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Abstract 
 

This study theoretically presents a new auction design called "take-or-give auction." Unlike in basic 

auction, the take-or-give auction imposes new rules which the bidders compete for their desired allocation 

of the object. The auction solves the free-rider problem when applied to an object with countervailing-

positive externalities. It is efficient. Moreover, by adding more rules including entry-fee rule, no sale 

condition and pooling rule, the extended take-or-give auction is the revenue-maximizing auction. 

 

1. Introduction 
 As found in the previous literature, the basic auctions -- first- and second-price sealed-bid 

auctions -- for an object with positive externalities are most likely to fail for efficient allocation or 

revenue maximizing since the existence of free-rider problem (Jehiel and Moldovanu, 2000; Bagwell, 

Mavroidis and Staiger, 2007). This study proposes a new auction "take-or-give with second-price 

payment" that solves the problem. The analysis shows that the new auction is efficient and its extended 

version maximizes expected revenue. 

 Unlike in the case of normal object which a bidder who does not obtain the object (or non-

obtainer) gains zero payoff, in the case of positive-externalities object he indirectly gains positive payoffs 

as positive effects from the obtainer's consumption. In this study, I study countervailing positive 



externalities which is a special case. The countervailing positive externalities is a kind of type-dependent-

positive externalities which the effects on non-obtainer negatively relate with his type, which represents 

the payoffs gained if he is the obtainer. Precisely, the higher type is the more payoffs if being the obtainer 

but the less positive effects (or the less payoffs) from the obtainer's consumption if being a non-obtainer. 

For instance, Figure 1 (on the right) graphically presents the utility function on a countervailing-positive-

externalities object which a bidder has increasing utility in his type if being the obtainer; but decreasing if 

other player is the obtainer and he is a non-obtainer; while if nobody obtains the object (or the seller 

keeps it) he gets zero payoff as status quo. Notice that the non-obtainer's utility is positive for any type 

because of the positive externalities. To compare the differences, Figure 1 presents the utility function on 

a normal object (on the left) and an object with non-countervailing positive externalities (in the middle). 

 The following exhibit can be a good example for the countervailing-positive-externalities object. 

Think of two adjacent towns -- A and B -- competing for a new airport to be built in one town. Precisely, 

the government has a budget to build one airport in town A or B. The town bares no cost of building the 

airport but bares the maintenance costs of tourist attractions. Each town has its own number of tourist 

attractions which is exogenously given by nature (e.g. by geography of the town). The number of 

attractions represents the town's type. In the airport town (the town which obtains the airport), there will 

be economic boom which the more attractions the more profit (or payoffs) is gained (since the average 

revenue per attraction is higher than the average maintenance cost) -- the obtainer has increasing payoffs 

in its type. In the non-airport town, since it is close to the airport town it will get quite substantial revenue 

from spillover effects of the economic boom. In other words, for any type of the non-airport town, the 

town always gets positive profit. Suppose that the economic boom provide fixed lump-sum revenue for 

the non-airport town. The non-airport town gets the highest profit when it has no attraction. While, given 

that the average maintenance cost is constant in the number of attractions, since the average revenue is 

decreasing in the number, the profit is decreasing as well. Therefore, in this exhibit the airport shows the 

countervailing-positive-externalities property. 1 

 Like the case of public good provision in which the contributor with low marginal benefits from 

his contribution -- or low type -- avoids contributing in the provision since he wants to do the free ride on 

others' contributions, in any basic auction the bidder with low type avoids participating to compete for the 

object with positive externalities since he wants to do the free ride on the obtainer's consumption. The 

main cause of such the failure is that, the basic auction sets the rules which the highest-bid bidder pays 

and obtains the object hence it does not provide proper incentives for low-type bidders who does not want 

to pay nor obtain it. Therefore, a new type of auction which solves the problem must be implemented. 

 The following in this article, it starts with reviews related literature (in section 2.), presents the 

model, numerical application and the revenue-maximizing target (in section 3.), presents the free-rider 

problem in second-price sealed-bid auction, the take-or-give auction, the take-or-give auction with 

revenue-enhancing rule I and the take-or-give auction with revenue-enhancing rule II (respectively in 

section 4-7.). Last section concludes. 

                                                           
1 We may mathematically express as  ( )     (where   is the total cost,   is the average variable cost per unit of 
attractions and   is type, or the number of attractions),   (   )       (where    is the total revenue of the 
airport town,   is the fixed revenue which and   is the average revenue per unit of attractions such that    ) and       (where     is the total revenue of the non-airport town and   is the lump-sum revenue from economic 
boom). 



no bidder obtainstype 

of i

utility of player i

i obtains

j obtains

or

no bidder obtains type 

of i

i obtains

utility of player i

j obtains

utility of player i

i obtains

type 

of i

no bidder obtains

j obtains

 

Figure 1 Utility Function for a Normal Object (on the left), an Object with Non-Countervailing-Positive Externalities (in the 

middle) and With Countervailing-Positive Externalities (on the right) 

2. Literature Review 
 Related to this study, Jehiel, Moldovanu and Stacchetti (1996), Jehiel and Moldovanu (2000), 

Bagwell, Mavroidis and Staiger (2007), Brocas (2007) and Chen and Potipiti (2010) are interesting 

literature which is related with auction design for an object with externalities. Moreover, Lewis and 

Sappington (1989) relates since this study deals with countervailing-positive externalities and 

countervailing incentives. 

 Jehiel et al. (1996), Jehiel and Moldovanu (2000) and Brocas (2007) studied various cases of 

negative externalities -- a non-obtainer gets negative payoffs from negative-effect consumption of the 

obtainer. Jehiel et al. (1996) and Brocas (2007) shared the similar feature of finding revenue-maximizing 

auction. In their optimal auctions, they provided two interesting discussions. First, the optimal auction 

should have rules which put threats on nonparticipating bidders to get the lowest possible payoffs; as 

consequences, all potential bidders will participate in the auction and the seller will get higher expected 

revenue. In the case of negative externalities, the rule is to promises selling the object to some 

participating bidders; hence a nonparticipating bidder will always get negative payoff. Even in the case of 

normal object -- without externalities -- where the revenue-maximizing mechanism shown in Myerson 

(1981) is the second-price sealed bid auction with reservation price, it puts the same rule that some 

participating bidders always obtain the object; hence nonparticipating bidders always get the lowest 

possible payoff at zero payoff as status quo. 

 Second, in the case of negative externalities, the studies found that the seller can extract non-

obtainers' surplus; in other words, in the optimal auction the non-obtainers pay some amount. Precisely, 

since the non-obtainers have incentives to pay for preventing selling the object, the seller can extract 

surplus (from payment) from them. For instance, if a bidder gets -6$ when being non-obtainer and gets 0 

payoff when nobody being obtainer, he is willing to pay up to 6$ to convince the seller to keep the object. 

 According to the second discussion, Jehiel and Moldovanu (2000) argued that collecting payment 

from any non-obtainer the rule is incredible. Hence, the study studied standard auction which has only 

reservation price and entry fee as its credible rules. However, the standard auction is not an optimal 

auction. 

 In the case of positive externalities, Jehiel and Moldovanu (2000), Bagwell et al. (2007) and Chen 

and Potipiti (2010) concerned the case. Jehiel and Moldovanu (2000) studied second-price sealed bid 

auction and Bagwell et al. (2007) studied first-price sealed bid auction. They found same problem -- the 



free-rider problem --occurred in the case of positive externalities. It makes the seller gets less expected 

revenue since some low-type bidders avoid participating. There has been no study solving the problem.  

 Chen and Potipiti (2010) studied the optimal auction in the case of countervailing-positive 

externalities under direct-mechanism setting. It found interesting points as follows: 

 i) The optimal mechanism selects the binding type -- the type which get zero utility (as status 

quo) from the mechanism -- interiorly. Precisely, unlike the case of normal object where the binding type 

is the lowest type, the binding type in the study is in between the lowest and highest types. Figure 2 

presents the expected payment and allocation in the optimal mechanism of the study. The binding type is       which is interior.  

 ii) There are some types around the binding type are pooled together with the binding type. As 

presented in the figure, ( ̂  ̂̂) is the pooling region. Hence, a bidder with any type in the region has the 

same expected payment. Also, in the case of two bidders studied by the study, if both bidders have types 

in the region, each bidder has 0.5 chance of being obtainer; this is the consequence of pooling 

characteristics.  

 iii) The optimal mechanism provides countervailing incentives.2 As a consequence, as presented 

in the figure, the expected payment is non-monotonic in type. 

 iv) In the optimal mechanism, if payoffs of bidders are high enough, all types have some expected 

payment and there is no chance of not selling (see Figure 2 on the right). The results imply that there is no 

free-rider problem and bidders always participate in the auction. 

 Moreover, like Chen and Potipiti (2010), Brocas (2007) also showed in the case of negative 

externalities that under some circumstances the optimal auction provided countervailing incentives by 

selecting the interior binding type and pooling its neighbors. Lewis and Sappington (1989), which studied 

principal-agent problem with existence of externalities, found the similar results. 

 Even Chen and Potipiti (2010) successfully characterized the optimal auction for an object with 

countervailing-positive externalities, since the study was conducted under the direct-mechanism setting, 

the study did not show that what the practically implementable auction should be. Hence, this study aims 

to extend from the study by proposing practically implementable auction for an object with 

countervailing-positive externalities. 

                                                           
2 Lewis and Sappington (1989) defined that "countervailing incentives exist when the agent has an incentive to 
understate his private information for some of its realizations, and to overstate it for others." As a consequence, "the 
agent's rents generally increase with the realization of his private information over some ranges, and decrease over 
other ranges." 
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Figure 2 Expected Payment and Allocation of the Optimal Mechanism. 

3. The Model, Numerical Application and Revenue-

Maximizing Target 
 In this study, it applies the same model as in Chen and Potipiti (2010) for the case of 

countervailing-positive-externalities object. There are two risk neutral and symmetric bidders   *   +. 
They compete in an auction for an indivisible object with countervailing positive externalities. The object 

has no value to the seller. 

 Denote       and     as the index of bidder. Bidder i's type    is randomly drawn from   [   ] with distribution function   and its associated density function   which  ( )    for all    . 

As presented in Figure 3, his payoff    which depends on his type    and the ex-post outcome is defined 

by 

  (  )  {  (  )                      (  )                                                                                  ( ) 
where       and     is high enough to make  ( )  ( )    for     . Assume that     which 

yields a solution  (  )   (  ) (Assumption 1). 

ASSUMPTION 1  

      and there is a solution  (  )   (  ). 
 To be able to compare expected revenue from auctions in the following analyzes with the optimal 

target, this study also takes the same numerical application from Chen and Potipiti (2010). The 

application was set for the case of selling retaliation rights in the WTO. 

 In the application, an exporter violated WTO agreements, hence WTO allow another country 

which is a trade partner with the exporter to retaliate (e.g. increasing tariffs), or retaliation rights. Under 

some reasons, the trade-partner country does not want to implement the retaliation rights by itself. It 

wants to sell the rights (hence, it is the seller) to other trade-partner countries which are assumed to be 

two countries (hence, they are the bidders). The seller set an auction to sell the rights. The rights obtainer 

will implement it which positively affects the non-obtainer at some levels (e.g. changing the domestic 

price). 
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Figure 3 Bidder's Utility Function. 

[  
   
           ( )      ( )            ( )                    ]  

   
                                                                  ( ) 

 For the details of the application, this section refers readers who are interested to Chen and 

Potipiti (2010). Here, as presented in (2), it simply and numerically presents the final variables equivalent 

to the model (1).  

 Under the application specification, Chen and Potipiti (2010) also derived for the optimal 

revenue. It is the revenue-maximizing target which we will compare it with the expected revenue gained 

from other auctions in the following sections. The revenue-maximizing target     is also presented in 

(2). 

 

4. Free-Rider Problem in Second-Price Sealed-Bid 

Auction 
 To complete showing the free-rider problem, this section analyzes for the symmetric-equilibrium 

strategy in the second-price sealed-bid auction for an object with countervailing-positive externalities. In 

the second-price sealed-bid auction, bidder i has his strategy (     ) where    *   + is the decision to 

participate (    ) or not (    ) and      is his bid. Here, we are interested in the symmetric-

equilibrium strategy which          and         . The symmetric-equilibrium strategy (     ) 
is presented in Proposition 1. 

 

 



PROPOSITION 1   ( )  ,        [   ̃)        [ ̃  ]     ( )  ,         [    ) ( )   ( )       [    ] 
 where  ̃     and  ̃ solves   ( ̃)   ( ̃)    ( ( ̃)   ( ̃))  ( (  )   ( ̃))                                   ( ) 
Proof: See Appendix A.1. 
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Figure 4 Symmetric-Equilibrium Strategy and Allocation in Second-Price Sealed-Bid Auction. (no = no obtainer, i = i 

obtains, j = j obtains, i&j = each bidder has 0.5 chance of being obtainer) 

 According to the proposition, Figure 4 presents symmetric-equilibrium strategy (on the left) and 

allocation (on the right) in second-price sealed-bid auction. On the left, Y-axis is bid, X-axis is type and 

the line under X-axis notifies participating (P) or not participating (N) at each corresponding type. On the 

right, X and Y axes are types of both bidders. 

 The equilibrium strategy shows the existence of free-rider problem. Precisely, the free rider is a 

bidder with type   [    ) who gets higher utility from being non-obtainer  ( )   ( ) from being 

obtainer. He avoids participating in the auction (for type    [   ̃)) or participating with zero bid (for 

type    , ̃   )).  The type  ̃ is the type which feels indifferent between not participating or 

participating with zero bid. 

 Next, we compare the expected revenue of the second-price sealed-bid auction with of the 

optimal target     in (2). According to the proposition, the expected revenue of the second-price sealed-

bid auction     is 

      ∫ ∫ ( ( )   ( ))  ( ) 
    ( ) 

    



By applying the numerical application in (2), it gets      . Hence,                  . The second-

price sealed-bid auction is not the revenue-maximizing auction.3 

 

5. Take-or-Give Auction with Second-Price Payment 
 This section proposes a new auction called "take-or-give auction with second-price payment." It 

is the efficient auction for an object with countervailing positive externalities (Corollary 1). In this 

section, it starts with simple illustration under two discrete types and perfect information. In the 

illustration, the rules of the new auction are discussed and informal analysis shows that the auction fixes 

the free-rider problem. Then, section 5.2. analyzes for the symmetric-equilibrium strategy in the auction 

and compares the expected revenue with the optimal target. 

 

5.1. Simple Illustration 
 Since any basic auction fails to be optimal since it does not provide the proper incentives for 

bidders who have utility from being non-obtainer  ( )   ( ) from being obtainer, the free-rider 

problem happens. Hence, this study proposes a new auction which can fix the problem by providing the 

proper incentives -- allowing the highest-bid bidder select for himself his desired allocation. In other 

words, instead of always obtaining the object, the new auction lets the highest-bid bidder chooses whether 

to take the object and be the obtainer or to give the object to his opponent and be the non-obtainer. The 

new auction is "take-or-give auction with second-price payment." 

 The take-or-give auction allows each bidder submit a doublet which composes of bid and the 

demand of allocation of the object. The demand can be either to take and be the obtainer or to give his 

opponent the object (for free as a gift) and be a non-obtainer. 

 The payment is the second-price payment conditioned on their demands. Precisely, if both 

bidders submit the same demand, the highest-bid bidder pays his opponent's bid as the second price. Or if 

both bidders submit different demands, they pay nothing (as a zero reservation price conditioned on each 

demand). 

 The allocation is done as the highest-bid bidder's demand; if he demands to take then he obtains 

the object; if he demands to give then he gives his opponent the object. Note that he gives it as a gift, 

gives it for free; the receiver pays nothing, obtains the object and voluntarily decides whether to consume  

 

 

                                                           
3 For readers who are interested in more details about first- or second-price sealed-bid auction for an object with 
positive externalities, you are referred to Bagwell et al. (2007) and Jehiel and Moldovanu (2000) respectively. 
Especially, in Jehiel and Moldovanu (2007) you will see how the reservation-price and entry-fee rules affect 
behaviors in the auction. 



Table 1 Examples for Allocation and Payment Mechanisms in Take-or-Give Auction with Second-Price Payment. 

Scenario Strategies Allocation Payment 

1 

Both demand to take. 

Bidder i bids 10$. 

Bidder j bids 7$. 

Bidder i obtains. 
Bidder i pays 7$. 

Bidder j pays 0$. 

2 

Both demand to give. 

Bidder i bids 10$. 

Bidder j bids 7$. 

Bidder i gives. 

Bidder j obtains. 

Bidder i pays 7$. 

Bidder j pays 0$. 

3 
Bidder i bids 10$ and demands to take. 

Bidder j bids 7$ and demands to give. 

 

Bidder i obtains. 

 

Both pay 0$. 

4 
Bidder i bids 10$ and demand to give. 

Bidder j does not participate. 

Bidder i gives.  

Bidder j obtains. 

 

Both pay nothing. 

 

 

or not. Also, notice that optimally the receiver voluntarily consumes the object and the giver gets positive 

externalities.4 

 The Table 1 presents four scenarios as examples for allocation and payment mechanisms in take-

or-give auction with second-price payment. In the 1st and 2nd scenario, if the highest-bid bidder submits 

the same demand as his opponent's, he pays the second price and allocates the object as his demand. In 

the 3rd and 4th scenarios, respectively, if the highest-bid bidder submits different demand as his opponent's 

or his opponent does not participate, he allocates the object as his demand without payment. 

ASSUMPTION 2  

  If potential bidders know the auction rules prior to their participations, a credible 

 auction  can collect payment from participating bidders but cannot collect payment from 

 nonparticipating ones. 

ASSUMPTION 3 

  The seller can allocate the object to any nonparticipating bidder. 

 Notice that i) the auction can collect payment from non-obtainer but cannot collect it from 

nonparticipating bidder. According to Jehiel and Moldovanu (2000) which argued that collecting payment 

from non-obtainer the rule is incredible, this study differently puts that a credible auction can collect 

payment from any participating bidders (including both obtainer and non-obtainers) but cannot collect it 

from any nonparticipating bidders (Assumption 2); since all potential bidders know the auction rules 

before deciding to participate or not, their participations imply that they accept the rules and imply that 

they are willing to pay under some possible outcomes that they are non-obtainers.  

                                                           
4 The receiver voluntarily consumes the object since not consuming leaves him zero payoff while consuming yields 
him    . 



Table 2 Payoffs of Two Discrete Types Illustration. (     ). 

Type 
Payoffs when being the obtainer   

Payoffs when being the non-obtainer   
No obtainer 

High 

type 
    0 

Low 

type 
    0 

 

 ii) Unlike in the basic auction, in the take-or-give auction the seller can allocate the object to any 

nonparticipating bidders (without payment) (Assumption 3). As discussed in Jehiel et al. (1996) that in a 

feasible auction the seller could not allocate the object to a nonparticipating bidder, the take-or-give 

auction imposes differently. However, as discussed in Assumption 2, the auction is credible if the 

nonparticipating bidder gets the object without payment; hence in the take-or-give auction the seller can 

allocate the object to any nonparticipating bidders for free as giving as a gift. 

 Precisely, the take-or-give auction with second-price payment is processed in three steps as 

follows: 

 1. Each bidder submits his doublet of bid and demand (which is taking or giving). 

 2. The seller selects the highest-bid bidder's demand and allocates the object accordingly. If the  

  bids are tied, the seller prefers to allocate the object to a bidder who demands to take than 

  to give. 

 3. The highest-bid bidder pays equal to: 

  - his opponent's bid if they submit the same demand, 

  - or zero if his opponent submits different demand or does not participate. 

 Next, we apply the case of two discrete types and perfect information and analyze for the 

symmetric-equilibrium strategy in the take-or-give auction with second-price payment. Table 2 presents 

payoffs of high and low types conditioned on each ex-post outcome. To satisfy the countervailing-

positive-externalities property, assume      . 

 In the auction, bidder i has strategy (        ) which    *   + means that he participates 

(    ) or does not participate (    ) in the auction,      is his bid and    *         + is 

demand to take (       ) or demand to give (       ). Under the setting of two discrete types (as 

presented in the table) and perfect information, by symmetry, each bidder who has symmetric type 

(        *        +) submits his symmetric-equilibrium strategy in the take-or-give auction with 

second-price payment (           ) as presented in Proposition 2. 

PROPOSITION 2                     ( )  {                              
Proof: See Appendix A.2. 



 

5.2. Formal Analysis 
 This section formally presents the symmetric-equilibrium strategy in take-or-give auction with 

second-price payment. The equilibrium strategy (           ) is presented in Proposition 3. 

PROPOSITION 3            ( )  , ( )   ( )      [    ] ( )   ( )      [    )     ( )  ,          [    ]          [    )   
Proof: See Appendix A.3. 

 According to the proposition, Figure 5 presents symmetric-equilibrium strategy (on the left) and 

allocation (on the right) in take-or-give auction with second-price payment. The equilibrium strategy 

shows that the take-or-give auction fixes the free-rider problem; no bidder avoids participating and they 

bids according to their willingness to pay. Precisely, a bidder who has utility from being non-obtainer  ( )   ( ) from being obtainer (which   [    )) participates with demand to give and  ( )   ( ) 
bid as his willingness to pay, and vice versa. 

 Moreover, the auction is efficient (Corollary 1); since there is no chance of not selling and the 

highest-type bidder always obtains the object (see Figure 5 on the right). 

COROLLARY 1  

  Take-or-give auction with second-price payment is the efficient auction for an  object  

  with countervailing-positive externalities. 

 Also, notice that the take-or-give auction implicitly has the countervailing-incentive rule. The rule 

provides countervailing incentives which cause non-monotonic bid. The rule has revenue-enhancing 

effect. Previous literature which studied the optimal auction for an object with externalities also found 

that their optimal auctions provided countervailing incentives (Lewis and Sappington, 1989; Brocas, 

2007; Chen and Potipiti, 2010). 

 Next, we compare the expected revenue of the take-or-give auction with of the optimal target     in (2). According to the proposition, the expected revenue of the take-or-give auction      is 

       [∫ ∫ ( ( )   ( ))  ( )  
   ( )  

  ∫ ∫ ( ( )   ( ))  ( ) 
    ( ) 

  ]  
By applying the numerical application in (2), it gets      . Hence,          . It is higher than the 

expected revenue of second-price sealed-bid auction     but still less than the optimal target. Table 3 

compares the expected revenue among auctions. 
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Figure 5 Symmetric-Equilibrium Strategy and Allocation in Take-or-Give Auction with Second-Price Payment. (i = i 

obtains, j = j obtains). 

Table 3 Comparison of Expected Surplus of Take-or-Give Auction with Second-Price Payment. 

     

 

         

      

 

     
     

 

6. Take-or-Give Auction with Revenue-Enhancing 

Rule I: Entry Fees 
 In the previous section, the take-or-give auction for an object with countervailing-positive 

externalities solves the free-rider problem and is the efficient auction. However, it is not the revenue-

maximizing. As commonly known, the revenue-maximizing auction is most likely to be inefficient 

auction by imposing more revenue-enhancing rules. The seller does trade-off between the efficiency and 

revenue. 

 This chapter introduces entry-fee rule to the take-or-give auction. It is a revenue-enhancing rule 

which is mostly applied in the case of an object with externalities (Brocas, 2007). As will be presented in 

this section, the rule has exclusion effect which makes some bidders with low willingness to pay avoid 

participating. Hence, the auction with the rule is inefficient. However, it yields the expected revenue 

higher than the auction without it. 

 This section starts with simple illustration under two discrete types and perfect information (in 

section 6.1.). Section 6.2. analyzes formally for the symmetric-equilibrium strategy. 

 



6.1. Simple Illustration 
 This section applies two discrete types and perfect information to be analyzed for the symmetric-

equilibrium strategy in the take-or-give auction with entry-fee rule. Precisely, we call the auction "take-

or-give auction with second-price payment and entry fees." 

 Like in a basic auction, the entry-fee rule says that a bidder must pay the fee for participation. The 

rule can increase the expected revenue -- or revenue-enhancing effect -- but also increase the chance of 

not participating by some low-willingness-to-pay bidders; hence it decreases the efficiency of an auction. 

We call the effect "exclusion effect." 

 In the take-or-give auction with second-price payment and entry fees, the seller designs a menu of 

entry fees (           ) which a bidder pays         if he demands to give; or pays         if he 

demands to take. Notice that the entry-fee rule in this auction has two differentiated entry fees according 

to demand. It is different from the entry-fee rule in a basic auction that has only one entry fee. 

 The take-or-give auction with second-price payment and entry fees is processed as follows: 

 1. Each bidder submits his doublet which composes of bid and entry fee --       if he demands to 

  take or       if he demands to give. 

 2. The seller selects the highest-bid bidder's demand and allocates the object accordingly. If the  

  bids are tied, the seller prefers to allocate it to a bidder who pays       to      . 

 3. The highest-bid bidder additionally pays equal to: 

  - his opponent's bid if they submit the same entry fee, 

  - or zero if his opponent submits different entry fees or does not participate. 

 To give some examples of the allocation and payment mechanisms, Table 4 presents four 

scenarios in take-or-give auction with second-price payment and entry fees. In the 1st and 2nd scenarios, if 

the highest-bid bidder submits the same fee as his opponent's, he pays the fee and second price and the 

object is allocated as his demand which is specified with his fee -- demand to give with       and demand 

to take with      . In the 3rd and 4th scenarios, respectively, if the highest-bid bidder submits different fee 

as his opponent's or his opponent does not participate, he pays only the fee and the object is allocated as 

his demand. 

 The analysis here applies two discrete types as in previous chapters. Table 2 presents payoffs of 

each type. In the auction with entry fees, bidder i submits his strategy (        ) which    *   + means 

that he participates (    ) or does not participate (    ) in the auction,      is his bid and    {           } is the entry fee. For simplicity, assume               and      . 

 Under perfect information, by symmetry, each bidder who has symmetric type (        *        +) submits his symmetric-equilibrium strategy in the take-or-give auction with second-price 

payment and entry fees (              ) as presented in Proposition 4. 



Table 4 Examples for Allocation and Payment Mechanisms in Take-or-Give Auction with Second-Price Payment and 

Entry Fees. 

Scenario Strategies Allocation Payment 

1 

Both submit      . 

Bidder i bids 10$. 

Bidder j bids 7$. 

Bidder i obtains. 
Both pay      . 

Bidder i additionally pays 7$. 

2 

Both submit      . 

Bidder i bids 10$. 

Bidder j bids 7$. 

Bidder i gives. 

Bidder j obtains. 

Both pay      . 

Bidder i additionally pays 7$. 

3 
Bidder i bids 10$ and      . 

Bidder j bids 7$ and      . 

 

Bidder i obtains. 

 

Bidder i pays      .  

Bidder j pays      . 

 

4 

 

Bidder i bids 10$ and      . 

Bidder j does not 

participate. 

Bidder i gives.  

Bidder j obtains. 

Bidder i pays      . 

Bidder j pays nothing. 

 

PROPOSITION 4                               ( )  {                                
 where               and      . 

Proof: See Appendix A.4. 

 From the equilibrium strategy, notice that i) the exclusion effect makes the chance of not 

participating (N) in either type realization. Precisely, the probability of not participating 
   implies that the 

effect positively depends on the entry fee  . Because of the exclusion effect, there is .  /  chance that the 

seller keeps the object. Compared with the auction without the fees, it is inefficient.  

 ii) The entry-fee rule (at proper level) does not affect bidding behavior. Precisely, bidding 

strategy in equilibrium of the auction with fees      and of the auction without fees     (see Proposition 

2) are equal         . Also, iii) a bidder with high type has demand to take by submitting       and a 

bidder with low type has demand to give by submitting      . It is the same as in the auction without fees. 

 

6.2. Formal Analysis 
 This section formally presents the symmetric-equilibrium strategy in take-or-give auction with 

second-price payment and entry fees under continuous types and imperfect information. Then, it 

compares the expected revenue from the auction and optimal target. 

 In the auction, the seller designs (           ) and the auction rules as discussed in the previous 

section. The symmetric-equilibrium strategy (              ) is presented in Proposition 5. 



 

PROPOSITION 5 

    ( )  {       ( ̇  ̈)                 ( )  { ( )   ( )      [ ̈  ] ( )   ( )      [   ̇]       ( ̇  ̈)       ( )  {           [ ̈  ]           [   ̇]         ( ̇  ̈)    
 where    ̇      ̈    and  ̇  ̈ solves *        ( ̇)  ( ( ̈)   ( ̇))       ( ̈)  ( ( ̈)   ( ̇))+                                                       ( ) 
Proof: See Appendix A.5. 
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Figure 6 Symmetric-Equilibrium Strategy and Allocation in Take-or-Give Auction with Second-Price Payment and Entry 

Fees. (i = i obtains, j = j obtains, no = no obtainer). 

 According to the proposition, Figure 6 presents symmetric-equilibrium strategy (on the left) and 

allocation (on the right) in take-or-give auction with second-price payment and entry fees. The 

equilibrium strategy shows that the take-or-give auction with entry fees has exclusion effects on both 

sides (demand-to-take and demand-to-give sides) which make it be inefficient auction. The effect makes 

some low-willingness-to-pay bidders (whose types are around   ) avoids participating. Precisely, by the 

entry fee         (given some        ), there is a type  ̇     which is the binding type (the type 

which gets expected surplus as its reservation price, or zero surplus) on the giving side. Similarly, by the 

entry fee         (given some        ) there is a type  ̈     which is the binding type on the taking 

side. The types in ( ̇  ̈) are excluded from the auction with (           ) entry fees. 

 Moreover, Notice that i) if              , the auction is equivalent to the one without entry 

fees. ii) There no solution which entry fee on one side is zero and the other side is positive (e.g.              ); hence both fees are simultaneously positive. iii) The entry fees do not affect bidding behavior 

of bidders who participate. This is different from introducing reservation-price rule which will affect 

bidding behavior.5 

                                                           
5 This book does not provide the case which introduces the reservation-price rule to the take-or-give auction. 
However, Jehiel and Moldovanu (2000) studied in the case of second-price sealed-bid auction for an object with 
positive externalities. It introduced both reservation-price and entry-fee rule. The study showed that the reservation-



 Next, we compare the expected revenue of the take-or-give auction with entry fees to of the 

auction without fees, of the second-price sealed-bid auction and of the optimal target. According to the 

proposition, the expected revenue of the take-or-give auction with entry fees       is 

        [∫ *      ∫ ( ( )   ( ))  ( ) ̇
 +   ( ) ̇

  ∫ *      ∫ ( ( )   ( ))  ( ) 
 ̈ +   ( ) 

 ̈ ]  
 According to the equilibrium strategy which is induced by the menu of entry fees (           ), 

the seller designs optimal menu (             ) that maximizes his expected revenue by solving the 

Problem 1. 

PROBLEM 1 

[  
                                ( ̇)  ( ( ̈)   ( ̇))       ( ̈)  ( ( ̈)   ( ̇))]  

  
 

 By applying the numerical application in (2), the optimal menu has the solution as (             )  .          /. Hence, at optimal           . It is higher than the expected revenue of 

the auction without fees      and second-price sealed-bid auction     but still less than the optimal 

target    . Table 5 compares the expected revenue among auctions. 

 

7. Take-or-Give Auction with Revenue-Enhancing 

Rule II: Entry Fees, No Sale Condition and Pooling 

Rule 
 This section introduces a set of revenue-enhancing rules including entry-fee rule, no sale 

condition (which the auction is cancelled if any potential bidder does not participate) and pooling rule 

(which allows bidders to participate without specifying their demands) to the take-or-give auction. 

Interestingly, the auction with the set of rules is the revenue-maximizing auction. 

 In this section, it starts with simple illustration under four discrete types and imperfect 

information (in section 7.1.) and formally analyzes for the symmetric-equilibrium strategy and expected 

revenue (in section 7.2.). 

                                                                                                                                                                                           
price rule affected bidding behavior while the entry-fee rule did not. Similarly, the same effects can be observed 
when applied to the take-or-give auction. 



 

Table 5 Comparison of Expected Surplus of Take-or-Give Auction with Second-Price Payment and Entry Fees. 

     

 

               

      

 

     
     

     

 

7.1. Simple Illustration 
 In the illustration, it aims to present that with the no sale condition and pooling rule the auction is 

the revenue maximizing. To show the issue, we compare the expected revenue from the auction with the 

set of rules and from the auction without pooling rule (only entry-fee rule and no sale condition are 

introduced). 

 The no sale condition is the rule which states that the auction will be cancelled if any potential 

bidder does not participate. Opposite to the entry-fee rule, the condition has inclusion effect. Precisely, 

recall that the take-or-give auction with entry fees (without no sale condition) has interval ( ̇  ̈) which 

avoids participating (see Proposition 5), the nonparticipating bidders get positive expected utility from the 

positive externalities. With the condition, the bidders with types in the interval will participate to prevent 

the cancellation. The effect increases both participation rate and expected revenue. 

 The pooling rule allows bidders to participate without specifying their demands. If there is no 

bidder participates with specific demand (to take or to give), regardless of their bids, the pooled bidders 

have equal chance of being obtainer. Precisely, with the pooling rule, the seller designs a menu of entry 

fees (                 ) which a bidder who demands to take will submit      ; a bidder who demands 

to give will submit      ; a bidder who does not want to specify his demand (or to be "pooled") will 

submit      . Notice that, with a proper design, the       is good for any bidder who participates to 

prevent the cancellation of auction. 

 Table 6 presents seven scenarios as examples for allocation and payment mechanisms in take-or-

give auction with second-price payment, entry fees, no sale condition and pooling rule. In the 1st-5th 

scenarios, there is some bidders who are no pooled. The highest-bid bidder who is not pooled pays the fee 

and the object is allocated according to the fee. He pays the second price if his opponent submits the same 

fee. In the 6th scenarios, all bidders are pooled, regardless of their bids, the object is randomly allocated 

with equal probability and bidders pay only the fees. In the 7th scenario, the auction is cancelled if some 

bidders do no participate, bidders pay nothing. 

 Precisely, the take-or-give auction with second-price payment, entry fees, no sale condition and 

pooling rule is processed as follows: 



Table 6 Examples for Allocation and Payment Mechanisms in Take-or-Give Auction with Second-Price Payment, Entry 

Fees, No Sale Condition and Pooling Rule. 

Scenario Strategies Allocation Payment 

1 

Both submit      . 

Bidder i bids 10$. 

Bidder j bids 7$. 

Bidder i obtains. 
Both pay      . 

Bidder i additionally pays 7$. 

2 

Both submit      . 

Bidder i bids 10$. 

Bidder j bids 7$. 

Bidder i gives. 

Bidder j obtains. 

Both pay      . 

Bidder i additionally pays 7$. 

 

3 

 

Bidder i bids 10$ and      . 

Bidder j bids 7$ and      . 
Bidder i obtains. 

Bidder i pays      . 

Bidder j pays      . 

 

4 

 

Bidder i bids 10$ and      . 

Bidder j bids 7$ and      . Bidder i obtains. 
Bidder i pays      . 

Bidder j pays      . 
 

5 

 

Bidder i bids 10$ and      . 

Bidder j bids 7$ and      . Bidder i gives. 

Bidder j obtains. 

Bidder i pays      . 

Bidder j pays      . 
6 

Both submit         . 

Bidder i bids 10$. 

Bidder j bids 7$. 

0.5 chance to obtain. Both pay      . 
 

7 

 

Bidder i bids 10$ and      . 

Bidder j does not participate. 
Nobody obtains. Both pay nothing. 

 

 1. Each bidder submits his doublet which composes of bid and entry fee --       if he demands to 

  take,       if he demands to give or       if he demands to be pooled. Not participating is 

  also available which if any bidder does so both pay nothing and the auction is cancelled. 

 2. If the auction is not cancelled, the seller selects the highest-bid bidder who submits       or  

        and allocates the object according to his demand. If the highest-bid bidder submits  

        but the other does not submit      , then allocate the object according to the  

  demand of the bidder who does not submit      . If the bids are tied, the seller prefers to  

  allocate it to a bidder who pays       than       and       than       (and the   

  transitivity holds). 

 3. The highest-bid bidder additionally pays equal to: 

  - his opponent 's bid if they submit the same entry fee       or      , 

  - or zero if his opponent submits different entry fee. 

 Next, we apply the illustration of four discrete types as presented in Table 7. The types are High 

(H), Middle 1 (N), Middle 2 (M) and Low (L). To satisfy the countervailing-positive-externalities 

property, assume         . 



Table 7 Payoffs of Four Discrete Types Illustration. (        ) 

Type 
Payoffs when being the obtainer   

Payoffs when being the non-obtainer   
No obtainer 

High  

(H) 
10 0 0 

Middle 1 

(N) 
    0 

Middle 2 

(M) 
    0 

Low  

(L) 
0 10 0 

 

 In this illustration, there are two risk-neutral and symmetric bidders whose types are 

independently and randomly drawn from *       +. The type has uniform distribution.  Bidder i has his 

strategy (        ) which    *   + means that he participates (    ) or does not participate (    ) 

in the auction,      is his bid and    {                 } is the entry fee. 

 In the take-or-give auction with second-price payment, entry fees, no sale condition and pooling 

rule, the seller designs (                 ) and the auction rules as discussed previously. Recall that the 

entry fees have exclusion effects while the no sale condition has inclusion effects. With a proper design, 

the inclusion effects dominate the exclusion effects.6 In other words, all bidders participate in the auction. 

On the opposite, if it is not properly designed, the exclusion effects dominate the inclusion effects and 

some bidders avoid participating. We assume that the seller is interested in designing the auction in which 

all bidders participate (Assumption 4). 

ASSUMPTION 4  

  The seller designs the auction in which all bidders participate. 

 Suppose that the seller designs                   and         . The symmetric-equilibrium 

strategy in the auction (                    ) is presented in Proposition 6. 

PROPOSITION 6                 ( )  {        *   +       *   +         ( )  {                                    *   +   
  where                   and         . 

Proof: See Appendix A.6. 

                                                           
6 Precisely, recall Proposition 5 which a bidder with type ( ̇  ̈) does not participate since the exclusion effects. Just 

small level of               the exclusion effects exist. With the small level of  , without no sale condition, a 

bidder with type ( ̇  ̈) plays the equilibrium strategy as specified in the proposition gives him strictly positive 
expected surplus. But with the no sale condition, doing so give him zero surplus. Hence, the effects of no sale 
condition dominates the exclusion effects. 



 Notice that i) the design                   and          satisfies Assumption 4. ii) The 

design optimally yields expected revenue since a bidder with any type is left with zero expected surplus. 

 Next, we will characterize the equilibrium strategy in the auction without pooling rule and will 

calculate the expected revenue to compare with the revenue in the auction with pooling rule. For the take-

or-give auction with second-price payment, entry fees and no sale condition (without pooling rule), the 

seller designs (           ) and the auction rules are similar to the auction with the pooling rule excepts 

no       to be submitted. 

 In the auction without pooling rule, bidder i has his strategy (        ) which    *   + means 

that he participates (    ) or does not participate (    ) in the auction,      is his bid and    {                 } is the entry fee. Suppose the seller design                 (    ). The 

symmetric-equilibrium strategy in the auction without pooling rule (                 ) is presented in 

Proposition 7. 

PROPOSITION 7               ( )  {        *   +       *   +        ( )  {           *   +           *   +    
  where                 (    ). 
Proof: See Appendix A.7. 

 Also notice that the expected revenue of this auction is comparable with the previous one with 

pooling rule since i) the design                 (    ) in this auction satisfies Assumption 4 and 

ii) given this auction rules it optimally yields expected revenue. By comparing the expected revenue from 

the auction with pooling rule (in Proposition 6) and from the auction without pooling rule (in Proposition 

7), it shows that the auction with the pooling rule yields higher revenue than the one without the rule. 

Hence, in next section where we do the formal analysis, we will directly analyze the auction with pooling 

rule for its equilibrium strategy and expected revenue. 

 Intuitively, the pooling rule has two revenue-enhancing effects. Fist, the seller can directly extract 

payment from some types which participate to prevent the cancellation of auction. Second, the seller can 

reduce the information rent paid to other non-pooling types. Lewis and Sappington (1989) and Brocas 

(2007) discussed the second effect. 

 

7.2. Formal Analysis 
 In this section, we analyze the symmetric-equilibrium strategy and expected revenue in the take-

or-give auction with second-price sealed-bid auction, entry fees, no sale condition and pooling rule. In the 

auction, bidder i has his strategy (        ) which    *   + means that he participates (    ) or does 

not participate (    ) in the auction,      is his bid and    {                 } is the entry fee. 

The equilibrium strategy (                    ) is presented in Proposition 8. 



PROPOSITION 8  

                ( )  { ( )   ( )      [     ] ( )   ( )      [    ]       (      )         ( )  {            [     ]           [    ]           (      )   
 where                 and             solves 

[  
   
   
   
   
         (     )      ∫  (    )  ( )  

  ∫   . (    )   (    )/   ( )   
   ∫  (    )  ( ) 

               ∫   ( (  )   (  ))  ( )   
              ∫   ( (   )   (   ))  ( )   
  ∫  (  )  ( )  

  ∫  (  )  ( ) 
        

∫  (   )  ( )   
  ∫  (   )  ( ) 

         ]  
   
   
   
   
 

                   ( ) 

Proof: See Appendix A.8. 
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Figure 7 Symmetric-Equilibrium Strategy and Allocation in Take-or-Give Auction with Second-Price Payment, Entry 

Fees, No Sale Condition and Pooling Rule. (i = i obtains, j = j obtains, i&j = each bidder has 0.5 chance of being obtainer). 

 According to the equilibrium strategy, Figure 7 presents symmetric-equilibrium strategy (on the 

left) and allocation (on the right) in take-or-give auction with second-price payment, entry fees, no sale 

condition and pooling rule. The equilibrium strategy shows that, in the auction, bidders' behaviors are 

classified into three groups according to the submitted fee. Precisely, the pooling types (      ), they are 

in the middle region including      and some neighbors. They participate with       and zero bid. The 

taking types [     ] are on the taking side (toward the highest type) and participate with       and bid as 

their willingness to pay. Last, the giving types [    ] are on the giving side (toward the lowest type) and 

participate with       and bid as their willingness to pay. 

 Intuitively,      is the binding type in the pooling types,    is the binding type on the giving 

types and     is the binding type on the taking types. To satisfy Assumption 4 (all bidders participate), 



     is the type which gets the expected surplus as its reservation utility by paying       while other 

pooling types around      are left for some surplus. Then, the types    and     are selected to get the 

expected surplus as their reservation utility on each side by paying the submitted fee and expected 

payment from the second price. Other types further than    and     to each extremity -- to   and   -- are 

left for some surplus. Since the seller designs       and       higher than      , the pooling types (      ) cannot deviate to pay       or      . 

 Next, we compare the expected revenue of the auction with the optimal target. According to the 

proposition, the expected revenue of the take-or-give auction with second-price payment, entry fees, no 

sale condition and pooling rule         is 

          [∫ *      ∫ ( ( )   ( ))  ( )  
 +   ( )  

  ∫        ( )   
   ∫ *      ∫ ( ( )   ( ))  ( ) 

   +   ( ) 
   ]  

 According to the equilibrium strategy which is induced by the menu of entry fees (                 ), the seller designs optimal menu (                    ) that maximizes his 

expected revenue by solving the Problem 2. 

PROBLEM 2 

[                                ( ) ] 
 By applying the numerical application in (2), the optimal menu has the solution as (                    )  .                /. Hence, at optimal             . It is equal to the optimal 

target    . Table 8 compares the expected revenue of previously analyzed auctions. 

 Analytically, the auction is equivalent to the optimal mechanism characterized in Chen and 

Potipiti (2010). Hence, the take-or-give auction with second-price payment, entry fees, no sale condition 

and pooling rule is the revenue-maximizing auction (Proposition 9). 

PROPOSITION 9  

  The take-or-give auction with second-price payment, entry fees, no sale condition and  

  pooling rule is the revenue-maximizing auction for an object with countervailing- positive 

  externalities. 

Proof: See Appendix A.9. 

 Moreover, notice that the auction without pooling rule with holding Assumption 3 is a special 

case of the auction with the rule. When                  ,             and all bidders  



Table 8 Comparison of Expected Surplus of Take-or-Give Auction with Second-Price Payment, Entry Fees, No Sale 

Condition and Pooling Rule. 

     
 

                       

      

 

     
     

     
     

 

Table 9 Comparison of Expected Surplus of Various Auctions. 

     
 

                              

      

 

     
     

      
     

     

 

participate. Corollary 2 presents the symmetric-equilibrium strategy in the auction without pooling rule (                 ). 
COROLLARY 2                ( )  , ( )   ( )      [      ] ( )   ( )      [      ]         ( )  ,           [      ]           [      ]   
 where 

[  
           (     )               ∫  (    )  ( )  

  ∫   ( (    )   (    ))  ( )   
   ∫  (    )  ( ) 

   ]  
    

 From the equilibrium strategy, also notice that the auction without pooling rule is the efficient 

auction. Also, from the Table 9 which compares the expected revenue of the auction without pooling rule 

with other previously analyzed auctions, the revenue from auction without pooling rule        is less 

than the optimal target and the auction with the rule         but higher than the other auctions. 

 

8. Concluding Remarks 
 This study introduces a new auction called "take-or-give auction with second-price payment" and 

its revenue-enhancing extensions. Since the new auction let bidders compete for their desired allocation 

of the object, it provides proper incentives to both high-type bidders who want to obtain and consume the 

object and low-type bidders who want others obtain it. In the case of an object with countervailing-

positive externalities, the auction makes efficient allocation. 



 Also, to increase the level of expected revenue, this study analyzes the extensions of the take-or-

give auction by introducing some revenue-enhancing rules: entry fees, no sale condition and pooling rule. 

The study finds that the take-or-give auction with second-price payment, entry fees, no sale condition 

with pooling rule is the revenue-maximizing auction. 

 Besides the theoretical findings, this study also suggests direct implications on how to design an 

auction for an object with countervailing-positive externalities, like the airport in this study's exhibit or 

like the retaliation rights in WTO as studied in Bagwell et al. (2007) and Chen and Potipiti (2010). For 

one who concerns the efficient allocation (e.g. government), the take-or-give auction with second-price 

payment is optimal. While if one concerns the revenue maximization (e.g. any profit-maximizing agent), 

the take-or-give auction with second-price payment, entry fees, no sale condition and pooling rule is 

optimal. 

 Some complications of the revenue-maximizing auction, the auction with pooling rule, should be 

noted. i) Since the auction has many rules (especially, no sale condition and pooling rule) its practicability 

is less than other auctions with less rules. ii) Since      is not necessary to equal   , under some 

circumstances, bid may be negative. The implication of negative bid is that the seller subsidizes if the 

case is applicable according to the auction rules. However, having possibility to bid negatively seems to 

be less practical. 

 Even the revenue-maximizing auction seems to be less practical, the result shades the light on 

knowing the characteristics of revenue-maximizing auction for an object with countervailing-positive 

externalities. The auction should be in the family of pooling-separating-mixed equilibrium. 

 For further study, since the revenue-maximizing auction in this study is less practical due to 

having sophisticated auction rules, one may design other optimal auction which is more practical. Or one 

may extend the model to, for instance,  -bidder case or introducing the coalition-proof constraint into the 

seller's problem. 
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APPENDIX 

A.1. Proof of Proposition 1 
 To prove the proposition, we show that playing the equilibrium strategy is better than deviating to 

other strategies. If both bidders play the equilibrium strategy (     ), expected utility of bidder i is 

   (  )    (   (       )|(       ))  
{  
  
  ∫  (  )  ( ) 

 ̃         [   ̃)
∫  (  )  ( ) ̃
  ∫   ( (  )   (  ))  ( )  

 ̃  ∫  (  )  ( ) 
          , ̃   )

∫  (  )  ( )  
  ∫ ( (  )   ( )   ( ))  ( )     ∫  (  )  ( ) 

          [    ]
  

Then, we check three cases: deviation when    [   ̃), when    , ̃   ) and when    [    ]. 
Case 1: deviation when    [   ̃) 
 In this case, (       )  (   ). We check that when (     )  (       ) is not better. Suppose     , it is best to submit with bid     ; hence, the expected utility is   (   (   )|(       ))  ∫  (  )  ( ) ̃

  ∫   ( (  )   (  ))  ( )  
 ̃  ∫  (  )  ( ) 

    
By comparing the utility get between in-equilibrium and out-of-equilibrium strategies,   (  )     (  )    (   (   )|(       ))   ∫  (  )  ( ) ̃

  ∫   ( (  )   (  ))  ( )  
 ̃   

Next, we need to show that   (  )    for     [   ̃). We know that   ( )    and 
   (  )     . 

According to (3),   ( ̃)   . Hence, we finish showing that   (  )    for     [   ̃) and finish 

showing that (   ) is the equilibrium strategy when    [   ̃). 
Case 2: deviation when    , ̃   ) 
 In this case, (       )  (   ). Similarly, we check that when (     )  (       ) is not better. 

Suppose      and     , he gets less than playing the equilibrium strategy. Suppose     , 

regardless of   , he gets ∫  (  )  ( )  ̃ . By comparing the expected utility,   (  )     (  )    (   (    )|(       ))  ∫  (  )  ( ) ̃
  ∫   ( (  )   (  ))  ( )  

 ̃   



Next, we need to show that   (  )    for     , ̃   ). We know that   (  )    and 
   (  )     . 

According to (3),   ( ̃)   .  Hence, we finish showing that   (  )    for     , ̃   ) and finish 

showing that (   ) is the equilibrium strategy when    [   ̃). 
Case 3: deviation when    [    ] 
 In this case, (       )  (   (  )   (  )). Similarly, we check that when (     )  (       ) is 

not better. Suppose     , regardless of   , he gets ∫  (  )  ( )  ̃  which is less than playing the 

equilibrium strategy. Suppose     (  )   (  ) and     , he also gets less than playing the 

equilibrium strategy. Hence, we finish the proof. Q.E.D. 

 

A.2. Proof of Proposition 2 
 The proof directly shows that playing the equilibrium strategy is better than playing other out-of-

equilibrium strategy. According to the equilibrium strategy, in the case of high type realization, given 

bidder j plays the equilibrium strategy, bidder i's expected utility from playing equilibrium strategy is        (   (    )|   (    ))     
where    (    )  (   (    )    (    )    (    )) is the equilibrium strategy. Deviating to other 

strategy (        )     (    ) is not better. To see this, (given bidder j strictly plays the equilibrium 

strategy)         yields him at most   payoff which is not better;      or         also yields 

him at most   payoff. Hence, we finish showing that    (    ) is the symmetric-equilibrium strategy for 

high type realization.  

 By showing similar arguments, we can prove that (          ) is the symmetric-equilibrium 

strategy for low type realization. We finish the proof. Q.E.D. 

 

A.3. Proof of Proposition 3 
 To prove the proposition, we show that playing the equilibrium strategy is better than deviating to 

other strategies. If both bidders play the equilibrium strategy (           ), expected utility of bidder i 

is 

   (  )    (       |    )  {  
  ∫  (  )  ( )    ∫ ( (  )   ( )   ( ))  ( )  

   ∫  (  )  ( ) 
          [    )

∫  (  )  ( )  
  ∫ ( (  )   ( )   ( ))  ( )     ∫  (  )  ( ) 

          [    ]  
where      (           ) is the equilibrium strategy. Then, we check two cases: deviation when    [    ) and when    [    ]. 



Case 1: deviation when    [    ) 
 In this case,      (   (  )   (  )     ). We check that when (        )       is not better. 

Suppose        , it is best to submit with bid     ; hence, by comparing the expected utility   (  )     (  )    (   (        )|    )  ∫ , (  )   (  )   ( )   ( )-  ( )  
    

Obviously,   (  )    for     [    ). 
 Next, suppose     (  )   (  ), he gets less expected utility than    (  ). Last, suppose     , regardless of    and    he gets ∫  (  )  ( )    ∫  (  )  ( )   ; by comparing the expected utility, 

the deviation yields less than    (  ). Hence, we finish showing the case. 

Case 2: deviation when    [    ] 
 In this case,      (   (  )   (  )     ). We check that when (        )       is not better. 

Follow similar steps as in the previous case. The arguments show that it is the equilibrium strategy. 

Hence, we finish the proof. Q.E.D. 

 

A.4. Proof of Proposition 4 
 The proof directly shows that playing the equilibrium strategy is better than playing other out-of-

equilibrium strategy. According to the equilibrium strategy, in the case of high type realization, given 

bidder j plays the equilibrium strategy, bidder i's expected utility from playing equilibrium strategy is 

                (    |    )   (   )   
where     (    )  (    (    )     (    )     (    )). Deviating to other strategy (        )      (    ) is not better. To see this, (given bidder j strictly plays the equilibrium strategy) suppose          then this out-of-equilibrium strategy yields him  

       ((    (    )     (    )   )|    )   (     )    (   )            
Suppose    .      /  .    /  for any    , it yields him         ; suppose       , it yields 

him         . Hence, we finish showing that     (    ) is the symmetric-equilibrium strategy for high 

type realization. 

 By showing similar arguments, we can prove that (
                   ) is the symmetric-

equilibrium strategy for low type realization. We finish the proof. Q.E.D. 

 



A.5. Proof of Proposition 5 
 To prove the proposition, we show that playing the equilibrium strategy is better than deviating to 

other strategies. If both bidders play the equilibrium strategy (              ), expected utility of 

bidder i is 

   (  )    (        |     )  
{   
   
         ∫  (  )  ( )    ∫ ( (  )   ( )   ( ))  ( ) ̇

   ∫  (  )  ( ) 
 ̇         [   ̇]

∫  (  )  ( ) ̇
  ∫  (  )  ( ) 

 ̈         ( ̇  ̈)
       ∫  (  )  ( ) ̈

  ∫ ( (  )   ( )   ( ))  ( )   ̈  ∫  (  )  ( ) 
          [ ̈  ]

  

where       (              ). Then, we check three cases: deviation when    ( ̇  ̈), when    [   ̇] 
and when    [ ̈  ]. 
Case 1: deviation when    ( ̇  ̈) 
 In this case,       (       ). We check that when (        )        is not better. Suppose      and         , it is best to submit with bid     ; hence, by comparing the expected utility   (  )     (  )    (   (         )|     )        ∫  ( ̇)  ( ) ̈

 ̇   
We need to show that   (  )    for     ( ̇  ̈). According to (4),   (  )    which satisfies the 

condition. Next, suppose      and         , by following the similar steps, we can show that it 

satisfies the condition. We finish the case. 

Case 2: deviation when    [   ̇] 
 In this case,       (   (  )   (  )      ). We check that when (        )        is not 

better. Suppose deviating to     (  )   (  ), directly the strategy (            ) is not better than      . Suppose     , regardless of    and   , by comparing the expected utility together with (XI.2-1), 

we can show that the condition is satisfied. Suppose         , it is best to submit with     ; hence, by 

comparing the expected utility, we get   (  )     (  )    (   (         )|     )              ∫ ( ( ̇)   ( ̇))  ( ) ̈
 ̇   

We need to show that   (  )    for     [   ̇]. According to (4),   (  )    which satisfies the 

condition. Hence, we finish the case. 

Case 3: deviation when    [ ̈  ] 
 In this case,       (   (  )   (  )      ). We check that (        )        is not better. 

Suppose deviating to      (  )   (  ), directly the strategy (            ) is not better than      . 

Suppose     , regardless of    and   , by comparing the expected utility together with (4), we can 

show that the condition is satisfied. Suppose         , it is best to submit with     ; hence, by 

comparing the expected utility, we get   (  )     (  )    (   (         )|     )              ∫ ( ( ̈)   ( ̈))  ( ) ̈
 ̇   



We need to show that   (  )    for     [ ̈  ]. According to (IX.2-1),   (  )    which satisfies the 

condition. Hence, we finish the case and finish proving the proposition. Q.E.D. 

 

A.6. Proof of Proposition 6 
 To prove the proposition, we show that playing the equilibrium strategy is better than deviating to 

other strategies. If both bidders play the equilibrium strategy (                    ), expected utility 

of bidder i is    (  )    (          (  )|       )          *       +  
where        (  )  (             (  )       (  )) is the symmetric-equilibrium strategy. Then, we 

check four cases: deviation when     , when     , when      and when     . 

Case 1: deviation when      

 In this case,        ( )  (          ). We check that when (        )         ( ) is not 

better. Suppose     , regardless of    and   , because of the no sale condition he gets 0 payoff. 

Suppose         , it is best to submit with bid     ; it yields him    (                |      )          ( )  
Suppose         , it yields him   (                 |      )       ( )  
Suppose          ( ), it yields him    ( ). Hence, we finish the case. 

 

Case 2-4: deviation when    *     + 
 We apply similar proofs as presented in the Case 1 (    ) to show that        (  ) when    *     + is the symmetric-equilibrium strategy. We finish the proof of proposition. Q.E.D. 

 

A.7. Proof of Proposition 7 
 To prove the proposition, we show that playing the equilibrium strategy is better than deviating to 

other strategies. If both bidders play the equilibrium strategy (                 ), expected utility of 

bidder i is 

   (  )    (         (  )|      )  {  (    )       *   +        *   +   
where       (  )  (           (  )      (  )) is the symmetric-equilibrium strategy. Then, we check 

four cases: deviation when     , when     , when      and when     . 



Case 1: deviation when      

 In this case,       ( )  (          ). We check that when (        )        ( ) is not 

better. Suppose     , regardless of    and   , because of the no sale condition he gets 0 payoff. 

Suppose         , it is best to submit with bid     ; it yields him    (               |      )     (    )     ( )  
Suppose         ( ), it yields him    ( ). Hence, we finish the case. 

 

Case 2-4: deviation when    *     + 
 We apply similar proofs as presented in the Case 1 (    ) to show that       (  ) when    *     + is the symmetric-equilibrium strategy. We finish the proof of proposition. Q.E.D. 

 

A.8. Proof of Proposition 8 
 Following the equilibrium strategy, the expected utility is 

   (  )    (          |       )
 

{   
   
         ∫  (  )  ( )    ∫ ( (  )   ( )   ( ))  ( )  

   ∫  (  )  ( ) 
          [    ]

       ∫  (  )  ( )  
  ∫   ( (  )   (  ))  ( )   

   ∫  (  )  ( ) 
           (      )

       ∫  (  )  ( )   
  ∫ ( (  )   ( )   ( ))  ( )      ∫  (  )  ( ) 

          [     ]
  

where          (             (  )       (  )). Then, we check three cases: deviation when    (      ), when    [    ] and when    [     ]. 
Case 1: deviation when    (      ) 
 In this case,         (         ). We check that when (        )          is not better. 

Suppose     , regardless of     and   , according to the no sale condition, the deviation yields 0 payoff; 

by comparing the expected utility,  we get   (  )     (  )    (   (       )|       )         ∫  (  )  ( )  
  ∫   ( (  )   (  ))  ( )   

   ∫  (  )  ( ) 
     

We need to show that   (  )    for     (      ). Since 
   (  )      (   )( (   )   (  ))   , we 

know that   (  ) is linear. According to (5), we can show that   (  )    and   (   )   .  Hence, it implies 

that   (  )    for     (      ). 
 Suppose         , it is best to submits with     ; hence, by comparing the expected utility, 

we get   (  )     (  )    (   (         )|       )              ∫   ( (  )   (  ))  ( )   
    

We need to show that   (  )    for     (      ). Since 
   (  )     , we need   (   )   . According 

to (5),   (   )    and satisfies the condition. 



 Suppose         , it is best to submits with     ; hence, by comparing the expected utility, 

we get   (  )     (  )    (   (         )|       )              ∫   ( (  )   (  ))  ( )   
    

We need to show that   (  )    for     (      ). Since 
   (  )     , we need   (  )   . According to 

(5),   (  )    and satisfies the condition. Hence, we finish showing that (         ) is the equilibrium 

strategy when    (      ). 
Case 2: deviation when    [    ] 
 In this case,         (   (  )   (  )      ). We check that when (        )          is not 

better. Suppose     , regardless of     and   , according to the no sale condition, the deviation yields 0 

payoff; by comparing the expected utility,  we get    (  )     (  )    (   (       )|       )         ∫  (  )  ( )    ∫ ( (  )   ( )   ( ))  ( )  
   ∫  (  )  ( ) 

    
We need to show that    (  )    for     [    ]. We know that 

    (  )    (   ) . (  )      /. Since         and according to (5), we know that 
    (  )     . Also, as a sufficient condition in (5) -- ∫  (  )  ( )    ∫  (  )  ( )          -- then    (  )    for     [    ]. 

 Suppose         , it is best to submits with     ; hence, by comparing the expected utility, 

we get    (  )     (  )    (   (         )|       )             ∫ ( (  )   (  )   ( )   ( ))  ( )  
   ∫ ( (  )   (  ))  ( )   

    
We need to show that    (  )    for     [    ]. Since 

    (  )     , we need    (  )   . According to 

(5), we can show that    (  )    which satisfies the condition. 

 Suppose         , it is best to submits with     ; hence, by comparing the expected utility, 

we get    (  )     (  )    (   (         )|       )             ∫ ( (  )   (  )   ( )   ( ))  ( )  
   ∫   ( (  )   (  ))  ( )   

    
We need to show that    (  )    for     [    ]. Since 

    (  )     , we need    (  )   . According to 

(5), we can show that    (  )    which satisfies the condition. Hence, we finish showing that (   (  )   (  )      ) is the equilibrium strategy when    [    ]. 
Case 3: deviation when    [     ] 
 In this case,         (   (  )   (  )      ). We check that when (        )          is not 

better. Suppose     , regardless of     and   , according to the no sale condition, the deviation yields 0 

payoff; by comparing the expected utility,  we get    (  )     (  )    (   (       )|       )        ∫  (  )  ( )   
  ∫ ( (  )   ( )   ( ))  ( )      ∫  (  )  ( ) 

    



We need to show that    (  )    for     [     ]. We know that 
    (  )    (   ) . (  )      /. Since         and according to (5), we know that 

    (  )     . Also, as a sufficient condition in (5) -- ∫  (   )  ( )     ∫  (   )  ( )           -- then    (  )    for     [     ]. 
 Suppose         , it is best to submits with     ; hence, by comparing the expected utility, 

we get    (  )     (  )    (   (         )|       )             ∫ ( (  )   (  ))  ( )   
   ∫ ( (  )   (  )   ( )   ( ))  ( )       

We need to show that    (  )    for     [     ]. Since 
    (  )     , we need    (   )   . According 

to (5), we can show that    (  )    which satisfies the condition. 

 Suppose         , it is best to submits with     ; hence, by comparing the expected utility, 

we get    (  )     (  )    (   (         )|       )             ∫   ( (  )   (  ))  ( )   
   ∫ ( (  )   (  )   ( )   ( ))  ( )       

We need to show that    (  )    for     [     ]. Since 
    (  )     , we need    (   )   . According 

to (5), we can show that    (   )    which satisfies the condition. Hence, we finish showing that (   (  )   (  )      ) is the equilibrium strategy when    [    ]. We finish the proof of proposition. 

Q.E.D. 

 

A.9. Proof of Proposition 9 
 This section proves the take-or-give auction with second-price payment, entry fees, no sale 

condition and pooling rule as the revenue-maximizing auction. To prove it, first, we analyze for how the 

seller designs the auction. Second, we show how the designed auction is equivalent to the optimal 

mechanism in Chen and Potipiti (2010). 

Optimal design of the take-or-give auction with second-price payment, entry fees, no sale condition and 

pooling rule 

 The seller designs the menu of entry fees (                 ) which bidder i with type    [    ] optimally submits      ; the bidder with type    [     ] optimally submits      ; the bidder with 

type    (      ) optimally submits      .  
 Given any (                 ) which satisfies (5), bidders play the equilibrium strategies as 

specified in Proposition 8. Hence, by backward induction, the seller's problem is to design the optimal (                 ) which yields highest expected revenue subjected to the equilibrium strategy and (5). 

Precisely, the seller's problem is as presented in Problem 2 which is presented here as follows: 



[                           ( ) ] 
where    is the expected revenue and (5) is presented in Proposition 8. 

 The individual participation constraints (IP) and the incentive compatible constraints (IC) can be 

derived from comparing between a bidder's expected utility from playing in-equilibrium strategy and 

from playing out-of-equilibrium strategy. Precisely, Lemma 1 presents the (IP) and (IC). 

LEMMA 1 

[  
   
          ∫  (  )  ( )    ∫ , (  )   ( )-  ( )  

   ∫  (  )  ( ) 
             [    ]

       ∫  (  )  ( )  
  ∫   ( (  )   (  ))  ( )   

   ∫  (  )  ( ) 
              (      )

       ∫  (  )  ( )   
  ∫ , (  )   ( )-  ( )      ∫  (  )  ( ) 

             [     ] ]  
   
            (  ) 

[  
   
   
   
   
             ∫ ,  (  )   ( )-  ( )  

   ∫   (  (  ))  ( )   
             [    ]

            ∫ (  (  )   ( ))  ( )  
   ∫ (  (  ))  ( )   

             [    ]
            ∫    (  )  ( )   

             (      )
            ∫   (  (  ))  ( )   

             (      )
            ∫  (  )  ( )   

   ∫ ( (  )   ( ))  ( )                [     ]
            ∫    (  )  ( )   

   ∫ ( (  )   ( ))  ( )                [     ] ]  
   
   
   
   
 

                (  ) 

 where   ( )   ( )   ( )                                                         (      ) 
 Next, we will simplify both (IP) and (IC). Since the (IC) show monotonic in   , we can further 

simplify it. For instance, from the (IC) of    [    ] let 

 (  )              ∫ ,  (  )   ( )-  ( )  
   ∫   (  (  ))  ( )   

    
Since 

  (  )     , only  (  )    is the sufficient condition to guarantee that  (  )    for     [    ]. 
Hence, we get the condition             ∫   (  (  ))  ( )       . Apply the same technique for all 

conditions in (IC), we can simplify the conditions to (IC*) as presented in Lemma 2. 

LEMMA 2 



[  
              ∫    (  )  ( )   

    
            ∫    (   )  ( )   

    ]  
                                                           (   ) 

 To simplify (IP), first, the seller selects the binding type. To show how the seller selects the type, 

from (IP) we derive the following system: 

[  
   
     (  )         ∫  (  )  ( )    ∫ , (  )   ( )-  ( )  

   ∫  (  )  ( ) 
          [    ]

  (  )         ∫  (  )  ( )  
  ∫   ( (  )   (  ))  ( )   

   ∫  (  )  ( ) 
           (      )

  (  )         ∫  (  )  ( )   
  ∫ , (  )   ( )-  ( )      ∫  (  )  ( ) 

          [     ] ]  
   
   
 

 By the first- and second-order derivatives, 
   (  )       (  )    (   ) (  )    while 

   (  )    (   ) . (  )  (   ) /    and 
    (  )         (  )     (   )   (  ) while 

    (  )      . The derivatives 

inform that the system (before pooling (      ) together) was a convex function which has the lowest 

point at (   ) (    )     . Since the mechanism pools (      ) together, this region loses its 

convexity and turns to a linear which has its rate of change 
   (  )    (   ) . (  )  (   ) /    as the 

average between the points    and    .  

 From the observation, it is rational to bind the (IP) at the     . Lemma 3 derives how to select the 

binding type     . 

LEMMA B.11-3         (     )                                                                                 ( ) 
 Also we know that   (  ) and   (  ) are decreasing and increasing in    respectively. By applying 

the same technique as in simplifying (IC), we can simplify (IP) to (IP*) as presented in Lemma 4. 

LEMMA B.11-4 

[  
   
          ∫  (  )  ( )  

  ∫  (  )  ( ) 
    

       ∫  (   )  ( )   
  ∫  (   )  ( ) 

     
       ∫  (    )  ( )  

  ∫   . (    )   (    )/  ( )   
   ∫  (    )  ( ) 

     ]  
   
            (   ) 

 Notice that, from (IC*), (B) and (IP*) presented in the previous lemmas, we get (5) as presented 

in the Proposition 8. Next, to complete the optimal design, the seller just selects (                 ) 

which yields the highest expected revenue under the constraints (Problem 2). 



 To show the existence of the solution of Problem 2, at least, there is the solution                   which is the solution that has no pooling type (as presented in Corollary 2). 

 

Compare to the optimal design of Chen and Potipiti (2010) 

 This section compares the previous characterizations of the optimal design of take-or-give auction 

with second-price payment, entry fees, no sale condition and pooling rule with of the optimal revenue-

maximizing mechanism in Chen and Potipiti (2010). In the study (the seller's problem    and Lemma 2 in 

Chen and Potipiti (2010)), its optimal mechanism is characterized as Problem 3. 

 PROBLEM 3             ( )                                                                                       ( )  (  )   ∫   (     )  (  ) 
   ∫   (     )  (  ) 

                            (  ) 
   (  )     ( )  ∫ , ( )-                                                         (  ) 

   ( )   ∫ , ( )-      
                    ∫ , ( )-   

                         (  ) 

where    is the probability of being the obtainer of bidder i; (BB) comes from Lemma 2 in Chen and 

Potipiti (2010). 

 To show that the two mechanisms are equivalent as the revenue-maximizing mechanism, we map 

the equivalence of constraints between the mechanisms. First, ( ) is directly equivalent by the auction 

rules; (  ) is the individual participation constraint which is equivalent to (  ) in our auction. Next, for (  ) we can equivalently derived  (  ) according to the take-or-give auction as 

 (  )  {  
  (   ) (  )           [    ](   )( (  )   (   ) )           (      )(   ) (  )           [     ]  

Notice that  

 (  )  
{   
      (  )           [    ]   (  )           (      )   (  )           [     ]   



Hence, we get  

  (  )    
{  
   
     (  )     (   )   (  )        [    ]    (  )              (      )    (  )     (   )   (  )        [     ]

  
Since 

  (  )     , it is non-decreasing in    which implies that the designed take-or-give auction satisfies 

this condition (ND). 

 Last, the (BB) selects the binding type which is equivalent to selecting     . Hence, the optimal 

designed of take-or-give auction with second-price payment, entry fees, no sale condition and pooling 

rule is equivalent to the revenue-maximizing auction. We finish showing the proposition. Q.E.D. 

 

 

 

 

 


