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Abstract

The paper studies the impact of income inequality on the monetary policy and the feedback, in

a partial equilibrium framework. Wealth differences of depositors play crucial role in determining

aggregate deposits, available for loans. Non-homothetic structure of depositors’ return function

makes distribution of deposits relevant for the aggregate. Unequal distribution of resources leads

to a lower (deposit) price elasticity for the rich relative to the poor, and this results in higher

markups and lower level of collected total deposits. Interaction between monetary policy and income

inequality leads the following results: (i) higher inequality reduces the power of monetary policy

in terms of depositors’ responsiveness to the policy changes and (ii) expansionary (contractionary)

monetary policy increases (decreases) savings differences.

The model provides a new source of financial friction, relevant for economies with high income

inequality.
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Introduction

The issue of income inequality is at the heart of macroeconomics, and its implications

in financial markets are worth exploring. In this paper I provide a theoretical model which

demonstrates how depositors’ income inequality may determine economic outcomes in a

partial equilibrium context. A sufficiently high income inequality among depositors leads

to optimal policy adjustments from the banks’ side, and this crucially changes the nature

of equilibrium relations. I also discuss the effectiveness of the monetary policy in its very

simple design, when inequality is high enough to be relevant.

In the standard monetary economics literature, thanks to homothetic preferences and

technologies, income differences do not have any impact on macroeconomic outcomes, and

their decisions can be viewed as if they have been generated by a representative household.

The literature extensively uses constant elasticity of substitution form of preferences (Dixit

and Stiglitz (1977)) which exclude any impact of heterogeneity on the aggregated average

outcome, as these forms yield linear Engel curves and preserve constant ratio of goods for

both rich and poor. Consequently, the structure of demand functions are identical and the

aggregated demand does not hinge on the distribution of endowments. Despite the consistent

use of homothetic preferences, which are very handy for technical manipulations, empirical

evidence rejects this assumption (Deaton and Muellbauer (1980)), asserting that income

heterogeneity does have an impact on consumption choices.

In order to analyze the impact of income heterogeneity among depositors on the financial

market and the monetary policy, I use the model framework by Foellmi and Zweimuller (2011)

(henceforth FZ for these subsequent papers), in which the authors provide a channel by which

income inequality affects the industry structure and unemployment. They solve a general

equilibrium model to study the interaction between market power and income inequality, and

non-homothetic structure of the return function1 and increasing price elasticity are crucial

1FZ have non-homothetic preferences, while in our model we have depositors’ of non-homothetic return
function.
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for the obtained results.

Relevance of inequality for macroeconomic outcomes stems from the fact that agents,

heterogeneous in wealth, have different demand elasticities. High (deposit) price elasticity

for the poor relative to the rich, together with non-homothetic return function, implies

different structures of demand. Given the type of an agent, rich or poor, price elasticity is

increasing due to a linear demand, but the elasticity for the poor is high because of smaller

slope. Finite marginal return at zero implies that poor agents will find some deposits not

enough attractive to buy (the repayment rate will be too low) and they will be excluded from

these deposit markets, implying that there will be banks that will issue deposits only for

the rich. The underlying mechanics of exclusion is directly grabbed from FZ and adjusted

for deposit markets. That I have partial equilibrium model, makes my solution significantly

different from that of FZ’s model2, and the results are extended for policy implications.

In the model banks’ activities essentially involve three financial markets, deposit, loan

and funds borrowing from the central bank. It turns out that the optimal policy rules in

deposit and loan markets can be derived in a separate manner and the link between these

rules is determined by the central bank’s policy rate, as a linear combination of the repo and

the reserve requirement rates. There is deposit production and hence a price for deposit,

and the bank optimally chooses the quantity of deposits that are eventually transformed to

loans.

The devise I put forward is a simple analogy between love for variety of consumers and

the diversification motive of investors. Modeling desirability for variety of goods goes back

to Hoteling (1929), and much later to Lancaster (1975). A relatively recent approach by

Dixit and Stiglitz (1977) have been extensively used in DSGE models. Markowitz (1952)

model on optimal portfolio selection, based on diversification motive, on the other hand, is the

baseline model for the capital asset pricing model (CAPM) literature. That is, diversification

of choices lies both at the heart of economics and finance theories. In my model, I discuss

2The arguments, I bring to prove the propositions, also appeared in FZ, are mostly different from those
in FZ.
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symmetric banks, and, importantly, for such equilbiria it is straightforward to check that

the optimal (deposit) portfolio allocation coincides with the mean-variance structure implied

allocation. I model deposit contracts, in which the price of the contract is implicitly payed by

depositors3. In order to explicitly account for the fact that investors have different, subjective

perceptions of these costs due to savings (wealth) differences, I deviate from the standard

portfolio selection approach.

The main findings in the model are as follows. For sufficient level of inequality exclusion

emerges. Under the exclusion regime there are banks that sells deposits only to the rich

with lower demand elasticity and the result is lower level of collected deposits and higher

markups for banks. Higher inequality leads to more exclusion and less total deposits, as

banks exercise their monopoly power more intensively. Thus we replicate the results by

FZ, for financial markets in the partial equilibrium context. These results hinge on non-

homothetic structure of the objective function, finite marginal return at zero and increasing

(deposit) price elasticity. These properties come naturally, when modeling agents’ deposit

return function.

I also discuss the influence of inequality on monetary policy and the converse - how real

savings inequality are affected by the monetary policy. This type of two sided exercise is

possible, since both nominal wealth distribution and the policy rate (repo) are exogenous

to the model. First, the higher is inequality, the lower is the power of monetary policy.

Contractionary monetary policy increases deposit rate for both exclusive and mass deposits,

which increases total deposits. Higher inequality will distort a part of growth in total de-

posits, since higher exclusion that occurs implies that less bank will produce for the mass,

who buy more deposits from a given bank and have higher elasticity. In case of expansion-

ary monetary policy, substitution of private deposits with the Central Bank’s funds will be

less effective, since we will have less exclusion and more banks will sell to the mass. Thus,

inequality attenuates the effectiveness of monetary policy, since in average depositors are

3The rate of deposit repayment is net of this cost.

4



less responsive to the latter. Contractionary monetary policy in its turn mitigate savings

differences in terms of real assets. As the poor is more elastic to a price change, she will buy

more deposits with lower price (higher deposit rate) than the rich, and the resulting savings

differences will decrease net of interest payments. As deposit rate is lower for the mass, inter-

est payments will further equalize agents’ asset holdings. The converse is observed when the

Central bank decreases the policy rate (repo rate minus reserve requirement rate) - income

inequality deepens and the poor suffers from expansionary policy, as far as it concerns her

savings invested in deposits.

The paper has the following structure. I provide the literature review in Section 1.

Section 2 describes the model. Two types of equilibria, symmetric versus asymmetric, are

characterized in Section 3. Monetary policy implications are stated in Section 4. I discuss the

significance of the model and directions of possible extensions in Section 5. Then concluding

remarks follow. Most of the proofs are relegated to Appendix.

1 Review of literature

The interaction of income inequality and financial markets is by no means a delicate

issue. The streamline of monetary economics literature neglects any impact of consumer

heterogeneity on aggregated variables like consumption and investments, and hence on the

monetary policy rule, instead motivating the non-neutrality of financial sector assuming

price stickiness and monopolistic competition in the supply side. The New Keynesian DSGE

macro models, based on price staggering of Calvo (1983) type and monopolistic competition

due to Dixit and Stiglitz (1977), have become a standard framework for monetary analysis.

Relatively early development of this literature is effectively analyzed in Clarida et al. (1999).

Another paper by the same authors (Clarida et al. (2001)) and Gali and Monacelli (2005)

provide open economy extensions for these models. Comprehensive treatments of this lit-

erature, addressing both theory and policy issues, are provided by Walsh (2010). Another
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strand of the literature starts from the seminal work by Bernanke et al. (1998), incorporating

different types of financial imperfections into otherwise standard models. They argue that

due to complex nature of financial contracts, the movements in the real economy are propa-

gated by the financial sector (financial accelerator). The very recent literature incorporates

housing into that model framework (see e.g. Iacoviello (2005) and Andres and Arce (2009))

and, in addition, assume monopolistic competition in deposit and loan markets (Gerali et al.

(2010)). All these models stay within the paradigm of the representative agent, and the

literature, though very numerous, have essentially circumvented the income heterogeneity

problem.

Within the class of non-homothetic preferences economic research distinguishes at least

two types: hierarchic and symmetric preferences. In the case of hierarchic preferences needs

are ordered and if the consumer has additional income, she will first buy a good with higher

priority. In symmetric preferences goods are identical in terms of priority and additional

income will be spent only accounting for relative prices. For both cases some goods may not

be spent if the price will be too high. Hierarchic preferences has been used by e.g. Murphy

et al. (1989), who analyze the impact of inequality on the industry structure. A chapter

by Bertola et al. (2006) is devoted to hierarchic preferences. Symmetric non-homothetic

preferences have been used by FZ, and though there is no ordering of goods according to

priorities, non-homotheticity and finite marginal utility at zero make inequality relevant

for macroeconomic outcomes, independent from goods ordering. In the model I have a

symmetric type of non-homothetic return structure and will discuss its properties in detail,

keeping it parallel with FZ, whenever applicable.

In fact, homothetic structures do not exclude possibility of feedbacks from a policy rule

to income distribution - it only ensures irrelevance of inequality for the aggregate, as a target

variable for policymakers. In what follows, policy implications for inequality remains relevant

regardless of preference types, and still there are only few papers that explore the impact of

monetary policy on inequality and the feedback. Romer and Romer (1999) provide empirical
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findings for effects of monetary policy on income distribution in the short and long run.

They distinguish at least three channels by which expansionary monetary policy positively

influences the well being of the poor in the short run: (i) a temporary increase of average

income reduces poverty4. (ii) the poor are more eager to substitute labor with leisure when

there are more employment opportunities5 and (iii) if the poor are net nominal debtors, they

will benefit from unexpected inflation.These channels, however, create only temporary effect

and monetary policy cannot generate permanent effect. The authors’ conclusion for the long

run is that low inflation and stable aggregate demand ensure more favorable conditions for

the poor.

More recently, Fowler and Wilgus (2008) study two-side interaction between monetary

policy and inequality in a calibrated DSGE model. These authors assume agent heterogeneity

in terms of workers and capitalists, following to Judd (1985) and Krusell (2002). They discuss

different specifications for the monetary policy rule as a function of inequality and replicate

cyclical fluctuations in the U.S. economy. In particular, they find that the lagged Gini

coefficient positively affects the current level of monetary policy. The model is highly stylized

with respect to transfers, which are supposed to capture distributional effects of inflation

absent in the model. They also stress the importance of agent heterogeneity in theoretical

models in the context of ”jobless recovery”6, as dynamic optimal monetary policies take it

into account as a distributional phenomenon that is missing in representative agent models.

The above mentioned papers discuss monetary policy effects on income distribution and

the feedback in a general equilibrium context and derive these effects from primary earnings

in the real sector. That is, the income distribution changes are due to consequences of

monetary policy in the production process, while inequalities may arise from differences

in savings, optimally chosen from intertemporal consumption/investment choice. Saving

4One has to distinguish the concepts poverty and inequality. A typical measure of poverty is the fraction
of population below a poverty line, while a common measure of inequality is Gini coefficient.

5This is adversely affected by transfers that the poor receives in the period of recession, when expansionary
monetary policy takes place.

6See Bernanke (2003).
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differences stem from wealth differences and it comes natural to suppose that the rich will

save more than the poor in absolute values, so that the status ordering will be preserved7.

The aim of this paper is to analyze short run, direct consequences of savings inequality both

on the financial and real sectors of an economy, isolated from factor income inequalities,

amplified/mitigated due to initial inequalities and conducted economic policy. Thus we do

not close the chain and study a partial equilibrium model. The essential aspect of my novelty

is that homothetic structure of depositors’ return function, which makes savings inequality

relevant for outcomes and policy, comes from risk diversification, when depositors invest

their wealth in deposits. There is nonzero probability that a given bank will default and

therefore an agent buys deposits from many banks. When modeling a return function that

accounts for risk diversification, it naturally turns to be non-homothetic and in effect savings

inequalities generate real effects in an economy.

In general, these results have no comparison base with the findings in the literature. For

instance, both Romer and Romer (1999) and Fowler and Wilgus (2008) independently find

that expansionary monetary policy improves the well being of the poor. My finding in this

context is opposite, but not much compatible, since I analyze savings distribution contrary

to these authors, who are concerned with factor income distribution. To my knowledge,

there is no paper discussing interaction channels of monetary policy and savings inequality

in financial markets.

2 The model

2.1 Non-homothetic returns

We have continuum of depositors (deposit consumers), normalized to 1, and each of them

invests her savings in deposits. A continuous range of deposits are provided by banks as

7As our model ”starts” from savings, we need not say anything to what extent savings distribution differs
from income distribution. Savings or deposits distribution is exogenous in the model and we do comparative
statics exercise to study properties.
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differentiated products, that is, the j-th bank sells a deposit of type j, j ∈ [0, N ]. Agents are

concerned with their total return of investments, and they account for nonzero probability

of default, the same for all banks. Despite the same rate of default for banks, agents’

perception of default does not assume any significant default correlation among banks. The

salient feature of the return function is that the repayment per unit of deposit is decreasing

in volume of deposits in a linear fashion. This functional device captures agents’ incentives

to diversify their deposit portfolio. When buying D quantity of deposits from the bank j,

the gross return per unit of deposit will be contracted by the amount 1
2
γDj, and the overall

loss will be 1
2
γD2

j . As we see, if an agent holds an additional unit of deposit from the same

bank, her losses per unit will increase. Again, this is the depositors’ perception and, for

simplicity, these losses are neglected, when repayments are taken place. Thus we assume

that no default occurs ex post, but ex ante there is some probability of default, as a linear

function of deposits.

I follow to the notation of Foellmi and Zweimuller (2011) (FZ) and denote the type of

consumer by θ. Then the θ type of households’ optimal investment problem is

max
{Dj}

∫ N

0

(

ER− γ

2
Dj

)

Djdj

subject to
∫ N

0

PjDjdj ≤ W (θ),

where the index j refers to a bank, Pj is interpreted as a bank specific price for one unit

of deposit, ER is the expected profit from an alternative, (physical) production activity,

and W (θ) is agent specific wealth, to be totally consumed on deposits. Transformation of

attracted financial resources into deposits is a production process and the product (deposit)

has its price, P .

As an alternative technology, I assume that an agent can be involved in entrepreneurial

activity taking risk and making efforts, in order to earn profit from the constant return to
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scale technology. The profit rate R is stochastic and production involves entrepreneurial

effort. Intensives to diversify deposit portfolios comes from agents’ beliefs on nonzero proba-

bility of banks’ default, and this reflects the adverse attitude of agents towards uncertainty.

That is, agents are risk averse. The expected rate of return from investing one unit of deposit

is

ERd = ER−Hd(γ,D)− P

and the ex ante net earnings from entrepreneurship per unit of capital is

ERr = ER−He(σR, K)− E

where Hd(γ,D) and He(σ,D) are the agent’s risk control in deposit and production tech-

nologies. The profit function is Π(K) = RK −EK, with the random variable R, which has

the probability density function fR and the standard deviation σR. The price for deposit

contract is payed to the bank as compensation for the bank’s effort to produce one unit of

deposit. The ex-ante no arbitrage condition implies that Hd(γ,D)+P = He(F,K)+E . As

already noted, all banks fulfill their commitments according to the signed deposit contracts,

we take the ex post value Hd = 0.

In our partial equilibrium framework, in which the overall deposit supplied is fixed,

we implicitly assume that all arbitrage opportunities concerning investment choices in two

technologies, are exhausted. That is, for each agent, with the total capital S = D +K, the

following should hold:

ERr(K) = ERd(D). (1)

Important for our further analysis, we have the same expected profit rate for each agent as

a target rate, ER, from which bank specific costs are subtracted. Whenever there will be

two prices P1 and P2 in the economy, then from Hd(γ,D) − He(F,K) = E − P it follows

that different types of agents will hold different portfolio composition8. In further analysis,

8The no-arbitrage condition (1) implies that whenever S1 = S2 and P1 < P2, we have D2 > D1 and
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in order to save notation, I use R instead of ER, as there will be no room for confusion.

The net return on a deposit is decomposed in two parts: systemic R − γ

2
Dj,

9 and bank

specific, Pj. A deposit consumer is going to pay Pj, against the return R− γ

2
Dj, per deposit

j. The way I put the problem, is a standard consumer optimization problem, in which

consumer’s wealth is crucial in determining individual perception of a unit cost that scales

the market price opposite to the wealth.

Let us denoteQ(D) ≡ (R− γ

2
D)D. We restrict the parameter γ so thatQ′(D) = R−γD >

0 for D > 0. We have Q′′(D) = −γ, Q′(D) = 0 ⇔ D = R/γ and limD→0 Q
′(D) = R. Thus

the return function Q has a saturation point and its marginal value at zero is finite. The last

property is crucial for inequality effects, since there will be deposits with too high prices,

which will not be afforded by the poor. The higher the default parameter γ, the lower the

marginal return and the smaller the saturation. Following to FZ, I write the Lagrangian

directly as a function of the type of an agent. The value of the Lagrangian does not depend

on wealth only, prices matter as well. However, since each bank is of measure zero with

respect to the whole economy, changing one individual price does not change the value of

the Lagrangian multiplier. Then, the agent θ decides on the optimal quantity of deposit

issued by the bank j, following to the first order condition:

R− γDj(θ)− λ(θ)Pj + λj(θ) = 0;λ(θ) > 0, λj(θ) ≥ 0.

We can put the conditions in the following form:











R− γDj(θ) = λ(θ)Pj, if R/λ(θ) > Pj,

Dj(θ) = 0 if R/λ(θ) < Pj.
(2)

That is, if the subjective price of the deposit j is higher than the limiting highest marginal

K1 < K2.
9I refer to the term R− γ

2Dj systemic, since the fundamentals entering the net return, R and γ have no
a bank index.
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return, λ(θ)Pj > R, the agent will not buy the deposit issued by the bank j.

The deposit price elasticity of individual demand curve depends on the wealth and can

be written as

η(θ, j) =
∂Dj(θ)

∂Pj

Pj

Dj(θ)
=

Q′(Dj(θ))

Dj(θ)Q′′(Dj(θ))
=

R− γDj(θ)

γDj(θ)

2.2 Banks

Banks attract financial resources and provide loans. Both products, deposits and loans,

are differentiated, and the extent of differentiation determine monopoly power of banks. We

assume symmetry for banks in loan and deposit markets and solve the model for symmetric

case. The profit function of a bank has the following form (the bank index suppressed):

Π(Rl, P, BCB) = (1− δ)L(Rl)Rl −RrBCB −D(P )Rd − K̄, (3)

subject to

L(Rl) ≤ BCB +D(P ) + K̄, (4)

αL(Rl) ≤ K̄, (5)

BCB ≤ B̄CB. (6)

where Rl is the loan rate, Rd = 1+R+ωres−P determines the (gross) deposit rate, Rr is the

central bank’s refinanicg rate (repo), the factions L(·) and D(·) are loan and deposit demand

functions, respectively and K̄ is the bank owners’ capital, which is fixed. The parameter

δ ∈ (0, 1) determines the share of loans that are not repaid back to the bank (losses), and

ωres ∈ (0, 1) is the reserve requirement rate, set by the central bank for each unit of deposit

produced. The parameter α ∈ (0, 1) is another restriction from the central bank, which

controls loan-deposit ratio from above. Given the fixed level of capital, banks have two

sources of long term fund raising, private savings and the funds offered by the central bank.
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If attracted deposits fall short from allocated loans, L(Rl) −D(P ) > 0, the gap is filled by

the borrowing from the central bank, otherwise the bank lends to the public institution. We

restrict our analysis to the interior solution, so that L∗ ∈ (0, K̄/α), BCB∗ < B̄CB. This

enables to effectively plug the constraint (4) with equality into to the objective function, in

order to get rid off BCB:

Π(Rl, P ) = (1− δ)L(Rl)Rl −Rr(L(Rl)−D(P )− K̄)−D(P )Rd − K̄. (7)

Banks have monopoly power both in deposit and loan markets, which ensures nonzero

markups in these markets and leads to the following condition:

Rd < Rr < Rl

Then it is useful to write the profit function as

Π(Rl, P ) = L(Rl)(Rl −Rr) +D(P )[Rr − (1 +R + ωres − P )] + K̄(Rr − 1).

It is easy to note that the terms in the sum are only linked through the repo rate, and

we can think of two separate activities. First, the bank collects D amount of deposits by

the rate Rd and lend to the central bank by Rr, and second, it borrows L amount from the

central bank by the rate Rl and lends these resources to the private sector by Rl. As a result,

maxRl Π(Rl, P̄ ) reduces to maxRl L(Rl)(Rl −Rr) and maxP Π(R̄l, P ) reduces to

max
P

D(P )[P − {1 +R− (Rr − ωres)}]. (8)

There is an important point on deposit pricing. In fact, despite the separation of two

markets (deposits and loans), such that they are connected only by the policy rule, it is

essential from the social viewpoint how effectively savings are transformed into deposits.
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The model states that 100 dollars generates D < 100 dollars of time deposits, and the

remaining part, (100 − D), is demand deposits. A higher P means that the bank finds

optimal to generate profits immediately from deposit markets, and does not direct the P

dollars to the loan market. Thus demand deposits stop being productive in the sense that

they are not involved in a physical production process. This is possible, as long as the

borrowing technology by the central bank is not binding. The higher the price for time

deposits, the higher the gap between loans and time deposits. If the central bank wants to

ensure the same volume of loans in a real sector, it has to finance this gap. Since we do not

model demand for liquidity, time deposits are treated as reserves, since they are not subject

to early withdrawal and do not assume interest payments. Throughout the paper, I use the

term reserves for demand deposits. Also, time deposits are simply called deposits to save

the space.

What happens with the available reserves W −D(1 + ωres)? The funds provided by the

central bank are long term and they can be directed to the private sector in form of loans. I

also assume existence of a government bonds market, as a short term investment technology

ensuring high liquidity for invested funds. Also, there is an interbank market, where banks

provide resources and borrow for investing in government bonds. Overall, there are two

types of investments technologies, long (loans, central bank funds and deposits) and short

(government bonds and interbank markets). Decision making of the bank i in the interbank

and bonds markets is as follows (the index i suppressed):

max
BIB ,AGB

RGBAGB −RIBBIB, (9)

subject to

AGB ≤ BIB +W −D(1 + ωres), (10)

where BIB and AGB stand for the interbank market funds (borrowed or lent) and government

bonds, respectively, and (RIB, RGB) are their corresponding gross rates. Then, if banks will
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lend or borrow in the interbank market, the rate should be the same as in the of government

bonds, RIB = RGB.10

In fact, banks face to two optimization programs, and the issue is how optimally to

split W between deposits D and reserves W − D(1 + ωres), so that the overall profit from

two programs reaches its maximum. As long as the unconstrained maximum D∗ insures

[P − {1 +R− (Rr − ωres)}] ≥ RGB, the bank carries two stage maximization, first deciding

on the long term asset allocation from (7 - 6) and then plugging optimal D∗ in (9 - 10) to

invest the rest, W −D(1+ωres), in government bonds. Now, suppose there is D̃ < D∗, such

that

P (D̃)− {1 +R− (Rr − ωres)} = RGB. (11)

Then it becomes optimal for the bank to produce only D̃ of deposits out of W and the rest,

W − D̃(1 + ωres), invest in government bonds, since more deposits would be feasible only

by lower price. The following Lemma formulates an important observation on the financial

market structure:

Lemma 1 A sufficiently high rate of government bonds may crowd out deposits that are

transformed into loans. The central bank, in order to keep the level of loans fixed, needs to

fill the gap L−D. Condition (11) may result also, cetirus paribus, due to too high R or too

low monetary policy rate, (Rr − ωres).

Throughout the paper, I refer to the monetary policy rate the repo rate, net of reserve

requirement rate, Rr − ωres. However, I suppress the term ωres, and whenever I have Rr

labeling as repo rate, I mean the net rate of the monetary policy, Rr − ωres. This holds

without loss of generality.

I consider government bonds and interbank markets as short term asset markets, since

economies with inequality are mostly emerging markets, where these financial markets are

10Government bonds and interbank funds are perfect substitutes, and if the interbank market is perfect
and banks take RGB given (no power in the government bonds market), then the vector (BIB

1 , ...BIB
N ) such

that
∫ N

0
BIB

i = 0, is not unique, in particular,(0, ..., 0) is solution. That is, the interbank market has no
essential role.
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underdeveloped and short term liabilities are traded. As long as the interbank market

provides long term funds, then these resources can be directed to the real sector, and there

will be no impact of savings inequality on the economic fundamentals and monetary policy.

In short, both D∗ and W −D∗(1 + ω∗) will be available for long term lending. The model

does not explain the emergence and differences in reserves the banks have due to different

demand they face, instead it motivates the existence of excess (and different) demands for

government bonds that are saturated at the expense of investments in long term assets.

In the remaining part of the paper we discuss the case, when the optimal D∗ is not

binding, P (D∗) − {1 + R − Rr} > RGB. Also, we assume that government bonds and

interbank markets are platforms for only trading short term assets, and long term assets

(loans) are possible to raise from deposits (private sector funds) and central bank provided

funds.

We turn to the problem (7). Optimality conditions for an interior interior solution,

necessary and sufficient, can be written in a Lerner index form. For the loan market we have

Rl −Rr

Rl
=

1

ǫl(Rl)
;

and for the deposit market,

P − (1 +R−Rr)

P
=

1

ǫd(P )
, (12)

where ǫl(R
r) and ǫd(P ) are demand elasticities for loans and deposits, respectively. Thus

the profit markups in the loan and deposit markets are inversely related to corresponding

demand elasticities. Thus the standard result, which is the equilibrium price (the loan rate

for the loan market and the price of unit deposit in the deposit market) and hence the

markup is higher when demand elasticity at that price is lower, holds.

Next we model the loan market. We assume a representative firm that decides on the
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bundle of differentiated loan basket11. Banks are monopolistic competitors in the loan market

with the demand function in the spirit of Dixit and Stiglitz (1977), and it can be shown that

the optimal loan demand function for the bank j can be written as

L(Rl
j) =

(

Rl
j

R̄l

)
1

φ−1

L̄, (13)

where R̄l and L̄ are the average loan rate and volume in the economy, respectively. When

the bank j optimizes the loan volume12 and, the optimal loan rate is set Rl
j = Rr/φ. That

is, though banks offer differentiated products in the loan market, their rates and quantities

turn to be identical. The parameter φ ∈ (0, 1), the same for all banks, measures the extent

of diversity of loans and defines the markup, 1−Rr/Rl = 1−φ. Then, demand functions of

all banks are same,

L =
Ω

NRl
=

Ωφ

NRr
. (14)

Equation (14) determines an optimal quantity of loans, each bank sells to the real sector.

The interesting feature of the loan market is that, without any assumption on the symmetry

among banks, it turns out that they are symmetric in terms of loan rate and quantities.

The result hinges on the separability of optimization in the loan and deposit markets. It is

immediate, that the lower the repo rate, the higher the output. The reverse argument holds

for Ω, another exogenous parameter in the model.

Here is important to identify the sources of borrowed resources. In the above setting, a

lower repo does not tell much about the composition of borrowing. The main object for our

analysis will be deposit market, in which we will explore interaction of banks and (deposit)

11The representative firm solves the following problem:

max
{Lj}

(

∫ N

0

Lφ
j dj

)
1

φ

, subject to

(

∫ N

0

LjRjdj

)

= Ω,

where φ ∈ (0, 1) measures the extent of substitutability between the products of any two banks and Ω is the
firm’s resources that can be directed to buy loans, a function of collateral.

12If banks choose Rl
j , j ∈ [0, N ], to maximize L(Rl

j)(R
l −Rr) subject to the demand function in (13), the

solution is unique and interior, Rl
j = Rr/φ.
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consumers as a function of the policy rate, in line with other fundamentals. Before we impose

restriction on types of consumers - only two types, poor and rich - it is useful to write the

elasticity of deposit demand for the general distribution (for details, see FZ, 2003):

ǫd(Pj) =

∫ θ̄

θ̂(Pj)

Dj(θ)

Dj

η(θ, j)dF (θ).

That is, the elasticity of the deposit j is a weighted average of individual elasticities, and

the weights are Dj(θ)/Dj, where Dj =
∫ θ̄

θ̂(Pj)
Dj(θ)dj, horizontally aggregated demand, and

θ̂(Pj) identifies the first individual with the lowest wealth, who buys the deposit j.

2.3 Two types of agents: poor and rich

I am going to assume two types of agents, the rich and the poor. This restriction on

the wealth distribution simplifies the analysis crucially, but not at the expense of generality.

For those economies, in which the middle class is not dominating among the three, our

assumption seems natural and not really restrictive. I follow to FZ and express the wealth

of the rich as a function of the wealth of the poor, leaving the latter exogenous. Also, I

normalize the average savings to one, so that average savings remains invariant to changes

in inequality. Poor households are indexed by P and their share in population of continuum

1, is β. Respectively, rich households are indexed by R and have share 1− β. Thus we have

a formula for the average income,

βWP + (1− β)WR = 1,

and denoting υ ≡ WP , we endogenize the wealth of the rich,

WR =
1− βυ

1− β
.

After horizontal aggregation of individual demand functions (2), we obtain the market
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(deposit) demand curve for the deposit j:

Dj =























0, if Pj ∈ [R/λR,∞),

(1−β)
θ

(R− λRPj), if Pj ∈ [R/λP , R/λR)

1
θ
[R− ((1− β)λR + βλP )Pj] if Pj ∈ [0, R/λP )

(15)

The market demand curve is piecewise linear, and a bank optimally decides to whom offer

its deposit, either to both rich and poor (the mass), or exclusively to the rich. When there

will be banks that will sell deposits only to the rich, we will have exclusion13. There will

be an endogenous number n ∈ [0, N ], so that the first n banks will issue deposits for the

mass, and the remaining (N − n) banks sell deposits only to the rich. As a result, poor

households will be excluded from consuming (N − n) types of deposits, as their willingness

to buy these deposits will fall short from the market price of these deposits. Banks exercise

their monopoly power more intensively under the exclusion regime, as the prices for [N − n]

deposits will be too high for the poor, and the per bank volume of deposits issued only for

the rich will be smaller relative to deposits issued for the mass.

Before turning to the asymmetric equilibrium, in which exclusion occurs, we study the

symmetric one.

3 Symmetric versus asymmetric equilibrium

3.1 Symmetric equilibrium

Symmetric outcome assumes symmetric deposit quantities and prices in the equilibrium.

This outcome is feasible, since deposits enter the households’ return function symmetrically,

and households, despite their heterogeneity in terms wealth, hold identical portfolios. Sym-

metric equilibrium will hold, if heterogeneity of deposit consumers will not be sufficiently

strong, and banks will not deviate from the symmetric equilibrium strategy and sell only to

13I keep the notation and terminology as close as possible to FZ throughout the paper.
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the rich. Thus if inequality is not that high, banks will not find profitable to issue deposits

exclusively for the rich, as sufficiently high price (lower return), necessary to deviate from

the general strategy, will not be affordable for the rich.

As we have argued, the banks’ profit maximization, essential from the aspect of deposit

market’s interaction, can be reduced to (the bank index suppressed)

max
P

D(P )(P − R̃), subject to (15) (16)

where R̃ ≡ (1 +R−Rr). Solving (16) for the prices, one for all and the other for only rich,

we obtain:

Pj =











1
2

(

R
λR

+ R̃
)

, if only the rich buy,

1
2

(

R
Ω
+ R̃

)

, if all consumers buy;
(17)

where, for compactness, we denote Ω ≡ (1− β)λR + βλP .

If we solve the model for symmetric equilibrium, the price and the quantity are not a

function of inequality parameters, β and υ.14 Thus we have the result by FZ, that is, in

the symmetric equilibrium case, if Q′(D)
Q′′

is affine linear, income distribution does not affect

on the price and hence the markup. The market demand of deposits is unaffected by the

savings distribution and the interaction between inequality and aggregate outcomes is one

sided, only from outcomes to distribution, but not the converse.

We then derive conditions that force banks not to deviate from the general strategy to

sell deposits to all. The symmetric outcome is an equilibrium, if, given that all other banks

sell deposits to the mass (both rich and poor), no bank has an incentive to sell only to the

rich, offering different repayment. This will be the case, if for each bank we have

ΠE < ΠM ⇐⇒ De(P e)(P e − R̃) < DM(Pm)(Pm − R̃), (18)

14 The symmetric equilibrium price(s) and quantity(ies) are P s =
NRR̃+2θ±

√
(NRR̃)2+4θ2

2NRR̃θ
and Ds =

R
θ

[

P s−R̃

2P s−R̃

]

, respectively. Despite the multiple solution to the problem for symmetric case, the higher price

and corresponding quantity need not satisfy the condition that makes optimal to deviate from the general
strategy.
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where the superscripts E and M correspond to Exclusion and Mass, respectively. We can

express maximized profits in (18) as functions of λR and λP , using (17) for all consumers and

the expression of Ds in the footnote (14). Then the no-deviation condition can be reduced

to

(1− β) <
λR

Ω

[

R− ΩR̃

R− λRR̃

]2

. (19)

The right hand side (RHS) of (19) is increasing on the inequality parameter, υ. It turns out

that, at some value of ῡ, the inequality in (19) will not hold for all υ < ῡ.15 In other words,

if the resource allocation is too polarized, a given bank will find profitable to deviate from

the general strategy (to sell to the whole customer base) and offer deposits exclusively to

the rich, as the rich now has sufficient resources to attract and her elasticity is lower, and

the bank can charge a higher monopoly price.

These above findings are summarized in the Proposition:

Proposition 1 A given composition of population by β, there is a lower bound of inequality

measure ῡ, such that for all υ > ῡ savings inequality has no influence on the equilibrium

deposit rate and the quantity, and hence on the monetary policy rule and the loans flowing

to the real sector.

3.2 Asymmetric equilibrium

It follows that, for sufficiently high savings inequality, there will be banks that will sell

only to the rich. Then, there will be two types of deposits in terms of pricing, one that is

sold to the mass, both rich and poor, and other sold only to the rich. Given that each bank

has either of this option, but not both, in the equilibrium the number of banks serving only

to the rich will be determined endogenously.

We start from the no-arbitrage condition, which must hold under the exclusion regime,

ΠE < ΠM . The optimal deposit quantities for the rich, De
r and DM

E , and for the poor,

15As λR and λP are linear functions of wealth, RHS of (19) decreases without bound.
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Dm
P , can be expressed as functions of optimal prices, using optimal demands in (15) and

eliminating λR and Ω through (17). We have De
r = R

θ

[

P e−R̃

2PR−R̃

]

, DM
R = R

θ

[

2PR−Pm−R̃

2PR−R̃

]

and

Dm
P = R

θ

[

1− 1
β

(

1
2Pm−R̃

− (1−β)

2PR−R̃

)

Pm
]

.

Then, market equilibrium quantities can be easily derived,

De = (1− β)
R

θ

[

P e − R̃

2P e − R̃

]

, Dm =
R

θ

[

Pm − R̃

2Pm − R̃

]

. (20)

Under the no-arbitrage condition, which implies the existence of exclusion regime, we then

obtain a formula for P e, as a function of Pm, at the moment treating it as exogenous:

P e − R̃ =
(Pm − R̃)2 + (Pm − R̃)

{

(Pm − R̃)2 + (1− β)(2− Pm)R̃
}

1

2

(1− β)(2Pm − R̃)
≡ g(Pm),

and it can be easily checked that g′(Pm) > 0. In the following Proposition, central for the

model, we establish the uniqueness of the asymmetric equilibrium and (ii) the equilibrium

price responses to increasing inequality.

Proposition 2 (i)The asymmetric equilibrium is unique, (ii) higher inequality, in terms of

lower υ, leads to higher prices, both for mass and exclusive deposits.

Proof. (i) The markup condition for the exclusive deposits segment is

1− R̃/P e = 1/ǫ(P e; υ) =
R− λR(υ)P

e

λR(υ)P e
. (21)

(i) The LHS of (21) is strictly increasing, while the RHS is strictly decreasing in P e. The

price for mass deposits, Pm, is also strictly decreasing on P e and hence equilibrium prices

P e and Pm are unique. As equilibrium deposits De and Dm in (20) are also monotone in P e

and Pm, respectively, equilibrium quantities are also unique.

(ii) Now, let us perturb the parameter υ downwards. As the wealth of the rich will in-

crease, the λR will decrease and the RHS of (21) will shift upward. The resulting equilibrium
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price P e, and hence Pm, will be higher.

In the Appendix, we provide another mechanism for equilibrium and price changes to

inequality.

At this point, we have that (i) asymmetric equilibrium exists and it is unique and (ii)

higher inequality leads to higher prices. Monopoly power that banks exercise towards cus-

tomers, is different in the mass and exclusive markets: the lower the demand elasticity, the

higher the monopoly power, hence the higher markups and dead weight losses. Therefore, in

order to have the complete picture, we need to identify responses of exclusion, total deposits

and markups, to inequality change.

Proposition 3 Higher inequality, in terms of lower υ, leads to

(i) more exclusion,

(ii) a decrease in total deposits and

(iii) higher markups,

Proof. See Appendix.

Higher exclusion means that poor consumers will be excluded from more deposit markets,

as the new price will be too high (too low return) for them. Lower elasticity for a price will

empower banks to ensure higher markup, thus generating higher social welfare losses. Each

bank is now better off in terms of profits, but total deposits will now be lower, since there

are banks, which will shift the customer base from the mass to (only) the rich.

That banks will increase the price for the rich is quite intuitive. Higher inequality means

the rich is now even richer, and she is less elastic to a price change, as the slope of her

demand becomes steeper. Less elastic demand enables banks to increase the price and hence

the markup. The profits of banks that previously served only to the rich will increase,

relative to those working for the mass. The no-arbitrage condition implies that some banks

will switch from selling to the mass to (only) the rich.
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The fact that −Q′(D(θ, P ))/(Q′′(D(θ, P ))D(θ, P ) is decreasing in D(θ, P ), is crucial. For

each price, lower wealth will decrease demand and hence the elasticity. This enables banks to

increase the equilibrium price for the mass sector as well. As some banks move to excluded

deposits sector, this enables the remaining banks to increase equilibrium quantity deposits.

What happens in loans market, which is linked to the deposits market through the policy

rate? Given no change in the policy, per se higher inequality will not affect the volume of

loans, but only the composition of borrowed resources. As part of deposits are forgone, the

gap should be filled by the borrowing from the central bank. The assumption of an exogenous

repo rate excludes any correction of supply curve by the central bank, as a response to the

demand shift, and the real sector will be unaffected by the change of savings distribution.

In the model, we distinguish two distributions, nominal and real savings distribution,

the former in units of quantity of money, and the latter in units of deposits, being net

or interest payments included. Thus the terms ’nominal’ and ’real’ refer to the units by

which we measure wealth. Comparative statics on υ determines the change of real savings

distribution, namely, differences in deposits holdings between rich and poor. As the price

increases for mass deposits and the poor becomes even poorer, her total deposit holdings,

υ/Pm, will be lower. The improved position of the rich will be (partially) deprived by higher

prices, but still the increased inequality will hold for deposit holdings. After banks’s gross

repayments, inequalities will be mitigated, as R− Pm > R− P e.

Nest we turn to the monetary policy implications for the model.

4 Monetary policy and savings inequality

General perception for the monetary policy is that it affects the aggregate outcomes

hoping that the latter represents individual outcomes fairly well. This is the notion of a

representative agent, and monetary economics literature, with few exceptions, hinge on this

concept. The target of the monetary policy is devised as optimal and hit from the prospect
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of a representative agent, while it might be irrelevant for those, who are too different from

the representative. Savings inequality matters due to non-homothetic returns and hence

it becomes relevant for the policy. I discuss (i) how inequality affects on the effectiveness

of the monetary policy, and (ii) how the implemented policy redistributes resources back

(whether it has equalizing power or the converse). Despite the static nature of the model,

this two-sided exercise is feasible, as both inequality and policy parameters are exogenous.

Before turning to the equilibrium with exclusion, I discuss the implication of the policy

rate in a symmetric equilibrium. A higher repo rate makes central bank funds more expensive

and banks substitute these funds by private funds, charging lower price for deposits. Mod-

erate changes of repo rate will not affect the structure of the economy, since the equilibrium

price will not decrease enough in (17), so that the poor can buy these deposits. However, if

the repo rate increase is dramatic, prices will drop drastically and excluded goods will also

be available for the poor. The converse holds for the expansionary monetary policy: a lower

rate will lead banks to substitute private resources with the public and this will increase

prices. If the inequality in (18) is not that strong, then the LHS, increasing on RR, will

collapse to an equality, which is the condition for asymmetric equilibrium.

Next we assume asymmetric equilibrium, which will hold as well after the policy is imple-

mented. We start from exploring the influence of savings inequality on the effectiveness of

monetary policy. The effectiveness of monetary policy is discussed in terms distorted quan-

tity of deposits that should have been collected from depositors (contractionary monetary

policy), or limited power of quantitative easing (expansionary monetary policy).

Now, suppose the central bank increases the repo rate. The first observation is that it

leads to more exclusion.

Proposition 4 Under the exclusion regime, an increase (decrease) in the repo rate leads to

more (less) exclusion.

Proof. See Appendix.
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The result, at the first glance strange, is very intuitive. Take the poor. Since his demand

is elastic (more than 1), we have d(Dm
P P

m) > 0, which means that n should decrease in

order to stay within the feasible set, nDm
P P

m = υ. Thus the poor buys from each bank more

deposits, but now less banks will serve to the poor (mass). We know that exclusion is a source

of distortion, since more banks are selling to the poor only with a higher price and hence

ensure higher markup. The two counter factors, lower prices that increase sells for each bank

and higher exclusion that leads to some banks to switch from selling mass to the rich only,

does not enable to have a clearcut answer about to what direction total deposits change. A

numerical example shows that total deposits increase for broad range of parameters υ, γ and

R. If we base on the numerical example, then we can claim the following: Monetary policy

is less effective, when savings inequality is high. In other words, monetary policy, targeted

to generate additional deposits, will be more successful for lower inequality. The converse

argument can be put for expansionary policy. In fact the effectiveness hinges only on the

monotonicity of Dtot in Rr, regardless of value υ.

The policy consequence on total deposit composition is also interesting to explore. The

issue is, for instance, whether a higher repo rate has income equalizing power or not. The

answer is Yes and it again hinges on higher elasticity of the poor, relative to the rich.

Proposition 5 Let DP ≡ nDm
P and DR ≡ (N − n)De

r + nDM
R . Then a higher repo rate

leads to a decrease in wealth differences in terms of deposit holdings, DP
′(Rr)/DP(R

r) >

DR
′(Rr)/DR(R

r), and corresponding gross repayments.

Proof. See Appendix.

In this context, expansionary monetary policy, which promotes employment and eco-

nomic growth, increases deposits holding inequality. Savings are only a part of real earnings

from production, and in our model these earnings are fixed. This result does not contradict

to the findings of Romer and Romer (1999) and Fowler and Wilgus (2008), that expansion-

ary monetary policy is more beneficial for the poor. These benefits are deprived due to

deterioration of savings’ income distribution to some extent, depending on the preferences
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and technologies and hence consumption-investment intertemporal choice.

5 Discussion

The model is a scatter of the banking sector of an economy. Its relevance hinges on

a certain situation that a given economy may or may not have. That deposit holdings,

supplied by economic agents, are inelastic to relative prices to some extent, is natural,

considering transaction costs that agents should incur to transfer their holdings from one

savings technology to another. The other issue is the consumption-savings intertemporal

choice, as a function of capital rate of return. Differences in intertemporal choice for different

income classes will depend on the extent of risk aversion the rich and the poor pattern, and

our assumption of fixed deposit savings, invariant to the policy rule, is not realistic. In fact

we are to identify savings distributional effects of the policy net of the factors, present in the

real sector of an economy.

The model is relevant for economies with transfers. Imagine a labor exporting economy,

in which transfers are the only source of income for a significant part of the population.

Also, the banking sector is the only savings technology available to the mass. When these

transfers are arrived, a part of it will be transformed into time deposits, since agents need

these funds only for some period later on, in order to afford current consumption. Capital

owners, the rich in an economy, will be more sensitive to changes of deposit rates, as they

have alternative technologies in the real sector, but still they hold the part of their wealth in

the form of time deposits (financial wealth). This environment is exactly the one for which

the model is relevant and provides answers concerning interaction between savings inequality

and monetary policy. In the model, the impact of deposit holdings inequality on the real

economy and economic policy hinges on underdeveloped interbank markets, in which long

term assets are not traded. Many emerging market economies have the above described

structure, and the model can be useful to understand the mechanics of the consequences
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of monetary policy in the financial sector. The model can be tested empirically for these

economies and this will bring additional value to the model in terms of its applicability in

policy making decisions.

The salient feature of the model is that I treat deposits as a (financial) good, which is

produced and sold directly to the customer from one side, and it is transformed into the loan

on the other side. A higher price decreases the net return for a deposit, and this means that

a dollar will produce lesser deposit. This is a simple design and there is no loss of generality

concerning deposit market and itself deposit as a financial product, but it only provides a

channel to model agents individual perceptions for deposit returns. For the poor the same

return is perceived less than for the rich, since agents scale these returns with respect to

their financial wealth. We can generalize the novelty and say that they scale the prices with

respect to their total wealth, assuming that the rich will anyway hold more deposits and

than the poor.

A natural extension of the model will be to assume regular (homothetic) preferences for

agents and solve the model as a general equilibrium, intertemporal choice involved. Then

distributional effects stemming from real earnings will be relevant for outcomes through

financial markets, as saving differences will affect the composition of loan resources and

hence the real earnings. High income inequality is commonly observed in emerging market

economies, and underdevelopment of financial markets in these economies can be explained

by our model framework - those who have accumulated capital are not eager to invest in

deposits, since the repayment rate is too low. The rich families instead prefer to open their

own banks or hold large shares in firms with monopoly power. Another interesting question

is how the shocks will be propagated if we embed our novelty model into a heterogeneous

agent DSGE framework. During the crisis, when firms face high loan rates due to poor

collateral conditions, some capitalists are expected to substitute equities with deposits, and

the resulting deposit holdings inequality will increase. The model then predicts that (i)

monetary policy will be less effective in general and (ii) expansionary policy will further
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increase inequality, in particular.

Another theoretical extension is to model market discipline within our framework. If we

close the provision of public funds, then the volume of loans is a direct function of volume

of deposits. In addition, if we assume that bank managers can make effort to reduce the

risk on loans repayment, then we will have a stylized channel for market discipline, that

is, the ability of private agents to control bank risk-taking. A simple structure of market

discipline channel by Gropp and Vesala (2004) can be used, in which demand for loans and

supply of deposits are exogenously given. In our model, these functions are derived from the

optimization programs of firms and households. The price for deposit contract will depend

on an additional factor, the risk scaled by the effort, the latter chosen by the bank. From the

market discipline literature we know that depositors ask for higher deposit interest rate, in

case the bank default risk increases. Recalling that non-homothetic return on time deposits

leads to interest rate discrimination between the rich and the poor, the central question will

be to identify the impact of the monitored optimal risk taking on deposit rate differential.

The existence of public (central bank) funds enables banks to hold perfectly symmetric

loan portfolios so that differences in demand deposits do not directly spill over into the loans

market. That is, bank managers are not subject to discipline when selecting loans portfolio.

Contrary to this, depositors discipline bank managers in the government bonds and interbank

markets, in which time deposits are the available funds, and the nature of market discipline

depends on the extent of savings differentials. This channel becomes relevant in the context

of stochastic liquidity demand and can be studied within the framework by e.g. Allen et

al. (2009). The following question can be asked: Whenever wealth differences among the

private agents become relevant for the aggregate supply of deposits, how decision makings

on the short term assets are corrected by that factor in the presence of stochastic liquidity

demand? This is another market discipline channel - the wealth (savings) status of private

agents is the central determinant that makes banks asymmetric and their choices in the

interbank and government bonds markets crucially depend on the savings inequality.
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Concerning potential empirical challenges, when testing our model, I identify at least two

of them. If we find an evidence that may support our hypothesis, we should check for the risk

premium that rich households are perhaps to pay for implicit insurance, the banks provide

to rich depositors. Government owned deposit insurance funds guaranty deposit repayments

(in case of banks default) with an upper bound that usually cover an average deposit. It

then follows that, if there is no explicit insurance contract for large deposits, rich depositors

themselves should discipline banks.

Second, if there are banks that serve only rich clients, they may provide additional

services and these costs will be subtracted from time deposit rates. For instance, in emerging

markets, a branch of a worldwide known bank is trusted more, since information outflows are

less probable, and this gives additional monopoly power for that bank to set lower deposit

rates. That the rich depositors are more vulnerable to such risks is evident, and a bank that

wants to serve rich clients, needs to ensure such conditions for them. In what follows, this

becomes a necessary condition for the bank to attract deposits from the rich, and it cannot

be the only factor to explain deposit rate differential, since the equilibrium deposit rate, as

demonstrated, should also account for differences in marginal return of savings between the

rich and the poor, explaining the rate differential.

Conclusion

The model solution implies that higher inequality leads to more exclusion and less total

deposits, as banks exercise their monopoly power more intensively. This result hinges on

nonhomothetic structure of the objective function, finite marginal return at zero and in-

creasing (deposit) price elasticity. These properties come naturally, when modeling agents

deposit return function.

The model answers the following policy question: how real savings inequality are affected

by the monetary policy and the converse. First, the higher is inequality, the lower is the
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power of monetary policy. Higher inequality will distort a part of growth in total deposits,

since higher exclusion implies that less bank will produce for the mass, who buy more

deposits from a given bank due to higher elasticity. In case of expansionary monetary policy,

substitution of private deposits with the Central Banks funds will be less effective, since we

will have less exclusion and more banks will sell to the mass.

Contractionary monetary policy mitigates savings differences in terms of real assets. As

the poor is more elastic to a price change, she will buy more deposits with lower price (higher

deposit rate) than the rich, and the savings differences will decrease. As deposit rate is lower

for the mass, interest payments will further equalize agents asset holdings. Also, when the

Central bank decreases the repo rate - inequality increases and the poor suffers from the

expansionary policy, as far as it concerns her savings invested in deposits.
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Appendix

5.1 Uniqueness and price response to inequality

Under the exclusion regime, individual wealth constraint for the rich is

(N − n)Dr
RP

e + nDm
RP

m = WR, (22)

and for the poor,

nDm
P P

m = υ. (23)

We can solve (23) for n and plug the expression into (22). The resulting relation is

Dm
R

Dm
P

+ P eDr
R − υDr

R

PmDm
P

=
1− βυ

1− β
. (24)

The RHS in (24) is increasing on Pm.16 This, together with (24), ensures the existence

of unique equilibrium. Then the interesting question is, how optimal prices and quantities

respond, when savings differences increase (υ decreases). It is easy to realize that if the

increase in RHS of (24) is smaller than the increase of the left hand side (LHS) of (24)

both due to contraction of υ, then higher inequality will lead to a higher price for the

mass deposits, Pm, hence a higher price for exclusive deposits, P e. In order for the above

argument to hold, we need to prove that ∂
{

υDr
R

PmDm
P

}

/∂υ < −∂
{

1−βυ

1−β

}

/∂υ, which reduces

to NP eDr
R < 1/(1− β).

Lemma 2 NP eDr
R < 1/(1− β).

Proof. Aggregating individual budget constraints with respect to corresponding shares

given by β, we obtain

(N − n)P eDe + nPmDm = 1, (25)

16I do not prove this claim formally, but it is very close to the corresponding claim in FZ(2003), and,
when simulating model, I show that for all relevant configuration of parameters, the increasing pattern is
preserved.
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Solving for n, we have

n =
1−NP eDe

PmDm − P eDe
. (26)

From the no-arbitrage condition, De(P e)(P e − R̃) = Dm(Pm)(Pm − R̃), we have

Dm

Dm
=

P e − R̃

Pm − R̃
> 1 ⇒ Dm > De. (27)

Then, from the latter inequality, we have (DmPm − DeP e) = R̃(Dm − De) > 0. It follows

from (26), that, in order to have a positive value for n, the nominator should be positive,

NP eDe < 1. Realizing that De = (1− β)Dr
R, the final result follows.

Proof of Proposition 3.

(i) When taking the total differentiation of the aggregated constraint in (25) with respect

to Pm, and solving it for n′(Pm), we have

n′(Pm) =
−n∂{PmDm}/∂Pm − (N − n)∂{P eDm}/∂Pm

PmDm − P eDe
< 0,

since we have shown in the proof of Lemma 2 that PmDm−P eDe < 0, and it is easy to check

that Dm′(Pm) > 0 and De′(Pm) > 0, using formulas in (20) and the fact that ∂P e/∂Pm > 0.

(ii) We start from total deposits, Dtot = (N − n)De + nDm, and evaluate its derivative,

D′
tot(P

m) = (N−n)De′(P e)P e′(Pm)+[−n′(Pm)De(Pm)]+n′(Pm)Dm(Pm)+n(Pm)Dm′(Pm).

Then, the condition D′
tot(PM) < 0 is equivalent to

n′(Pm)Dm > (N − n)De′P e′(Pm) + [−n′(Pm)De(P e)] + n(P )Dm′(Pm) ≡ H,

where both sides are positive.
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Now we take total differential of aggregate budget constraint (25) and with respect to

Pm:

(N−n(Pm))De′(P e)P e′(Pm)P e+[−n′(Pm)DeP e]+n′(Pm)DmPm+n(P )Dm′(Pm)Pm+Θ = 0,

where Θ ≡ (N − n(Pm))P e′(Pm)De + n(Pm)Dm > 0. Then, we can write

−n′(Pm)Dm > (N−n(Pm))(De)′(P e)P e′(Pm)
P e

Pm
+

[

−n′(Pm)De P
e

Pm

]

+n(P )Dm′(Pm) > H.

since P e/Pm > 1 from (27).

(iii) Higher inequality leads to higher equilibrium prices and deposits, and linear demands

become steeper in both segments. As a result, for each price level the elasticity will be smaller,

implying that the LHS of (12) will be upward shifted (it is decreasing in P ). Considering

that the Lerner index (RHS of (12)) is increasing in P , the new equilibrium markup will now

be higher.

Proof of Proposition 4. In order to proof the claim, we will plug formulas for De and

Dm, as functions of λR and λP , in (26) and calculate the derivative n′(Rr). Using functions

of optimal prices (17) in (20), we obtain

P eDe =
1− β

4φλR

(R2 − λ2R̃2) ≡ Φ(Rr) and PmDm =
1

4φΩ
(R2 − Ω2R̃2) ≡ Z(Rr).

Then we have (the argument Rr suppressed) n′(Rr) = Φ′(1−NZ)−Z′(1−NΦ)
(Z−Φ)2

. Since Z > Φ and

Φ′ < H ′, for all Rr, we complete the proof, n′(Rr) < 0.

Proof of Proposition 5. For compactness let us denote Q1 = Dr
R(N−n), Q2 = Dm

Rn and

Q3 = nDm
P , so that the individual budget constraints can be written as P eQ1+PmQ2 = WR

and PmQ3 = υ. Then, total differentiation of these constraints with respect to Rr, and using

the formulas for optimal prices in (17), leads to the following expressions (the argument Rr
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suppressed):

Q′
1P

e +Q′
2P

m =
1

2
(Q1 +Q2), and Q′

3P
m =

1

2
Q3. (28)

From the first equation in (28) we have

D′
R

= Q′
1 +Q′

2 <
P e

Pm
Q′

1 +Q′
2

=
1

2

Q1 +Q2

Pm
=

DR

Pm
, (29)

and from the second equation, realizing that DP = Q3, we have

D′
P
=

DP

2Pm
. (30)

From the last two relations, (29) and (30), we have the result, DP
′(Rr)/DP(R

r) >

DR
′(Rr)/DR(R

r).

It is easy to realize that after the interest payments, the inequality is further decreased

because of higher interest rate payed to the poor than to the rich for each Rr.
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