
Munich Personal RePEc Archive

On the estimation of marginal cost

Delis, Manthos D and Iosifidi, Maria and Tsionas, Efthymios

1 December 2012

Online at https://mpra.ub.uni-muenchen.de/43514/

MPRA Paper No. 43514, posted 01 Jan 2013 19:51 UTC



 
On the estimation of marginal cost 

 
 

Manthos D. Delis∗

 
 

The Surrey Business School, Faculty of Business, Economics and Law, University of Surrey, 
Guildford, GU2 7XH, UK 

 
 

Maria Iosifidi 
 

Department of Economics, City University, Northampton Square, London  
EC1V 0HB, UK 

and 
Athens University of Economics and Business, 76 Patission St., Athens, 10434, Greece 

 
 

Efthymios G. Tsionas 
 

Department of Economics, Athens University of Economics and Business 
76 Patission Street, 10434 Athens, Greece 

 
 
 

This version: July 20, 2012 
 

 

 

 

                                                 
We are grateful to Severin Borenstein, James Bushnell, and Frank Wolak for providing their data from the 
California’s electricity market and valuable comments. We are also grateful to Iftekhar Hasan, Sofronis Clerides 
and Eugenia Vella for many helpful comments and suggestions, as well as to seminar participants at Cass 
Business School, Brunel University, Surrey Business School and Athens University of Economics and 
Business. Delis acknowledges financial support from City University and University of Surrey and Tsionas 
from the Athens University of Economics and Business. The usual disclaimer applies. 
 
* Corresponding author. E-mail address: elmanthos@hotmail.com (M.D. Delis) 



 1 

 

On the estimation of marginal cost 

 

 

Abstract 

This article proposes a general empirical method for the estimation of marginal cost of individual 

firms. The new method employs the smooth coefficient model, which has a number of appealing 

features when applied to cost functions. The empirical analysis uses data from a unique sample from 

which we observe marginal cost. We compare the estimates from the proposed method with the true 

values of marginal cost, and the estimates of marginal cost that we obtain through conventional 

parametric methods. We show that the proposed method produces estimated values of marginal cost 

that very closely approximate the true values of marginal cost. In contrast, the results from 

conventional parametric methods are significantly biased and provide invalid inference.        

 

Keywords: Estimation of marginal cost; Parametric models; Smooth coefficient model; Actual and 

simulated data 

JEL classification: C14; C81; D24; G21; Q40 
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1. Introduction 

Since the contribution of Alfred Marshall, one of the most fundamental and widely used concepts in 

economics and management sciences is marginal cost. However, in the great majority of industries, the 

marginal cost of firms cannot be readily observed in the data. Thus, researchers and practitioners have 

to rely on estimates that might or might not be robust. This problem creates notorious difficulties in 

analyzing empirically basic microeconomic theories on industrial organization and management. 

These difficulties also extend to policy-makers with concern to the cost structures of firms and 

industry conduct. In this paper, we revisit the issue of the estimation of marginal cost with a standard 

cost function and show how to derive robust estimates for individual firms in our sample and for each 

point in time (i.e., at the observation level). The new method is quite general, does not rely on strong 

assumptions, and can be applied to any industry. 

In particular, we propose a method that relies on the estimation of a standard cost function that 

uses a nonparametric estimation model, namely the smooth coefficient model. Nonparametric methods 

are quite flexible and allow obtaining observation-specific estimates of the parameters of a basic cost 

function and, in turn, of marginal cost. In other words, we can obtain marginal cost estimates at the 

firm-level and for each point in time by using the standard textbook principle of the derivative of total 

production cost over the firm’s output. Further, this approach allows the relaxation of a number of 

restrictive assumptions that pertain to the estimation of cost functions; the most important one being 

the assumption of a specific functional form that is required under parametric methods. Reiss and 

Wolak (2007), among many others, are skeptical about this assumption, because the structure of the 

cost and output data can bias marginal cost estimates to an unknown magnitude and direction. In 

contrast, within the smooth coefficient model, variables can vary according to information derived 

from the data, and this represents a closer approximation of reality. Also, this flexibility allows the 

researcher to use large international samples of firms without being concerned that certain industries in 

different countries or firms within one industry face or adopt different technologies.    

Even though the smooth coefficient model is theoretically well established in the statistics 

literature, researchers have never verified that the parameter estimates approximate the true values of 

the parameters. Because of the lack of studies on this front, researchers are skeptical about the 
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applicability of this method to the estimation of marginal cost. To confirm that the estimated values of 

marginal cost from the smooth coefficient model approximate the true marginal cost well, we conduct 

a number of empirical tests. Specifically, we use data and implications from important studies on one 

of the few industries where the true values of marginal cost can be readily observed from the available 

data and estimated from the same data set: California’s electricity industry. We then compare the 

values of the true marginal cost to the values of the estimated costs and show that the correlation 

between the two is very high and that their distribution densities are quite similar. We carry out these 

tests using two data sets: actual aggregate data for all firms in the industry and simulated panel data 

that comprise information for each firm at each point in time. 

In addition, we estimate the same total-cost equation using state-of-the-art parametric models. 

In particular, we use the two data sets and impose either a log-linear or a flexible translog parametric 

form to the cost function. We find that estimates of the marginal cost using the parametric methods are 

worse approximations of the values of the true marginal cost compared to the nonparametric method. 

For the panel data set where different firms have different production technologies, the bias is so large 

that estimates of marginal cost might lead to completely invalid inferences in a wide array of 

applications related to industrial-organization theory, competition policy, applied microeconomic 

projects, and management science studies. 

Empirical studies of marginal cost go back at least to Rosse (1967). In virtually all of these 

studies, researchers carry out the estimation of marginal cost by using parametric econometric methods 

as well as the assumption that the production technology is the same among firms in the same industry 

or between different groups of firms. Therefore, based on our findings from the empirical tests, the 

results of these studies might be considerably biased. The realization of this problem, among other 

issues, leads some researchers to avoid estimating cost equations and to rely on alternative empirical 

techniques to infer firm behavior and industry conduct (e.g., by using demand equations, as in Nevo, 

2001). Other important contributions utilize data from the few industries where researchers can 

observe the true marginal cost. For example, Wolfram (1999), Borenstein et al. (2002), and Fabrizio et 

al. (2007) use such data from the electricity industry and Genesove and Mullin (1998) from the sugar 

industry.  
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A few relatively recent studies use smooth coefficient models to estimate cost or production 

functions, but these studies have different objectives from ours and between themselves. Kumbhakar et 

al. (2007) use a local maximum-likelihood technique to estimate a stochastic production frontier with 

the aim of obtaining efficiency estimates for various firms. Kumbhakar and Tsionas (2008) use a 

similar method to estimate a stochastic cost frontier with a related objective. Hartarska et al. (2010) 

and Asaftei et al. (2008) use a smooth coefficient model to estimate economies of scope in 

microfinance lending and in banking respectively. To the best of our knowledge, our study is the first 

that uses the smooth coefficient model to obtain marginal cost estimates and prove that these estimates 

are very close approximations of the true values of marginal cost.  

The rest of the paper proceeds as follows. In Section 2, we discuss the data set of Borenstein et 

al. (2002) from the California’s electricity market and the panel data set that we generate by using the 

implications of Borenstein et al. (2002) and Kim and Knittel (2006). The two data sets contain both 

true (observed) values of marginal cost and the data required to estimate marginal cost from the cost 

function. In Section 3, we use the two data sets to show that conventional parametric methods fail to 

approximate marginal cost to a high degree. In Section 4, we reestimate marginal cost by using the 

smooth coefficient model and a novel strategy and show that this new method produces much more 

accurate estimates of the true marginal cost for both the actual and the simulated sample. Section 5 

concludes the paper.                  

 

2. Data 

In this section, we provide information on the setup of the empirical tests to identify whether the 

values of the estimated costs approximate the true marginal cost. In particular, we describe two data 

sets. The first is an actual data set that comprises information on aggregate data across firms from 

California’s electricity industry. The second is a simulated panel data set that uses information from 

the actual data set and a general cost function. 
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2.1. The actual data 

The most important requirement for the estimation of the marginal cost of each firm at each point in 

time is to guarantee that the estimated values approximate the true values of marginal cost fairly well. 

The only way to examine whether this approximation holds is to carry out an empirical test that uses 

information from an industry in which the data required to estimate the cost function and derive the 

marginal cost are readily available. Then, we can compare the true values of marginal cost with the 

estimated costs by using basic statistical methods and infer whether the estimates approximate the true 

marginal cost fairly well.  

 However, even finding an industry in which the true marginal cost is observed and that also 

has the available data to estimate the marginal cost is not an easy task. Among the very few 

candidates, the electricity industry is probably the best. A few well-known studies (e.g., Wolfram, 

1999; Borenstein et al., 2002; Kim and Knittel, 2006) with somewhat different objectives among them, 

use the electricity industry precisely because marginal cost can be calculated directly from the data. 

  Using the same data set as Borenstein et al. (2002) from the California electricity market might 

be ideal. These authors use hourly data from electricity generation firms operating in the California 

electricity market over the period of 1998 to 2000. Unfortunately, the data from Borenstein et al. 

(2002) only provide the required information at the aggregate level across all firms in the industry for 

each hour. Thus, their data are time-series data. Because these data provide information on the true 

marginal cost and on the variables needed to estimate it from the cost function, they are still suitable to 

examine the hypothesis that the true marginal cost ingthe estimated one. The data set comprises 21,217 

observations on marginal cost (mc), total cost (tc), industry output (Q), and the input prices of 

production. Most of the firms in the industry essentially use two input prices, namely the average daily 

price of natural gas for California (png) and the price of NOx permits (pno). These are the input prices 

that Kim and Knittel (2006) also use. We report summary statistics for these variables in Panel A of 

Table 1.  

[INSERT TABLE 1] 
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2.2. The simulated panel data 

Notably, most of the research studies that estimate marginal cost from the cost function use panel data 

from firms operating in a particular industry. The difference between studies that use panel data and 

studies that use aggregate data can be considerable if different firms have different production 

technologies and cost structures. This difference implies that imposing parametric structures on the 

cost function can yield larger biases in panel-data studies. To examine the hypothesis that the true 

marginal cost equals the estimated one using panel data, we generate simulated-panel data from the 

underlying information that the actual data provides.  

In particular, we carry out a data generation process for the variables q (output of firm i), png, 

pno, and mc. The dimension of the panel is set to 4,000 hourly observations times five firms that equal 

20,000 observations in total.1

For the data generation process of mc, we also use an alternative to specify the functional 

form. This alternative needs to be the most general data generation process available; because we do 

not want to give any parametric functional form of the cost equation, such as the log-linear or the 

 To generate data for these variables, we use a chi-squared distribution 

and the mean values from the actual data set. We favor the chi-squared distribution over, for example, 

the log-normal because of the shape of the distribution of the actual data and the fact that cost data are 

usually positively skewed. We define q as exogenous to the cost equation, which has important 

implications for the validity of the estimation procedure below. We also generate data on mc in a way 

that tc has a bimodal distribution. We favor this method to pose a more stringent requirement on the 

parametric and nonparametric models to be studied later. The requirement is that the estimates of 

marginal cost must be able to approximate the true marginal cost even though total cost is clustered in 

two modes. This clustering could arise, for example, from an industry where there are two groups of 

firms such as a number of large firms with high costs and a number of small ones with lower costs or 

from an industry where there is seasonality in the cost data with a period of high costs and a period of 

low costs.     

                                                 
1 We also experiment by generating 21,217 observations times five firms, i.e., 106,085 observations in total. 
However, the larger number of observations in this panel increases the computational burden of the semi-
parametric analysis in the software Gauss, which is already high even for a powerful 64-bit pc, without any effect 
on the final results. The main results for the 21,217x5 panel are available on request. 
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translog, an unfavorable advantage over the other. Therefore, we also experiment with mc generated 

from regression estimates that use the actual data and (i) a log-linear specification for the total cost 

equation or (ii) a translog specification of the total cost equation. Not surprisingly, in the first case the 

best fit to the simulated mc are the estimates of mc from the log-linear specification, while in the 

second case the best fit are the estimates of mc from the translog specification. Consequently, these 

tests are not very informative if one wants to examine cases where the underlying structure of the data 

is either more complex or unknown.    

We provide summary statistics for the generated variables in Panel B of Table 1. From this 

data set, we calculate total costs for each available observation from the textbook formula: 

1 0 1 0 1 1 0 0/ ( ) /( ) ( )mc tc q mc tc tc q q tc mc q q tc= ∆ ∆ ⇒ = − − ⇒ = − + .          (1) 

This is a good approximation for tc, because of the high frequency of the data.2

 

          

3. Estimation of marginal cost with existing parametric methods 

Before discussing the nonparametric method to estimate the total cost equation, we use an existing 

parametric method and the implications of the extensive literature on this issue to obtain estimates of 

marginal cost.3

 We closely follow the conventional approaches to the estimation of marginal cost (e.g., 

Koetter et al., 2011) and specify either a log-linear or a flexible translog cost function. The log-linear 

cost function (log of Cobb-Douglas) takes the form of 

 We show that the parametric methods fail to approximate marginal cost to a reasonable 

degree. This failure raises serious doubts about the findings and implications of the literature on 

several microeconomic, industrial-organization and management-science projects. 

0 1 2ln( / ) ln( / ) lntc pno c c png pno c q u= + + + ,    (2) 

and the translog the form of 

                                                 
2 In most industries total cost data are generally available. The problem is that if the frequency of the data is, e.g., 
annual, it cannot be use the textbook formula to infer the actual marginal cost because of changing economic 
conditions (e.g., technology, macroeconomic environment, etc.). 
3 There are literally hundreds of studies with various objectives that estimate the marginal cost of firms. Only 
indicatively, see Hall (1988), Bresnahan (1989), Roeger (1995), Berg and Kim (1998), Konings et al. (2005) and 
Koetter et al. (2011).   
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0 1 2 3

2 2
4 5

ln( / ) ln( / ) ln ln( / )*ln

                      c 1/ 2*(ln( / )) 1/ 2*(ln ) .

tc pno c c png pno c q c png pno q

png pno c q u

= + + + +

+ +
 (3) 

In these specifications, we drop for simplicity the subscripts i and t from the variables. Further, we 

impose homogeneity of degree one on input prices by dividing png and tc by pno. From Equations (2) 

and (3), respectively, marginal cost can be calculated for each observation it as 

5/ *mc tc q c=          (4) 

2 3 5/ [ ln( / ) ln ]mc tc q c c png pno c q= + + .     (5) 

The literature proposes the estimation of the cost equation using either least-squares-based 

methods or maximum likelihood (ML). We first estimate Equations (2) and (3) by using the actual data 

and OLS. As the values of the variables added to these equations vary, this method in fact yields 

observation-specific estimates of mc. Of course, this is a crucial issue underlying the shape of the 

values of the estimated mc. We report coefficient estimates and t-statistics in the first two columns of 

Table 2. All estimated coefficients are statistically significant at the 1% level and bear the expected 

sign. Also, the high values on the adjusted R-squared show that very little is left unexplained.       

[INSERT TABLE 2] 

In these specifications we assume that output is exogenous to the cost equation. Reiss and 

Wolak (2007) have a very nice discussion on these issues and note correctly that the exogeneity of 

output and input prices in cost functions depends on the type of industry. Specifically, endogeneity of 

q arises if, for example, the cost function comes from a production function qi = f(Ai, Li, Ki) that 

includes a component Ai characterizing technology as different among firms. Then, the cost equation 

will also be a function of A and if A is unobserved it renders q endogenous.4

                                                 
4 Reiss and Wolak (2007, pp. 28-30) give a clear example of how this endogeneity emerges for the Cobb-
Douglas technology. The exogeneity of input prices is not an issue within the smooth coefficient model; because 
the nonparametric regression compares only across observations who have the same values for the rest of the 
explanatory variables (here all variables besides q) and differ only in the treatment variable (here q), whereas the 
parametric regression combines all observations in a single “global” regression (Frolich, 2008; Blundell and 
Dias, 2008). Thus, endogeneity of prices does not affect the estimated coefficients on q in the nonparametric 
regressions. This is an additional advantage to the smooth coefficient model. 

 If this is the case, there 

are two choices. The first is to identify reasonable estimates of Ai and add them to the estimated 

equation, and the second is to instrument q. Of course, the results of the empirical tests (i.e., the extent 
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to which the estimated marginal cost approximates the true marginal cost) can solve this potential 

identification issue. Further, the technology of different firms in the electricity industry should not be 

widely different, and instrumental variables regressions are less efficient than OLS if the endogeneity 

bias is small. So, in the last two columns of Table 2 we report the results from the estimations of 

Equations (2) and (3) using a two-stage least squares (2SLS) estimation method and the changes in the 

two input prices as instruments. In this setting, prices are exogenous (see Borenstein et al., 2002) and, 

therefore, their changes qualify as proper instrumental variables.    

Using Equations (4) and (5), we obtain the marginal cost estimates for the four different 

specifications in Table 2. We report summary statistics for these estimates in Table 3 that show the 

mean values from the different specifications are very close to the mean value of the true marginal 

cost. In this respect, the parametric models approximate the true marginal cost fairly well. The 

problems start with the examination of the correlation coefficients between the parametric estimates of 

marginal cost and the true values of marginal cost (see Table 4). The higher correlation is between the 

marginal cost obtained from the estimation of the translog with OLS (mctrols) and the true marginal cost 

(mc) and is equal to 0.902. The rest of the relevant correlation coefficients are below 0.9.   

[INSERT TABLE 3] 

[INSERT TABLE 4] 

Far more importantly, the comparison of the probability density function (pdf) of the estimated 

values of marginal cost with the equivalent of the values of the true marginal cost (shown on Figures 

1–4) divulges important differences. The first two figures show that the estimation of the cost function 

with OLS somewhat overestimates the total cost for a significant number of observations. Further, the 

results from both the log-linear and the translog specifications illustrate that 2SLS produces marginal 

cost estimates that deviate from true marginal cost to a larger degree. Specifically, the correlation 

coefficients between mc and mcll2sls or mctr2sls are lower compared to the equivalent ones from the 

OLS. Most importantly, the pdf of mcll2sls and mctr2sls show a worse fit to the true marginal cost 

compared to the OLS equivalents (see Figures 3 and 4). All these are clear evidence that any use of 

these estimates for research or policy purposes biases inference, even for an industry with very simple 

technology such as the one described by this data set. 
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[INSERT FIGURES 1-4] 

 Subsequently, we use the simulated data that are generated in a way that poses more stringent 

requirements on the parametric models. In Table 5, we report the results from applying OLS to the log-

linear and the translog specifications. Both the coefficients on the price and the quantity variables 

added to the log-linear specification and the “actual” effect of these variables in the translog 

specification (when taking partial effects) are positive and statistically significant at the 1% level. We 

proceed by estimating mc from each specification, given Equations (4) and (5). The mean values of the 

estimated marginal cost, reported in Table 6, are quite higher than the mean value of the actual 

marginal cost (reported in Panel B of Table 1). This shows that, on average, both parametric 

specifications overestimate marginal cost in the sample. More importantly, the correlation coefficient 

between the estimates of marginal cost obtained from the log-lineal specification (mcllols) and the 

actual values of marginal cost is nearly zero (see Table 7). The equivalent correlation coefficient 

involving the estimates from the translog is better, but still as low as 0.342.   

[INSERT TABLE 5] 

[INSERT TABLE 6] 

[INSERT TABLE 7] 

 The reason behind these findings is the fact that the pdf of tc is bimodal because of the way we 

generated the data. In Figure 5, we present the pdf of mcllols versus the pdf of the actual mc. Even 

though the pdf of tc is bimodal, the pdf of the true mc = Δtc/Δq is unimodal. In contrast, the pdf of 

mclolls is bimodal that is imposed by the appearance of tc in Equation (4) and no other terms that 

improve the flexibility of the estimates. Therefore, the estimates of marginal cost from the log-linear 

specification can be severely biased if the structure of the cost data is unfavorable. As Figure 6 shows, 

the flexibility of the estimates is significantly improved when using the translog. Yet, the fit of the 

estimates to the actual mc is still far from optimal, with the estimates of mc displaying a much higher 

standard deviation (see also relevant values in Tables 1 and 6).  

[INSERT FIGURE 5] 

[INSERT FIGURE 6] 
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We carry out extensive sensitivity analyses on these findings by (i) estimating Equations (2) 

and (3) with a ML method, (ii) using other functional forms like the generalized Leontief, and (iii) 

removing the outliers of marginal cost. The results from these sensitivity analyses do not improve on 

the results already presented. The main component driving the findings is the presence of the actual 

variables in Equations (4) and (5), which are imposed by the parametric assumptions. Indeed, one can 

experiment with other variants of parametric models and perhaps find a specification that yields 

estimates that better approximate the true values of marginal cost for the present sample. However, in 

the vast majority of the industries, the researcher or the practitioner does not know the true marginal 

cost to compare her estimates with it. This is why she proceeds with the estimation. Here we provide a 

general method that approximates the true marginal cost quite well, without relying on specific 

assumptions on the functional form, the specification of the marginal cost and the type of the industry.  

 

4. Estimation of marginal cost with a nonparametric method 

This section presents a new method for the estimation of marginal cost at each point (observation) in 

the data. We contend that the method is general enough to be applied to any industry with a sufficient 

number of observations in which the true marginal cost is not observed. The reason for this is that the 

method does not rely on any specific parametric assumptions about the type of technology used in the 

industry or by different firms within the industry and the extent of the market. The only requirements 

are: (i) the econometric methodology is robust to a reasonable degree and (ii) the variables employed 

do not have measurement error. 

 The new method relies on the estimation of a total cost function by using the well established 

semi-parametric or nonparametric smooth coefficient model. Given the theoretical foundation of this 

class of models, the choice of the functional form should not play any role in the values of the 

estimated coefficients and, thus, the most basic specification possible can be used. Therefore, we rely 

on the estimation of a general linear cost function in the form of 

  0 1 2 3it it it it ittc a a png a pno a q e= + + + + .     (6) 
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For this cost equation a4 is equal to the marginal cost. Note that the smooth coefficient model is a 

varying-coefficient model because the model allows as many estimates for a4 as there are observations 

in the data. Thus, we obtain direct estimates of the marginal cost from a4 and compare them with the 

true values of marginal cost.  

 

4.1. The smooth coefficient model 

We utilize a semi-parametric smooth coefficient model according to Fan (1992) and Mamuneas et al. 

(2006) that follows the local polynomial regression of Stone (1977). The analysis in our method 

closely follows Mamuneas et al. (2006) who investigate the impact of human capital on economic 

growth. For more information on this approach refer to, for example, Hoover et al. 1998, Fan and 

Zhang (1999), Cai et al. (2000), and Li et al. (2002).  

 Our initial assumption is that the data are {Yi, Wi}, i = 1,…, n, where Y is the response variable 

that equals tc and W is the matrix of the independent variables that comprises png, pno, and q. We 

suppress the subscript t that reflects hours. Also, we have Wi = {Xi, Vi}, where X comprises the input 

prices png and pno, while V the terms on q. We can now rewrite Equation (6) in econometric form as 

1 2( | ) ( )i i i i i i i iY E Y W e X V Z eβ β= + = + + .     (7) 

In Equation (7), β2 is a function of one or more variables with dimension k added to the vector Z, 

which is an important element of the analysis and will be discussed below. The presence of a linear 

part in Equation (7) is in line with the idea of the semi-parametric model as opposed to a fully 

nonparametric model (e.g., Zhang et al., 2002). The coefficients of this part are estimated in a first step 

as averages of the polynomial fitting by using an initial bandwidth chosen by cross-validation (Hoover 

et al., 1998). In the second step we use these average estimates to redefine the dependent variable as  

* *
2 ( )

i i i
Y V z eβ= + ,        (8) 

where the stars denote the redefined dependent variable and error term.  
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 The coefficient β2(z) that is evaluated at a z point of Z is a smooth but unknown function of z.5

1

1 2 1 *
2

1 1

1

ˆ ( ) ( ) ( )

        [ ( )] ( )

n n
j jk k

j j j

j j

n n

z z z z
z n V K n V Y K

B z C z

β λ λ
λ λ

−

− −

= =

−

 −   −    
=       

      
=

∑ ∑

 

Here, we estimate β2(z) using a local least squares approach of the form 

  (9) 

where 1 2

1

( ) ( )
n

jk

n j

j

z z
B z n V Kλ

λ
−

=

− 
=  

 
∑ , 1 *

1

( ) )
n

jk

n j j

j

z z
C z n V Y Kλ

λ
−

=

− 
=  

 
∑ . 

In Equation (9), K(z, λ) is a kernel function and λ is the smoothing parameter for sample size n.  

 The reasoning behind the local least squares estimator in Equation (9) is as follows. If we 

assume that z is a scalar and K is a uniform kernel, then Equation (9) can be written as 

1

2 *
2

| | | |

ˆ ( )
j j

j j j

z z z z

z V V Y
λ λ

β
−

− ≤ − ≤

   
=    
      
∑ ∑ .                (10) 

In Equation (10), 2
ˆ ( )zβ is a least squares estimator obtained by regressing *

j
Y on 

j
V , using the 

observations of (
j

V , *
j

Y ) for which the corresponding zj is close to z, that is, | |
j

z z λ− ≤ . Therefore, 

to estimate 2
ˆ ( )zβ  we only use observations within this “sliding window”. Note that no assumptions 

are made about this estimator globally, but locally, i.e. within the sliding window, we assume that 

2
ˆ ( )zβ  can be well-approximated. Also, because 2

ˆ ( )zβ  is a smooth function of z, 0λ →  is small 

when | |jz z−  is small. The condition that k
nλ →∞  is large ensures that we have sufficient 

observations within the interval | |
j

z z λ− ≤  when 2 ( )
j

zβ  is close to 2 ( )zβ . Therefore, under the 

conditions that 0λ →  and k
nλ →∞ , the local least squares regression of *

j
Y on 

j
V  provides a 

consistent estimate of 2 ( )zβ . This is why the estimation method is usually referred to as a local 

regression. 

  A critical issue in the estimation process is the choice of the variable(s) to comprise Z. The 

best candidates are variables that are highly correlated with β2 but that also allow variation for β2 

                                                 
5 Mamuneas et al. (2006) discuss in detail how this function can take specific parametric formulations (such as 
linear) that can be tested against the general unknown specification. 
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across firms and time. In a cost function, the natural candidates to use are the input prices as Z. The 

advantage of this choice is that input prices most certainly affect β2 to a large extent. This has been 

shown many times when researchers employ a translog specification, which includes multiplicative 

terms of output with input prices, to estimate the cost function parametrically. In our sample, 

specification (2) of Table 2 provides evidence that this is indeed the case. Thus, we primarily use the 

linear combination of png and pno as Z, but we also experiment with a linear combination of both 

input prices and find no significant changes in the results.       

Estimation of Equation (6) using the aforementioned technique presents some important 

interrelated advantages besides that of obtaining observation-specific estimates of marginal cost 

through localization. By definition, no assumption regarding the functional form of the underlying 

production relation is needed, and researchers commonly have difficulty in being certain that they are 

choosing the “correct” functional form. This difficulty implies that not all firms necessarily have the 

same production function and, therefore, the observation-specific estimates of marginal cost are free of 

such misspecification bias. In other words, estimates vary according to the information derived from 

the data, which represents a closer approximation to reality. This flexibility allows the researcher to 

use large international samples without being concerned that certain industries in different countries or 

firms within one industry face different technologies. Further, economic hypotheses are not rejected 

because researchers choose an “improper” functional form. For these reasons, recent literature has 

used similar nonparametric techniques in a variety of economic problems, including those involving 

the estimation of cost functions (see, e.g., Kumbhakar et al. 2007).  

Related to this discussion of the smooth coefficient model and the estimation procedure are 

three critical issues. First, semiparametric and nonparametric techniques have to be applied to large 

data sets to avoid the so-called “curse of dimensionality.” If observations within the interval 

| |
jz z λ− ≤  where 2 ( )jzβ  is close to 2 ( )zβ are insufficient, then results are likely to be biased. 

Fortunately, this is not an issue for most micro-level studies like the present one, where datasets are 

quite large. Second, any local regression might be highly sensitive to outliers and, therefore, a 

researcher should be cautious when appropriately excluding extreme values from the data set. We 
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tackle this issue by means of examining the robustness of our results for a trimmed sample without 

outliers.   

Third, the majority of the literature on the estimation of cost functions uses either least squares 

or ML methods. Least squares methods are consistent under the assumption that all right-hand side 

variables are exogenous. The ML method is useful when the researcher needs to estimate some model 

of productive or technical efficiency (see Kumbhakar and Lovell, 2000), but still relies on the same 

exogeneity assumption. As discussed in Section 2, the output variable q can be endogenous in the cost 

equation even though the majority of the literature on the estimation of cost functions disregards this 

element. Also, in Section 2, we established that in this data set the OLS-based methods are optimal. 

         

4.2. Empirical findings 

In this section, we report and analyze the estimation results from Equation (6) of the smooth 

coefficient model and compare these results with the true marginal cost that the analysis in Section 2 

provides. We demonstrate that the two are almost equal, which shows that the new method provides 

improved estimates of marginal cost compared to the equivalent ones from the parametric models.  

We start by applying the smooth coefficient model and local regression to the actual data. In 

Panel A of Table 8, we report summary statistics for the coefficient estimates of png, pno, and q. The 

average of the estimated coefficients for q, that is, the marginal cost (denoted as mcscm), is 35.10 that is 

very close to the average of the true marginal cost (34.45). Similarly, the correlation coefficient 

between mcscm and the true mc, reported in the last row of Panel A, is as high as 0.974. Further, in 

Figure 7, we graph the pdf of mcscm against that of the true mc as we did for the parametric models 

earlier. The figure shows a much better fit than before with the estimated marginal cost mapping the 

true marginal cost almost perfectly. This is first-hand evidence that the proposed method provides 

superior estimates of the marginal cost at each point in the data compared to the estimates from the 

parametric models. 

[INSERT TABLE 8] 

[INSERT FIGURE 7] 
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To guarantee that the smooth coefficient model can produce improved estimates of marginal 

cost even if we impose more stringent structure on the cost data, we rerun the method with the 

simulated panel data set. We report averages of the coefficient estimates in Panel B of Table 8. Again, 

the mean of the estimates on mcscm is very close to the mean of the true mc from the simulated panel 

(34.7 versus 34.4). Most importantly, the correlation coefficient between the two is as high as 95%, 

which is a great improvement compared to the equivalent one from the translog equation of 34%. This 

improvement shows that if the marginal cost estimates are used to, for example, calculate price-cost 

margins, then the accuracy of the margins will improve considerably if the marginal cost is estimated 

through the nonparametric method. Further, we compare the pdf of mcscm obtained from the simulated 

data set to the true mc in Figure 8. Again, even though not perfect in this case, the mapping of the 

values of mcscm against those of the true mc improves significantly compared to Figure 6.  

[INSERT FIGURE 8] 

We conduct a number of sensitivity analyses on the results of this section. In particular, (i) we 

use only png as Z, instead of the linear combination of both input prices, (ii) we obtain estimates on mc 

by trimming 1% of outliers from both edges of the distribution of mc, and (iii) we include fixed effects 

and time effects among the regressors. The results, not reported here but available on request, are not 

significantly different from those reported in Table 8 and shown on Figures 7 and 8. 

As a final exercise, we estimate separately the impact of all the different estimates of marginal 

cost obtained with parametric or nonparametric methods on the true marginal cost to acquire the R-

squared statistic of the regression. We report the results for the five regressions in Table 9. Evidently, 

the coefficients on the marginal cost estimates from the smooth coefficient model (reported in columns 

7 and 8) are close to unity, while the values of the R-squared statistics are the highest ones among 

those that Table 9 reports. This test again indicates the superiority of our nonparametric method to 

estimate marginal cost.     

[INSERT TABLE 9] 

Our results show that the proposed method for the estimation of marginal cost represents a 

great improvement over the current estimation methods. The correlation coefficients in Table 8 are so 

high that inference based on the new estimates can be carried out with confidence. For example, if one 
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has information on prices of products and needs marginal cost estimates to calculate price-cost 

margins, then the estimates from the new method will approximate the true price-cost margins in a 

much better way than the estimates from the conventional methods. Many other examples can be 

provided from the economics and business literature where estimates of marginal cost are required for 

research and policy reasons. Further, the very good fit of the estimated values of mc to the true values 

show that in the actual data set the endogeneity of q is not much of an issue and confirms that least-

squares based methods are suitable for the analysis of this data set.6

 

  

5. Conclusions 

Research and policy have long been built on marginal cost estimates obtained from empirical models 

that impose strong parametric assumptions on cost functions. The objective of this paper is to evaluate 

these methods and, most importantly, to propose a better alternative. We first use actual data for 

marginal cost and for variables required to estimate the marginal cost with a cost function. These data 

are from the well established empirical industrial-organization literature that analyzes the electricity 

market, which is a unique case for observing marginal cost directly. Using information from this data 

set, we also generate a panel data set from a suitable simulation process. Subsequently, we use both 

data sets to estimate the cost equation with (i) conventional parametric methods and (ii) with a new 

method that proposes the estimation of the cost function with nonparametric techniques.  

We first show that conventional methods provide inaccurate estimates of marginal cost when 

applied to both the actual and the simulated data sets. The bias can be quite large and invalidate 

economic inference to a considerable extent. Next, we estimate the cost equation using the 

nonparametric smooth coefficient model. This framework has a number of appealing features, the most 

important one being that the framework allows us to obtain coefficient estimates of marginal cost 

equal to the number of observations without imposing a specific functional form on the cost equation. 

We show that the new method produces estimates of marginal cost that approximate the true marginal 

cost very closely. In particular, (i) the correlation coefficient between the true and the estimated 

marginal cost is equal to or higher than 95% in all alternative specifications that we estimate, (ii) the 

                                                 
6 This is also the case for the simulated data set in which we define q as exogenous.  
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probability density function of the estimated marginal cost maps very closely the one of the true 

marginal cost and (iii) the R-squared of the regression of true marginal cost on the estimated one gives 

a very high R-squared statistic. We contend that these findings call for a reconsideration of the 

literature that relies on marginal cost estimates with a basis of parametric assumptions. This is of 

special relevance to the literature involving identification of industry conduct.  

Further work needs to be done on the estimation of cost equations that use smooth coefficient 

models for smaller data sets that are prone to the so-called “curse of dimensionality.” Recent 

econometric literature proposes various methods to overcome this problem. Overcoming this problem 

would also allow re-evaluation of marginal cost measures within New-Keynesian macroeconomic 

models, which is another source of debate and friction within the economics literature, because of the 

requirement to estimate marginal cost for the aggregate economy. Moreover, the framework of this 

paper can be used to reexamine elements of profit-maximization by equating estimates of marginal 

cost and marginal revenue. Finally, the present analysis needs to be augmented by proposing a 

consistent estimator of marginal cost when the firm’s output is endogenous. This augmentation calls 

for an estimation method that uses local instrumental or generalized method-of-moments techniques. 

We leave this as a desideratum for future research.      
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TABLE 1 – SUMMARY STATISTICS OF ACTUAL DATA 

Variable Mean Std. dev. Min. Max. 
 
Panel A. Actual data 

mc 34.45 17.97 18.68 441.11 

png 27.30 9.02 15.65 47.42 

pno 3.87 8.16 0.13 36.59 

q 5,006.8 3,215.3 539.0 15,632.5 

tc 181,056.7 179,676.7 12,914.9 1,067,486.0 
 
Panel B. Simulated panel data 

mc 34.40 4.90 20.28 61.23 

png 27.24 7.40 6.42 65.17 

pno 3.85 2.78 0.01 32.93 

q 5,007.1 99.8 4,599.5 5,390.3 

tc 218,136.7 36,870.9 143,711.3 328,261.3 
Notes: The table reports summary statistics for the actual data 
(Panel A) and the simulated data (Panel B). The mc is the true 
marginal cost, png is the average daily price of natural gas for 
California, pno is the price of NOx permits, and q is the 
quantity of output produced and tc is the total cost. The actual 
data are hourly time series (number of observations is 21,217). 
The simulated panel data include information for 4,000 time 
series over 5 firms (20,000 observations). 
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TABLE 2 – ESTIMATION OF PARAMETRIC MODELS USING ACTUAL 

DATA 

 (1) (2) (3) (4) 

Functional form: log-linear translog log-linear translog 

Estimation method: OLS OLS 2SLS 2SLS 

ln(png/pno) 1.016 0.896 1.009 -0.111 

 (926.31) (51.11) (892.36) (-2.57) 

lnq 1.105 0.538 1.069 -0.797 

 (547.17) (13.55) (448.99) (-10.87) 

½*[ln(png/pno)]2  0.084  0.130 

  (52.19)  (52.21) 

½*(lnq)2  0.071  0.188 

  (15.37)  (24.34) 

ln(png/pno)*lnq  -0.013  0.089 

  (-7.39)  (20.58) 

Constant -0.788 1.669 -0.459 8.996 

 (-42.82) (9.61) (-21.30) (25.17) 

Observations 21,217 21,217 21,217 21,217 

Adj. R-squared 0.977 0.981 0.977 0.978 
Notes: The table reports the results (coefficients and t-statistics) from the 
estimation of Equations (2) and (3) using th,e actual data from Borenstein 
et al. (2002). All coefficient estimates are statistically significant at the 1% 
level. The dependent variable is the natural logarithm of total cost divided 
by the price of NOx permits, i.e. ln(tc/pno). The png is the average daily 
price of natural gas for California, and q is the quantity of output produced 
at each point in time.  
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TABLE 3 – SUMMARY STATISTICS OF ESTIMATES OF 

MARGINAL COST FROM PARAMETRIC MODELS USING 
ACTUAL DATA 

 Mean Std. dev. Min. Max. 

mcllols 34.71 12.78 20.88 81.17 

mctrols 34.68 14.60 18.25 88.59 

mcll2sls 35.27 12.99 21.22 82.48 

mctr2sls 32.82 11.70 14.14 80.18 
Notes: The table reports summary statistics for the estimates of 
marginal cost obtained from the four alternative parametric 
models of Table 2. The mcllols is from the estimation of the log-
linear specification with OLS, mctrolls is from the estimation of 
the translog specification with OLS, mcll2sls is from the 
estimation of the log-linear specification with a two-stage least 
squares, and mctr2sls is from the estimation of a translog 
specification with a two-stage least squares.     
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TABLE 4 – CORRELATIONS BETWEEN THE VALUES OF THE TRUE 
MARGINAL COST AND THE ESTIMATED MARGINAL COST FROM 

PARAMETRIC MODELS AND ACTUAL DATA 

 mc mcllols mctrols mcll2sls mctr2sls 

mc 1.000     

mcllols 0.898 1.000    

mctrols 0.902 0.997 1.000   

mcll2sls 0.898 1.000 0.997 1.000  

mctr2sls 0.879 0.936 0.954 0.936 1.000 
Notes: The table reports pairwise correlation coefficients between 
the true values of marginal cost (mc) and the estimates of marginal 
cost obtained from the four alternative specifications in Table 2. The 
mcllols is from the estimation of the log-linear specification with 
OLS, mctrolls is from the estimation of the translog specification with 
OLS, mcll2sls is from the estimation of the log-linear specification 
with two-stage least squares, and mctr2sls is from the estimation of a 
translog specification with a two-stage least squares. 
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TABLE 5 – ESTIMATION OF PARAMETRIC 

MODELS USING SIMULATED DATA 

 (1) (2) 

Functional form: log-linear translog 

Estimation method: OLS OLS 

ln(png/pno) 0.898*** -2.133** 

 (371.11) (-2.07) 

lnq 0.941*** 41.048 

 (8.99) (0.65) 

½*[ln(png/pno)]2  0.074*** 

  (21.60) 

½*(lnq)2  -4.795 

  (-0.65) 

ln(png/pno)*lnq  0.334*** 

  (2.77) 

Constant 1.219 -166.26 

 (1.37) (-0.62) 

Observations 20,000 20,000 

Adj. R-squared 0.862 0.865 
Notes: The table reports the results 
(coefficients and t-statistics) from the 
estimation of Equations (2) and (3) using the 
simulated data. The dependent variable is the 
natural logarithm of total co,st divided by the 
price of Nox permits, i.e. ln(tc/pno).The  png is 
the average daily price of natural gas for 
California, and q is the quantity of output 
produced at each point in time. The *** and ** 
denote statistical significance at the 1 and 5% 
levels respectively.  
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TABLE 6 – SUMMARY STATISTICS OF ESTIMATES OF 

MARGINAL COST FROM PARAMETRIC MODELS USING 
SIMULATED DATA 

 Mean Std. dev. Min. Max. 

mcllols 41.70 7.02 28.53 62.33 

mctrols 42.37 14.12 6.64 139.81 
Notes: The table reports summary statistics for the estimates of 
marginal cost obtained from the two alternative parametric 
models of Table 5. The mcllols is from the estimation of the log-
linear specification with OLS, and mctrolls is from the estimation 
of the translog specification with OLS.     
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TABLE 7 – CORRELATIONS BETWEEN 
THE VALUES OF THE TRUE MARGINAL 
COST AND THE ESTIMATED MARGINAL 
COST FROM PARAMETRIC MODELS AND 

SIMULATED DATA 

 mc mcllols mctrols 

mc 1.000   

mcllols -0.005 1.000  

mctrols 0.342 0.105 1.000 
Notes: The table reports pairwise 
correlation coefficients between the true 
values of marginal cost (mc) and the 
estimates of marginal cost obtained from 
the two alternative specifications in Table 5. 
The mcllols is from the estimation of the log-
linear specification with OLS, and mctrolls is 
from the estimation of the translog 
specification with OLS. 



 29 

 
TABLE 8 – SUMMARY STATISTICS OF THE ESTIMATED 

COEFFICIENTS FROM THE SMOOTH COEFFICIENT MODEL  

Panel A. Actual data 

 Mean Std. dev. Min. Max. 

png 27.30 9.02 15.65 47.42 

pno 11.70 0.90 9.47 13.88 

q (mcscm) 35.10 5.86 31.24 56.70 

Correlation coefficient between mcscm and mc = 0.974. 
 
Panel B. Simulated data 

 Mean Std. dev. Min. Max. 

png 27.24 7.40 6.42 65.17 

pno 27.24 7.40 6.42 65.17 

q (mcscm) 34.70 2.47 31.17 50.68 

Correlation coefficient between mcscm and mc = 0.950. 
Notes: The table reports summary statistics for the estimates from 
the smooth coefficient model. Panel A shows the results from the 
data set of Borenstein et al. (2002), and Panel B shows the results 
from the simulated data. The png is the average daily price of 
natural gas for California, pno is the price of Nox permits, and q is 
the quantity of output produced at each point in time that also equals 
the marginal cost from the smooth coefficient model (mcscm). 
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TABLE 9 – RELATION BETWEEN THE ESTIMATED AND THE TRUE MARGINAL COST 
 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Estimated mc 1.263 1.115 1.243 1.349 -0.004 0.027 1.036 1.137 
 (297.97) (312.38) (297.97) (267.81) (-0.77) (10.85) (407.69) (432.18) 
Constant -9.372 -4.206 -9.372 -9.808 -34.562 -35.529 -2.151 -11.448 
 (-59.79) (-31.32) (-59.79) (-55.90) (-165.58) (-325.17) (-4.62) (-17.35) 
R-squared 0.807 0.821 0.807 0.772 0.006 0.160 0.969 0.931 
Notes: The table reports coefficient estimates of the regression y=a+bx+u where y is the true marginal 
cost and x is the estimated marginal cost from the eight different specifications presented in Tables 2, 5, 
and 8. Specifications (1) to (4) use the marginal cost values obtained from the four equations presented 
in Table 2. Specifications (5) and (6) use the marginal cost values obtained from the two equations 
presented in Table 5. Specifications (7) and (8) use the marginal cost values obtained from the two 
equations presented in Panels A and B of Table 8. 
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FIGURE 1. MARGINAL COST OBTAINED FROM THE LOG-LINEAR SPECIFICATION AND OLS VS. 

TRUE MARGINAL COST (ACTUAL DATA) 
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FIGURE 2. MARGINAL COST OBTAINED FROM THE TRANLOG SPECIFICATION AND OLS VS. TRUE 

MARGINAL COST (ACTUAL DATA) 
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FIGURE 3. MARGINAL COST OBTAINED FROM A LOG-LINEAR SPECIFICATION AND 2SLS VS. TRUE 

MARGINAL COST (ACTUAL DATA) 
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FIGURE 4. MARGINAL COST OBTAINED FROM A TRANSLOG SPECIFICATION AND 2SLS VS. TRUE 

MARGINAL COST (ACTUAL DATA) 
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FIGURE 5. MARGINAL COST OBTAINED FROM THE LOG-LINEAR SPECIFICATION AND OLS VS. 

TRUE MARGINAL COST (SIMULATED DATA)  
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FIGURE 6. MARGINAL COST OBTAINED FROM THE TRANSLOG SPECIFICATION AND OLS VS. TRUE 

MARGINAL COST (SIMULATED DATA) 
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FIGURE 7. MARGINAL COST OBTAINED FROM THE SMOOTH COEFFICIENT MODEL VS. TRUE 

MARGINAL COST (ACTUAL DATA)  
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FIGURE 8. MARGINAL COST OBTAINED FROM THE SMOOTH COEFFICIENT MODEL VS. TRUE 

MARGINAL COST (SIMULATED DATA) 

 


