY2|2- [0, (N7 +0p(T~?)]

Bje’s
i=1j=1t=1

H\H

Given this result, it follows dy = | NY/2H"/?|]2. op(\|3—5*||). Combining the
results on ds and dy4, we have (b).
Consider (c). The left hand side of (c) is equivalent to

i i(ﬁ:fi )3 G — o (S 1S ) A

t=1

’ﬂ\'—‘
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which is equal to

N
* -1
zze%ngffZ%q Jje )‘/
7j=1

N T
fZZAiZi—iel”%tp Z’qu le)‘/

M=
1M =
=
|
%
——
||Mz

2 3 1_x*
H Ai Ezze ZI;T Z Z ft ’Uﬁqzjje)‘]H
j=1t=1

zMz

N N T
5 |
+H Z D> Aide T > ipvjig — E(vitpvjeg)| S5 N H

N N
(Bp = By)(Bg — By) [H > Aizﬁiﬂz‘p%%ikéﬂ}
i=1 j=1

since it is of smaller order than Z —1 Z (Bp - B, )(Bq — B3)ds
Consider ds, which is bounded in norm by

* 2 1/2
M- IV AP (S Zn VS ll)

(% ZH ) (ZIIHI/QAEMQ/QII)=||N1/2ﬁ1/2ll2-0p(1)-

C0n51der dg, which is bounded in norm by

CINE P (5 Zrmp R ZH thvmu)

< IHVAELR) = [NVRER|R Oy,

ite
=1
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The term dy is also | NY/2HY/2||2. 0,(T~'/?), similar to dg.
Term dg is bounded in norm by

N
C“N1/2ﬁ1/2||2<z HH)‘ 2—1/2" )

ite
=1

| N o 1/2
X <N2 Z Z Z VitpUjtq — Uztpvjtq)] ) )

which is || NY2HY2|? . O,(T~1/?).
Consider dy, which is bounded in norm by

—1/2
HN1/2H1/2H (Z HH1/2)\ Eue/ | ) SEJI\)[ | E(vitpUitq) |
=1 =

which is ||[NY/2HY2|2 . O,(N71).
Summarizing all the results, we have (c). O

PrOOF OF PROPOSITION 2.1. We consider the objective function,

1 1 ,
L= -5 - Ntr[(IN@)B)MZZ(IN@B)E 'l —l—K—i——ln]Z |

Here we add a centering constant to (2.4). Throughout the paper, we
assume B is in a compact set. Since the likelihood function is a quadratic
form of B, it cannot achieve the maximum value at too large ﬁ So this
assumption doesn’t loss generality.

Let TT = (Iy® B)™'T" and !, = (Iy ® B)"'S..(Iy ® B')™!, then &I, =
TtMy TV + 51, = (Iy® B) 'S, (Iy ® B')~'. Notice In |Iy ® B| = 0 by the
definition of B. So the likelihood function can be written as

1 1 1
(A5)  WmL=-—h[cl|- Ntr[Mzinz_l] + K + - In[£L|

By (In ® B*)z = I f{f 4 €4, we have

1 T
(Iy ® B)Mz(Iy @ BY) = I"MpT™ + X2+ T2 3 fief
t=1

1 & 1 &
+7 Zetfgwr*/ + = Z[été:ﬁ - 258]
T= T
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Let T = (Iy ® B*)™'I™*, ¥4 = (Iy ® B*)7'S%(Iy ® B¥)™! and ¥4 =
F*TM ¥ I‘*T/ + Effg. Then the proceeding equation can be rewritten as

T
1
M. =%1 F*T §j i(In@B" Y+ (In@B )=> N R
+ T 2 (In® )+ (In ® )Tzﬁtft

T

*— 1 L * */—
+(In® B I)T > e — S5 ](In @ B
t=1

Equation (A.5) can be rewritten as

(A.6) InL = L(0) + R(9)
where 1 .
T0) — — L (st | — L[yt L
L(9) =~ n|zL [2 ni- }+K+N1n\z |
and

R(0) = —%tr[(Mzz - w)=i]

Lemma A.3 implies that supgeg |R(6 )| = 0p(1). So we have |R(6*) —
0)| < 2supgee |R(A)| = o0,(1). Since § maximizes InL, it follows that
() + R(A) > L(6*) + R(6*). This yields L(d) > L(6*) + R(0*) — R(§) >
(6*) — |op(1)] = —|op(1)], the last equation uses the fact that L(0*) = 0
by the centering. However, L(f) is maximized at § = 6* and L(0*) = 0.
This yields L(d) < 0. Combining L(d) > —|0,(1)| and Z(f) < 0, we have
L(0) = op(1).
Consider L(#), which is equivalent to

R
L(0
L

_ A 1 PPN ~
L(e):—ﬁln]rTMffFT’Jr .

{F*TM;?fF*T"ELZ_l}

%tr[z*w 'l +K+—1nyz |

Notice that $1-1 = SIS IDTGITY S -1 with G = (Mﬁl—i-ﬁ’iiglﬁ)_l
So & tr[EfaZL 11'is equal to %tr[ngEla -1 tr[fT'f]lglzifllglf‘T@T]. The

term tr[E:TEZZE 1 by the definltlons of 3 and ., is equivalent to 4 SN L(B—

ﬁ*) mm(ﬁ IB*)EZZ€+N [E;(z i1 ] The term 1tr[FT ET ! E*TET 1FTGT]
is equal to tr[+ Z-:} I‘IE; 1%);‘;22 11“1» G1), where I, = B9, B~V & =
B* 135 B* 1 and I’I = B7T;. The latter term is bounded in norm by (ig-
nore the trace)

1 1 2 1/2 a1/ ]
v sup (1= IS (ZHH“/ZFTET PIP)- |+ BN A
i=1
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where HT = (IT'SI-1TT) =1, The first factor supiSN(HEZ-TH ||EJr 1/2|| ) is
bounded by Assumptions C and D. Since

N
DI EETIS R = Ztr (AP AT = a( ) = 7,

the second factor is r. So we have %tr[ﬂ’iiglﬁlif}lglfﬁ@ﬂ = O0,(N71).
Using the arguments in proving their Proposition 1 of [10], we can show
that  In [[TM TSI + Iy| and 7 In [0 M7 T zggjl + In| are both
O,("=X). Given these results, in combination with In|Sl| = In|E..| by
det(Iy ® B) = 1, we have

( Zln|2,,]+ Ztr 2 K—*ZIH‘E) Op(N™1)

1 e 1<,
_Ntr[F*TM;fP*T 2271} - N Z(ﬁ - B*) nw(ﬂ 6 )2”6 + 0 (

=1

InN
)

The main three terms of the above equation are all non-positive. By f(é) =
op(1), each of the three terms must be 0,(1). That is,

(A7) 72 /6 B nx ﬂ /8 ) iie — Op(l)

(A.8) —Zln|2”|—|— Ztr i K——Zlnm = 0p(1)

1 .
(A.9) i [P MpT S = 0,(1)

Consider (A.7). The matrix XY is deﬁnite positive matrix for all ¢ and

Siie is a scaler which is bounded by [C~1,C]. So we have

(A.10) B =" =o0p(1)
Consider (A.8). Let @1, Wiz, -+ ,wix be the eigenvalues of the matrix i
which are arranged in descending order. Similarly, wyj,ws,, -+ ,wj are the

eigenvalues of the matrix ¥}; in descending order. Consider the following
function

F(4) = In [S] + tr[E5185] — K — In| 25| — 0] 24 — Sal|?
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= In || 4 tr[25; 155 — K — In|S5| — b tr[S2] + 2b tr[25 5] — b tr[257]
Since the cigenvalues of 32 are &3,0%, -, 0%, So we have tr[%3] =
K . The same argument applying to i leads to tr[X:?] = K 1 w*;?

So the above equation is equal to

K
FEa) =3 [y, — 1 —Inw)) — b(@2, + wi2)] + tr[(S5" + 2b85:) 5]
p=1

The matrix 2 + 2b2u has the eigenvalues w Ty 2bw;;, for p =1,2,- K .
We can choose b small enough to guarantee the order of & %1 + 2bw;1, wzg +
2bwio, -+ - - ,(J);Kl +2bw; i 1s the same as the order of cf)[ll, d){zl, e ,&)i;(l because
all w;, are bounded by Assumption D. So we have

K
ZZ{(lnd)ip —Inw} )—b(w + W, )+w wip + 260w}, }
-1

by Lemma A.1. Using the arguments of [10], there exists a constant b small
enough such that f(X;;) > 0. So we have

1 N
op(1) = N Z(ln]Z“| +tr[2;185] — K —In|25))
1=1

N
>l — =517
1=1

Z\H

This implies that
1N ,
A1l = 18s - Z5I17 5

Consider (A.9), which is equal to %tr([Iy ® (BB*H]I*MyI*[Iy ©
(EB*_l)’]iz_Zl) = 0p(1). By (A.10) and Lemma A.4 , we have

1 * * k/xn—1
Ntr[r M2 = 0,(1)

Since E 1 E 1 1FGF’ ! and G=H- HMfflG the left hand side
of the above equatlon can be ertten as

1 e L et e e fo 1
tr[ SIS T My — ST S (D) T S T M

1 A 1A A,A 1A N Anya
| TS (ST T AT GRS T M



18 BAI J. AND K. LI

The matrix inside each of the trace operator is semi-definitely positive.
Given +tr [F*M}“ff‘*’i;zl} = 0p(1) together with the fact that M = op(1) if

tr(M) = op(1) for a semi-positive definite matrix M, we have

1 e L e 1o e 1 1oy
(A.12) Nr*/zggr* — NP*’E;;F(F/EE‘;F)‘IF’EE‘;F* = 0,(1)
and

1 ~ PPN A ~ PPN
(A.13) Nr*’z;;r(r’z;;r)—lM;flGF’E;;F* = 0,(1)

Notice that 4TS 1T* = LIS+ + L1¥(5) — Sio1)I*. Since
the term &I (32 — X510 is equal to & SN TiSZ NSy — 8,251,
which is bounded in norm by & SN, ITES - 12 — Sl - |25 and is
further bounded by C'& SN, [|S% — 32]| for a large C by the boundedness of
TN, |24, |25 for all 4 in view of Assumptions C and D. By the Cauchy-
Shwarz inequality, C& SV | ||2% — 5| is bounded by C(& SN, S —
AR /2 'S0 we have

L w1 *— 1y 1 Qh it yor o oo
HNF (B —Z)T | = ||NZP1 Ny (Zh - Xa) ST
(A.14) =

1M 1/2
<C(x 1% - i)

Then we have £I*(X' — ST = 0,(1) by (A.11). So £T¥S T =
FT¥E71T* + 0p(1). Given this result, together with (A.12), it follows

1 ~ A oA A A N

Nr*’z;;r(r’z;;F)—lr’z;;r* LYo
where C* is the limit of %I‘*’ Y*-I0*. Comparing the above result with
(A.13), we have Mﬁlé = 0p(1). So G = op(1) due to the boundedness of
Mff by Assumption D. Since G = H (I, — Mﬁlé), we also have H = 0,(1).
We summarize these results as

(A.15) G = 0,(1); H = 0,(1)

Let A= (D —T*)S'TH, then T"Y_'T'H = I, — A. By (A.14) and (A.11),
equation (A.12) can be written, in terms of A, as
1

(A.16) =

*/5vk— 1k | PPN
TS — (1, — A)(Nr’z&}r) (I, — A) = 0,(1)



PANEL DATA MODELS WITH INTERACTIVE EFFECTS 19
Equation (A.16) can be written alternatively as

1

(A.17) N (ri — TSN T — A(%f’i;f)A’ = 0,(1)

\\Mz

Now we turn to the first order condition for the proof of consistency.
Notice that

[ Yit f,fjtﬁ ] _ [ Yjt — xatﬁ 1 [ T jt ] (B — 5%
(A.18) T o Orxx
=TV ff + &1 — Lu(B — 57)
where [;; = (254, Ok x k)" is a (K + 1) x K matrix. Also notice that
A , 1 a Uit — @3t f3 . LA
(A.19) BMUB' = Zan B = T;[ i 1 [yjt—xjtﬁ, ﬂfjt}

So we have
(A.20)

> i SV * * Tk * 1 d * 1 d k% 1 d
BMZB' =32 =TUMET5 + T35 ) fide+ 7 D eafiT5+ 7 ) cie
t=1 t=1

-ry'z thﬁ El anﬁ g letﬁ BT
T T ~ . o R R
——Zln B—B)¢, Z lie(B—8")(3—5") =DMy L—1(i = j)(£5-55)

t

where 1(i = j) = 1 if i = j, 0 otherwise, and €;; = Eitég-t — E(Eitagt). For
simplicity, we neglect the smaller order term &;; = T-2(37, 6@5)(25;1 Ejt)-
Using (A.20), equation (2.7) is equal to
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1

A~

—fiy {1§&<B ~ BT~ 4) - Hy | S A - 5% | Hn
T t=1 t=1

N

T
[ Y5 - 875 - 5V E fly — S (S — S ST
t=1

where X¢, &, Hy, H and A are defined in Table 1 and €ijt = €z‘t€§'t — E(ait%t).

Consider (A.21). The 4th-6th and the last terms of the right hand side of
(A.21) are summarized in Lemma A.5. The 7th-11th terms are summarized
in Lemma A.6. Since we have already proved that § — 3* = op(1) and
L3N |25 — B5]1% = 0,(1), (A.21) can be written as

(A.22) Ny = (I — A)Mjy(I, — A) + [ N'2H'2|2 - 0,(1)

However, (A.16) indicates that NH = (I, — AY (VST (T, — A) +
op(11 — AIP). So |NV2EV2P = tx(NE) = tr{(I,— AY (ATS2T*) ! (I, -
A)] + 0,(||[T — A||?). Given this result, we can show A = O,(1). Otherwise, if
A is stochastically unbounded, the first term of the right hand side of (A.22),
which dominates the second term, will diverge to infinity. But the left hand
side of (A.22) is stochastically bounded by Assumption D (it is I, under our
identification condition). A contradiction is obtained. Given A = Op(1), we
immediately obtain

(A.23) NH = 0y(1)

Then (A.22) can be simplified as M = (I, — A)' M (1 — A) +0p(1). Notice
that the identification condition requires My = M ¢ = Ip.. This yields
(A.24) (I, — A) (I, — A) = I, + 0,(1)

By (A.16) and (A.24), applying Lemma A.2 with Q = (I, — A), V =
LIS and D = £I¥S7710%, it follows that I, — A converges in proba-
bility to a diagonal matrix with diagonal elements either 1 or —1. By assum-
ing I' and I'* have the same column signs, we rule out —1 as the diagonal
element. So A = 0,,(1). Then (A.17) implies the second result of Proposition

2.1.
This completes the proof of Proposition 2.1. ]

COROLLARY A.1. Under the assumptions of Proposition 2.1, we have
1

20T SIS = 0(1)
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APPENDIX A2: PROOFS OF THEOREMS 2.1 AND 2.2

Given consistency, we now drop the superscript “*” from the true pa-
rameters for notational simplicity. The following lemmas are useful to prove
Theorem 2.1.

LEMMA A.7. Under Assumptions A-D,

(a) —ZHI A th HQZOP(:H

yREANTIUUR I .
(b) NZ‘HN TZtht)FJH :Op<T )
j=1 t=1
1 N R N L 1 T 2
(@) w2 [E DS > || = 0p(r7)
Nj:l i=1 =
1 N an et e
@ ~ [ ATE G- 59| = o5 Zuzﬂ 251?)
j=1

where €5, = f-:itégt — E(ffit%‘t)-

PRrROOF OF LEMMA A.7. Consider (a). The left hand side of (a) is bounded
by

11 =A% ZH th
which is O,(T~!) because thzl fiely = O,(T71/?) and A = o0,(1) by

Corollary A.1(c).
Consider (b). The left hand side of (b) is equal to

— Z HHZF D Zanftr H
which is bounded by
N
N (5 2 IT0P) (5 Z P2 2P) (5 Z Hfzftanu %)
j=1

which is O,(T~!) by Corollary A.1(b) and NH = O,(1).
Consider (c). The left hand side of (c) is bounded by

C[NH|P?- (]bfjufiiﬁ”ﬂﬁ)(m ZZ H zemu %)

i=1j=1 T
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which is O,(T~!) by the same reason as (b) and Assumption B.
Consider (d). The left hand side of (d) is bounded by

N N R
CINER - (5 gw 50P) (5 anﬁ—&jn?)

which is O, (N2 Z;-V:l |2 — £412) by the same reason as (b). O

LEMMA A.8. Under Assumptions A-D,

1 al /1 4 A /l'/ _ A 2
(a) Nj;H ' A B =8I = 0n(13 - 1)
0 L5 (A3 w@ - o) = o1 — a1
Nj:1 N Tt:1Xt D
1. 1 & 2 R
(© ~ 3 [ (7 & =88y = 0,18 - 817)
j=1 t=1
W L3 [an(E a0 -9 [ =l - 51P)
1 Ls~c3- 3 )| = op(f
Nj:l " = !
1 1. . R . 2 .
(@) % 2| Ev (72 8B -8B -8)E)| = 0,881
j=1 t=1

PrOOF OF LEMMA A.8. Consider (a). The left hand side of (a) is bounded

in norm by
N
TEVTENES 3 Z — BYi )
N = It

The first factor is O,(1) by Corollary A.1(c). Consider the second factor,
which is equal to

| N K 1 9
NZH Z — ) Mff%ﬁ“‘Z ﬂp)T;ftvjtpH
j=1 p=1 =

e
&Mﬂ

The above expression is bounded by

K 1T 9
Q*ZHZ ﬂp Mff’YJpH +2*ZH E :(/Bp_/BP)TthvjtpH
-1 p=1 t=1

le—
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Notice

(A.25) 1By — Byl <|IB— 8| for ¥p

The first term is O,(||3 — 8]|2), the second term is O, (T3 — G||2). Thus
(a) follows.
Consider (b). The left hand side of (b) is equivalent to

which is equal to

1 < S X1 & 2

NZH Z(ﬁp ﬂP)HZFiEi_ilf ZEitjjjtpH
Jj=1 p=1 i=1 t=1

By @jup = 7§'pf ¢ + Vjtp, the above expression is bounded by
1 N K ) 1 N T o )
TED S DRAAIED 3) gl o
Jj=1 p=1 i=1t=1
1 N K ) 1 N T - )
My 2. H > (Bp - Bp)H DY TS eawvjn — E(eivjip)) H
Jj=1 p=1 i=1t=1

1 N E N 2
S350 S B

[u—y

1 N K R ) N T o 9
+4N Z ’ Z(ﬁp - ﬁp)HT Z ZFiEi—ilgit@ij =e€1tey+e3+eq, say
j=1 p=1 i

Consider e;. Ignore the factor 4, it is bounded, due to (A.25), by

N
CKI|B - B[N H2 | (S I1ETE5)?)

=1
1N 1T . K 1 N e
x(NizlnTt:zleztft\ );szlrmpu

So e1 = Op(T V|8 — BII?) by NH = Op(1) and SN, | HV20,8512)% = 1.
Consider es. Ignore the factor 4, it is bounded by

N
CK|B— B - [NYV2H2|2( 3 || A28, %) 2)

1
i=1
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K | NN | T )
x <p;1 N2 ;; Hf ;[5itvjtp - E(ﬁitvjtp)]H )

So ey = Op(T_1||B — B]1?) by the similar arguments as e1.
Consider es, which is bounded in norm by

O <18~ B - |NV2E2|? (ZHHWF 2 %1P)

i=1
K N N
Z ZZ 1B (ivjep)]
Notice E(envjep) = 0 if i # j. So e3 = Op(N “|8 = B?). e4 is of smaller

order than es. Given these results, (b) follows.
Consider (c). The left hand side of (c) is equivalent to

—ZHHZF o TZz,t (B - B)fiT; H
which is bounded in norm by
HHZF o Tzzn i-0f (3 Z Iv;1?)

Since % Z;-V:l |T;]/? = O(1), we only need to consider HYN, f‘liﬁl% S
Ii1(3 — B)f/, which is equal to

K

N
Z 5]’ HZ PVszff

p=1
K 4N T
—1—2( BpH ZZ)\ E” Vitpfi = €5 +eg  say
p=1 i=1t=1

The term H Z Y NSz M #f is bounded in norm by

ite ’sz

NP _ 1/2
,,lezHlxau(ZHmzug/Q) (% zuz S ypl?) M|

which is O,(1) by (A.4). So e5 = O,(||3 — §)). Consider es. The term
H’% SN ST N 25 i, ffis bounded in norm by

CHNl/QHl/QH(ZHHl/Q)\ 2;61/2 ) ( ZH—thvztpH )5
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which is O,(T~'/2). So eg = op(||6A — 0]]). Given these results, (c) follows.
Consider (d). The left hand side of (d) is equivalent to

which is equal to

1N K N
472”2(51?_513)‘[{2 iie 1p th H
N]:l p=1 i=1 T
1N E 1N
+4N Z H Z( P~ ﬂp)HT Z Z )‘zzz_zel [Uztp%t E(Uztp%t)]H
Jj=1 p=1 i=1t=1
1N K N 9
+4N Z H Z( P ﬁp)Hz)‘%E;elE(Uztpéjt)H
j=1 p=1 i=1
1N E 1N T 9
Y Z H Z(ﬂp Op)H = ZZ)‘ZE;;%tUJPH =ertesg+eg+ey, say
NJ:1 p=1 Tzzlt:l

Using (A.25), term ey is bounded by (ignoring the factor 4)

e

N
K[3- gl ||N1/2H1/2H2(Z | 2385 7)

(Z Zu e ZH zft o

p=1

which is O,(T~1|3 — G]|?) by (A.4).
Consider eg, which is bounded by (ignoring the factor 4)

ite

N
CKIB = B - NV 2P (3 A )

’ﬂ

K 1 N N
<Y <5 2 || lvieseh — Evinpei)]
P

=1 i=1j=1 " t=1

1 I
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which is Op(T_1||B — B1?) by the similar arguments as er.
Consider eg. which is bounded by (ignoring the factor 3)

1,4 5 al _
K IB=BIm N 2B P (258 ) Z LSS 1w

zl]l

which is O,(N~!||3 - 8]|?) by E(vitpejr) = 0 for i # j. Term ey is of smaller
order than eg. Given these results, we have (d).
Consider (e). The left hand side of (e) is equivalent to

*ZHHZFEMTZW 8)(8 - By

which is equal to

K K R R 1 T .
SIS DB = BBy = BIHZ DS A i

I
j=1 p=1lqg=1 i=1t=1

y (A.25), the above expression is bounded by

K2||ﬁ ﬁ” ZZ ZHH ZZS\ ell'ztpx_]tqHQ

p=1q= 1 t=1
which is further bounded by

e

N
CK?HB—6H4\|N1/2ﬁ1/2|!2(2 1258521

K 1 N N 1 T 2
<X e L X (7 X dvin)

p= 7j=1
Notice, for Vi,t,p, E(& ftp) < C for some sufficiently large constant C' by
Assumptions B and C. So the above expression is O, (|| 3 — |4, obtaining

(e). O

PROPOSITION A.1. Under Assumptions A-D and the identification con-
ditions IB, we have

A= ZF—F S H = O(T—1/2+0([ ZHZ” ziinﬂm)

1N ) )
+Op(ﬁz qu‘l” AT — FiH2) +0,(I18 - 8|)
i=1
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PROOF OF PROPOSITION A.l. Notice the equation

1oape a1 1T oan g
—ry it —ryir= 1y N -T
N EE N E€ N EE ( )
s iy Lo sy o)+ Lo - sohre
N EE N EE N EE EE

1 aje 1,2 1 - S
26 ndiag{NF’E_el(I‘ D)+ (- F)’ZESF}
.26
] 1 SN 1 A _
= ndlag{ﬁ(l“ — F)/Zesl (r-r) - NFI(EEEI - Zsz—:l)r}

where ndiag denotes the non-diagonal elements. However, by Lemmas Ab
and A.6, and noting My = My = I, equation (A.21) can be simplified as

HI'SZHD —T) + (0 = D)SZ'TH = 0,(T%) + 0,18 - )
which can be written as

1 1 .

(A.27) ﬁNNr'i:;;(f—r)+ﬁ(r—r)'i;;fﬁ]v = 0,(T~ %) +0,(18-5])
where Hy = NH is a diagonal matrix. We use i1, go, -+ , G, to denote its

diagonal elements.

Equation (A.26) puts r(r — 1) restrictions and equation (A.27) puts
$r(r + 1) restrictions on the matrix %(f — )22 So it can be uniquely
determined by the equation system (A.26) and (A.27). Solving this equation

system, we have

[~ DIEZE] = 5[0, + 0,15 - 81)]
fori=1,2, ,r, and
[ @ -TEE] = o {[0nT ) + 0,013 - 5]

for i # j. However, Corollary A.1(b) shows ¢; — ¢; 2,0, where gj is the jth
diagonal element of ) defined in Assumption C.3. So we have

(L =T)YSTH = 0p(T~?) + 0,116 - 51
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1. e 1 ey oo
N(F - F)lzeal(F - F)) + OP(NF/(E.&; - Eaal)r>
W]Aaich implies Proposition A.1 because Op[~T" (S -2hr) = O,([% N
120 — Zal|2]1/2) by (A.14).
This completes the proof of Proposition A.1

+Op(

O]

ProproSITION A.2. Under the assumptions of Proposition 2.1, we have

1L 5 - R
NZ 135 - 1T = Tall? = Op(T~1) + Oy (115 = BIP)
=1

JRREAN - R
N;||Eii_zii||2:OP(T D+ 0,16 = 8IP)

PROOF OF PROPOSITION A.2. Consider the first order condition (2.6).
Some algebra computation shows that (2.6) is equal to

(A.28) ;-1 = —Mﬁl(Mﬁ — M)l — szflA’Mffri
T

+N (I AY Z Fiely+ M, HN[ > ]+Mff1HZF Si' 7 Zezj .
t=1

T T
—M [Tg } —MﬂlﬁN[TZXt(B—ﬁ)/i;t]

T
+Mff1HN[ Zé(ﬁ B)(B — BYly,] — Nz D831 (55 — =)

where €;; = 5it5§-t—E (Eitég-t). Notice that the identification condition requires

M ¢t = My = I.. So the above result can be simplified as

T
0, —T; = —AT; + (I - AY thé?]t—i-HN[ RTALY
t=1
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§Tj (B-B)f]T; —HN[ fj&(ﬁ—ﬂ)gjt}
t=1 t=1

(A.29) —fIN[

’ﬂ \

S A . . .
FHN | Y68 = B)(B - 8)T| - HE S5 (85 - )
t=1

The right hand side of (AA.29) has 10 terms. We use a;1,a;2,- - ,ai10 to
denote them. So we have ||I'; — I';|| < ||laii|| + [Jaiz|| + - - - + ||as10]|- Using the
fact (3512, [layl)2 < 105217,y we have

ZHEulll IT —F||2<C ZHF —Iy?

=1
(A.30) N

< 1OCN > (lail® + llagz||* + - + llaio])
i=1

The first inequality uses the fact that HZ !|| is bounded by some C'. Consider
the first term, which is equal to 3 ijl |A'T;||%. This term is bounded by
1417 - 5 32550 175112 Since A = Op(T7Y2) + Op ([ TiZ4 15 — Xaal*)/?) +
O,(||3 — B||) by Propositions A.1, together with + é\;l IT;]1? = O(1), we
have - 3201 [lait||* = Op(T™) + Op(§ Tily 153 — Sall®) + O, (118 = BI).
The 2nd-4th and 10th terms are summarized in Lemma A.7. The 5th-9th
terms are summarized in Lemma A.8. From these results, we have

1 R B
NZHEJH‘IIFi—Fz’H2=Op( ZHEu Zill?)
=1
+0,(16 - 811

Now we turn to the first order condition (2.8). By (A.18) and (A.19),
equation (2.8) is equivalent to

(A.31)

N

Sije — Sjje = —(Nj = Nj) Mpp(Nj — Nj) —2(Nj — Nj) Mg hj — Nj(Mys — Mys)

K

T
(A.32) +2*Z>\ freje + = Z = Zjje) —QZ(Bp—ﬂp)%ZA;'fti’jfp
t=1

p=1

~23 (B [ Z eat"’«"ﬂp} + Z Z 20 (Bp = Bp) (B = Bo)jtq

p=1 p=1q=1
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and
1 r

Yjje — Vi = 5 > WitaViie — Sl — Bz — Viz) Mpr (Fjz — Vja)
t=1

(A33)  —(Fje — Via) Mpvie — Vi Mpr (Vjz — Viw) — Vie(Mpr — Mys)vja
1 & 1 &
+T Z ’Y}xftvg'tx + T Z thzfthm
t=1 t=1

Consider (A.32). The second term of right hand side of (A.32) involves A; —
Aj. The third term involves Mff — Mys. But the expression of 5\]- — A\ is
given in (A.29) (the first column) and Mff — My is given in (A.21)'. Using
(A.29) and (A.21) to replace j\j — Aj and Mff — Myy from (A.32), we have
. 1 & A A
(A34) e = Do = 7 D> _(ei = Tie) = (A = X)) (N = X)) + \jA'AN,
t=1

1 T
HA;A/T; frejr — 2N, A ZZ fee S5 THHN,

zltl

N
+NH Z

TMz

T
rz Zeij,tz;rgmj—x Z Sii— i) Sy TV H;
t:1

T
—2\,H Z eiejt — Bleqeso)] + 2N HA N2 (B¢ — Sjie) + Oj1

\\Mz

where A = (F Ty i] f‘I:I, €5t = cicjr — E(eigie) and Oy is defined as
K T X L
Oj1 = —2 Z(ﬁ — Bp) N, A/[ Z ftx]ip} 2X; Hy [* D ACE 5)'5@ Hy\;

p=1 T t=1

K R 1 T K K 1 T . .
=23 By = )| 2 i) + 20 D |75 D din(Bp = By) (B = Bo)itjng
t=1 p=1q=1 t=1

T T
o A [L S 15— 58] ey + 23 By — AN EN[L S )
t=1

t=1 p=1

'Under the identification condition My = My = I,, we immediately obtain that
M tf — My = 0. However, this result, while simple, is not as useful as it looks. If we use
this result, we would face the term HI'S! (f -I)+ (f‘ — F)'f];slf‘ﬁ in the subsequent
expression, which still requires invoke (A.21).
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K T T
. ol . . )
=23 (By = B)NiHn |7 Y 6B~ By | + 2A;-HN[ Z ~ Best]
p=1 t=1 t=1
o1 I . 1
(A.35) N B[ D7 €8 — B)(B - BYE] An
t=1
Applying similar arguments to (A.33), we have
. 1 L o .
Yjjz — Yjja = T Z(Uﬁm”]tm = Yjjz) — ’VJxHZ )2 2 - Eii)zi_ilrgH'Yjw
t=1 =1

1 Z X R 1 &
A [ 3 P e = v | 3Kt A 42 3 it

N T N T
A | N
+m Z“mftA%r ’Y}xHE:Fiziilf > i — Y T > e TiH e
t 1 =1 t=1 =1 t=1

N

(A.36) e H A0S 52 (Egie — Zii) + Bgie — Zjjn) B Vja HVia
I A e n
+Yjatl fZF’Zgﬁ (etet—2ee) B TH o0 A Avjo—~(Fja—ja) (i) +Oj2

where 7, = =gt

e — E(€itv]y,) and Oja is defined as

O = o[ i Fi(B = BY &) Hnvje + o Hn [i (8- B)f{] Avja
t=1 t=1
R T R T
—V}xHN[ z_: }HN’YN ’Y;'xHN[ 2_: Xt] Hyvjo

S QIR 1 & . A
+’7;:cHN{ th ﬁ /3 jtz] [T Zvjtx(ﬂ - 5),61/6} HN’Y]':):
t=1

t=1

T
(A.37) e > &A= B3P ] iy

Terms O;1 and Oj2 depend on B — (. By the special structure of ¥;;, we
have
1 & ,» 1 & . ,, 1 & )
N Z HEJj - Ejj” = N Z(ije - EJ'J'G) + N Z szjx - Ejij
j=1 j=1 j=1
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Consider %Zj’vﬂ(ijje — Yje)?. The right hand side of (A.34) has 10
terms and we use bj1,bj2,- - - , bjo to denote the first 9 terms. By the Cauchy-
Schwarz inequality, we have

N N
1 - 1
¥ 2B = 0 S 105 5210l + -+ sl + 1017
j=1 j=1

The first term is O, (T ~1) can be easily verified. For the second term, we need
to use (A.29) (the first column) to substitute /\ — Aj. By a little tedious
computation, we have & YN, [[bj2]|? = op(% S, ||z LT — Tl +
O,(T72) + 0,(||8 — B||Y). By Lemmas A.5, A.7 and Proposition A.1, we
have

1 N
3 bl + 1bl) = 0T+ Zuzu I I8 - TiP)
]:

The above result, together with Lemma A.9 below implies
1
g Z e Tie)? = Op(T ) 4oy Z 1231118 =T3l?) + 0p (18— 5I1%)

Similar arguments are applicable for 3 ijl 12552 — Xjizl|?- So we have

1.
NE\\%;-—M%%(T +op( Zuzulu IB; - 14)?)
P

+0,(118 - 51%)

Substltutmg (A.31) into (A.38), we have 3 Z I = 24012 = Op(T— ) +

O,(||8 — B]|?). Substituting this result into (A.31), we get the remaining
result of Proposition A.2. This completes the proof of Proposition A.2. [

(A.38)

COROLLARY A.2. Under Assumptions A-D and the identification con-
ditions IB, we have

N
> (L =TS THH = 0,(T1?) + 0,(116 — B1)

i=1

LEMMA A.9. Under Assumptions A-D,

leoﬂll2 = op(I18 = B11%)
]—1

1 N
*Z 10521 = 0,113 = BII*)

2
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where Ojy is defined in (A.35) and Ojy defined in (A.37) above.

ProOOF OF LEMMA A.9. Consider (a). There are 9 terms on the left hand
side of (A.34). We use ¢;1, ¢j2, - - - ¢j9 to denote them. By the Cauchy-Schwarz
inequality, we have

1 N 1 N
2 2 2 2
v 2 05l < NZ lleull™ + lles2ll” + -+ llegoll”)
7=1 7=1

Now we check the terms one by one. Consider 3 Z;V 1 llen||?. Term N A SE fedjip
is equal to tr[A’+ LT ft:v]tp “]. The term inside of the trace operator is
bounded in norm by [|A|| - || St fidjipAs]l. So we have

1 X . 1 XN 1 &
< D lenll® <4K|8 =817 AP Y 5 D fidipNjlI®
Nj:1 Nj:l Tt:l

But 5 300 |7 Sy fidjipj[* is Op(1) and [|A] = o0p(1). Thus 5 377,
lejull* = op (118 — B2 )

The second term ZJ 1 ||c]2H2 and the third term Z 1 H(:];;|]2 are
both Op(”ﬁ ﬂ” ) given that 4 N Z]:l ||T Zt:l xjtpxytqHQ O,(1) and 1 N Zj:l
I iz egtjupl® = 0p(1). )

The 4th, 5th and 7th terms are all o,(||3 — 3||?) which are implicitly
implied by the results in Lemma A.6 and Proposition 2.1.

Con51der cje. Term )\’HZZ Y Z“ T LS | ity is equal to tr[H N,
Iy Z” T Zt 1 6Zt$jtp)\ ]. So we have

1 N K R 1 N R N . 1 T
= llejol? < 4K ST N5 - AP Y I SRS S S s X1
j=1 p=1 j=1 i=1 t=1

By j4 = %'p ft + Vjtp, the above term is further bounded by

N T

N ~ o~ 11 2
HZF@;TZ@M; (

=1 t=1

K A
16K Y |16 - 5%
p=1

1 N
N D el - IA11%)
=1
K
+I6K > |6 - ﬂll2 Z ||HZF Sat T Z evitp — Blewvju) N
p=1

1 NP
+16KZH[3 ] e Z\\HrjzﬂlE@tvﬁp)Azlf

j 1
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T

1
Z”HZ i 2 i)

Ko 1
16K Y16 = BI*
p=1

The first term of the above is o,(||3 — 8]|2) by H XN, T} E;lr} ST enfl =

0,(T~"/?) which is implied by Lemma A. 6( ). The second term is also

Op(HB—ﬁn ) because term Z =1 ”HZ 1F En TZt 1Eitvjtp— ]-E](gitvjtzo)])‘;'H2
is bounded by

N T

N
Cll? (5 ZHPE‘W 1) (37 22 32 I Soleieon = Bleuusn)l X )

which is O,(T~"). The third term is also o,(||3 — 8||?) since IV, || HY/2T;
E_l/ 2H2 r. The last term is of smaller order than the second one. Given
these results, we have + Zévzl lejsll? = op(13 = B1).

The 8th term is o,(||3 — ]|?) which can be proved similarly as the 6th
term. The last term is op(]| 3 — B||2), which can be proved similarly as the
7th term. We thus obtain (a).

Result (b) can be proved similarly as (a). O

PROOF OF THEOREM 2.1. Consider the first order condition (2.5). Its
pth element (p =1,2, -+, K) is equal to

I v LA Yjt — @ tﬁ
722 zze|:y2t ‘rztﬁ GZFE J . J :|xztp_0
NT i=1t=1 j=1 Lt
Using ¥is — i‘itB = ANfr +én — wzt(ﬁ — ) and (A.18), the above equation is
(A.39) pl(Bl — 51) + 9p2(f2 — ﬂ2) R ﬂpK(BK — OBKk)
Z Z Ezze thx%tp Z Z Z:7,7,6 eztxztp
i=1t=1 NT i=1t=1
1 N N
‘Tltp zzelA; ZF] P/ Jt — Zzwztp llelA;GZszglfjt
s j=1 T == j=1
where
(A.40)

1 T N

T N
Vmn = -~ NT ZZ iie : Titm Eitn— Z (Z ite ”m)‘,>é(z ijgij‘ﬂxﬁ”)

i=1t=1 =1 i=1 j=1
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for all m,n =1,2,---, K. By @jtp = v}, ft + Vjtp, equation (A.39) is equiva-
lent to

(A.41) )+ (B2 — o)+ + M(BK — BK)

Op1 (B
1 L.
= _tr[izzuefyﬂ) Mff} ZZEM@ thvitp
N =1 z 1t=1
N

1 N T N T
7 Z Siie VipFreit — tr[NT Z LD SO H

=1t

N T
—i—tr[% Z iie 'sz)‘/GF/ (F F)Mff} — tr[L Z Z uef N, vzthF E 1F}

N T N
1 . e
5 2 Z Sateaviep + o[ TSR (S — S B SRING]

N

=
2=
M= .3
@M)
r”uH
>

“G

S
S

>

o
2=
=

M>

uerylp)‘ GMff (Mff - Mff)}
N N T L
—tr {NT Z Z Z FJZJZI [Eﬁtvitp - E(Fﬂ'tvitp)]zme )\’ILG}

where If(ill is t}le (p+ 1)th column of the identity matrix Ix1. We neglect
term xip SO, 31 e, and tr[ 4T SN Z STy Eﬂ £jt0ipS 5 NG since

e "\
the former is of smaller order than the 7th term and the latter is of smaller
order than the last term. The first term on the right involves A\; — A;. How-
ever, the expression of \; — \; has been given in (A.29) (the first column).

Using (A.29) to replace \; — Aj from (A.41), we have

Dp1 (B — B1) + Opa(B2 — Bo) + -+ + Ypi (B — Bic)

| NT N T
= W ; ; iie eltvltp tr [NT Z z_: Z: gﬂtvltp (gjtvitp)]zue )‘;G}
1< s
+tr[HTZ 'S (e4e) — zgg)z—;rH@p] —tr[( Z £.(8-15) gtHNUp}
t=1 TH
LA &1 1 Aih &1 /
(A.42) —tr [HZE:1 I NTJE:I Z:l Yie [eiteje — E(é‘itejt)hjp}

K
+tr[(1 AYS (3, —@)(%th Zwﬁq JJ@VJP)}

q=1 t=1 7j=1
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+jp1 + ij
where U, is defined in Table 1 and J,1 and J,2 are defined by
(A.43)

1
jpl_tr[(p(r rysSP— Zzﬂe ﬂjp} +tr[ANZEE;()\j /\j)vj’p]
=1
o | NI ) o
—tr [HN(T > Xef]) Avy| + tr [NTE:I ZI S50 fiN GISZH (- 1)
P J=1t=

. A . 1 XL A
Zﬁéft)\;’vﬁpG} —tr [ﬁz Z E;éft()\j - )\j)lvjtp}

™ =
=~

<
Il
—
o~
I
—
<.
Il
—
~+~
I
—

_|_
o+
]
/—\
= ~+
M ~
s
s
N———
+
o+
—
S
N
I:::—l
|
o+
—
3
N
=l
prt
=2
Nl
e
z
=

SR 1 & .
—tr{ Zzz‘_‘el(%p 71p))\ G} +tr[ﬁ Z ]je JJe_Ejje)Eﬂ;’Yjp}

1

N

N [ 3 3 il A A
| 5 DL (B — B R ERING - [HZFEM - S)S T,

1

Ty = —ta[ i ilm - Y8 o, — [ (& im ) iy
t= t=

1

e[y i&(ﬁ—ﬁ)(@ B )Hva]+tr[HN iftﬁ B)fiAv|
t=1

K T N
(A.44) —i—tr{ N Z(Bq - Bq) (T Z Xtﬁ Z ijtqiﬁé%‘p)}
q=1

Equation (A.42) is dealt with in detail by the three lemmas below. The terms
involving B — (8 are analyzed in Lemma A.10. The terms without 3 — (3 are
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summarized in Lemma A.12. The residual terms J,1 and Jp2 are treated in
Lemma A.11.

Let Qpy = £ 5N, 5215P9 by Lemmas A.10, A.11 and A.12, we have

e nxr

Q1 (B1 = B1) + Yo (Ba — Ba) + - + Qi (B — BK)
= O,(NTV2T7V2) £ 0,(T ) + Op(N T2
The above equation hold for all p=1,2,--- , K. So we have

Q(B —-B) = OP(N_I/QT_1/2> + Op(T_l) + Op(N_lT_1/2)

Given the above result, in combination with Proposition A.2, we obtain
the remaining three results of the theorem. This completes the proof of
Theorem 2.1 O

LEMMA A.10. Under Assumptions A-D, we have
(a) Vpg = tr(wep) — tr(vpQ~ " vy) 4+ Qpg + 0p(1)

o) w7 -y (s thﬁ BYE) inoy)|
K
= 3" (By — Bt (@ vp) + 0p([13 = BI)
T
(@ wel( =AY >RG5 -0 (5 Zwﬂ S5e7)]

K
=" (By — Bo)tr(wep) + 0p(18 — BII)
1

where Upq is deﬁned in (A.40), wpg = ~ ZZ 1 Yip2 ”eﬁqu, Up = N Zl 1A Zm’yzp
and Qpg = N Zi:l AR PO i 2P0 being the (p,q) entry of the matriz

’Lle T 1T
iz

PrOOF OF LEMMA A.10. Consider (a). By the definition of 9,,,

Z Z S i ditg — Z (Z e EitpA ) ( Z Eﬂe)‘ $th)

i=11t=1

Consider the first term of the above expression. It can be spht into two terms
(note that both ;. and ;. are scalars)

zze - zze ) .
Z Z ide $%tpxth Z Z —= = TitpTitq = A1 — A2, Say
N T

i=11t=1 i=1t=1 ”6 e
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The term a; is equal to

1 N T
N Z Zme Vip%q ﬁ Z Z iie %p t'Uth NT Z Z Zzze %qftvltq
i=1t=1

i=1t=1

N
! (
b, q —1 p q =
T Z Z Eue VitpVitq — Ezzx Z iie Ezzz Z Ezze VipViq

i=11=1
The first term of the above is tr(wg,) by the definition of wg,. The 2th-4th
terms are O,(N~'/2T~1/2). The 5th term is ,,. The last term is O,(T~").
Thus, a1 = tr(wgp) + Qpg + 0p(1).
The term a9 is equal to

T

72 ue - ue / ; + = 1 iiiie - Ziieﬂy/ 1 thv't
2 A D ]
i=1 Enezue lp ! N i=1 Eiieziie *T t=1 !

T
+ Z ”% Ziie sl 4 = Z ;6 ol e Z (vitpvitg — ZH")

i=1 ite Hiie =1

Yiie
N ¢ T N ¢

Diiie — i 1 Yiie — Vite
E ———Yiom E Vitp — — E ————Uip¥;
1 DiieX ar iy N SieSiie

e t=1 =1

By the boundedness of Siie, Siies Z(w ), Yip and My, the first and 3rd terms
of the above expression are bounded in norm by

O(% i(im B E“e)2>1/2 = C(% ivj 12 — Zz‘z‘\|2> v
' i=1

1=

which is 0,(1) by Proposition 2.1. The second term, by similar arguments,
is bounded in norm by

1. 12,1 X1 & 2, 1/2
C(N;”Eii—ziz'HZ) (N;HT;ftvitqH )
which is 0,(T~1/2). The 4th term is bounded in norm by
C(% f:l 12 — En'||2>1/ ( Z ’T Z VitpUitg — S 2)1/2

which is O,(T~1). The 5th term can be proved to be o,(1) similarly as the
second one. The last term is of smaller order than the 4th term. Given these
results, we have as = 0p(1).
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Consider the term T: ) Liit )\ G )\ iTitq), Which is
NT £<t=1 i= 1 ite “VIp ]]e Jtq
equal to
1N N 1 N
S—137 A i ¢ —13/A { o1
tr[ 5 XS MG Y- A, x| NTZ Z FrompSai NG S AS5tg]
i=1 j=1 i=1t=1 Jj=1
al AlAAlNTAA 1NAA1(PQ)1
_ / — /
+tr |: Z ’Vjpziie AlGﬁ Z Z )‘]E ]evjtqft:| +tr [N Z A'Eiie Zux ite )‘zG}
i=1 j=1t=1 i=1
NN T o
+tr {N Z Z Aiz;iel T Z[Uitpvjtq_E(Uitpvjtq)]zgy;)‘; G}
i=1j=1 t=1

|
5
=
™=

)/>

M>

-1~ = 1
iie VinViq ]]eA]G:| =az+---+ag, say

Consider a3. The term % >N %pZ '\ is equal to

iie

N N

1 - 1 .

N § :’sz zze})‘/z E :%p tie Znel))‘/z + N E :fylpzuel()‘l - )‘l)/
i=1 i=1

The first term is U]’D. The second term can be proved to be bounded in norm

by C[+ SN 14 — 24|22 similarly as (A.14). The third term is bounded
in norm by

(% Zrmp 222)” (}Vﬁ St - )

< (% Zn Wi ) " (5 Z||z”1uur—ru)

which is O,(T~1/2) + O,(||3 — 5||) by Proposition A.2. Thus,

(A.45) Z’y,p e i = Up +0p(1), Up = vp + 0p(1)

Note Gn — Q' = 0,(1), so we have a3 = tr[U/Q* vg] + 0p(1).
Consider a4. The term NT Z 1 Zt 1 ftvung '\ is bounded in norm by

e 7\

o LI (5 X 3 )
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which is O,(T~/2). So a4 is Op(T~'/?) by (A.45) and Gy — Q" = 0,(1).
The term a5 can be proved similarly as a4.
Consider ag, which is bounded in norm by

Csup |E(p @) [(Z ||H1/2)\ 2—11/2|| ) ] ||(ﬁ1/2Mfflﬁ1/2 _I_I)—1M

ix
=1

which is O,(N71).
Consider a7, the term inside the trace operator is bounded in norm by

_ T 12 .
o5 Zuwniﬂ ) (5 S (o Y oipviig— Ewipuna))?) 1G]

i=1j=1 t=1

The above term is O,(T~'/2) by Gn — Q™' = 0,(1). So we have a7 =
O,(T~1/?). Term ag is of smaller order than az.

Summarizing all the results, we obtain (a).

Consider (b). The term % ST (B = B)E is equal to

K
Z(ﬂq ( szt%tq ije ])
q=1 ] 1t=1
which can be split into
K 1 K 1 NT
>3y = ) (g meE5t) + 3050 = 00) (7 0 3 w50
q= j= q= j=1t=

The term %Zévzl Vigd je)\; is vy + 0p(1) by (A.45). The second term is
bounded in norm by

K 1/2 1 M1 I 2 1/2
Czlllﬁq—ﬂqH( ZIIA £5020) (NZH > fuvieg| )
= j=1

which is 0,(]|3 — B])). So we have
A K
72 FB=B)& = Z — Ba)vg + op(13 = BI)
t=1 =1

Notice (I — A) & I by Corollary A.1(a). Given this result, together with
Hy £ Q1! by Corollary A.1(b), result (b) follows.
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Consider (c). The term Z{f:l(/@p — Bp) 7 ;-V:l pOra ft:i;jtpf%i'y;p can be
split into

K

~ 1 N ~ , K /
Z(ﬂq - ﬂq)ﬁ Z ’qu%ivjp + Z( — Bq) NT Z Z ftvjtg JJE’Y]'P

q=1 j=1 q=1 j=1t=1

The term + Z;V:l 'yjqfliifyj’-p has already been proved to be 3; Z;VZI 'yquEi’y}p
+0p(1) = wgp+0p(1) in result (a). So the first term is Zf:l(ﬁq—ﬁq)tr(wqp) +

0p(1). The second term is bounded in norm by

T

Cilﬁq—ﬁqll( ZH%p ;/2 ) ( i::H ZtvjtqH>1/2

t=1

which is 0,(]|3 — B])). Given these results, we have

K 1 N7 K R

Z Ni Z Z tLjtp 2 ]ge%p Z(ﬂq — Bg)tr(wgp) + op([|8 = BII)
p=1 j=1t=1 q=1
Notice (I — A)' & I, by Corollary A.1(a), then (c) follows. O

LEMMA A.11. Under Assumptions A-D, we have

(a) T = Op(NTIT™H2) + Op(NT2T 1) 4 Op(T /%) + 0,116 — 51))
(b) Tpz = op(II3 — I

for all p, where Jp1 and Jpa are defined in (A.43) and (A.44), respectively.

Proor orF LEMMA A.11. Consider (a). By definition, J,1 is composed
of 15 terms which we denote by by, b, -+ ,b15. We put aside the 2nd, 3rd
and 10th terms temporarily.

Consider by. Notice that ue)\fy}p = Op(1) by (A.45). So by is
Op(N~IT~1/2) +op(HB Bl by Corollary A.2 and G = O,(N~'). Consider
bs. The term = Z D i Zﬂe thvjtp is equal to

1 XL 1 N T s oy

v —1 /3 e — e
NT Z Z Ej';()‘j - )‘j)/ftvjtp ~NT Z Z W)‘;’ftvjtp
j fe~jje
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The first term of the above expression is bounded in norm by
1M 12,1 M1 L 2, 1/2
C(N;E]j;”)‘j_)‘j"Q) (NZIHT;ft”jtpH )

Note that + SN, S21[[A; — ;|2 is bounded by & YN, |51 - |T — Ty[[.

So the first term is O, (T~") + 0,(||3 — B||) by Proposition A.2. The second
term is bounded in norm by

1 N 1/2 1/2
C(N ;(ije — Yjje ) ( Z HT tUJtpH )
=

Note that & >N, (S — Sjie)? is bounded by & 30 26 — il So the
second term is also O (T~ 1) +o, (|| 3—]|) by Proposition A.2. The third term
is Op(N~Y27-1/2). Given these results, we have 1= Zj DA e ]ftvjtp
= Op(N"VPT772) 4 Oy(T ") + 0p(|IB — BIl). So by is Op(N~2T7) +
O,(T~3/2) + 0,(]|3 — B|) by Corollary A.2.

Using the result in by, we have by = O,(N~3/2T-1/2) 1 O ( “rhy 4
op(||3— B]|). Consider bs. Term T ST | &£/, which is equal to 7 SN ST
03t 5ztft,can be proved to be Op(N N=V2T=12) £ 0,(T~Y) + 0,(/16 — B))
similarly as E] Dy Zﬂe thvjtp So bg is O, (N2~ 1) 40, (T~3/?)+
op(||3 — B]|) by Corollary A.2.

Since

N
\\g;fzgxﬂi— el < (5 ESEHGHA xilI2)? ( EZEMEWWPH) 6wl

we have Zl 1 E”e ()\ -\ )'ylpG O,(T 1/2)+Op(]]5—ﬁ”). Given this result,
together with + Zl 1 Zm iip = Op(1) by the boundedness of Siies A and
Yip, by the smrular arguments, we can prove that by = O,(N~V/2T71) +
Op(T*?’/Q)JrOp(Hﬁ—ﬁH) by = Op(N 32T =12) 4+ Op(NT'T1) + 0, (|| 5 BII)
and byy = Op(N~'/2T~ )+O (T 52) +0p(Hﬁ Bl

Consider the term NT Z - Zt 1 Eﬂeft'y]pe]t, which can be proved to be

0,,( ~127Y2) 10, (T 1) +o, (|| 3—Bl|) similarly as the term b S8 S,

e thv]tp Given this result, we have by = O,(N~Y2T~1) + 0,(T~3/?) +
op(||3 — B]|) by Corollary A.2.

Notice that 3; SN 32 Ry — 7ip) N is bounded in norm by

N
q%zmwwW)( Zamw)
=1
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which is O,(T~2) 4+ 0, (|| — A|). Given this result, it follows that by is
Op(NTIT™Y2) + 0, (1|5 — 81)). o
The term % Zfil FiZQI(ZM — Eii)Zi_ill“; is bounded in norm by

N N
(IR (6 8 - mal)
i=1 =1

Notice that 4 S [Tyl11 < 2¢(4 S0, [Tyt + & S, 1 — TyllY). Using
(A.29), it is easy to check that % fil Hf‘l Iyt = op(1). So we have
¥ Ty 037 (S0 — Sa) 25T = 0,(TY2) 4 0,(||3 — B]|). From this, we
have bys = O,(N~'T-1/2) + op(||B — 0]|)- The terms by and b4 can be
proved to be O,(N~'T=1/2) 4+ 0,(||3 — B|)) similarly as bys.

We now consider the 2nd, 3rd and 10th terms. Using the first column of
(A.29), the 3rd term can be verified to be O,(T~%/2) + O,(N~1/2T~1) +
op(H@ — B||). For the 2nd and 10th terms, substituting the first column of
(A.29) into the 2nd term, we obtain an expression which is composed of 10
terms. The first of which is canceled out with the 10th term. The remaining
expression can be proved to be O, (T~3/2)+0,(N~Y2T=1) +0,(]|5—3]|). So
we have that the 2nd, 3rd and 10th terms are O,(T~%/2) + O, (N~1/27~1) +

op(||3 = B]). This completes the proof of (a).
The proof of (b) is quite similar to the results in Lemmas A.6, A.8 and
A.10 and hence omitted. O

LEMMA A.12. Under Assumptions A-D, we have

271

(a) NT - “Leivity = Op(NTY2T712) £ 0,(T™Y) + 0, (I3 = B])

1] NN T A
(b) tr {ﬁ Z Z Z sz; [Ejtvitp — E(Ejtvitp)]zi_iel /\;G}

i=1j=11t=1
= O,(N'T72) 1 0,(T™) + 0,(|18 - B])
NP NP
() tr[HIEZ 53 lere) - Bee 82 DA,
t=1
= Op(NTIT7Y2) 1 0,(T™Y) + 0, (I3 - I
. N L 1 N T R
(d) tr [H 3 I‘Z-E;-lﬁ > vileues — E(sitejt)h;p}
i=1 Jj=1t=1
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PrOOF OF LEMMA A.12. Consider (a). The left hand side of (a) is equal
to

1 1

N T N 2 _
NT Z Z Eue €itVitp — NT Z Z iie ~ e & o CGitUip

(A.46)
i=1t=1 i=1t=1 Enezzze

The first term is O,(N~'/2T~1/2) and the second term is bounded in norm
by
1/2

N
C(%Z(iiie_ iie) )1/2( Z‘TZezwltp’)

which is O, (T~1)4+0,(T~/2||3—f||) by Proposition A.2. Given these results,
(a) follows.

The remaining three results are can be proved similarly as Lemma C.1(d)
in [10] and hence omitted. O

Lemma A.12 is used to derive Theorem 2.1. Given Theorem 2.1, we can
strengthen the results in Lemma A.12, which are stated in the following
lemma. These results are helpful to derive Theorem 2.2.

LEMMA A.13.  Under Assumptions A-D, we have

S
=2
N

g

M

S

D

&

Sl

1 N T
= 7 22 Siilewvip + Op(N 2T + 0T %) + 0,118 - B)
i=1t=1
. 1 X PR
(b) tr [Hr’z—;f > leel — B SZ T Hoj|
t=1
= Op(NPT™) + O, (NT'T72) + 0,(T7?) + 01|18 - BI))

1 N N T L
(C) tr{ﬁ Z Z ZF E E]tvztp E(gjtvltp)]zne )\;G}
=0p N71/2T7 ) + Op(N'T712) + Oy (T™*2) + 0,(|13 — BII)
) N L 1 N T .
(d) tr {HZD&?W Z Z[&‘tfﬁjt — E(gitejt)]zﬁi’)/;p}

= Op(NT12T™1) 4+ Op(NT'T™2) + 0p(T %) + 0, (115 — )
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PRrROOF. Consider (a). Using (A.46), We show

Z Z 3 _Z Zzeeztvitp = Op(N_1/2T_1) + Op(T_g/Z) + Op(HB = Al

i=1t=1 ite~iie

5 3 3) DIEE I PN 3p oLt
= ; 6 it Uit €itVit
NT2 i=1t=1 s=1 E’iie e i e/ Tty NT i=1t=1 E'L'Lezue o

where Res{f)iie — Yiie} is the right hand side expression of (A.34) excluding

the first term. We separate the first term from the remaining expressions be-

cause the first term is O,(7~'/2) and the remainings are all O,(N~1/27~1/2)+
Op(T_l). Consider the 2nd term of the above expression. By the bounded-

ness of ﬁ]ii and >;;, the 2nd term is bounded in norm by

N N T
(5 . IRestBie ~ S ) (5 Yo g 3 o)

Term + S0 [Res{Siic — Siie |2 is Op(T72) + Op(N~1T~1) which can be
verified term by term. Since this process is quite easy, we omit it. Thus
the 2nd term is O,(T~%2) + O,(N~Y2T71) in view of L 31, eyviy =
O, (T~1/?).

The 1st term can be rewritten as

| NI Ty N T T

2 ue_ zze - .

TS (St S5 T e
i=1t=1s=1"1¢€ i=1t=1s=1 tie e

The first expression is O,(N~Y2T~') and the second is bounded in norm
by

1 M 1/2 T T 1/2
C(N Z(Ziie - Eiie) ) (7 Z (Ti Z Z - Zzze eltvltp) )
i=1 t=1s=1
The above expression is O,(T~%/2). Thus the second expression is O, (N ~1/2T7~1)+
0,(T~3/?). So (a) follows.
Consider (b). Notice ¢, = v, + 0,(1) by (A.45) and Hy = Q! + 0,(1),
then it suffices to consider the term
1 L& 1
w3 Z Z rlznlf Z[anajt E(eie),)|S5'T
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which can be rewritten as

1 N N R . T L
W Z Z(Fz — Fi)ziil Z[aiﬁ;t — E(Eitgg't)]zjle;
i=17=1 t=1
1 N o
g 2o 2 LiSt Y leueh — Bleuci)1E5" () — 1))’
i=1j=1 t=1

i=1j=1 t=1
| NN T
1 1 -1
+7N2 ZIZIF,Z‘% ;[Ezteﬁ E(aztaﬁ)](zﬂ —Eﬂ )
=1 j= =
| NN T
(A.47) TNeT z; Zl Z eicyy — Eeunc)]S5'T)
1= ]: :

The last term of (A.47) is O,(N~'T~1/2). Consider the fourth term of
(A.47), which can be written as

1 N, NT A
N Z (ﬁ Z Z F’Lzml Eltgjt E(Eztg )]) (Z EJ;I)F;
j=1 i=1t=1

By the boundedness of ﬁljj, >, I'j, the above is bounded in norm by

N
( ZHNT ZF Zm 5,tsjt E(ait{:—;t)]Hz)Uz(%Z||§jj_2j].”2)1/2
j=1

which is O,(N~Y2T1) since + Z;\f:l 125 — 24112 = Op(T~1) by Theorem
2.1.
Consider the third term of (A.47), which is equal to

T
N2 Z Z r; E_ ; ezts sztsjt)]Egll“;

i=17=1
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The first expression is the same as the 4th term and hence O,(N~1/27-1).
The second expression is bounded in norm by

1 & 2 o1 oy R T L2y 12
(NXEIFZ'H IS5t - 251 )(NQZ;ZH Zezte Beasly)]| )

Term & SN, |12 |25 — 25 Y[? is bounded in norm by CE SN |18 -
i = O/p(Tfl) by the boundedness of ¥;;, 3 and T';. So the second ex-
pression is O,(T~%/2). Thus the third term of (A.47) is O,(N~1/2T~1) +
Op(T~3/%).

Consider the second term of (A.47), which is equal to

N2TZZF ;5“5 E(eqcy)) 25 (T = T;)

i=17=1
A T A A
N2 X;ZF (x5 Z;ezte Beuey)]3; (T = T;)
1=17=1 t=

By the boundedness of f]]j, I';, the second expression is bounded in norm by

1. 12,1 XL . 3 1/2
C(N; 126 - zall) (5 250 T - T;11%)
1= 1=

: ($ i_v: i_v: H% i[%% — E(euc)y)] H2> v

Terms NZ V125 — 2% and NZ - ||E 11 HF —T|| are both O,(T~1)

by Theorem 2.1. So the second expression is O, (T~ 3/ 2). The first expression
can be written as

1 A .
il Z <NT Z Z NI leie’yy — E(elteﬁ)DZF(pj —1;)

i=1t=1

which is bounded in norm by

N N T N
C(ﬁleHNlTZIZFiz;l[eﬁegt—E@s;t)]H2)1/ (% Zlui;u-ufj—rjﬁ)” ’
= i—1t= iz

which is Op(N~V2T71) since & S8, S5 - |y — Tjl2 = Op(T1) by
Theorem 2.1. Given these two results, we have that the second term of
(A.47) is Op(N~YV2T71) 4 0,(T73/?).
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Now consider the 1st term of (A.47), which is equal to

1 & o
N2T 2; 2; D > leushe Bleach )55 (0 —T,)
? J
T A
NQT 2; 2; Z cuely — Bleusly) |55
i=1j t=1

The second expression is the same as the 2nd term of (A.47) and hence
O,(N~V2T=1) 4 0,(T~3/?). The first expression is bounded in norm by

2, 1/2

(}Vi||fi—riu2'riifu)( ZZHT sty — Bleusi)|)
i=1

which is O, (T~3/2). Thus the 1st term of (A.47) is op(N—1/2T—1)+0p(T—3/2).
Summarizing all the results, we obtain (b)
Notlce N Z =1 que - 226H2 Y Z =1 HEM ZiiH2 = OP(T_I) and
N T Saellhi = Nl < & SIS IT = Til|* = Op(T™1). So results
(c) and (d) can be proved in the same way as result (b). This completes the

proof of Lemma A.13.
O

PRrROOFS OF THEOREM 2.2. Consider (A.42). Terms on the left hand side
are summarized in Lemma A.10. The first three and the fifth terms on the
right hand side are shown in Lemma A.13. The fourth and sixth are also
covered by Lemma A.10. Terms Jp1, Jp2 are given in Lemma A.11.Given
these results, we have

(A.48)
(ﬁ /8 Zzzzzeeztvztm+o (T_3/2)+O ( lT—1/2)+Op(N—1/2T—1)
z 1t=1
This proves Theorem 2.2. O

APPENDIX A.3: PROOF OF THE ALTERNATIVE EXPRESSION OF
THEOREM 2.2

In this section, we show that the asymptotic expression of (2.9) is equal
to the one in Theorem 2.2. We first introduce some notations. Let
Mp  Vip L fi Vip Vi2p U1
/ /
_ Hop 7o _ 1 f V21p  V22p V2
I\10 = . 3 .p F= . . Vp = . g . Y ,Ib

/ /
KUNp  TNp I UN1lp UN2p - UNTp
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Then, by the second equation of (2.1), the p-th regressor can be written as:
(A.49) X,=T,F +V,, (p=1,2,...,K)

Now consider term = tr[M X, M(F)X q), wherep, g =1,2,--- | K. By (A.49),
this term is equal to

tr[MV,M(F)V,] = — ! tr[ V)51V,

1
—tr[MX M(F)X, NT ¢ See

NT d= N7

1 1 - o
_ﬁtr[A’E;eleVq’EgelA(A’Ee_elA)_1] — wptrlF ViV, FEF)

1 =/ _ _ _ — =/ =\ —
(A.50) —i—ﬁtr[lﬁ‘ VoS ANS I A) TN SV F(E F) Y

The first term on the right hand side of (A.50) is equal to SN S vl
VitpVitq, Which is equal to

1 -1
Z Z Zme VitpVitq — u:): + Z iie Eupxq - Z Zuezux + Op(l)
z 1t=1
because NT Z =1 Zt 1 iie [Uztp'Uth EEZ;‘I)} = OP(N_l/QT_l/Q)'

Consider the 2nd term of (A.50), which is equal to tr[ g7 A’S 'V, V/S 1A
(A’S2'A)~1]. The term inside the trace operator is equal to

(NzT Z Z = E AN Z vztpvjtq) ( 2;@11\)—1

iteHjje

which can be rewritten as

<N2T Z Z 3, E S Z VitpVjtq — Umfp“jtq)]) (%A/Ee_elA)il

ite&jje

L 5 o)) (L rsp-1x)7"
+(52. Z Z—QA XD ) (FATA)

The first expression is Op(N_lT_l/Q) and the second is Op(N~1). So the
2nd term of (A.50) is Op(N~'T71/2) 4+ O,(N71).

Consider the 3rd term of (A.50), which is tr[xpF V/E 'V, F(F F)~1].
The term inside the trace operator is equal to

N T T 1

(NT2 Z Z Z fs i Ultpvzsq) (%F IT>_

i=1t=1s=1
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where f, = (1, f/)’. The above expression can be rewritten as

T T 1 N

1 > T7T 1-/=\— 1
( T2 ZZZf ft [Vitpvisq — E(Uitpvisq)]) (TF F) + NT Zzgfa;q)

1t=1s=1 i=1

The first expression is O,(N~Y/2T71) and the second is O,(T~1). So the
third term of (A.50) is O,(N~Y2T~1) + O,(T~1).
Consider the last term of (A.50). Notice =A'S_ 'V, F is equal to

which is O,(N~1/27~1/2). Thus the last term of (A.50) is O,(N~'T~1).
Given these results, we have

NT tr[MX,M(F Zﬁuiﬂfi + op(1)
Then it follows

. tr[MX M@E)X]] - e[ MX M(F) X5
(A.51) N [MXKM(*) X1] tr[MXKM(ﬁ)XK}

NT Z Euizwx + Op )

Now we turn attention to ﬁtr[MXpM(F)e’], where p = 1,2,--- K. By
(A.49), we have

1 1 1 e
ﬁtr[MX M(F)e'] = ﬁtr[MV M(F)e'] = ﬁtr[e oo V)

R O Y Tt T R WA [ R N~y S Ry
NTtr[A Yoo VeSS ANE S AN) T NTtr[F e V,F(IF'F)™]

1 e
+—tr[F S AN S A) TSV F(F F) 7Y
NT
The first term on the right hand side is equal to NT Z o Zt 1 Z ~Vitp€its

which is O, (N~1/2771/2). The second term can be proved to be O (N 17=1/2),
similarly as the 2nd term of (A.50). The third term can be proved to be
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O,(N~127=1) similarly as the 3rd term of (A.50). The last term can be
proved to be O,(N~1T~1) similarly as the 4th term of (A.50). So we have

1. _ 1 XL
—tr[MX,MF)e/|= =3 ——vipeia+Op(N V2T +0,(N1T71/2)
NT NT == Yiie
Then it follows

tr[M X, M(F)e/] LN
) : B = 7NT2272M€UW%
tr[M X M(F)e’] ==l

+ OP(N—1/2T—1) + Op(N—lT—l/Q)

(A.52)

Combining (A.51) and (A.52), we obtain the same asymptotic expression as
in Theorem 2.2. Taking limit on both sides of (A.51), we obtain Corollary
2.1.

It is interesting to note that the limiting distribution in Corollary 2.1
can be obtained by a generalized principal components method. Rewrite the
model as Y; = X8+ Afi + e, where Yy = (Yae, yor, -+, yne), Xe is an N x K
matrix with its (¢, k) element z;;. Recall that .. = F(ee}). Suppose that
Yee is known. Consider the following objective function

T
SSR(B, A, F) =Y (Vi = Xe8 = Afy) S (Ve — X8 — Afr)
t=1

= tr[(Y=XB-AFYS (Y =XB—AF)] = tr[(YT=XT8—ATFY (YT - XT3—ATF)]
where X is a three dimensional data matrix such that X5 = X161 +--- +
XgBk (with Xj, being N x T for k < K); Y = 227V, and XT3 =
XIﬂl + —i—X}L(BK with X| = 2;61/2Xk; AT = Ee_el/QA. If « is also present,
we use Y, and X, etc. This objective function is similar to that of [8], which
uses Yo = In. If X¢e is known, we can treat YT and X1 as the data and use
the same estimation method as in [8]. Using the asymptotic representation
in [8], it is not difficult to verify that the estimator obtained by minimizing
the above objective function has the same asymptotic representation as in
Corollary 2.1. Because Y., is unknown, this leads naturally to an iterated
two-step procedure. The first step estimates (3, A, F') the same way as in
[8]. The second step constructs an estimate of .. based on the residuals
and then reestimate (3, A, F'); these two steps are iterated for a number of
times. Despite the iteration, this is a two-step procedure (or a sequential
procedure). In contrast, the maximum likelihood procedure is a joint proce-
dure (simultaneous maximization). Also, the maximum likelihood procedure
has much better finite sample properties.
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APPENDIX B: TECHNICAL MATERIALS FOR SECTION 3

In addition to Table 1, we define the following notations, which will be
used in the subsequent proof.

The symbols used in the Appendix B

v =NTTSLIAEY, 08 = NS S,
o =NTIEL S 6 = NTEN Sl
My =N12N AN My =N'2N AN
Iy =N'%Y, /\'ziiew{ ﬁw =N}y, )\'Eue wl
My =NT1EN, 4% Myy =NTSN, 020
Fi =N"1! Zz 1 xztzml)‘; ﬁt =N1 Zi 1 371‘152@@61)‘;
Hy =N12N @5ty Hy =N'SN @ 5l
Gip =N~ ZN 1 l‘ztzme %p th =N~ Z 1 Ty izze %p
gh, =NTY2Y, :vltE“i’vf’; G, =NTYL S
wilg  =N" Zi:1 %’ Eiie %;q Gin =N-G

oy =NTENTEYG G =N-Gy

where (G1 and (G5 are defined in the main context. Note that not all variables
in the right column have “hat”.
We then derive (3.9) in the main text:

N N

1 . fa i a e a R

~ 02 > S TSN BMIB -S04 =0
i=1j=1

The first order condition on I' gives
'S2H(IN ® B)Mo(Iy @ B') - S.]82 = W'
Notice I"S2! = GIVS! and £2! = 5
GI'S M (In @ BYM.(Iy ® B') = $.][S2 — S TGI'S ) = W/

However, I"S ' [(In® B)M..(In®B')—$.]S'T = 0 by (3.4). So the above
equation can be simplified as

GI'SM(Iy © B)M_(Iy ® B') = £.]5 = W/
By NW’ =0, we have
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APPENDIX B1: PROOF OF CONSISTENCY

Again, for consistency, we use the superscript “*” to denote the true
parameters.

PROPOSITION B.1. Let § = (B,f,i]eg) be the solution by maximizing
(3.2). Under Assumptions A-E, together with the identification conditions
1Z, when N, T — oo, we have

N

1 . A oA

N Z(Fz - Fi)zn'l(ri - Fi)/ 20
—

1. p
NZ 153 — Zal* =0
i=1

To prove Proposition B.1, we need the following lemmas.

LEMMA B.1. Under Assumptions A-E,

N
(a) GY Ii;'T N—Zth et el = Op(T71/?)

i=1 j=1t=1

1 N N L T R R
(€) G—==D"3"Ti551 S leweje — Eeuen)|Syendy = Op(T71/?)
NT i=1j=1 t=1
N 1 X
(d) GY TS (20 (6 = 57)He) = Op(l1B — 571)
=1 t=1
() Gix (s D23 — 5 M) = 0,1 — 7]
t=1
T
() G %Z}@—ﬁ*) )i = 0p(115 - 5°1)

<.
Il
—
o
I
—_
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N ey
@) NG TN Cae = 550 = ZIIEu =)

ProoF orF LEMMA B.1. Consider (a). The left hand side of (a) is bounded,
by the Cauchy-Schwarz inequality, in norm by

CllE"2) - ||(H +1) 1\\(Z||H1/2r2‘”2 12)" (& Zur*’n)

=1
N T
12, 1 1L 2
(Z 1£57260%) (5 2 7 2 el

Jj=1 Jj=1 t=1
Note th HY2D 212 = r by (A $LPTY 2 = 0,(1
ote that 37, || X 7|7 =rby( )7N211H 17 = Op(1)
by the boundedness of ¥;;, + ZFl (B3> 1 frel* = (Tfl) and ||(H +

D)7 < y/r. Further notice that Hﬁ1/2||( Ty ||E];i/2¢g|| )1/2 is equal to

winie( S desgi)] <1

by the definition of H. Given these results, we have (a).

Using the arguments in proving Lemmas A.5 and A.6, we can prove the
remaining results similarly as (a). To save space, the detailed proofs are
omitted. O

We point out that Lemmas A.3-A.6 continue to hold in the present context
because the proofs don’t involve the special structure of the factor loadings
and the identification conditions.

PROOF FOR PROPOSITION B.1. The proof of Proposition 2.1, from the
beginning to equation (A.24) except equations (A.28), continues to hold in
the present context because this part of proof doesn’t involve the priori
restrictions as well as the identification conditions. In addition, (2.7) holds
for the same reason. The following proof are based on these results.

By (A.24), together with Mff = My = I, we have

(B.1) I=(I-A)"I-A)+o0,1)
The above result, in combination with (A.16) indicates that

(B.2) INYVZHY?|| = 0y(1)
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Notic 0= 5 D e AN+ 5 200 Fiaia Vs we have 5 300,
oI\ = 0,(1), which implies

1 N PN
(B.3) N D Sl = 0p(1)
=1

Now consider the first order condition (3.5). Noticing H = G + HG, by
(A.20), equation (3.5) is equivalent to

N N T

. . . a4 on w A N | .

(B.4) o — ¢ = —H, § :rizn.l(ri —T)'N + Gy § :rizn.lri’f § :ft eji
=1 =1 t=1

T N T
+G1N(T > tht*/) A+ Gy DSy T > leirejr — E(eireji)]
i=1

N T
~Gy ZfiiﬁlFf’% S (B —B) - élN(T Z)%tﬁcjt) (8- 8)

=1 t=1 t=1

where we neglect the smaller order term él Zf\il fif]i_iléiéj. Furthermore,
equation (3.9) can be written as

N T

(B.5) 1oy T3S (D = 1) Ty = Gan (% > tht*') Iy
i=1 t=1

) N N A 1 T N ~

+WG2 Z FZEZIT Z[Eitejt - E(Sztejt)]E;; ;

i=1j=1 t=1
N 1 N T ) ) R T .
+G2 Y DT o 3O frep Sl — Gan (X0 (B - 7))
i=1 j=1t=1 t=1
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j=1t=1 i=1
L 1 & A - 1., X )
o (7 LGB =3 - 7)) - NGQZIA]E;(EW Sije)De ¥
t= j=
R N
—Gy Y Ti% F*, th B—p)
=1
where HM) =% ZN 1A} ]Jew and H; = NZ a in 7

We continue to use notation A = (I —T')/3_! PH. Except the 6th and 8th
terms on the right hand side of (B.5), all the remaining are given in Lemma
B.1. However, the 6th term is of smaller order than the left hand side and
hence negligible. For the 8th term, it is bounded in norm by

s ) (4 Z||A*||)/2||éff—1u

ne

N
CN—1/2||H1/2||<
=1

which is 0,(1) by H = 0,(1). So we can write equation (B.5) alternatively,
in terms of A, as

(B.6) 12N ZU) E]Je¢ = op(1)

where Aj, = HQZ 027N (19 — T9%) s the ( 2)th submatrix of A.
Consider (B.4). First post multiplying Eﬂe¢ then taking summation
over index j from 1 to IV, then dividing both 81des by N, and by the sim-

ilar arguments in proving Lemma B.1, we have % Zf;l(% 1/)*) JJ; P

—AH% Z;V:l 1?;25;7@/ + 0,(1), which can be written alternatively as

N N

1 T =1k 1 fx—1 /%

N Z@Z’J'Ejj;@bj/ = (- All)ﬁ Z %’Ejjiwj/ +0p(1)
j:l '=1

Similarly, post-multiplying (B.4) by 2 1// instead of 37 ]] .Y, we have
1 & 1 &
RS wa—1,7
& L B = (= ) ST + o)
j= j=

Combining the preceding two equations, we have

1 a kgr—1 gk
(B.7) 721% ]]e (I —An)— Z¢j23ji¢j/(l_ Anr) 4 0p(1)
j:l
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Notice both & YN, ;521 and & SN, 4219 are of full rank, then

>k/

I—Aqpisof full rank Given thls result in combmatlon with + Z 1 1/)] ]J;
= —An)+ ]:1 V3 ﬂi, ¥+ 0,(1), we have + Z Y 0 ﬂi, * is of full
rank. Given this result, in comblnatlon with (B.6), we have A2 = 0,(1). By
Aqg = 0p(1), together with (B.1), we have Ag; = op,(1) and (I — An)({ —
A1) =1+ o0p(1) and (I — Ag2)(I — Ag) = I+ 0p(1). Given these results,
in conjunction with the identification conditions 72, assuming the column
signs are known, by Lemma A.2, we have A1 = op(1) and Az = op(1).
Then A = 0,(1). The remaining proof is same as Proposition 2.1 and hence
omitted. This completes the proof for consistencies of the estimates. O

COROLLARY B.1. Under Assumptions A-E, together with the identifica-
tion conditions IZ, we have

1oape 1n 1 1 . o
(a) Nr’z;;r Nr*’z;glr* (1); N(F — TS = 0,(1)
1 al T =1 7 1 al xx—1 %/
(b) N Z ﬂ)lZme djz - N Z djz Eiie wz Op(l)
=1 =1

(C) N Z Aiﬁ? z_zazlf)/;a: N2 Z’szzjz:cl'y:x/ - Op(l)

PROOF OF COROLLARY B.2. Results (a) and (b) have already been proved
in the proof of Proposition B.1. Notice that

1o 10 o ys e
erzealr W 4 Z )\‘Eu‘el/\;‘ + N ZViinii’Yz{x

a similar expression also holds for +I¥*-1I'*. Using results (a) and (b),
the first part of (c) follows immediately. The second par of (c) can be proved
in the same way. So Corollary B.2 follows. O

APPENDIX B2: PROOF OF THE CONVERGENCE RATES

From now on, we drop the superscript “*” from the true parameters.
Symbols with a hat represents the MLE estimators. Those without a hat
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denote the true parameters. To derive the convergence rates, we need the
following lemma.

Limma B2 Let € = Op(T )40, [(% £, 18— Zall)) ) +0p(5 T, 1551
Ty = T3l1?) + Op(||3 — B|). Under Assumptions A-E, we have

N

i=1
PRrROOF OF LEMMA B.2. By equation (3.4), (A.21) continues to hold in
the present context. As remarked at the beginning of Appendix A, Lem-

mas A.5 and A.6 still hold. By Lemmas A.5 and A.6, in combination with
Corollary B.2(a), we have

(B.8) A+ A - AA =€
where £ is defined earlier, which emphasize the order of magnitude. We

partition the matrix A as

A Ar
A =
[ Ag1 Ag 1

Then equation (B.8) is equivalent to

(B.9) Ap + Ay — Ap Ay — ApAjy =€
B.10 A12 + A, - AHA, - AlgA/ = 5
21 21 22
B.11 A21 + A/ - A21A, - AQQA/ =&
12 11 12
(B.12) Agp + Ay — A Ajy — A Ay =€

Again & signifies the order of magnitude. Equation (B.11) is equal to
(B.13) Ao (I — Ap) + (I — Ap)Aly =€

Lemma B.1 shows that the right hand side of (B.5) is £. The left hand side
of (B.5) is

N N
1 L 1 B
,12N qujzjjidé = /12[]\7 ijzj'jé¢3 +Op(1)}
j=1 =1

by Corollary B.2(b). Because % Z;-V:l %Z;;% > 0, we have A15 = £. Notice
I—Ap B Tand T — Ay BT by A 2. Equation (B.13) implies Ay = &.
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Given Ajs = € and Ay = &, and A1 2 0, Agy 2 0, equations (B.9) and
(B.12) imply
A+ A, =€
A22 + A/22 =&

Let Q = %f’ ST (recall in Assumption C, Q is defined as A}im +I'E D),

—00
Qu = %Arglze_slrgv Q12 = %Fm?s}lrh,AQzl = %F?IE;W, and Qo =
LIS ITh. By the definition of @ and Hy (Hy=NH), we have

-FIN: [ Q:ll Q:12 ‘|_1

Q21 Q22
This gives
= [ Q' + Q1 Q12031 Om Q' — Q1 QuaQiy ]
_Q22 1Q21Q11 QQZ 1

where Qgg.l = QQQ — Q21Q;11Q12. Furthermore, let A = *(f )
and Ay = (19 — rg)'f;;;fg, Aig = £(9 - TSN, Ay = %(fﬂ
ThYST9, Agy = (fh — PSR From A = AHN, we have
Ars = —A11Q11 Q12Q551 + A12Q54
A = A (Qr + Q1 Q120551 Q21Q77) + A12Q55 1 Q21 Q1
So we have Ay; = A11Q1_11 — A12Q21Qf11. By Corollary B.2(a), we have
Q21 % Qa1,Q11 & Qu1. Given Ajp = &, we have

(B.14) A11 = AHQl_ll + &
Substituting (B.14) into Aj1 + A}, = &, we have
(B.15) AnQu' + QAL =€
By similar aruguments, we also have
AnQyy + Qs Ay = €

The identification condition IZ2 is equal to

i L g gy$—1pg 4 L perg—1pg g
ndlag{N(F — DS SIS (DY T )}

(B.16) 1. o 1.
- ndiag{N(Fg — TS MY —T9) — NP‘”(E;Q - EEJ)W}



60 BAI J. AND K. LI

Notice &(I'9 — T9)S 119 — T9) is Op(& SN 1550 - |1 — Ty]?), and
AT (S -39 85 Op ([ SN 120 —2ul| ]1/2). So (B.16) can be written,
in terms of A, as

ndiag(A1 + Ajy) =€

This equation together with (B.15) implies A1; = £ by using the arguments
of Proposition A.1. Matrix Ass can be proved to be £ similarly as Ay1. Given
the results of Ay, Agg, A9, As1, Lemma B.2 follows. O

ProprosITION B.2.  Under Assumptions A-E, together with the identifi-
cation conditions 17, we have

1N alty e _ \
~ 2 Zat - 10 = Tal* = 0, (T + Oy (113 = BI%)
=1

1. B .
N;”E“ — 5il|? = Op(T™ ) + Op (|13 = BI1%)

PROOF OF PROPOSITION B.2. The first order condition (3.6) is equal to

N T

) &1 et

Yjz = Ve = —AYje + H Y Fiziilrfif D e — H3ja X0 (She — Sia)
3 t=1

2

1 T

T
(B.17) +I§IN(TZ i) Ve + Z Zatdm B(eidy,)]
t:1

t=1 =1

T T
Ain (7 IR )50 — Fiv (o S (B — B
t=1 t=1
where A = (I‘ ry f) I‘H We use ¢1,Go2, -, Gr to denote the 7 terms on

the right hand side. leen E 1s bounded in a compact set by Assumption
D, we have

1Y 1Y
~q . .
N Z szzm” ) H’Ym - %‘a:”2 < CN Z H’sz - ’Yz‘tz
i=1 i=1

<70~ Z (llgll® + llgall® + - + ez 1)
=1
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We can derive the bound for each term of the above equation. This process
is similar to the derivation of (A.31) in Appendix A. Thus we state the result
without writing out the details.

N
_ 1 - .
Z S22 1o =l = Op(T ™)+ 03 3o 18 =al2) + Oy l13-B12)
i=1
Also, By (B.4) we can derive a similar result for ¢; — 1,
1 X .
N Z SR = il12 = OpT ™) + 0 (5 32 11— Zull?) +Op(18- 811
i=1
Combining the above results and noticing that

N

1 A ~

NZHEulHHFZ_PZHQ E :HEuxH Hf)/lm ’7133”2—’_ E :’Eme‘ sz wZHZ
=1

we have

1 X . o 1 &
g & 2 IEE IR =T = Op(T ) + O (55 X 1% — Sl
( : ) i=1 i=1

+0,(18 - 811%)

Next, we study the first order condition (3.7). Using the fact that

T T T

A 1 1

BMIB -39 =TT +F’ > ft5;'t+f > eitftTj%—T > “leaci— Eleueh,)]
T= t=1 t=1

—F/ thﬁ 3 ZEztﬁ B)i letﬂ B) fil;
1 d i (A / 1 i (A A / /
—TZlit(ﬁ—ﬁ)&‘jﬁrTzlit(ﬁ—ﬂ)(ﬁ—ﬂ)l DT —1{i = j}(Z; — Z5)
t=1 t=1
we have
. 1L . . e
e = Ve = 7 D _(€fe = Tgje) + (A = A)' (A = A)) = 2M5G (A5 = \))
=1

T N T T
N 1 |
—2()\]'—)\]‘)?5 ft€]t+2 GE FiZiil(Fi—Fi)’TE ftejt+2)\;GfE ftejt
] t=1 t=1
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_2;\;GN< Ztht))\ + 2)‘ GAE5e (Eje — Sije)
=1

+Vj1

where

le = —2)\, thl'jt ﬁ ﬁ Zl‘ﬁ ﬁ ﬁ (ﬁ 5)

N

A . a 1 L ) o T
+2X,G YT T ; Feaji(B = B) + 2A;-GN( Z St ) (8~

+2;3,@N( i CRYOVAPY +2)\/GN< ié@ Bej)

ol Ze]tx]tﬁ 5)—2XGN( Zﬂﬁ B)(B - BY'i%)

tl t=1

We also have

. 1 & ) .
Sije = Tga = 7 VitV = Tige) + (i = Vi2) (o = Via)
t=1
N N
+'7;‘a; Z(Fz — I ) 1F/G'7jx +')’gmG Z Fizz‘_z‘l(ri - Fi)/')’jx - ('S’J:Jc - 'er),G'S’j:B
=1 =1

T
o Ara 1 .
*V;h;G(ij = Yiz) — Bjw — 7]9: Z ftvjtz T Z thxfé('ij — Yjz)

N
+,GY TS~ Ty) Z FVja+ vaftz (I — T2 TG
=1

T
+’792G Z ftv]tm Z ’U]tﬂﬁftG/y]x lijG Z L' E 1 T Z 5Ztv]t:r Eltvjtx)]
t 1 = t=1

N T
1 e e
- Z T Z[th:vggt — Vet X5 LiGAje + (Bjiz — Ejja) ]Jw'Yng’YJw
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T
Al Aa Sl 1 N\ A
+’7§'mG’7jx2jj‘i(E]’jx_E]’jx) /7]90 ( Ztht)’ij 'ij< thX:t)GNij
t=1
+Vj2

where

Vj? = :Y;xGN( zT:é B ﬁ ft)')’jz +'Y]x( zT: Q)GN'Y]Q:

+45,G N ( Z &(B-0) gtw> + (;ivﬁw(ﬁ_ﬁ)/@)émﬂ
t=1

Similarly as in Appendix A, we can prove 3 SN Biie—Ziie)? = Op(T~ 1) +
op( 3 Li 1125 1|| ||F =Till?) + Op(I15 = BI) and 5 ¥, i — Siaa|* =
Op(T™1) + 0p( 3 Sy 1251 1T = Till?) + Op (113 — BI1*). Moreover,

1 <. S S )
~ i — Yigl|” = = ) (Biie — Biie)” + Yiiz — Lz ||”
¥ 22 15l = 3 Pyl H
We have
St : (3155 ’)
LS8 — S5l = 0T + 0y (= SIS - IF; — T
(B.19) N4 ot
+ 0,1 - BIP)

Substituting (B.19) into (B.18), we get
N
& IS I = Tl = 0,7 + 0,13 - 1)
N ] ¢ - = Mp P
i=1
Substituting the above result into (B.19), we have
N
5 D5 = 2P = 0p(T ) + 0,15 - IP)
N i gl = Up P
i=1

This completes the proof of Proposition B.2. O
ProrosiTION B.3.  Under Assumptions A-E, we have

B—pB=0,(N"V21=12) 4 0,(T")
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To prove Proposition B.3, we need the following lemmas.

LEMMA B.3. Under Assumptions A-E, together with the identification
conditions 17, we have

(a) Upg = t1“(qu) - tr(U/Qflvq) + Qpg + 0p(1)
K

(b) tr[GN Zit B—B) ftvp] = Z(ﬁq — Btrlv,Q vy + 0p(|15 — BII)

g=1

@nqém@;r%§;mﬁ—m@a:: (By = Btr(wtg) + op(I13 ~ A1)

M=

Il
—_

q

(Bq - ﬂq)tr[UpQ_lvq]""Op(HﬂA - A

Nk

T
(d) tr[(1 - Z (B — BY €Ay,

|_|

1

(Bq - ﬂq)tr[U;Q_lvq]‘Fop(HB - B)

M= =

(e) tr {ﬁleﬂZét(ﬁA - B)fi(l - A)@;’} -

1

7

=Z — Bo)tr [, 115 L 0] + 0p(113 - BI)

q

TQ>

(f) tr[Gol" ST thg B LI

where the symbols wyq, Iy, f[ww, Up, Up, H,, Gfp and ét are all defined in Table
1 and 2, and

T N
1917‘1 NT Z Eue thxltq 1T Z ( Z iie xltp {L) G( Z ij_jlexjxth> :
j=1

t=1 =1

ProOF OF LEMMA B.3. The proof of this lemma is quite similar to that
of Lemma A.10. To save space, we only prove (b) and (f).
Consider (b). First we show 0, = v, + 0,(1). Notice

N

—1 / o /
72/\3 gie Vip = Z/\ EJJE jp+ Z JJC - JJe)’Yjp

The second term is bounded in norm by C[+ N Ciie — Siie)?]"/?, which
is 0p(1) by Proposition B.1. By the definition of v, we have 0, = v, + 0,(1).

However, 7 52{_1 &(8 = 8) ] is equal to 3¢ ve(8y — ) + 0p([15 = 1),
which is given in result (b) in Lemma A.10. By Gy — Q! £ 0, we have (b).
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Consider (f). First, we can show g, = o, + 0p(1) similarly as 0, = v, +
0p(1). Then for the term Ily,, by its definition, it’s equal to

AT Z djlzue wz + = Z wz zze 1/11 + Z wz iie 21_261)1[1;

The second expression is bounded by C[ SN IS - T = 1) )2)Y2, and
the third is bounded by C[+ SN L (Biie — Zm) ]1/2 By Proposition B.1,
these two terms are both op( ). Tt follows that TT, = Tl + 0p(1).

Now consider the term & >/, fi(B — B)"H;. By the definition of H, it
can be written as

K R 1 N T ' e
z 1:(ﬁq - (NT z : z :ft‘r’[ﬁ‘]’tqzjjewj)
q:

j=1t=1
By Zjiqg = ’y;-q ft + Vjiq, the above expression is equal to

K K 1 NT

. o1
Z ( Z ’qu jje ) + Z(ﬁq o (ﬁ Z Z ft'thqujew;')
q=1 q=1 j=1t=1
where vjtp can be replaced with vjy, since % Zt 1 ft=0. Notice ~ N ZJ 1 Vg
Zﬂew’ =+ Z] 1 fyquﬂew’ +o0,(1), Whlfh can be proved similarly as Tl =
yy + 0p(1), and = J=1 ST, ftvjthj;;zb; = 0p(1). Given these results,
we have

d K 1 )
Z = > (Bs = 8 (55 2 viaZgew;) + op(13 = B1)
t=1 q=1 Jj=1

'ﬂ \

The above result, together with Gol"S'T 2 Iy + 0,(1), 8, = 0p + 0p(1)
and Iy = Iy + 0p(1), we have (f). O

LEMMA B.4. Under Assumptions A-E, together with the identification
conditions 1Z, we have

1 N
N2l Zzzzzeﬁy’b h’te’l,t
NT i=1t=1 P
1 L& .
:WZZ ue%phte%t_‘_o (T~ )+0p(||/8_5H)

i=1t=1
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N T N T
1 1 ~
(b) ﬁzzzlwleltvltp NTZZEueeltvltp—'—O ( ) +OP(HB_5H)
i=1t=1 i=1t=1
o 1 XLL o
(c) GQF,EE_EIFW Z Z ftejtzy;flz ;H?},@p
j=1t=1

1 LI - - - R
= N7 2 2 e S diTep + Op(T71) + op([13 = B)

j=1t=1
1NN 1 T e
— /
(d) NZZFJ'% fZ[éjtvitp—E(é‘jwitp)] e NG
i=1j=1 t=1
= Op(NT'T™2) 1 O,(T 1) + 0,(]|8 - B]])
~ 1 NN 11 T 1 gt
(6) Glﬁ Z Z FiE; T Z[sitejt - E(é‘itejt)]zﬂe’}/fp
i=1j=1 t=1
= Op(NT'T™2) 1 O,(T 1) + 0,((|8 - B]])
NN T o
(f) HTZZZFZZ;H%% E(euc))|35 T H
i=1j=11t=1
= Op(NT'T™2) 1 O,(T 1) + 0,(1|8 — B]])
1 L NN T o
(9) WGQ S Fizﬁlf > leieje — E(&tejt)]zﬁilﬂéﬂﬁép
i=1j=1 t=1

= Op(N"'T12) + O0p(T ™) + 0p([15 — BII)

PrOOF OF LEMMA B.4. The proofs of the results in this lemma are quite
similar to those of Lemma A.12. To save the space, we prove (c) as an
illustration.

Notice Gol"y _1F = I+ 0p(1) by Corollary B.2(a) and + 3N, w]E]jezp’
=~ Z 1 % J]e + op(1) by Lemma B.3(f). Term NT Z 1 Zt 1 freje
Z]]é ; is NT Z =1 Zt 1 ft ejtzjjel/)/ +O ( )+Op(||ﬂ ﬁ”) Term N Zj:l
V; J];'y]h; is % ZFl V; j];’y% + 0,(1). Given this result, (c) follows. O

PROOF OF PROPOSITION B.3. By (3.8), equation (A.41) still holds in the
present context. Consider the first term on the right hand side of (A 41). No-
tlce My = I and \; = (' %07, %1)"- The first term is equal to —tr[+ N v

3214 — aby)'], using (B.4) to replace b; — ;, we can rewrite (A.41) as

K
(B'20> Z 1917(1 5(1 NT Z Z %pftzue zGNXt
q=1

i=1t=1
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G RS S5 syt - ulGi(E S )]
t=1

i=1 j=1t=1
N R . 1 T o
+ul6 ST 0 - T'ef] + Gy 63 - 01576
=1 t=1
A A 1 & ; 1 .
+tr {Glr nglf(f Z ft(B—0) gtgpﬂ + tr [GlN(T Z (8 — 5)/g£¢]p)}
t=1 t=1
1 N T o 1 N T .
/ _
+tr [GlN(]VT]z::I ; t(ﬁ ﬂ)eﬁzﬂe'yjp)} + ﬁ ; ;"}/lpftzue €t
_tr|:GA1]\/l i At(B - ﬁ)(B - /B),Gg ] + i i i’l}zt 3 716175
T Pt tp NT e P—ite
T+t ALNA.A—lA.. . 1.9 3 AA—liNﬁ 1_g
r[Cri YA B — B Sging,| — e [HGHT - 3 (Ay = A)E5i)
J=1 J=1
1 al —13/ A/ 1 u —1773 /
+tr [szzl %pzzze )‘zA } tr []VT; ; ftvztpzne ()‘z Az) }
—tr [i Z(%p %p) uel)‘;G] +tr [L i ZT: ftvitpi;iel j\gAl]
N =1 NT i=1t=1
L S~y ! 1ANAA—1A pH1 14/
+tr [ﬁ ; ; ftvltpzzze /\zG} +tr [NG ; Fizz‘z‘ (Eii -2 )IK+1 iie )‘z}
R 1 Xz o
—tr {G1 Z L35 —= Z Z[&ﬁ]t — E(e,tejt)]z ]e'ngp}
i=1 NT =3
1 N N o 1 T
_tr[ﬁ > szﬁlf > lejeviy — E(ejevinp)] Sy /\QG}
i=1 j=1 t=1

where 99, G, X; and & are defined in Tables 1 and 2; A = (I—T') S T'G. All
terms except the 4th and 14th term can be proved to be Op(N*1/2T71/2) +

O,(T~Y) + O,(||3 — B||). The 4th and 14th terms are each O,(T~'/?) by
Lemma B.2. But they share common components that are offset each other.
To see this, by G = H — HG, the sum of the 4th and 14th terms is

B2y G SRS - ryeg) +ul z%p AT
=1
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N
:tr[ } —tr{ Zfi} r Z/\ ZJJ;’YJ}Z}
i=1
N
+ tr[o,A] —|—tr[ Z Yoo )A'}
tr[(A + A')0,] — tr[HAD,) +tr[ Z%p O = 2)aY]
N A
— tr[AGD,) —tr{ Z T -Ty) Z/\E : h,}

where A = (I’ — Iy S'TH. The first term involves A + A’, However, by
(A.21) and noting My = Mgy = I,., we have

T
(B.22) At A = AA+(I— A [% S fod] A
t=1
T 1 N N T L
+Hy {T > ft} (I—A)+ H{T > FZEZ—Z%%@]}IFQ}H
t=1 i=1j=1t=1
1< . 1 &, -
—( =AY [ 37 B = BV&| By — Hn [ =Y %8 - 3§ Hn
t=1 t=1
T A 1L . .
—Hy |7 > 6B = OS] (I = A) — Hy | > &(B - )% Hy
t=1 t=1
T
FEN [ 6B~ )3 — 0YE By — B (S - SR
t=1

The last term of (B.21) is equal to tr[Gy S, T2 (TY — 1Y) ,], which
involves G Zi\il f‘liﬁl(Ff I'?)’. This term is 1mpllcltly given in (B.5). To
see this, notice that the 8th term of (B.5) from the right hand side to the
left, then the left hand side now is

N
Z /H/\d) Zf‘ XA: A i)/ﬂ/vp

Notice Gy = Hy — Ho G by G = H — HG. The above expression is
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which is Go SN, 1551 (1Y — T9)'TLyy. Given this result, by (B.5), we have

N

T
(B.23) G Z 0,3 (1Y -T9) = G2N(% S &B-8)(B - ﬁ)/ﬂt>ﬁﬁ

(2

T N
VS LA e
+G2N( E :thz - NGQ E :)‘J'Ejji(zjje - Z]je)zjj;¢‘;an})

Substituting (B.22) and (B.23) into (B.21), we obtain an alternative ex-
pression of tr[Gy SN, Ty (T — L)' 09] + tr[ N YipZai NiA']. Then

equation (B.20) can be rewritten as

N T
Op1(B1 = B1) + Up2(B2 — B2) + -+ + Vpi Bk — Br) = % Z > S heei

(B.24) +r[Go ST ( = ET: F(B = BY )T, 6,]
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+8p1 + Sp2 + Sp3

where the symbols 0y, 09, 0p, ét, fLW, H, and gfp are defined in Tables 1 and
2 and Sp1, Sp2, Sp3 are given by

S —tr[lfjii—lfﬁ\’v }+tr[1§:§: Fi\juieph'|
pl — NT e iie JTN 'Ltp NT Pt ZZ itp
1 N T R R 1 N T )
_tr[ﬁ Z S —A) ftvztp:| +tr {H1A' NT Z Z E;-elfteitfyfﬂ
i=1t=1 i=1t=1
+tr [Gl NlT ET: e fte,t’yzp} + tr[ g: f‘j};l(f}” - % )If(':_ll “;)\;G}
i=1t=1 i=1
1NA—1A LA AlNAA—lA 1.9
—tr [N Z Eiie (ﬁyip - ’77«17))‘16'} + tr [Glﬁ Z Aiziie (Eiie - Eiie)Eue pr}
i=1 i—1
A A fr—1 1 N 1_9g/ 1 N A,
—tr [HlGH N ;()‘ = A ) zzePsz} - tr{ﬁ ; zze’}/lp(A =N ) ]
1 N ) R T )
_tr[ﬁ S Sidip(h - (T Z £1)] - tr[e,Ga]
i=1 t=1
T
(B.25) 0, HCly (% t; ufl)| = tr[opAdL| + tr [0, A]

ttr |0 ( Z fixt) Hn G —tr[vaZr S5t (S — Bu) S5 T A
=1

—tr {vp ( thXt)HN} —tr {UPHN<T§th£)A]

t=1

Aoaa o] N
+tr[11Aiszt Jtzjye%p} _tr{HQGH_lN >N = X)S500 ww@P}

G2 )‘J'Z;i(zjje - ije)zjewgnwlﬁ Ap]

+tr [%
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and
R s R N
Sp2 = tr [GINT > (B -05) gtp} + tr[Glf PRACESC) Zejtzjjef)/jp}
t=1 t=1 j=1
A 1TAA 2 159 N 1811
—tr|Gin g Y &8~ B)(B — B)Gh,)| — tr|opHy %08 — B)GHn |
t=1
AAlTAA ~1'\ 7 AAlTAA A 1 &1 1
_tr[vaN<TZ t(ﬂ—ﬂ)xt) N} +tr[vaNTZ§t(ﬂ_ﬂ)(ﬁ—5) ftHN}
t=1 t=1
1T Y
ir[Go PG B)esSyidiin, o)
i=1i=
R IR R
(B.26) —tr[Gan (7 D2 (B — B)(B — BYH )T oy
t=1
. 1L . N
+tr {GQN (f ; Xe(B — /B)lHt> 10, @p}
and
(NN T
Spg = —tr {N Z Z szjglf Z[@tvztp - E(E‘gt’l)ztp)]zjne A;G:|
i=1j=1 t=1
NN T )
(B.27) —tr [Glﬁ > Fi};lf > leieje — E(Eitejt)]zﬁi'}/?;}
i=1j=1 t=1
1 N ey
+tr[vaT;;;rzz” [eune)y — Eleagi)]S5 T H |

N N T
1 . P | ] S Ar—]
_tr [TVTGQ Z SIS Y lewes - E(eiteﬁ)]zﬁ;@z);nwigp}

The expressions Sp1 and Sp2 are dealt with in Lemma B.5 below. The last
four terms on the right hand side of (B.24) and II,, are summarized in
Lemma B.3. The first three terms on the right hand side of (B.24) and Sy3
are dealt with in Lemma B.4. Given these results, we have

Pp1(B1 — B1) + Ppa(B2 — B2) + -+ + Purc(Brc — Brc)
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1 MNTI 1 N
- NT Z Z Zne €itVitp + 7= Z Z E”e ’Vzp htezt
i=1t=1 i=1t=1
1 NoT
Z Ezze w@phteit + Op(Til) + Op(NilTil/z)
1=1t=1
for any p=1,2,--- , K. The above result is equivalent to
1
(B28> P( Z Z Eue €itVity + — Z Z 2”6 'szhtezt
i=1t=1 1=1t=1
1 N T 1 N
NT ZZEM% ’L/)z/)( Z%Eﬂ;’yﬁ)hteit + O, (T Y + Oy (NTIT71/2)
i=1t=1 j=1

which implies that 3 — 8 = O,(N~Y/2T~1/2) 4 O,(T~"). This completes the
proof of Proposition B.3. O

COROLLARY B.2. Under Assumptions A-E, together with the identifica-
tion conditions IZ, we have

1N . B
NZ IS5 - 1T = Talf? = Op(T 1)
=1
1M .
N S IS = Sall? = 0,(T7)
=1

This corollary is a direct result of Propositions B.2 and B.3.

LEMMA B.5. Under Assumptions A-E, together with the identification
conditions 1Z, we have

(@) Sp1=Op(N"'TH2) 4 O,(T %) + 0, (|15 - 5I))
(b) Sp2 = op([|5 = F])
where Sp1 and Spa are defined in (B.25) and (B.26), respectively.

Proor orF LEMMA B.5. Using Proposition B.2, we can prove, just like
Lemma A.11, all the terms in Sp; are O, (N 1T_1/2) +0,(T~ 3/2) +o,(/13 -
B]])- It is worth pointing out that, to prove tr[ N f]ue 'ylp()\ —X;)'A’] and
trly Ty Sl vip A A] to be Op(N 7T~ 1/2) + Op(T 512) + oy (118 — B,

1—1 ite

we need to strengthen Proposition B.2 to A = YN (I — T)S; TV H =
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Op(N=12T=12) 1 O, (T~ 1) +0p( 16— 8]|). Since our identification conditions
are similar as IC3 in [10], this result can be proved by the same way as in
their paper. We omit the details.

Result (b) is easier to prove. The details are omitted. O

APPENDIX B3: PROOF OF THEOREM 3.1 AND ITS ALTERNATIVE
EXPRESSION

Note that (B.28) is close to Proposition 3.1 except that the remainder
term O, (T~') + Op(N~'T71/2) needs to be strengthened to O,(T~%/2) +
Op(N~IT ~1/2)_ The strengthened results are stated in the following lemma.

LEMMA B.6. Under Assumptions A-E, together with the identification
conditions 17, we have

1 N T
S—1
(a) ﬁ;;zzze’ylphtelt
1 B B .
ﬁ?l;%%phtewo W(NTV2T71) 4 0,(172) 4 0,13~ )
1 N T
ﬁ Z Z E“e €itVitp
=1 t=1
1 XL .
= ﬁzzzuéenvnﬁ() (N=Y27=Y 4 0,(T~*%) + 0,(15 - B])
i=1t=1
1 N T
ey N
() Gal"STon > frejeSyje Tl 0p = Zzhteﬁzﬂe%nwgp
j=1t=1 ] 1t=1
+ Op(NTIT7Y2) + Op(NTV2T7Y) + O(T7%2) + 0, (1|3 - B))
1 N N o 11 T
(d) dOY Iy T > lejeviey — Elejuving) | Xe NG
i=1j=1 t=1
= Op(NT'T7Y2) 4+ Op(NTV2T71) + O, (T732) + 0, (|13 — BII)
1 N N 1 T
A N oS — S— /
(6) Glﬁ Zl Zl Flznlf ;[&;tejt — E(eitejt)]E]ji'yj-’p
1=19)= =
= Op(NTIT72) 4 Op(NTV2T7Y) + O,(T7%2) + 0, (|8 — BI))
1N NT ! NP
(f) Hfzz:lz:lrlz;l leinely — Eleuch) X5 TG H
i=1j=1t=

= Op(NT'T7Y2) + Op(NT2T71) + Op(T /%) + 0,18 — 51))
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N N T
1 A N
Ni Z Z L Eu T Z Eitljt — E(glteft)]zﬂewjﬂd“i %

= Op(N"'T™ 1/2) + Op(N 2T + 0,(T*2) + 0p(115 — BII)

ProOF OF LEMMA B.6. The whole proof of Lemma B.6 is very similar
to that of Lemma A.13, we omit the proof to avoid repetition. O

PROOF OF PROPOSITION 3.1. Given (B.24) and Lemmas B.3, B.5 and

B.6, the proof of Proposition 3.1 is almost the same as that of Theorem
2.2. O

PROOF OF THEOREM 3.1. To prove Theorem 3.1, we first show that for
any I' and f; we can always transform them into new I'* and f}, which satisfy
the identification conditions IZ. Consider Model (3.1), which we write out
below for ease of reading:

Yit = Qi + Ti1f1 + T2 f2 + - - - + Turx Br + Vg + €t
Titk = ik + Vpge + Vit + viek
Now we rewrite the second equation of the above model as the following way
Titk = (i + VG + Vh) + V5ge + Vikhe + viek
= (par +7eg + virh) + (%k +{(HG)(G'G)” )

+ 9l (e — (HG)(E'G) 1)

= (e + 53+ 24 + {(vzk ARG EE) ) @6 Q) )

% { Q'( 1/2 {

x {Qg [H'H - (H'G)(@'@)—l(G'H)} " (he - (H’G)(G’G)‘lgt>}
where Q1 is an 71 X 1 and @2 is an 73 X 79 orthogonal matrix defined below.
Similarly we can rewrite the first equation as

K
yit = ai + Y TukBr + Vige + ea
k=1

+ (ol - drey @) @] ol

K

= (0w +9ig) + Y TitkBr + Vit + €a
k=1

K
= (i +9j9) + 3 i + { VUG G2 UG G) ™20, }

k=1
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Let

(B29) g = QGG

(B.30) 47" = ¢{(G'G)?Qu

(B.31) %' = (v + 1 (HG)(EG) ) (G'6)*Qu

(B.32) Al = [HE - ()@ 6) (@] Qs

(B33) k= Q5[ - @E)GE) G (b - HE)EE) g

Let I'9*, T'"* T be defined similarly as 'Y, T" T in the main text. If matrix
Q1 is chosen to be the eigenvector matrix of T'9*¥_1T'9* with the associated
eigenvalues in descending order and ()2 to be the eigenvector matrix of
I3 1T we can easily verity T* and f7 = (g5, hy’)’ satisty 1Z.

Since (I'*, f7, B) satisfy 1Z, by Proposition 3.1, we have

N T

Z Z iie eltU’LtI Z Z Eme 'Yh*/h*ezt
: : 7, 1 t= 1

N T
Z Z Zne w*l I, ( Z w] iji,y]h;/) hieit
i=1t=1
+ op(T—3/2) + op(N—lT—1/2) + O,(N~Y27=1

1
* —_—
P*(6 — = NT

Substituting (B.29)—(B.33) into the above expression, we obtain the result
as Theorem 3.1 state. O

DERIVING THE ALTERNATIVE EXPRESSION OF (3 — 3. We first introduce
the following notations for ease of exposition. Let

!
fp iy " h
Hop Y3y . % b
9 _ _
o= | "7 rh—| H —
o g Vb hp

Then the second equation of (3.1) can be written as
(B.34) X,=T9G +ItH'+V,, p=12... K

Now consider term i tr[M X, M(G)X, o), wherep,g =1,2,--- | K. By (B.34),
this term is equal to

%u [ NITAH M(@)HCY | + ﬁtr N1V, M(G)HI) |
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(B.35) L [NITAH M)V, | +

NT tr{MV M(G)V }

NT

By the similar way to deal with tr[+ MV, M(F)V 4] in Theorem 2.2, we can

prove the last term of (B.35) is equal to + YA ® “225%1) +0p(1). Consider
the second term of (B.35), which is equal to

N T
[NlT zzl ; e %phtvth} - [(NlT ZZI ; Yiie ’ylpgtvltq) (G G)'G IHI]
(T ) (Vs w) (% 3 XT: Siiwihivig)]
i=1t=1
e [T S o) (U's w) ( z”ezngtvth)«g G)"'G'H]|
i=1t=1

The four terms of the above expression are all O,(N~1/27~1/2) by Thstw)
(U'S10)~! = O(1) and (GG)'G'H = O(1). So the second term of (B.35)
is Op(N~Y2T-1/2). The third term can be proved to be O,(N~1/27-1/2)
similarly as the second term. Given these results, we have

itr[Mth/M Hrh’} Zz In®a (1)

1
7'61‘[MX M(G) p] NT tie T

NT

Then it follows

. tr[MX M(G)X]] -+ t[MX;M(G)X}]
(B36) w7 : : : = P+o,(1)
tr[MXgM(G)X]] -+ tr[MXxgM(G)X}]

Now we turn attention to tr[ﬁMXp./\/l (G)e'], which is equal to
1 fe .
(B.37) ﬁtr[MI‘pH M@G)e'| + ﬁtr[MV M(@)e].

The first term of the above expression is equal to

{N r Zzz“ﬂwhge”} ~uf(57 NT Z Z Siivhgien)(CC) ' CH|

i=1t=1 i=1t=1

—tr [(FZ’Ze—el\IJ)(\I//Ze_ellIl)_l (% iv: zze ¢1h2€zt>}
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o[ (DF S 0) (W'n g 0) ( ZZE”ewlgten)(G G)"'G'H

zltl

Using h}, — g,(G'G)"'G'H = i} — §/(G'G)"*G'H, we can rewrite the above
expression as

{NT ZZEW 'ylphtezt} — tr[(% i i E“elfyf;g;elt) G G)*lG'H}

i=1t=1 i=1t=1

—tr| (TS ) (U2 ) ( fj Siivihiei)|

NT
1 L& o
| (TF S 0) (W5 0) (ﬁzz%ewzgtezt) (G'6)'G'H]
i=1t=1
which is equivalent to
1 Al -1,k (3 =1 -
T 2 2 Siie Vi (b = HG(G'G) ™ gr)e
i=1t=1
1 e
— & 12116 ) ¢¢( ij j];")(;;’)) H/G(G/G) 1gt)eit

From this result and

1
ﬁtr[MV M@G)e'| = §:§ Sl eiving O (NTITY2) 40, (N7,
i=1t=1

which has been shown in Appendix A.3, we have

1
(B38) [ MX M Zzzueeztvztp
i=1t=1

1 e
Zzzuifyzhpl H/G(G/G) 1gt)eit
i=1t=1

1 e
szwznw( Z% Sgerin) (he = WG(EG)  gr)en
z 1t=1

+Op(N_1T_1/2) + Op(N_l/QT_l).

Combining (B.36) and (B.38), we can see that the alternative asymptotic
expression of 8 — @ is equivalent to the one in Theorem 3.1. In addition,
Corollary 3.1 is an immediate result of (B.36). O
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APPENDIX C: PROOFS OF RESULTS FOR MODELS WITH
TIME-INVARIANT AND COMMON REGRESSORS

APPENDIX C1: PROOF OF CONSISTENCY

Again, for consistency, we use the superscript “*” to denote the true
parameters.

PROPOSITION C.1. Let § = (B,f‘, Yee, Mff) be the solution by maximiz-
ing (4.2). Under Assumptions A-D plus F, together with the identification
conditions 10, when N, T — oo, we have

g-p 2o

1 Y .
ﬁZr—r* - %o

1 X »
M IZai-=5r %0
Ni:l

My — Mi | 20

PROOF OF PRrOPOSITION C.1. First note that 3—4* 2 0and & SN |25
X H2 — 0 continue to hold as they do not rely on priori restrictions. To
prove the remaining results, it is sufficient to prove A = (0 —T*)'STH &
0. Equation (4.6) can be written as

N
(C.1) GQZrixnlr:"NTZthejtxﬂe Ny + Gav Ztht I
i=1 j=1t=1 t 1

1 N N o T
+G2NZZFZE7;1T Z[Eite]t E(gzte]t)] ]je J GQN th/@ ﬂ ft*/H)‘A

i=1j=1 t=1 T

N

. A - 1

Go YA (Biie — Sh) SN + Ga SO = XERN)
i=1 Jj=1
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A N A A A A A A ~ A
—Gy Yy TiS (D = T7) M — GoH N (Mg — M) = 0
=1

where 11 M ét and F; are defined in Tables 1 and 2. The last term involves
Mys— M7, Notice (2.7) continues to hold, so (A.21) is applicable. By (A.21),
we can rewrite (C.1) as

N N T T
A RS | * —193 A 1 o px\ T
Gy Z EE,-,-IF/W Z Z fi ethjjé)\;- + Gan <T Z Xt fi /)H,\,\
i=1 j=1t=1 t=1
1 N N L 1 T R . R
+G2N z; z; Fizﬁlf ;[siteﬁ — E(&tejt)]zii)\; — IQA,M;fAH/\)\
i=1j= =

Tt:l t=1
.1 N T R R 1 N
—Cap Zlfd = B)ejtS5e N + Gan o > &(B = 5)(8 = 57)' Fi
j=1t= j=1
1., e NPT LA "
—5 G2 2; AiSiie (Biie = Biie) Sise A + G Zl(Aj —N)E5N,
1= 1=
S AR . S 1 & .
(C.2) *GzN(fZ (8 —B%) t*/)H)\)\ *szlxg_glf*(fofﬁ)HNﬂM
t=1 t=1
o x ) R R A
~Gon (2 2 Naf ) (I = Al = Gae 3737 S I e £ T AL
t=1 i=1j=1t=1
oo 1 & . X P R N
+CI' ST (3 f(B=B7Y &) HnThw+Con (7 Y- (B &) ATl
t=1 t=1
v (g 1., N
+G2N(TZ (8 —B%) t*/)(fr—A)H,\A-i-Gm(TZ t(ﬁ—ﬁ*)Xt)HNHA,\
t=1 t=1

AlTAA*A*AAA ANAA—A *\eo— 11 771
_GQNfzgt(ﬁ_ﬁ J(B—B7)E HNIn—Ga Y 1385 (84— 35 55 T HII
=1 i=1
—Hy M ' GT'S. T M ATy + I M ATIy, = 0

where A = (I'=I™*)’$'T'G and A = (I —T*)'S'TH. There are 22 terms on
the left hand side of (C.2). We can prove that all the terms except the 11th



80 BAI J. AND K. LI

and 22th terms are o,(1), given the fact that 3 — * % 0 and L3N, 1324 —

PNAIE 2, 0, whose proofs, as pointed out in Appendix B, involve no priori

restrictions and still hold in present context. By the definitions of A and A,
the 11th term is equal to

Gol'S I = T M} AT, = Hol"S N (D — T*) M, ATl
—Hy M GT'S (D — T*) M Al

where we have used G = H — HMff G. Since (A.21) continues to hold in
Section 4, we have A = O,(1). By (A.16), we have %f"fi;lf‘ = Op(1). By
1 s : : 1N 1

F’ 1F O,(1), it is easy to verify that Iy = WZ:J;: JZW)\; Q (1).
leen Ty, = O,(1) and A = O,(1), together with GH' = O,(1 ),Mjgc =

0,(1), H = 0,(1), we have
LI, — A)’M}}AﬂM 20
—13

Zije
larly as + Z 1 ¢;Eﬂe¢ in Appendlx B. So we have

However, term I, = ]{[ ZN )\ can be proved to be invertible simi-

LI, — AYMjA L 0

From this result, in combination with My = (I, — A)Y M7 (1 — A) + 0p(1),
we obtain Ajs = 0p(1) and Asy = 0p(1). These results, in combination with
My = (I, — A) M7 (I, — A) + 0,(1) again and 102, we have A1 = 0p(1)
and A1; = o0p(1). The remaining proof is the same as that of Proposition
2.1. This completes the proof of Proposition C.1. O

APPENDIX C2: PROOFS OF THE CONVERGENCE RATES AND
PROPOSITION 4.1

Now we drop “*” from the true value of the parameters for notational

simplicity. The following lemma is useful for deriving the rates of conver-
gence.

LEMMA C.1.  Under Assumptions A-D plus G, in combination with the
identification conditions 10, we have

N
Z(Fi - Fi)zi_ilF;H =0 ( 1/2 + O Z qu - Zu” ]1/2)

i=1

1L ) .
+0p(5 SIS IT: = Tall?) + Op(118 = B11)
=1
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ProoF oF LEMMA C.1. The proof of Lemma C.1 is similar to that of

Lemma B.2. We partition matrix A int9 A11, Aqo, Aoy, Ago and prove each
submatrix is Op(T~Y2) +Op([& SN, 155 — Zal 212 + 0p(£ SN 1251 -

IT; — Tul1?) + Op([|3 — B|))- The details are omitted. O

ProrosiTiON C.2. Under Assumptions A-D plus G, together with the
identification conditions 10, we have

1L . - R
NZ 135511 1T = Tul|? = Op(T~1) + Op(I18 = BIP)
=1

JRREAR B R
N 2 %4 = Bill = Op(T™) + 015 = A1)

My — Mgl = Op(T™1) + Op (1|3 — BII%)

ProoOF oF ProproOSITION C.2. The first order condition with respect to
1; is identical to the one in the last section. By (B.4), we have

. 1 L
Pj — ~Gi Z NIy —Ta) My +Glzrz T > feis
t=1

S !
+G1N(T Z ft))\ + Gl ZF EulT Z[gitejt o E(gitejt)]

t=1
R N L 1 T R R 1 T R
~C YT Y A8 = B) & — G (5 Yo (B - B
i=1 t=1 t=1
1 & 1, s
(©3) G (5 X GB =B — G (5 Y &(B - Bleyr)
t=1 t=1

—H M ' GH™ (Mg — M) Nj — HIM '\ GH ™ Mg (A — Xj)
The remaining proof is the same as that of Proposition B.2 and the details
are hence omitted. O

ProrosiTiON C.3. Under Assumption A-D plus G, we have

B—pB=0,(N"V21=12) 4 0,(T")
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To prove Proposition C.3, we need the following lemmas.

LEMMA C.2.  Under Assumptions A-D plus G, together with the identi-
fication conditions 10, we have

N\ A 1E .
(a) tr[ 1 ZDE;}FQT Z ft(B— ﬂ)lg{?p}
=1 t=1
K
= > By = B trlli Mygwep 3] + 0p(15 — 5)
=1
1 EZ 11 -
(b) e[ 1T =AY 3" fi(B — BY & Hog)
t=1
K
= > (Bq = Ba)trlMypogQ 'vply] + 0y (115 — 5I)
=1
e 1 & q -
(¢) tr [Ggr’zggrf > 1B - BY & HN ]
t=1
K
= _(Bq = Ba)tr[ M pogQ~ " vpIo) + 0y (115 — B)
q=1
T
(d) tr[Gol"S'T ; > 1B - By 6
t=1
K
= 3" (By — Bo)tr | Mo vp I + 0,118 — 1)
q=1

where ﬁM,HM,@g,@Z,@p,Up,wpq,pr,ét are defined in Tables 1, 2 and 3. I
denotes the first r1 rows and Iy denotes the remaining ro rows of the identity
matric I,.

LEMMA C.3. Under Assumptions A-D plus G, together with the identi-
fication conditions 10, we have

(a) Sp1= 0p(N~2) + Op(T /%) + 0, (115 — B]])
(b) Sp2 = 0p(1I8 — Al

where Sp1 and Sya are defined in (C.6) below.
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LEMMA C.4.  Under Assumptions A-D plus G, together with the identi-
fication conditions 10, we have

1 _ _ _ R
Ni 222223711;]1156215 =0 ( I/QT 1/2) + OP(T 1) + Op(Hﬁ - ﬁ”)

=1t=1

1 N T R B B R
() o 2 2 Biiceaviny = Op(N 2T 712) 1+ Oy (T ™) + 0, (1153 - A1)
i=1t=
N T
1 /
T;;htejtzmxj on
]:

,\
&
2‘.-1

Op(NTV2T712) 4 O,(T71) + 0,(|13 - BI))
1NN 1 T L
(d) tr [Glﬁ Z Z FZ»E;. T Z[Eitejt — E(&itejt)]zge’y;]p}
Op(NTV2T712) 4 0,(T™1) + 0,([13 - BI)
N N T o
(6) tr |:NT Z Z Z FJZJJI[EJtUztp E(Ejtvitp)]zne )‘;G}
= Op(N"'PT712) 4 0, (T™ 1) + 0, (1|8 — BI))
R N N T L ) o
(f) tr [Hlf PIPIP P HRCEN E(sits;-t)]E;F;H@g}
= Op(N"'2PT12) 4 0, (T 1) + 0, (18— BI))
) N N o 1 T
(9) tr{GQNZZFiEi;ITZ[&teﬁ—E(eitejt)]zﬂe)\; o p]
Op(NTV2T72) 4 O0,(T™1) + 0,(|13 — BI))
) N N T L ) o
(h) tr [GQT PIPIP DR E(sztsjt)]ilElF;Hﬁ;f]
= Op(NTV2T712) 1 0,(T 1) + 0, (1|8 - B]))

The proofs of Lemmas C.2, C.3 and C.4 are quite similar as the counter-
parts in Appendix B.

PROOF OF PROPOSITION C.3. As argued in Section 4, equation (2.5)
still holds. So equation (A.41) continues to hold. Con81der the first term on
the right hand side of (A.41). Notice that —tr[4 Y- N 'ylp iie =N Myf| =

—tr[% Ez 1%p iie (% ¥;)']. Using (C.3) to replace ¥; — 1; from the ex-
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pression, we have

Op1 (B — B1) + Opa(B2 — Bo) + -+ + Vpi (B — Brc)

. N L . o 1 N T R
= tr[Gr DO DS (0 — To) Mypog] — tr[GhIVS Tm> z; freiSigind]
: ]:l t=

N
Il
i

T ) tft)“g} tu [Gl Z T Eﬂlrgll“ > filp - 5)'%}

t=1 i=1 t=1

+
-t
=
[
M|
M=
]~
8
S
K}CB
M
=
o
$
IL’
|
o+
=
Q
=
~
—_
]~
=
|
=
=
|
=
o
<
—

G1 )\jzj;(zjje - E]je)zj];'nggl;}

. 1 .
e[ Ay NG G (N — Myp) Z NS5l + w7 2 2 Sl e

i=1t=1
T Ar—1A1r—1 1NA 1_g/ 1 NTA_l
+tr [Hlef GH Mffﬁ Zl(Aj - A])E‘]‘je,‘y]p} + NT 21 ; Liie CitVitp
J= =1 t=
1NA—l NN 1N—l 37 A 1TA/
+tr[— Z Liie Vip i Mff] - tf[ﬁ Z Yiie YipAiGN (f Z thtﬂ
=1 =1 t=1
| S S S M OS] e L S S NN (T M)
NT i iie Jt A\ Vitp ce N i:1 iie Yip\g ff ff ff
1 X, 1 e
_tr[ﬁ Z Zz_zel (Yip — %p))\ G} + tr[ﬁ Zrizi_'l(zii -3 )Iféill m})\;G}
i=1 i=1
—tr [Glf Z Z T; E — Z Eitjt — E(&Ztejt)]i]];;’yf;}
=1 j5=1 t 1
1 N .
(04) _tr|:NT Z Z Z szjjl E5tVitp — E(gjtvztp)] zzel)‘;G}

i=1j=1t=1
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The right hand side of the above expression has 22 terms. We pick out the
first term tr[Gy YN, T35 (Fi—Fi)/Mff@g] and the 15th term tr[%; SN us
NA'M ] for cons1derat10n since these two terms are each O,(T~'/?) due
to Proposition C.1, which violates the claim of this proposition. But we
show that the sum of the 1st and 15th terms satisfies the proposition. By

G =H—HM;'G, term A = (I = T)’S'T'G is equal to ([ = T)'S'TH —

(T — F)’i;}fﬁMﬁlé =A- AMJ?CA}'. So the 15th term tr[+; Noss
N.A'M ] is equal to

2

[% Z m%p,\’A’Mff} =tr [MffA Z A Emﬂw}

_— [MffA% i(&» = M)Z5d| + x| My A,
=1

[MffA Z )i;@l%lp} + tr [MffA’lA}p} —tr [MffAMﬂléﬁp}
=1

So the sum of the 1st and 15th terms can be written as

(C5) Gy D DSEH (D — Ty Mo +tr[ Zzue%pA A M|
=1 i=1

= tr [[lA,Mffﬁg} + tr {IlefA@g} + tr [IQMffA’LA}Z}

—tr [Hlef A Mff’l}g} —tr [MffAMff va} +tr [MffA Z )\ -\ ) Je’yj/»p}

j=1
The first two terms can be written as tr[l1(A' My + Mg A)og]. Under the
identification condition 1Z, the first 71 rows of M #f — Myy is zero. Thus
the expression of Iy (A'Mys + MypA) is implicitly given in (A.21). The third
term involves IoM s A. Notice the last term of the left hand side of (C.2)
is IngfAf[M. Shifting IngfAf[M from the left to the right, then post-
multiplying —f[;\Al, we obtain the expression of IopM s A. Substituting these
two expressions into (C.5), we can rewrite the first three terms of (C.5). This
allows us to rewrite (C.4) as

(C.6) Dp1 (B — B1) + Opa (B2 — Ba2) + - + ﬁpK(BK - BK)

1 N T
= ﬁ Z Z iie eltvltp NT Z Z iie ’yzp h‘telt

i=1t=1 i=11t=1



36 BAI J. AND K. LI

S5 ey N

NT j=1t=1
N A 1 &
eGSO PSS R - )65
i=1 t=1
T
—tx[1(r — AY (3 3 R YY) Frwo)
t=1
e[ Guf' (4 S - B) )iy o]
t=1
T

o 1 . N 7
—tr [GQF’E;F(T;ﬁ(ﬁ — ﬂ)'ﬁé)HN@ﬂ
+Sp1 + SpQ + Sp?)

where

N T

1
Sp1 = tr [Glef1 NT 231 tz: ftejtzyye%p} +r [IlA/ 221 tz; fte]tzﬂﬂﬂ’}
j = J

. XT: St = ) frvy + tr] 1o i XT: Siie fiviph |
Sty [ﬁ > SR A GNG - e[ LA i fixt) Hy o]
ol ixtft)fw} bt (L 3 )
.E z%p O = NG (1 3 5] -t 8]
r [ﬁM;éN% ( Z $afi)oy] = e[ My AN Gy |
e i i) o8] + 1My S0y - A)E5)

7=1

. [GgMﬁl (% ET: ft)%fe)ﬁN@ﬂ + tr {IlA/MffAng]
t=1
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. 1L 1~ M.
—tr[Gan ( t; Ruli) Aoy | + [ 6 jz AS5eCge — Do) Sgavd ]

N N

e 1 ) . 1 L <
+tr [HleflGH lefN > _)\j)zgji’ng;} —tr[ﬁ > i Gip—Yin) A G}
= i=1

+tr [ﬁlMﬂléH (Mff — Mff Ug} — tr[ Z Z“e’y@p)\ GMf_fl (Mff — Mff)}

ttr [ LA Myp ADh| + tr G Z 085! (S — 2) 25 T H o)

=1
;1T 137 f—1 1k
e | oM GT S DMy Av | + e[ A S ZME; frep SN o]
J
N R 1 1 N
—l—tr[ Z it (ST I s u;)‘;G} tr[G2N Z(A =) JJ;AQH»} ;ﬂ
i=1 j=1

N
N N
—tr[ > 1: 0385t (S — 385 T H o
1=

N
1 . N, e
+tr|:NGQE )\,-El-iel(Ziie—Eue) ZZ;)\; AX p}
i=1

1
+tr |:G2Mff1 NT ]Zl ; fte]tE ];)‘]H/\)} :ﬂ

and

Spa = tr[Gin (% sz &(B—B)f!)og] - tr|[Hin (% ZTJ §(B=B) 1) (L~ Ay
t=1

+tr[G2N<% iét(ﬁ ﬁ)ft)A@ﬂ + tr[GlN(f i (B—=5) gtp)}
t=1 t=1
1N T R T
—I-tr[Glf >N s ﬁ)ejtzﬂivfll,] tT[GlN(*th(ﬁ—ﬁ)(ﬁ—ﬁ)/gtgp”
=1i=1 =1
1 [
—tr [Huv (f > ox(B- ﬁ)'ﬂ) HNUg] —tr [Huv (f PRACE 5)X2)HN17§}
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T T
ver[Hiwes Y (8- 5)(B - Y€ g + x| Gan s S B~ Y Filty ]
t=1 t=1
1N 1 .
+tr[G2TZZ (5= B)epS VL o ]—tr[GQN S (B BYE H !
j=1t=1 t=1
o1 X o1 )
—tr|Gon s > (B = B)(B — B FAL 0| — tr|Con s D &8 — AR H o)
t=1 t=1
tir[Gon 7 & )5~ BYE AN
t=1
and
R A T
Spg = —tr [Glﬁ Z Z Fizi_ilf Z[gitejt — E(aitejt)]Eﬂ;y%}
i=1j=1 t=1

1 NT o .
—tr [ﬁ Z Z Z szj;1 [Ejtvitp - E(Ejt’l)z‘tp)]zuel)\;G}

1NN T
+tr{H1fZZZFiE;.1[git5;-t E(szts )]E F’H g}

i=1j=1t=1
1 N N 1 T
A A oo—1 15k
—tr [G2N z; 2:1 vyt z;[aitejt — BE(eie;o)| S5 N0 p]
i=1 j= t=
N T o
ir|Gors 30 D0 D TiS feush — Bleuchy)| S5 T Ho) |
i=1j=1t=1

Consider (C.6). Terms S,1,Sp2 are dealt with in Lemma C.3. The terms
on the left hand side and the 4th-7th terms on the right hand side are
summarized in Lemma C.2. The first three terms on the right hand side and
Sp3 are given in Lemma C.4. Using the results in Lemma C.2, C.3 and C.4,
we have

QB = B) = Op(N2T72) 4+ 0,(T ™)
This leads to Proposition C.3. 0

CoOROLLARY C.1. Under Assumptions A-D plus G, together with the
identification conditions 10, we have

1 e _
5 2 MEE I = Tl* = 0p(T )
=1
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N
1 A _
N D 1% — Sal]* = 0p(T7h)
i=1
1Myp — Mys||* = Op(T)
This corollary is an immediate result of Proposition C.2 and C.3.

To prove Proposition 4.1, we need the following lemma.

LEMMA C.5.  Under the assumptions of Theorem 4.1, we have

N T
1
NT Zz:lg:lzzze’}/zphtezt NT ;;2“67@}”6%

+OpN *1Tf1/2>+0< T 4 0T ) + 0,16 - BI)

(b) Z Z Ezze CitVitp = NT Z Z E”e €itVitp

'thl i=1t=1

O,V N7ITY2) 4 0y (NPT 1>+0<T—3/2>+op<!|3—ﬁll>

1 1k
(¢) Zzhteﬂzjye J /\AU;D = NTZtheJtZJJe)‘JHM P
J 1¢=1 j=1t=1

+ Op(NYT12) 4 O (N~V2T71) 1+ 0,(T3/2) + 0, (|| - B])

T

URICES ot ' Sl — Bleues)l Sy
7j=1

=1
= Op(NT'T72) 4 Op(NTV2T71) + Op(T %) + 0, (18 — BI))
| NN T X
/
(e) tl‘[ﬁ ;;;F]Eﬂ [Ejtvztp E(gjtvitp)]zzze)‘zG}
= Op(NT'T72) 4 Op (NPT + Op(T %) + 0, (18 — BI))
1 LN o
() tr|Hg Y3 S D euc), — Bleueh)| 25 T H 0]
i=1j=1t=1
= Op(NT'T72) 4 Op (NPT + Op(T %) + 0, (18 = B]))
NN 1 T
(9) tr[GQNZZFiE; TZ[eiteg’t*E(&t@jt)]zﬂe)‘; P p}

N N T
(h) tr [(;2? PIPIP DR BE(ea),)|S5 Ty HOL|

1
= Op(NT'T7Y2) + Op(N7V2T71) + 0, (T%2) + 0, (1|3 - B])
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= Op(NIT7Y2) 4 O,(N7Y2T7) + 0,(T%2) + 0,([18 — BII)

ProoOF OF LEMMA C.5. Proof of Lemma C.5 is quite similar to that of
Lemma A.13 and hence is omitted. O

PROOFS OF PROPOSITION 4.1. Given (C.6) and Lemmas C.2, C.3 and
C.5, the proof of Proposition 4.1 is identical to that of Proposition 3.1. The
details are omitted. ]

APPENDIX C3: PROOFS OF THEOREMS 4.1 AND 4.3

PROOF OF THEOREM 4.1. To prove Theorem 4.1, we first transform the
parameters set (I', fi, #) into (I'*, f7, 3) which satisfies the identification con-
dition IO. For ease of reading, we rewrite model (4.1) below

Vit = a; + Tinn B + xiraBo + -+ + Tk Br + Vigr + dihy + e
Titk = [k + Vg + Ve + vigk

The first equation of the above can be rewritten as
— K . . . . . .
k=1
<A{QGG) 2} + ¢ {h — HEGG) g} + ew
and the second equation can be rewritten as

zik = (in + 157 + V) + { s + W GEG)(E6) Q)

X {Q,(G,G)_lﬂgt} + “Yzhk,{ht - H’G(G’G)_lgt} + Uitk

where @ is an r; X r1 orthogonal matrix which is defined below. Let

(C.7) 7= W+ gHG(G'G)T(E6)?Q
(C8) ' =g + AR G(E'G) (GG 2Q
(C.9) Vi =k

(C.10) g = Q(G'G) g

(C.11) hyf =hy —HG(G'G) g

Let T'9%, T"* T* be defined similarly as I'Y, T T. If we choose @ to be the
eigenvector matrix of T'9*Y__T'9* with the associated eigenvalues in descend-
ing order, we can easily verify that the parameters set (I'*, f7, ) satisfy the
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identification conditions 10. Then by Proposition 4.1, we have

1 N T
Q*( Ni Z Z iie e’LtU’Lt:p NT Z; ; E“el h*/ht et
i=1t=1 i=
N
=D S g (% Z XS b
i=11t=1

+{%K7“3”)+-0pUV_1T_1”)*—C%( N7V

Substituting (C.7)—(C.11) into the above expression, we have the same
asymptotic expression as stated in Theorem 4.1.

The proof of the alternative expression in Theorem 4.1 is the same with
that of Theorem 3.1 and hence omitted.

Corollary 4.2 is a consequence of the alternative expression of B —p. O

PrOOF OF THEOREM 4.3. To prove Theorem 4.3, notice the first equa-
tion of (4.7) can always be written as

K

e = 3wl + { (¥ + ¢ MDGIE MD)E] ) [E'M(D)C]'*Q}
x { Q6 M(D)G] (g, - G'DD'D)'dy) }
+ <Z>§{ht — H'D(D'D)"'d; — ' M(D)G[G' M(D)G] (g, — G’D(D’D)_ldt)}
+ {K} + VG DD'D) " + FHDD'D) " }d; + i

The second equation of (4.7) can always be written as

zak = { (4 + A M(D)G [G’M( )GI~ ){ M(D)G]'*Q}
x {Q’[G/M(D)G]’”Z(gt )ldi)}
+ 94 {he — H'D(D'D)"d, — B M(D)G[G'M(D)G] (g — G'D(D'D) " dy) }

+ {7 + G DIOD) ™ + A HDD'D) " by + v
Let

= (¥ + ¢{H M(D)G[G' M(D)G] )G’ M(D)G]/2Q
gtzQ[G’M( )G] /% (g, — G'D(D'D)~'dy)
V& = (4§ + AHH M(D)G[G' M(D)G] Y [G' M(D)G)/?R
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hy = hy = HD(D'D)~"d; — H'M(D)G[G'M(D)G] ™ (g: — G'D(D'D)~"dy)
K=+ wf,;G D(D'D)~! + 4 H'D(D'D) !
'ndk*’ = + 75 G'DIDD) " + 7 H'D(D'D) !
After appropriately choosing the orthogonal matrix ), we can make the
parameters (I'*, f7, 3) satisfy the identification condition I0Q'. Using the same

method in deriving Theorem 4.1, we can prove Theorem 4.3. The details are
omitted. O

APPENDIX C4: PROOFS OF THEOREM 4.2 AND 4.4

The following proposition is useful to derive Theorem 4.2 and 4.4.

ProrosiTiON C.4. Under Assumptions A-D, in combination with the
identification conditions 10 and 10/, we have

A= Zr—r SSUYH = O,(N7Y2T12) 1 0,(T7Y)

PRrROOF OF PROPOSITION C.4. Using Corollary C.1 and (C.2), we can
prove that Ao and Ags are both Op(Nfl/QTfl/Z) + Op(Tfl). However, the
identification condition IO1 implies that Mgh = Mgy, = 0. Given this result,
by (A.21), we have Ay = Op(Nfl/QTfl/Q) +O,(T~1). Now we only need to
prove Aj; = Op(N_1/2T_1/2) + Op(T™ 1). This result can be proved by the
same way as proving (A — A)'S 1AH Op(N~Y27=1/2) 1 0,(T~") under
IC3 in [10]. So Proposition C.4 follows O

Theorem 4.2 can be viewed as a special case of Theorem 4.4. We only
focus on proof of Theorem 4.4.

PROOF OF THEOREM 4.4. The formula to estimate f; is
fir = (NSNS (Y, — X0)

where f; = (§},h}), A = (¥, ®) and Y; is the ¢tth column of the matrix

YM(D), X; is an N x K matrix with its kth column equal to the ¢th column
of the matrix X3 M(D). Given the above equation, we have
(C.12)

ilt [ 1/2M( 1/2\1,) 1/2@} {(I) E 1/2./\/1( 1/2\1,) 1/2(Yt_Xt,8)]
The first equation of (4.7) can be written as

Y =X161+ -+ XgBr + VG + dH' + KD' + e
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Post-multiplying M (D) on both sides, by G'D = 0, H'D = 0, we have
Y M(D) = Xy M(D)B; + - - - + XgM(D) B + UG’ + OH' + e M (D)

So we have } )
Yy =XiB+ Vg + Phy + e — &

where & = (X1 e5sdl) (Y11, dodl) " dy and é = (14, Ear, -+, Ent)’. Sub-
stituting the above equation into (C.12), we have

V(i — ) = =27 [ L @S EME DS PRV - )

(C.13) —X—l[ﬁNq)z LPMEZ PO - )]
Lyt L/N(I)E 1/2/\/1( 1/2\11) 1/2(€t_ét)]

where X = L @’2;61/2/\/1( 3 71/2@)53;31/2@ Using the consistency result we
have proved, term @ 2_1/2/\/1(2@_61/2\11)2 /23 can be showed to be

N 1 N
D BTl (5 R szzmw szzm #)+op(1)
i=1 =1

Consider the first term on the right hand side of (C.13). Term @ 3

M(f]t;l/Q\I’)Zee /2 X, is equal to

1<
¥ Z@zm Tir — (5 2 D155 Vi) szzm i) szzuexn
=1

where Z;; is the ith row of matrix X;. By the consistency result we have
proved, the above expression is equal to

N
< Z ITENES S ml Z DSl Z G ) +0p(1)
i:l

which is Op(1). From this, in combination with B—p8= O/p(Nfl/zT’l/Q) +
0,(T~3/2), the first term of (C.13) is equal to O,(T~'/2) + O,(NY/2T~3/2).

Now consider the term - <I>’E 1/2./\/1(2@_61/2\11)26_@1/2(@ — W)g;, which is
equal to

N /\
Z zze ¢1)



94 BAI J. AND K. LI

1N 1,1 N
_ (N Z ¢ZE;§¢§> ( Z ¢z iie ) (N Z ¢12;161 (; — wi)/)gt
=1 i=1

Using (C.3) to replace ¥; —1; from the above expression and using the result
in Proposition C.4, we can show that

AT Z ¢Z ue wl)/ = Op(Nil/QTil/Z) + OP(Til)

AT Z '¢} i]ue j wl) - ( _1/2T_1/2) + OP(T_I)

From these, together with - ~ SN gblEm W, = ~ LS N X + 0,(1) and
L3N, i3l = A SN 252k + 0p(1), we have that the second term
of the right hand side of (C.13) is O,(T~'/?) + O (N1/2T_ ).

Now consider the third term. We first consider ]{, P’y 1/ QM(f]gel/ 2@)5);61/ 26,5,
which is equal to

1L« 1
2 di¥cen — (55 2o ¢S szzmwz sz iie €it)
i=1 =1

Using the expression for fljje — Xjje, we can show that

N N
1 A 1 _ _

N Z oiXlein = N Z $ie it + Op(T™1)

i—1 i=1
and

1. 1 Y

I Z Uh'zﬁeleit =N Z 1,!)@-2;-61% + Op(T_l)
i—1 i=1

Furthermore, Using the expression for ¢; — 1;, we can show

N Z zze Cit = OP(N_1> + OP(T_I)

So we have
1N

1N . 1N . 1.
NZ@EQ;@# - (NZ@'E;-;% NZ iie l(ﬁ Z%E{iieit)
i—1 i—1 i=1

1 N . 1 N
= N Z (Z)Zzz_ze Cit — Z Pidiy; zze N Z i 2 zze Z iy iie elt
i=1 i=1
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+Op(N"H) + 0, (T™)
Notice

N N
1 _ 1 _ _ _
N Z qslzzzelqb; - (N Z ¢221161¢2 Z wl nelwz Z ¢7, ”;QSZ
im1 i=1
is equal to %@’Ee_el/QM(Ee_el/Z\I/)E_l/zé Then we have

-1

- 1

( Z (bl zze Z qbizzze w Z wlzzze w

+Op(N_1/2) + Op(T_l/z) +Op(NY2T7)
If N — oo, T — oo, and \/N/T—>0 we have

N
Z iie elt )

w

VN(hy = hi) % N (0, [ lim <I>2 MBI 0],

N—oo

This proves the first part of Theorem 4.4.
By yit = fo:l TitpOp + Vigr + dihy + KLdy + e , we have

\/T(I% — KJZ = Z ( Zdtd/> ( Zdt-rztp) ﬁp)
1 L -1 1 L .
—(Tzdtdi) (ﬁdeM;(ft - ft))
=1 =1
1 & 1l R
_(T ;dtdfg) (ﬁf t;dt(%’ - %‘)@Jt) + (f tz;dtdt) (ﬁ ;dt@it>

The first term is O,(N~1/2)+0,(T~"). The second term and the third term
can be proved to be O,(TY2N~1) 4+ 0,(T~/?). So we have

1 & 1,1 &
\/T(I%Z — Ki) = (T Z dtdé) (ﬁ Z dteit) + Op(Tl/QN_l) + Op<T_1/2>
t=1 t=1
If N — 00, T — 0o, and VT /N — 0, we have
VT (i = ki) % N (0, S ( lim Zdtd’ Y.

This completes the proof of the second part of Theorem 4.4. O



96 BAI J. AND K. LI

JUSHAN BAI1 KUNPENG L1

DEPARTMENT OF ECONOMICS DEPARTMENT OF ECONOMICS

CoLuMBIA UNIVERSITY SCHOOL OF ECONOMICS AND MANAGEMENT
420, WEST 118TH STREET TSINGHUA UNIVERSITY

NEW YoRrk, NY 10027 BELING, CHINA, 100084

E-MAIL: jushan.bai@columbia.edu E-MAIL: likp.07@sem.tsinghua.edu.cn



