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Abstract

A unified growth model is presented in which productivity growth is driven
by learning-by-doing. We show that the growth rate of productivity is an in-
creasing function of the share of capital. It is assumed that the industrial
sector has a higher capital share than the agricultural sector and that the
ability to substitute one output for the other in the construction of capital
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1 Introduction

The preindustrial era was characterized by low rates of productivity growth, a heavy
reliance on the agricultural sector both as a source of food and as a source of raw
materials for industry, and low levels of fixed capital. Since the Industrial Revolution
the growth rate of total factor productivity has increased by an order of magnitude,
the relative size of the agricultural sector has shrunk considerably, and the economy
has become reliant on vast quantities of fixed capital in the form of machines and
infrastructure. This paper presents a unified growth model that ties together these
observations based on Wrigley’s thesis that a key enabler of the Industrial Revolution
was a shift in the source of raw materials and energy from agriculture to industry
(Wrigley, 1988, 2010). In the present model, this shift is sufficient to trigger many

of the changes we have come to associate with the transition to a modern economy.

The starting point for the present effort is the “Malthus to Solow” model of Hansen
& Prescott (2002). In the Hansen & Prescott (HP) model there are two sectors, a
land-intensive “Malthus” sector that grows slowly, and a capital-intensive “Solow”
sector that grows quickly. The outputs of the two sectors are assumed to be perfect
substitutes. Both sectors grow at all times but the Solow sector is not utilized until
its productivity reaches a critical value, after which it gradually replaces the Malthus

sector.
The HP model succeeds in describing the broad outlines of the Industrial Revolution,

but has the following drawbacks:

1. The productivity takeoff associated with the Industrial Revolution is not ex-
plained but is simply assumed by assigning a higher rate of growth to the

Solow sector than to the Malthus sector.

2. The productivity of the Solow sector grows before industrialization, even though

that sector is not used until after industrialization.

3. The demographic transition is captured in an ad-hoc manner instead of being

tied to an underlying model of preferences.

We have developed a new model of the Industrial Revolution that is inspired by the



HP model and addresses the concerns listed above. To address the first concern we
have assumed that productivity growth is driven by learning-by-doing due to capital
investment (Arrow, 1962). In a one-sector version of the model to be described in the
next section, the growth rate of total factor productivity is an increasing function
of the share of capital. The reason that the Solow sector has the potential to grow
faster than the Malthus sector is that the Solow sector has a larger capital share
than the Malthus sector.

To address the second concern we have assumed that the two sectors are used at
all times. The outputs of the two sectors cannot be substituted for the purposes of
consumption but they can be substituted for the purposes of capital formation. The
Malthus sector produces food and some components of capital goods (e.g. horses),
while the Solow sector produces manufactured goods for consumption and some
other components of capital goods. Following Wrigley we assume that the output
of the Malthus sector is a required component of capital prior to the Industrial
Revolution. This constrains the learning-by-doing mechanism and leads to a low
rate of growth in the Solow sector. We further assume that after the Industrial
Revolution the outputs of the Malthus and Solow sectors become substitutes for the

! This closes the loop in the Solow sector, allowing

purposes of capital formation.
Solow output to be reinvested into capital goods for the Solow sector, i.e. for the
manufacturing sector, and allowing the learning-by-doing mechanism to live up to
its full potential. Solow output is also used in the formation of agricultural capital,

leading to an agricultural revolution.

To address the third concern, we have included a simple Cobb-Douglas model of
utility. Individual preferences for consumption, investment, and childbearing are

assumed constant over time. Each child requires a fixed amount of Malthus output,

'In the preindustrial era farm plows used iron components from the preindustrial Solow sector
(horseshoes, buckles, plowshares), but relied on horses from the Malthus sector, and the produc-
tivity of horses did not grow at modern rates. The preindustrial Solow sector contained things
like iron foundries that were built using iron components, but that also required working capital
derived from the Malthus sector such as wood for heat, and water or horses for mechanical energy.
The supply of wood represented a very serious constraint since it depended on an exploitive activ-
ity that was almost pre-agricultural in nature, with very little invested capital. Some of the most
famous inventions of the Industrial Revolution, such as Watt’s separate condenser for the steam
engine and Cort’s puddling process for iron production, had the effect of lessening the dependence
of industry on land-based production. (Wrigley, 1988, 2010, Sieferle, 2001).



e.g. food. After the Industrial Revolution the Solow sector grows faster than the
Malthus sector so the price of Malthus output increases, which increases the cost of
childrearing. The higher cost of childrearing reduces the demand for children so the
growth rate of population settles to a steady value. However, the final population

growth rate is higher than it was before the Industrial Revolution.

One of the challenges in constructing a unified growth model is to capture the dis-
continuity associated with the Industrial Revolution without the use of an exogenous
shock (Galor, 2011). One way to make the Industrial Revolution endogenous is to
assume that population and income grow slowly until one of the variables of the
model reaches a critical value, triggering the transition to a modern economy. In
the HP model, the trigger is pulled when the productivity of the Solow sector reaches

a critical value.

In the present model, a different variable is used to trigger the Industrial Revolution.
We assume that a given quantity of capital (e.g. a certain number of machines) can
be produced using various mixtures of Malthus output and Solow output, and the
isoquant is convex. To simplify the modeling we assume a Constant Elasticity of
Substitution (CES) production function for capital. The elasticity of substitution
(EoS) between Malthus output and Solow output starts out small (EoS < 1), but
slowly increases over time as people learn to substitute Solow output for Malthus
output in the production of capital goods. The rationale for assuming a constantly
increasing EoS is that it is always profitable for a firm to introduce a new technique
that expands the possibilities for substitution. The mathematical proof of this
assertion is based on the Envelope Theorem, and is described in Section 3. A
property of the CES production function is that when EoS is less than 1, then for
any prescribed level of output there is a minimum required level of each input. But
when EoS is greater than 1 that constraint is released. An industrial revolution is
triggered when EoS reaches the value of 1. The economy then undergoes a structural
transformation whereby the output of the land-based Malthus sector diminishes and

is replaced by the output of the capital-intensive Solow sector.

The model predicts a sharp increase in the rate of growth income and population
when EoS surpasses the value of one. This prediction is consistent with the accepted

view of historians that there were simultaneous industrial and agricultural revolu-



tions in England in the late eighteenth and early nineteenth centuries. The model
predicts an Industrial Revolution because the industrial sector is released from the
constraints of agriculture. But it also predicts an agricultural revolution because
capital goods on the farm are increasingly constructed using industrial outputs.
This link between industry and agriculture is opposite in direction to the usual view
that agricultural improvement was a prerequisite of the Industrial Revolution.? Is

there any evidence that farm output increased because of industrialization?

Adam Smith observed that agriculture tended to flourish in regions located near
large towns and cities, and offered three possible explanations for that link.® First,
he believed that towns spurred agricultural improvement because the demand for
food was higher near towns than elsewhere. Second, he believed that towns and
cities introduced good governance into the surrounding country. Third, he believed
that urban merchants invested their wealth into the country because they saw op-
portunities that were not apparent to the country gentlemen. Smith did not detail
the forms that these investment might have taken, but one possibility is that urban

capitalists were introducing capital goods into the countryside.

One example where manufacturing had a positive impact on agriculture during the
eighteenth century was in the provisioning of plows (Brunt, 2003). Plowshares made
of iron had about twice the efficiency of the older wooden plowshares (Sieferle, 2001),
and were supplied by blacksmiths working in the neighboring towns. Brunt (1997)
has conducted a cross-sectional study of wheat yields in the late eighteenth century,
looking to uncover significant drivers of productivity. He has found that the most
significant improvement factors, all of which were forms of capital investment, were
the planting of turnips, the use of seed drills, the use of fertilizers such as marl and
lime, and the use of drainage pipes. Turnips assisted in the provisioning of humus
to the soil, and can be thought of as a purely agricultural innovation. The other

three factors were linked to industry. Seed drills were a manufactured product that

2A common view is that labour was released from the countryside and there was a growing
surplus of food to support the growing urban population. The best-known proponent of this line
of reasoning is Rostow (1960).

3Chapter IV, “How the Commerce of the Towns Contributed to the Improvement of the Coun-
try”, Smith (1776). Jacobs (1970) postulated that cities came before agriculture and that cities
have always been strong drivers of agricultural growth.



allowed for more efficient weeding. Marl and lime had to be transported from distant
locations and so benefited from the development of the canal and railway networks
(Mathew, 1993). Regarding drainage pipes, Brunt notes that they were made of clay
in the eighteenth century, but were replaced with much cheaper ceramic pipes in the
nineteenth century, leading to a large increase in use. Taking a longer point of view,
agriculture experienced huge increases in productivity in the twentieth century after

the introduction of tractors, pesticides and industrial fertilizers.

The model presented in this paper is broadly consistent with the view of Crafts
(1995), who has analyzed the applicability of recent growth models to the Indus-
trial Revolution. In Crafts view, the most promising approach is to combine ex-
ogenous shocks (inventions) with learning-by-doing effects (innovation). We have
modeled increases in the elasticity of substitution between land-based output and
industrial output as an exogenous process, and have then allowed the mechanism
of learning-by-doing to follow through with its far-reaching effects on growth. The
model is also consistent with the theme of Allen’s study of the blast furnace industry,
which showed that capital investment was a key driver of productivity improvements
through learning effects (Allen, 1983).

As Lucas (2008) has pointed out, it is widely accepted amongst economists that
the process of industrialization is an ongoing intellectual achievement. One of the
defining characteristics of the Industrial Revolution is that it introduced a sharp
discontinuity in the rate of growth of human knowledge. If we accept the premise
that people were just as mentally capable 2,000 years ago as they are today, this
discontinuity represents a deep mystery. The goal of unified growth theory is to
develop a model that captures the dynamics of both the preindustrial economy and
the modern economy without invoking any special exogenous shocks to explain the
Industrial Revolution. The present model fits into that mold because the dynam-
ical equations and their parameters are unchanging over time, yet a discontinuity
emerges. The implication of this paper is that people have been striving to substitute
the products of their hands for the products of nature for millenia, and this process
finally reached a threshold of sustained capitalist learning about two hundred years

ago.

The plan of the paper is as follows. In the next section, we briefly introduce a sim-



ple one-sector model designed to motivate the development of the model. Section
3 contains a description of the unified growth model. In section 4 we write down
analytic expressions for the growth rates of population and income in the prein-
dustrial and modern regimes. These expressions are used to derive predictions that
are compared with historical data. We also calibrate the parameters of the model
to selected historical data, run a simulation of the model, and then make further
predictions that are tested against historical data. Finally, section 5 discusses the
limitations of the model and some possible extensions, and concludes. An Appendix
is included that describes the asymptotic behavior of the model in the two historical

regimes.

2 Malthus to Solow via Arrow

Amongst the many changes to occur during the Industrial Revolution, the two most
relevant to the present discussion were the increase in the share of capital and
the large increase in the rate of growth of Total Factor Productivity (TFP). The
purpose of this section is to show that these two phenomena can be linked using
a variant of Arrow’s learning-by-doing model (Arrow, 1962). A simple toy model
will demonstrate that even a modest increase in the share of capital can lead to a

productivity takeoff.

The production function is
Y = AK*N'"™ 0<a<l, (1)

where Y is output, A is TFP, K is capital, and N is labour. For the purposes of
this exercise we will assume that labour is held fixed. The focus of our attention
will be on the relationship between A and K. Let us also assume that savings are
a fixed fraction s of output:

K =sY — 0K, (2)
where 0 is the rate of depreciation of capital. Productivity grows exogenously at a

small rate gg and also grows due to gross investment in capital as in Arrow’s model.



Since savings are a fixed fraction of output, we have

d d
L mA= Ly
g mA =g+ g Y (3)

where £ is a parameter that captures the spillover effects of learning due to capital

investment.

We wish to study the steady-state growth path associated with this model. We
assume that all quantities grow exponentially at constant rates which we label {g.},
where {x} stands for whatever quantities are under consideration. Dividing both
sides of equation (2) by K we have gx = sY/K — . Since gy is assumed constant

the capital/output ratio must be constant. Therefore, from (1) we find

92 = (1 — a)gxk, (4)
and from equation (3) we see that

ga = go + &gk (5)

Combining (4) and (5), we obtain the following expression for g4

11—«
= 1—a. 6
ga= 14 _¢ln E<l-a (6)
Finally, the growth rate of wages is
L g e<t (7)
w = , — a.
g 1 —a— fgo

Notice that the growth rate of TFP is proportional to gg, with the constant of pro-
portionality being greater than 1 when £ > 0. Arrow’s learning-by-doing mechanism
is acting as a lever on the exogenous growth rate.* Notice also that the growth rates
of TFP and wages are monotonically increasing in « (thereby linking growth rates

with the share of capital) and are essentially unbounded.

4This model avoids the kind of “knife-edge” condition normally required in a purely endogenous
model.



Consider the following numerical example: gy = 0.1% per annum, £ = 0.55 and
a = 0.1, the latter corresponding to the share of capital in the Malthus sector of
Hansen & Prescott’s (2002) model. The resulting growth rate of wages is 0.29% per
annum. If we increase o to 0.4 (the capital share in the Solow sector of Hansen &

Prescott’s model) the growth rate of wages increases to 2% per annum.

We now proceed to describe the unified growth model, incorporating the above

learning mechanism in a two-sector framework.

3 The Model

3.1 Production

Following Hansen & Prescott (2002), we define two sectors, a “Malthus” sector,
which produces Y, at time ¢, and a “Solow” sector, which produces Yg; at time t.

The production functions are:

YMt - K](\éth]l\}w (8)
Yo = thNé‘t_ea (9)

where K, and Kg; are the quantities of capital employed in the Malthus sector and
Solow sector, respectively, and N, and Ng,; are the quantities of labour employed
in the Malthus sector and Solow sector, respectively. It is assumed that ¢ < 6,
reflecting that the capital share in the Malthus sector is lower than the capital share
in the Solow sector. It is also assumed that ¢+ pu < 1, reflecting the hidden presence
of land in the Malthus sector, which is normalized to 1. There are no productivity
factors in the above production functions. Instead, productivity is embodied in

capital, as will be explained in the next subsection.

The production side of the economy solves the following optimization problem:

max {ptYMt — wane Ny — Tl e — TLtLt} , Ly =1, (10)
max {YSt — wstNgt — TKtKSt} ) (11)



where w),; is the wage in the Malthus sector, wg; is the wage in the Solow sector, rg;
is the rent on capital, r7; is the rent on land, and p; is the price of goods produced

by the Malthus sector. The output of the Solow sector acts as numeraire.

We assume that capital is perfectly mobile so there is a unique rent on capital.
However, we distinguish two different wages wy;; and wg;. The reason has to do
with our treatment of land. Our focus is on capital and labor, so consistent with
common practice in this field we assume that laborers in the Malthus sector own
all of the land that they use for production. Hence, their total earnings consist
of wages plus rents. We also assume that land has no value, so labour will freely
migrate until the total income earned in the Malthus sector (wages plus land rents)

is equal to the wage earned in the Solow sector.” Let us define total earnings 1, to
be

= Wst- (12)

Competitive firms will then hire quantities of labour and capital such that

T = =
Kt aKSt aKMt Dt
0Y s Y — e K
= = 14
" N, Nuw " -
or, in terms of labour and capital quantities:
N N5,
T = _— = R 15
Kt (ﬁK}V;tqg Dt Ké;e ( )
7\)47& th
yr=1—0)—p=(1-0)—7 (16)
N N,

3.2 Capital

Capital goods are constructed using two types of material: X, which is directly

produced by the Malthus sector, and Xg;, which is directly produced by the Solow

5This modeling choice avoids the need to iteratively solve for the price of land, as was necessary
in Hansen & Prescott (2002).
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sector.® That is, X, is some portion of past output as produced according to
equation (8), and Xg,; is some portion of past output as produced according to
equation (9). The Malthus and Solow materials are combined to form total cap-
ital Ky = Ky + Ko via a Constant Elasticity of Substitution (CES) production
function:

K = [(1 =) (AueXan)" + 7 (A Xr) "] (17)

where A, is the Malthus capital-augmenting productivity, Ag; is the Solow capital-
augmenting productivity, v is the share of the Solow sector in capital goods pro-
duction, and p; is a monotonic increasing function of the Elasticity of Substitution
(EoS) oy: X

pr=1— o (18)
The parameter p; lies between —oo and 1, while o, lies between 0 and oco. Note
that there is no overall productivity factor outside the square brackets in equation
(17). This means that if o; is low, the growth-rate of productivity is constrained
by the slowest-growing productivity factor. We can offer an energy interpretation
of equation (17) inspired by Wrigley (1988, 2010). Capital goods are low-entropy
systems that require energy in the form of work for their construction, ongoing
maintenance and operation. It is assumed that energy is embodied in Ay Xas
and/or Ag;Xg;. Traditionally, capital goods may have been produced using Solow
output (As; Xgs¢) but the energy was embodied in Ay Xps. During industrialization
it became embodied in Ag; Xg; as well, allowing substitution to take place. Historical
examples include coal replacing wood as a source of heat for the iron industry, and

steam engines replacing water wheels and horses for mechanical energy.

We assume that the suppliers of capital minimize the cost of each unit of capital by

solving

min {p; T + st} (19)

subject to the constraint

0=1-K; (XMt = Tnre, Xst = iESt) ) (20)

6Working capital can be thought of as a capital good having a high rate of depreciation.
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where K is given by (17). In a competitive economy, the price of capital ¢ is
equal to its marginal cost. Since the production function for capital is first-order
homogeneous, marginal cost equals average cost. Defining C;} to be the minimum
cost, x};, to be the optimal quantity of Malthus material and z§, to be the optimal

quantity of Solow material, we have
@ = Cf =pe Ty + T, (21)
The Lagrangian for this optimization problem is
L =pxpe+xse + M1 — Ky), (22)
and the first-order conditions for cost minimization are
oL oL

=0 =0 1-K,=0. 23
Xy | 0Xg ! (23)

The solution for ¢, =}, and 7%, is

__r _p y -2

1 Dt 1-p 1 1 ) 1—p P
— 1_ 1—p + 1-p _— s 24

* 1i 1 Yz 715’) 1
T — P 1_ 1—p —, 25
= e - () (25)
| | ( 1 )_1£p

at, =q Py [ — . 26
so=a " 4 (26)

We will assume that capital completely depreciates at the end of each time step and
that a time step equals 35 years, consistent with Hansen & Prescott (2002). The

annualized interest rate is then

iz(ﬂﬁ—l)%—l, (27)

qt

where 7, is given by equation (15).

12



3.3 Preferences

Building on Hansen & Prescott (2002), we assume an overlapping generations model.
Each person lives for two periods of time, and the population includes a mix of
young people and old people. Young people work to earn an income, which they
use to purchase three things: manufactured goods from the Solow sector for their
own consumption, capital goods for investment purposes, and Malthus output (e.g.
food and child care) to support the raising of children. It is assumed that old
people receive enough Malthus output in childhood to sustain them for life. Hence,
old people consume Solow goods only, which are paid for by the returns on their
investments. Land has no value, so each generation simply confiscates it upon their

entry into the Malthusian labour force.

We assume the following utility function
u = alogey s + flogeasir + (1 — a— B) log ny, (28)

where ¢ ¢+ is consumption in the first period (the working period), ¢z 441 is consump-
tion in the second period, and n; is the number of children born to each worker at
the end of the time step (this is the new element not included in Hansen & Prescott’s
utility function). Children become part of the labor force in the next time step ¢+ 1.
Assuming that children require one unit of output from the Malthus sector, which

is sufficient to sustain them throughout life, the budget constraints are

Yr = 1+ Gekerr + peng, (29)

Cot41 = Tep1kiett, (30)

where g, is the total income earned by young people in period 1 (wages and rent on
land), k41 is the invested capital (savings) for period 2, and ¢, and p; are the prices

of capital and Malthus output, respectively.

13



The solution to the above optimization problem is

C1p = Qyy, (31)
L (32)
qt
ne=(1-a-p% (33)
Dbt

The first result says that young workers spend a fixed percentage of their earnings
on output from the Solow sector. The second result states that savings are a fixed
fraction of income. The third result describes Malthusian population dynamics: the
higher the earnings and the lower the price of output from the Malthus sector, the

more children.

The above results can be used to define real earnings. Consistent with our assump-

tion of Cobb-Douglas utility, we define the cost-of-living index as the geometric

average of the factor prices, with expenditure shares used as weights.” Real earn-

ings yr; are then defined as nominal earnings y; divided by the cost-of-living index:
Yt

Yrt = 3 1-a-p" (34)
4y Py

We can also define earnings in terms of food yp; as:

Yt = % (35)

yg;

3.4 Productivity Growth

We now specify a dynamical process for the capital-augmenting productivity pa-
rameters A, and Ag;, and for the elasticity of substitution o,. Two processes are
assumed for Ap;; and Ag;. First, productivity grows exogenously at some small
rate go. Second, we assume that productivity also increases as a side effect of gross

capital investment (Arrow, 1962). The relative changes in Ay, and Ag, are thus

"Clark (2005) uses a weighted geometric average in his construction of a cost-of-living index
covering the years 1209-1869. Allen (2001) uses both geometric and arithmetic averages to compute
inflation indices for several cities in Europe covering the years 1350 to 1750 and finds little difference
in their values.

14



driven by two factors, the first related to exogenous growth and the second related

to total gross investment:

~ 3
A X
M+l g M+l ) (36)
AMt XMt
. ¢
A X
St _ o St ) (37)
ASt XSt
where ¢ is a new parameter of O(1) that captures the spillover effects of learning,
and
Xt = ZXMt“ (38)
t; <t
Xgi =) Xsu,. (39)

t; <t

Here X/, and Xgy, are, respectively, the quantities of Malthus output and Solow

output used in the construction of capital at time ¢;:

*
ﬁytiNti$mti

Xyt = ————, (40)
qti

Xs1, = —ﬁytht’%‘ (41)
t;

Here, we have made use of equation (32) and multiplied by z},, and x}, , which
are the Malthus and Solow components, respectively, of each unit of capital, and we
have also multiplied by NV;, to obtain total quantities. The above model of learning
assumes that the efficiency of each component of capital grows in direct response to
its use. Note that the parameters driving productivity growth (go, &) are identical

in both sectors.

The final key parameter to consider is o (or p). Since 0 < ¢ < o0, it is natural to

assume an exponential growth process:

o, = 00e%", (42)

15



where 0p < 1 and g, is a new growth parameter.

The rationale for assuming a constantly increasing o, is that it is always (tem-
porarily) profitable for a capital-producing firm to introduce a new technique that
expands the opportunities for substitution. To show this, it suffices to see that the
cost of capital is a declining function of p; (recall that p; is monotonic increasing in
o). Application of the Envelope Theorem to the optimization problem in section

3.2 results in

ocr oL )\aK

odp 9p T op’
K is of the form of a generalized mean, which has the property that it is a mono-
tonic increasing function of p.* The Lagrange multiplier \ is equal to C}, which is

positive.” Hence

oC*
dp

Therefore, it is always profitable for a firm to introduce a new capital-goods pro-

< 0.

duction technique that embeds a higher elasticity of substitution than is currently

prevailing.

3.5 The Equilibrium Path

The purpose of this section is to complete the set of equations required to find the
equilibrium prices and allocations at each time step, and to describe the changes in
the key variables over time. The initial conditions for the model are the quantities
of labour and capital at time zero: Ny and K,. During each time step t, the
economy optimally allocates labour and capital to the Malthus and Solow sectors.
One complication is that in solving for the equilibrium allocations, one must take
into account the optimal mix of materials required in the construction of capital
goods to be used in the next time step. The resulting equilibrium income earned by
young workers is the key determinant of the quantities of labour and capital in the

next time step (Nyy1 and Kiyq) via the preference equations (31) - (33). The end

8The proof is contained in Hardy et al., 1934, p. 26. See also La Grandville, 2009 (Appendix
of Chapter 4).

90One can use the first-order conditions listed in equation (23), to show that A = ¢; and by
Euler’s theorem for homogeneous functions, we have ¢, = C}.
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result is that we can take the total quantities of labour and capital as ‘given’ at the

beginning of each time step.

The market-clearing conditions are

N, = Ny + Ny, (43)

K, = Ky + K, (44)

Y = (1 —a — B)LN, + g% N, (45)
Pt qt

Yo = aye Ny + re K + ﬁ%]\ftxgt. (46)

The first two conditions listed above simply equate total labour and capital with the
supply of those factors at the beginning of each time step. The last two conditions
equate the supply and demand of final outputs. Equation (45) says that total
Malthus output is equal to the amount required to support children plus the amount
required in the construction of capital goods. Equation (46) says that total Solow
output is equal to total consumption by young workers plus total consumption by
old people (investment returns) plus the amount required for capital goods. We now

have sufficient conditions to determine the equilibrium solution at each time step.'’

Finally, from equations (32) and (33) the quantities of labour and capital at time
t+1 are

Nip1 = (1 — Q= 5)}%]\@» (47)
t

Kt+1 = B%Nr (48)
t

The model is now fully specified.

4 Model Predictions and Tests

Figures 1 to 3 summarize the behavior of the model, showing how the economy

evolves in response to increases in the elasticity of substitution (EoS) starting from

0Tn fact, we have one too many equations! However one of (45) or (46) is redundant.
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the Malthusian epoch (o < 1), through an Industrial Revolution (¢ = 1), to the
modern era (o > 1). The figures are based on a simulation of the model using
parameters listed in Table 1. We see that there are two distinct regimes where the
growth rates becomes asymptotically constant, and these two regimes are connected
by a rapid transition in which the growth rates of population and income increase
by an order of magnitude. This overall pattern is a general characteristic of the

model, and is not an artifact of the particular set of parameters listed in Table 1.

In the following we provide some analytic solutions that can be used to test the
model against historical data. We then calibrate the parameters of the model in
order to run a numerical simulation and explore the quantitative and qualitative

aspects of the model’s behavior.

4.1 Analytic Solutions

It is possible to derive analytic expressions for the asymptotic growth rates in the
two regimes (preindustrial and modern). This may be accomplished by assuming
constant growth rates of v, pi, K¢, Ny, qi, Aprre and Agy, ete., represented for example

by y: ~ e%!, thereby introducing new symbols gy, g, 9xs INs Jq» Gaus Jag €t

The Appendix contains the derivation of steady-state growth rates, which are sum-
marized here. The growth rates of population before and after the Industrial Revo-

lution are, respectively:

before — 9o 49
S e A T =
gjzvfter — 90 (50)

B2 = g1+ )] - €

In order that the growth rates be positive, the parameters must be constrained such
that the denominators in the above expressions are positive. All other growth rates

can be expressed in terms of these population growth rates. The following expres-
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sions hold in both regimes so we can drop the “before” and “after” superscripts:

0(1—u—
9y = 9GpPc = TM@QM (51)
9p = Gy, (52)
1-06
9q = _Tgya (53)
B B
gyr=|(a+ 2 Gy- (54)

Here g, is the growth rate of nominal earnings, ggpp. is the growth rate of GDP per
capita, g, and g, are the growth rates of the prices of Malthus output and capital,
respectively, and gy,r is the growth rate of real earnings, which is the same as the
growth of of real GDP per capita. Note that a unit of time is thirty-five years.

However, the above four expressions are also valid when the time unit is one year.

As mentioned previously, labour earnings in units of food are constant in both

regimes. From equation (47) the wage expressed in units of food is

1
= — ¢V 55
Yr 1— o — Be ) ( )
from which we have i
y a er efjore
e = oxp (97 — g (56)
F

4.2 Tests of the Analytic Solutions

The most important prediction of the model is that the growth rate of earnings and
GDP per capita is positive at all times and is a fixed multiple of the population
growth rate. In other words, the standard of living improves at all times. Since
the population growth rate was much lower in preindustrial times than it is today,
this prediction implies a low rate of growth of the standard of living in preindustrial

times.

At first this prediction of a growing standard of living in preindustrial times would

seem to contradict the logic of a Malthusian economy, which has much empirical
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support (Ashraf & Galor, 2011, Clark, 2007). Recall that our model is Malthusian
in the sense that population growth is a linear function of yr; = v;/p; (see equation
(33)). The Malthusian mechanism leads to stable levels of income in units of food
(yre) as seen in figure 2. However income in units of manufacturing output (y;)
grows, and in fact grows at the same rate as p;. The presence of a Solow sector
in the preindustrial epoch allows income to grow in the context of a Malthusian
economy, which accords with our intuition that there must have been individual
material progress even before the Industrial Revolution. An English citizen circa
1700 was surely richer in material terms than a hunter gatherer living in the same

region 5,000 years earlier.

According to equations (51) and (54), the growth rate of real GDP per capita is
a fixed multiple of the population growth rate. Given that we have a fairly good
handle on population growth rates in both preindustrial and modern times, and
given that we can measure the growth rate of income in the modern era, we can
infer the growth rate of income in the preindustrial epoch. The latter can be checked

against historical data shown in figure 4.

We assumed the following per-annum population growth rates

ghelore = 0.05%,
gt = 0.5%.

The first number is close to the rate of growth of world population between 0 and
1700 based on data from Maddison (2007).'" The figure of 0.5% for the modern
era is in the middle of the range of values for industrialized countries during the

twentieth century.!?

1A simple computation using Maddison data gives a growth rate of 0.058% per annum. A
similar exercise using world population data from Kremer (1993) over the period -10,000 BCE
(after the start of the Holocene) to 1700 gives a growth rate of 0.043% per annum. The population
data from Broadberry et al. (2010) shown in figure 4 implies a growth rate 0.034% per annum. The
challenge in using data from this period is that the English economy was not on a steady-state
growth path during the late middle ages. The population suffered a heavy blow in the second
half of the fourteenth century due to plague and famine, and did not fully recover until the mid-
seventeenth century. Nevertheless the overall population growth rate between 1270 and 1700 of
0.034% per annum is close to the value of 0.05% assumed above.

12Based on Maddison data. At the high end of the range we have the “Western Offshoots”
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We assumed a growth rate of income of 1.9% per annum for the modern era.'® The
corresponding ratio of income growth rate to population growth for the modern era
is 3.8. This implies an income growth rate of 0.19% per annum for the preindustrial
era. This figure is close to the estimate of 0.17% per annum over the years 1270 -
1700 based on Broadberry et al. data shown in figure 4. Hence the predicted growth

rate of income in the preindustrial era is consistent with historical data.

According to equation (52), the model predicts that p, should grow at a steady rate
in both the preindustrial era and the modern era. This prediction is verified for
the preindustrial era in figure 4, which shows a price series of food expressed in
non-food terms (a proxy for p;) between 1270 and 1830.' The growth rate of food
prices between 1270 and 1700 is 0.13% per annum, which is close to the empirical
growth rate of income of 0.17%. According to equation (52) the growth rate of p;
should be the same as the growth rate of nominal income, which is not the same as
the growth rate of real income. So our model is only consistent with historical data

if we assume the following (see equation 54):

<a+§> ~ 1. (57)

Taking 5 = 0.2, which is the approximate rate of savings in the U.S. (Jones, 2002)
and assuming that § = 0.4 as in HP (2002), this implies @ = 0.5. This means
that half of all earnings are spent on Solow goods, i.e. manufactured goods. This
prediction also implies that 30% of earnings are spent on childcare, which includes
expenditures on food. All we can say at this point is that our model is consistent with
historical data if 30% of earnings are spent on childcare, so that is the prediction of
the model that remains to be verified. In the remainder of this paper we will assume

that equation (57) holds, i.e. that nominal earnings are equal to real earnings.

(U.S., Canada, Australia and New Zealand) which had growth rates above 1% per annum during
the twentieth century. However those rates were heavily influenced by immigration. At the low end
of the range we have Germany and the U.K., each with growth rates of about 0.36% per annum.

13 According to Maddison data, the growth rate of real per-capita income during the twentieth
century was 1.9% for the U.S. and 1.88% for Western Europe.

14The food prices represent the terms of trade between agriculture and industry, and is courtesy
of R. Allen, Oxford University. A price series published by O’Brien (1985) shows similar trends
between 1500 and 1830, but does not cover the period prior to 1500.
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Equation (52) also predicts that p; should grow at the same rate as income in the
modern era. Recall that the Malthus sector is responsible for the production of
children (see equation 33). In the modern era the main cost of children-rearing is
the cost of labour (or the opportunity cost of not working), which also rises with
income. So this prediction appears to be in accordance with observation, provided

that we interpret the Malthus sector as including a child-care component.

Assuming 6 = 0.4, equation (53) predicts that the rate of deflation of the price of
capital goods should be 50% higher than the rate of growth of earnings (in both

regimes). This prediction remains to be verified against historical data.

Finally, we can test the prediction that wages in terms of food rose through the
Industrial Revolution, as implied by equation (56). Using the population growth
rates listed above (and remembering to scale them up by the factor of 35), we have

the prediction
yafter
F _
before 117
F

According to Broadberry (1997, Table 2) the average grain-wage in England between
1550 and 1700 was 5.23 kg of wheat per day. That rose to an average of 8.6 kg of
wheat per day between 1800 and 1849, which implies a ratio of 8.6/5.23 = 1.64. The
empirical ratio is greater than 1 as predicted by the model, however the magnitude

of the empirical ratio is larger than the predicted ratio.

4.3 Simulating the Model

In order to extract further predictions from the model we must resort to numerical
simulation. The first task is to choose parameter values. There are nine parameters,
which are listed in Table 1. As mentioned in the previous section, we choose § = 0.2
based on Jones (2002) and 6 = 0.4 based on HP (2002). The latter implies a labour
share of 0.6 in the Solow sector. We also set the labour share in the Malthus sector
to be equal to 0.6 (¢ = 0.6), consistent with HP. We assume a = 0.5 as per the

discussion in the previous section.

HP assume that the capital share in the Malthus sector (¢) is 0.1. We have been
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unable to reconcile that value with a 10-fold increase in the population growth rate
over the Industrial Revolution. Instead we have landed on ¢ = 0.04, based on the
following reasoning. First we set £ = 1, which means that a percentage increase in a
component of gross capital, either Malthus or Solow, leads to the same percentage
increase in productivity of that component. We then set the ratio of equation
(49) to (50) equal to 10, as implied by the population growth figures listed in the
previous section. Solving, we obtain ¢ = 0.04. To satisfy the requirement that the
denominators of (49) and (50) are positive we must have £ < 1.174, hence £ = 1
is acceptable. The resulting value of ¢ (0.04) is lower than that used by HP (0.1),
consistent with our idea that there is a missing labour-intensive child-care sector in

the present model.

Next, we calibrate gy to the growth rate of population in the modern era using
equation (50), resulting in go = 0.004 per annum. We also set g, = 0.004 per
annum. This value has no impact on the behavior of the model other than dictating
the speed of the Industrial Revolution. Finally, we arbitrarily set v = 0.5, which

has no consequence for model behavior. We are now ready to simulate the model.

In order to run the simulation, we must solve a set of recursive-algebraic equations
at each time step, consisting of two recursive equations, (47) and (48), coupled to
the algebraic constraints (15), (16) and (43)-(45). In addition, the productivity
parameters evolve according to equations (36) and (37), while the elasticity of sub-
stitution increases as in (42), being the ultimate driver for the changes in the system
dynamics. Note that we choose the starting time of our simulation so that o =1 at
t = 1780, coinciding with the Industrial Revolution but this choice is arbitrary and

simply shifts the results in time.

We now introduce two new variables so as to derive a solution algorithm. These

variables represent the fraction of population in the Solow sector

Ny

Tt N, (58)
and the fraction of capital in the Solow sector
K

= . 59

Kt K, ( )



At the beginning of each time step, we know the values of Ay, Agy, Ny and K;. In
order to determine those quantities at time ¢ 4+ 1 using (47) and (48), we need to
know 1, p; and ¢;. We note that y; can be obtained from 7; and k; using equation
(16). Hence, we need to solve the model equations for n;, x, p; and ¢;. The price of
capital ¢; can be expressed in terms of p; using (24). The price of Malthus output

pe can in turn be obtained from 7, and k; using (15) in the form

OGN0+ (1 — k)1 ?
Pt(’itﬂ]t) = : 0 : ( tz_g . (60)
K, (1 —me)rhsy
We can also write x; in terms of n; by dividing (15) by (16) to find
E(n:)
with B = =90 Hence, we have just one remaining unknown: 7, which can

d(1-0)(1—n¢)
be computed by solving the following equation, derived from (8), (16) and (45):

= 0.

(62)

A nonlinear root search technique must be used to find 7. In the above equation,

the quantity z%,, can be expressed in terms of the other quantities, using (25).

The initial values Ky, Ng, Ay and Agy are arbitrary. The initial value of EoS is

0.01. We then let the system evolve according to the scheme described above.

The resulting growth patterns are shown in figures 1-3. Figure 1 shows the assumed
evolution of oy, starting at the value of 0.01 and growing at the rate of 0.4% per
year. As can be seen in figure 2, after an initial period of adjustment, population
and real earnings grow slowly and steadily until ¢ reaches the value of one. For
o > 1, population and real earnings grow much faster but still roughly at a constant
rate. This transition occurs within a few time steps, equivalent to about 150 years.

The growth rates of population and real earnings are shown in figure 3. The main
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observation is that the growth rates appear to settle to constant values for o < 1 and
for 0 > 1. There is an order-of-magnitude increase in growth rates as the elasticity

of substitution surpasses one, which can be interpreted as an Industrial Revolution.

As a check, we note that the growth rate of real income peaks at 1.9% per annum and
then settles out to 1.8% per annum, close to the empirical value of 1.9% as discussed
in the previous section. As explained in the appendix, the growth rates of earnings
are the same as the growth rates of GDP per capita. It should be noted that in
the simulation exercise the growth rates had not yet reached their asymptotic limits
before the Industrial Revolution. If we allow the growth rates to converge to their
theoretical values before the Industrial Revolution (e.g. by setting oy to a smaller
value), the growth rates overshoot quite a bit after the Industrial Revolution (see

figure 5).

This is only one specific example. A crucial result of our numerical study, however, is
that for any set of realistic parameter values, we find an order of magnitude jump in
growth rates as o exceeds one. Moreover, the growth rates are nearly independent of
o for o < 1 and o > 1. These results are consistent with the view that the Industrial
Revolution was a sudden event when placed against the backdrop of recorded history.
Even though innovation occurred over many centuries, the growth rates remained
small (and nearly constant) until a crucial piece of innovation pushed o passed one.

In this sense, one can think of the Industrial Revolution as a phase transition.

4.4 Further Tests of the Model

According to the simulation results (using parameters as calibrated above), the
model predicts a structural transformation away from the Malthus sector to the
Solow sector. The predicted fractions of population employed in the Solow sector

before and after the Industrial Revolution are
nbefore — 55%7 7 nafter — 71%’

which implies that 45% of the population is employed in the Malthus sector prior
to Industrial Revolution, and that fraction drops to 29% after the Industrial Revo-
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lution.

Given the difficulty in determining the composition of a Malthus sector in modern
times, we concentrate on comparing to empirical data up the the 19th century.
According to Allen (2000, pgs. 8, 9), the average percentage of labour employed in
the agricultural sector between 1300 and 1700 was 69%. Hence our prediction of
45% seems to be off the mark.'

According to Crafts (2001, Table 2), the share of agricultural employment in England
in 1820 was 35%, dropping to 22.7% in 1870 and 11.8% in 1913. These figures can
be compared to our prediction of 29%. The implication is that our model best

describes the early part of the Industrial Revolution and not the latter part.'®

As a further test of the structural transformation, we compute the share of GDP

attached to the Malthus sector using the following formula:

_ P Y (1 — o(1 — 54)) + Ysi0s,
DYt + Yo

, (63)

SMt

where §
o Pt gy
St = o ox
P+ Ty
Here s); is the share of Malthus output in total GDP excluding the component of
Malthus capital rent supporting Solow input to capital, and including the component
of Solow capital rent supporting Malthus input to capital. The quantity s; is the
percentage of capital rent that is flowing to the Malthus sector. The simulation

exercise predicts (figure 6) that sy, drops from 55% to 20% over the course of

5However as Weisdorf (2006) has pointed out, during the preindustrial era agricultural workers
spent a large fraction of their time producing non-agricultural goods such as clothing. Hence the
empirical estimate of 26% may not completely reflect the extent of labor allocated to industry.
Prior to industrialization, farming communities were largely self-sufficient. It was only after indus-
trialization that farmers devoted their entire working hours to agricultural production and traded
their produce for manufactured goods.

16Two caveats should be noted. First, our model treats the economy as self-contained and
closed to external trade. However, this is far from representing the British economy in the later
nineteenth century, being embedded in the globalized trading system of the British empire. For
example, agricultural goods were imported, displacing some of the employment in the agricultural
sector. Also, as suggested previously the Malthus sector should ideally include a child care sector
as well as an agricultural sector. The observed large drop in the share of agriculture in the late
nineteenth century does not necessarily imply a large drop in the share of the Malthusian sector.
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the Industrial Revolution. According to Broadberry (2010, Tables 16 and 20), the
share of GDP devoted to agriculture in England was 42.4% in 1381, dropping to
28% in 1700 and further dropping to 22.1% in 1841. The last figure is in line
with our model results, but the figure of 1381 is low in comparison with our model
prediction. Nevertheless our model predicts a structural transformation that is

roughly consistent with historical data.

Using equation (27) the interest rate in the two regimes is
Z‘before = 1.4% 7 iafter — 80%,

exhibited in figure7. The direction of this prediction is counter-factual (Clark,
2007) but is consistent with Hansen & Prescott (2002) and is really an artifact of

the assumed model of preferences.!”

Figure 8 shows the paths of prices p and ¢. Figure 9 shows the path of productivities.
It is important to note that according to figure 9, the productivity of the Solow sector
does not take off until after the Industrial Revolution. This is in contrast to the HP

paper which posits a rapidly growing Solow sector at all times in history.

An interesting story can be obtained by studying figures 8 and 9. In the preindustrial
epoch both Solow output and Malthus output are required components of capital.
This is reflected by near identical (and small) growth rates for the Malthus and
Solow productivities, ga,, and gay, before the Industrial Revolution. After the
Industrial Revolution substitution became easier. While g4,, remains between half
a percent and one percent during the entire simulation, g4, increases to near 3%,
almost an order of magnitude larger than g4,,. The reason for this divergence is
as follows. As it becomes easier to use Solow material as a component of capital
to replace Malthus material (e.g. steam replacing horses), the productivity of the

Solow sector starts to accelerate due to learning-by-doing effects. This causes the

17A small modification of the model might suffice to reverse this result: the parameter 8 could
be made an increasing function of time (increasing savings rate). This modification would have
no effect on the growth rates of Ny or y; but would affect the path of real earnings. One might
also wish to move away from the assumption that land is free. Rural inhabitants could earn land
rents in retirement whereas urban inhabitants could not, spurring a higher rate of the saving in
the Solow sector.

27



price of Solow material to drop rapidly (p; accelerates upwards), implying more and
more of a shift from the Malthus sector to the Solow sector, spurring even greater
learning-by-doing effects in the Solow sector, etc. This positive reinforcement cycle
leads to the Solow sector taking over from the Malthus sector in the construction
of capital goods. The end results is a lower price of capital, which also boosts the

agricultural sector.

5 Summary and Discussion

The model presented above is consistent with the historical fact that between 1800
and 1900 the rates of growth of population and real earnings increased markedly in
the western hemisphere (Maddison, 2007). The following predictions of the model

are roughly confirmed by historical data:

1. The growth-rate of income in the preindustrial era is about 0.19% per annum.

2. The price of food expressed in non-food terms is increasing in the preindustrial

era at the about the same rate as income.

3. The level of earnings expressed in food terms increases over the course of the

Industrial Revolution.

4. There is a structural transformation during the Industrial Revolution away

from agriculture towards industry, as measured by employment share and
GDP share.

The one true failure of the model is the predicted rise in interest rates over the
course of the Industrial Revolution, which is also a failure of the HP model. Several

other predictions of the model require empirical verification. These are:

1. The budgetary share for childrearing in both the preindustrial and modern
eras is 30%. The cost of childrearing grows in tandem with earnings at all

times.
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2. The rate of deflation of the price of capital goods is 50% greater than the rate

of growth of income in both the preindustrial and modern eras.

We can now identify the model’s shortcomings and suggest possible improvements.

First, it is worth pointing out a theoretical limitation of the model. It has been
assumed that individual preferences are not influenced by the kind of factors that
have been used, for example, in the unified growth models of Galor & Weil (2000)
and Galor & Moav (2002). Human capital does not enter into the model, and there is
no trade-off between quantity of children and quality of children. Hence, our model
cannot account for a decline in fertility after the Industrial Revolution. Our fertility
model is “Malthusian” at all times. Despite this restriction, the fertility model does
provide a mechanism by which real earnings could rise after industrialization without
a corresponding explosion in population. The presence of two sectors allows for
the taming of population growth because the consumption of manufactured goods
coincides with a rise in the cost of childrearing. One of the contributions of this
study, therefore, is to suggest that growth-theorists might simplify their models
of the demographic transition by introducing a second sector. For example, one
could add a human capital or educational element tied to childcare to the present

two-sector model.

Adding a labour-intensive child-care component to the present model might also
help to better reconcile its predictions of employment weights with historical data
and to reconcile the small capital share in the Malthus sector (4%) with the share
of agriculture often used in these types of studies (e.g. 10% in HP). It would also

assist in the interpretation of the price of Malthus output p; in the modern era.

The model predicts that real interest rates rose during the Industrial Revolution,
which is counter-factual. This failure is also present in the HP model. Possible
remedies include having a more sophisticated model of preferences and assigning a

non-zero value to land.

We should note that the model presented in this paper includes some restrictive
assumptions that could be loosened. For example, the exogenous growth rates are
assumed to be the same in the Malthus and Solow sectors. However, there may be

good historical reasons to believe that innovation occurred faster for manufactured
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goods than for agricultural goods. The workings of manufactured items might well
have been understood by our ancestors, but the inner workings of agriculture goods
such as horses were undoubtedly a complete mystery (physics came before biology).
The learning-by-doing spillover parameter could also be made higher in the Solow
sector than in the Malthus sector to reflect the tendency of industry to be located
in densely populated towns and cities. It would also be worth investigating whether

the growth of o could be made endogenous.

Finally, given the fact that the most important examples of substitution during the
Industrial Revolution were related to energy use and conversion, future empirical

work should include an explicit energy component.

In conclusion, this paper has described a unified growth model based on Wrigley’s
thesis that a key enabler of the Industrial Revolution was a shift in the source of raw
materials from agriculture to industry (Wrigley, 1988, 2010). The main contributions
of the paper are as follows. First, we have demonstrated the benefit of working with
two sectors in developing a unified demographic model. Second, we have shown that
Arrow’s learning-by-doing model allows one to link an increase in the growth rate of
productivity to an increase in the share of capital. Finally, we have proposed that
the elasticity of substitution between industrial output and agricultural output was
slowly rising over history, and that once it reached the critical value of one, there

were simultaneous agricultural and industrial revolutions.
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A Appendix

This appendix contains a mathematically rigorous derivation of the analytical ex-

pressions for the growth rates.
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A.1 Analytical Derivation of Growth Limits

Substituting the exponential time dependencies, e.g. y; ~ €%, into the equations
of our model, we can obtain several relations that are independent of o;, and hence

valid in both regimes 0 < 1 and ¢ > 1. Balancing terms in (47), we see that

9y = Yp- (64)

The above result is consistent with a constant population growth rate gy (see equa-
tion (33)). From (16), this result implies that

bgx = (1 — p)gn- (65)

The same equation also yields

Gy = 0(9x — gn)- (66)

Substituting (65) into (66) leads to

0
9y = 5(1 — 1= @)gn, (67)

implying that the ratio of the growth rate of nominal earnings to the growth rate

of population is the same before and after the Industrial Revolution.

We can now derive an expression relating the growth rate of real earnings to the

growth rate of population as follows. From (48) we have

9K = Gy + 9N — Y- (68)

This, when combined with (66), implies that

1—-6
9q = _Tgy- (69)
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Substituting this result along with (64) into (34), we obtain

B
Gyr = (a + 7 )9 (70)
Combining the above result with (67), we finally find

o — (1—p— Z)(Oﬁ + ”B>gN. (71)

Hence, the ratio of the growth rate of real earnings to the growth rate of population

is the same before and after the Industrial Revolution.

Given the relationship between the real earnings growth and population growth, we
can now concentrate our attention on deriving expressions for gy before and after
the Industrial Revolution. Combining (69) and (67), we have

gN = — ¢ 9q-
(1—p—g)(1—6)""

(72)

So the task now is to determine g, (which must be negative).

Pulling Ag; out of the bracket in (24), we obtain

1 1 ptASt)_lpP | ’
= — ]_ — 1—p + I=p . 73
%= {( ) ( i, ot } (73)

Let us define psm := %. The simulation exercise revealed that in the case 0 < 1

Mt
(p < 0), where the Malthusian sector dominates, psm is larger than one but small.

When o is small, p is large and negative, in which case the first term containing

psm in the curly brackets dominates over the second term and we have

Dt
qt ™ (7 )

Hence to determine the asymptotic growth rates before the Industrial Revolution,

we need to determine the difference in growth rates between p, and Ayy.

After the Industrial Revolution when ¢ > 1 (0 < p < 1), where the Solow sector
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dominates, psm approaches infinity. In that case, the second term in the curly

brackets dominates over the first and we have

1
qe ~ Ao’ (75)

So to determine the growth rates after the Industrial Revolution, we need only

determine g4,.

Figure 9 supports our assumptions that lead to equations (74) and (75), namely
that the growth of psm switches dramatically near ¢ = 1780, meaning near o = 1.
The growth in efficiency of the Solow sector, Ag, begins to dominate that of the
Malthusian sector, Ay, before the Industrial Revolution. However, it is only with
the Industrial Revolution that Ag, and likewise psm, begins to grow dramatically.

Therefore, our asymptotic derivations for ¢; above are consistent.

It should be noted that the growth rate of GDP per capita is the same as the
growth rate of earnings. There are two components of income: labour earnings and
investment income earned in retirement. Since we have an overlapping generations
model, the population of old retirees is a fixed multiple of the population of young
labourers. Hence to show that the growth rate of GDP per capita is equal to the
growth rate of earnings we need only show that the growth rate of price-deflated
capital per person is equal to the growth rate of earnings (recall that interest rates

are constant). This last statement follows from equation (68).

We will now analyze the two regimes, starting with the second.

A.2 The Industrial Revolution: ¢ > 1

We have the setting described by (75), namely

9q = —JAg- (76)
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We now need to utilize (37), rewritten as

*
Yer1 Nep1T541/ Qi
* )
Ztigt Yt NtixSti/qti

35945 = 35g0 +&ln |1+ (77)
where we have introduced the factor of 35 since a time step corresponds to 35 years
and we wish to express all growth rates in annualized terms. The trick now is to

write the sum as a geometric series, which the sum approaches asymptotically

1 — e(-)(+1)

% 35(gy+gn+9u.%,—9a)ti _
ZytiNtixSti/qti —>Ze PTINTEes = 1ol

t;<t t;<t

(78)

where the dots represent g, + gy + g2z — g4- Note that the initialization constants
cancel in the above expression. The logarithm simplifies dramatically as t — oo and
(77) becomes

9as = 9o +&(9y + gn + guz, — 9o)- (79)
From (26) we find that
ISt (Asq) TP = 1 (80)
Gt

since the assumption was that ¢ ~ 1/Ag,. Hence, there is no p dependency and

9q = Yuy- Accordingly, (79) simplifies to

gas = 9o +&(gy + gn). (81)

Starting with (72) and (76), in (81) we can express g4, in terms of gy and substitute
(67) for g,, yielding

after gJo
g =15 : (82)
" LR 0(1 4 6)] — ¢

The above formula gives a population growth rate that matches numerical results
very well, given sufficient simulation time. Analytical expressions for all other
growth rates, e.g. g,r, follow immediately by successive substitution into the previ-

ous equations.
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A.3 Before the Industrial Revolution: o < 1

The same type of analysis can now be applied to the Malthusian case

Pt
G Anre’ (83)
Similarly, we end up with
9ar = 90+ &(9y + 98 — 9p), (84)
leading to
before go
IN' T =1 — . (85)
EEEA - p=0) + (1= =0 — ) + (141 - p) 52 ¢

Again, it matches numerical results very well when enough time is allowed for the

system to evolve for constant, small o.
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Parameter | Value
9o 0.004
o) 0.5
o4 0.2 (Jones, 2002)
ol 0.5
o 0.6 (Hansen & Prescott, 2002)
[0} 0.04
(o) 0.01
6 0.4 (Hansen & Prescott, 2002)
13 1.0

Table 1: Parameters used in the simulation exercise.
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Figure 1: The elasticity of substitution, o, grows exponentially with time, starting at
oo = 0.01 and ending at 0 > 1. We have shifted the values of the time azis in all figures
so that 0 = 1 at t = 1780 years, marked by a wvertical line. The dividing line roughly
corresponds to the start of the Industrial Revolution in England.
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Figure 2: Population, real earnings and earnings in terms of food as a function of time,
normalized by their respective values at tg = 620. At t = 1780, equal to 33 time steps,

o passes one. Around this point in time we can clearly observe a transition in dynamics
between two growth regimes.
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Figure 3: Growth rates of population, real earnings and earnings in terms of food versus
time. After a rapid initial adjustment (t < 800) when the full growth model is switched
on at tg = 620, the population growth rate is nearly constant while the growth rate of real
earnings converges from above to a constant value. However, as o approaches one and
eventually passes through one, these small growth rates change by an order of magnitude.
In contrast, the growth rate of earnings in food terms increases from zero only temporarily
during the transition between the two regimes. The transition occurs within about four to

five generations, equivalent to 150 years.
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Figure 4: Population, real per-capita income and the relative price of food (a proxy for
pt) for England, 1270-1879. Population and income data is from Broadberry et al. (2010).
Food prices are in terms of non-food items (e.g. manufactured goods) and are courtesy of
Robert Allen (Oxford University; personal communication). All series are normalized to
the value of one in the year 1270.
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Figure 5: Growth rates of population and earnings versus time when the rates are allowed
to reach their asymptotic values before the Industrial Revolution.
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Figure 6: Share of the Malthus sector in GDP, equation (63), versus time.
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Figure 7: Annualized interest rate, equation (27), versus time.
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Figure 8: Food prices grow at two distinct rates before and after the Industrial Revolution,
spurred by a jump in the population growth rate. The price of capital makes a sudden

turn downwards after the Industrial Revolution, spurred by learning-by-doing in the Solow
sector.
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Figure 9: Growth rates of Solow and Malthusian efficiencies, gas, and ga,,, and growth
of psm in equation (73). Remarkably, the efficiency of the Solow sector, Ag, already begins
to dominate that of the Malthusian sector, Ay, ahead of o = 1. However, this does not

—growth rate of AS: g A,
- .growth rate of AM: gAM

growth rate of psm:

gp+gAS_gA

M

-y

-
oy
(. -
L TN

PR N R AR |
v

1500
time

2000

contradict our asymptotic analysis of q:, reflected by psm.

48

2500



	Introduction
	Malthus to Solow via Arrow
	The Model
	Production
	Capital
	Preferences
	Productivity Growth
	The Equilibrium Path

	Model Predictions and Tests
	Analytic Solutions
	Tests of the Analytic Solutions
	Simulating the Model
	Further Tests of the Model

	Summary and Discussion
	Appendix
	Analytical Derivation of Growth Limits
	The Industrial Revolution: >1
	Before the Industrial Revolution: <1


