MPRA

Munich Personal RePEc Archive

Constructing a Generator of Matrices
with Pattern

Halkos, George and Tsilika, Kyriaki

University of Thessaly, Department of Economics

2012

Online at https://mpra.ub.uni-muenchen.de/43614/
MPRA Paper No. 43614, posted 07 Jan 2013 10:31 UTC

Constructing a Generator of Matrices with Pattern

George E. Halkos and Kyriaki D. Tsilika
Laboratory of Operations Research
Department of Economics, University of Thessaly,

Korai 43, 38 333, Volos, Greece

Abstract

Computations with large matrices work out faster with computer software, even faster
creating automatically the matrix of the size and pattern needed. In this paper we
propose free computer algebra system Xcas resources to display particular matrices
that can be called up directly. Our computer codes provide shortcuts for entering
random block diagonal matrices, random triangular matrices, random and specialized
band matrices, elementary matrices Eij, Fourier matrices. As for matrices needed in
the study of mathematical issues concerning the properties of the roots of a
polynomial, we create features with polynomial coefficients. We also propose codes
for immediate construction of functional matrices such as Jacobian, bordered Hessian
and Wronskian. The computer codes proposed provide visual representation of the
matrix pattern (which is traditionally explained using indices and numerals), infinite
number of examples using random numbers and immediate construction of large
matrices of various forms.

Keywords: Matrices with pattern; functional programming; computer software.

JEL Classification Codes: C63; C02; C88; C62.

An earlier version of this paper has been published in International Journal of Information
Science and Computer Mathematics 4(2): 101-117, 2011. The present paper includes the
upgraded version of the computer codes, which are written in Xcas 0.9.9.

1. Introduction

Matrices with pattern have a wide range of applications in research areas of
Bioinformatics (see e.g. Heppell et al., 2000; Hertz et al., 1990), Linear Algebra (see
e.g. Stadelmaier et al., 1982; Elsner and Johnson, 1989, Johnson, 1983; Hall and
Wang, 2001; McDonald et al., 1997; Tardos, 2005), Structural Mechanics (Kaven and
Sayarinejad, 2004), Economics (Cassetti, 1995; Veinott, 1969; Tarr, 1976). In
biology, Gene matrices have a 0-1 structure. For models described by linear systems
of equations with recursive and block recursive structure, matrices with pattern have a
role to play.

In Econometrics, among the full structural simultaneous equation models, the
model developed by Wold (1954) is known as a recursive system. In simple recursive
systems the coefficient matrix of the jointly dependent variables is triangular and the
covariance matrix is diagonal. In cases where the whole system of simultaneous
equations decomposes into recursive subsystems, block recursive systems are
formulated. Block recursive systems (Lloyd and Lee, 1976; Wermuth, 1992)
compared to simple recursive systems, allow important simplifications in the
estimation process. Then, the coefficient matrix of the system's jointly dependent
variables is block triangular and the covariance matrix of the error terms is block
diagonal.

The family of classical interregional input-output models may be classified
and compared in terms of the assumed structure of their corresponding matrix of
interregional trade share coefficients (Batten and Martellato, 1985). Matrices with
pattern are especially useful in the study of dynamic discrete time economic models

and dynamic Leontief models.

A mathematical software is equipped with a collection of built-in functions for
immediate construction of several matrix families either elementary like zeroes or
ones, identity, symmetric, random or general, diagonal, general band or specialized
like positive definite, positive definite band, symmetric indefinite, Hermitian
indefinite, triangular, general tridiagonal, positive definite tridiagonal, Vandermonde,
Hessenberg, Hadamard, Hankel, Hilbert, Pascal, Toeplitz (for the related matrix
theory see Strang, 1988; Anton, 2000; Goldberg, 1991 and Lipschutz, 1987).

A brief overview of computer software capabilities in matrix creation, results
in various different choices. MATLAB, the most efficient tool in matrix computation,
has the largest collection of special matrices. The gallery function in MATLAB holds
over fifty different test matrix functions (Quarteroni and Saleri, 2006). Computer
algebra systems like Mathematica, wxMaxima and Xcas have also matrix functions to
return highly specialized matrices, including common functional matrices and
coefficient matrices (Anton et al., 2003; Parisse'). The contribution of Linear Algebra
package, performing exclusively linear algebra operations, is limited in constructing
elementary matrices.

Computer codes or matrix functions for the construction of matrices with
complex law of formation are not available in commonly used computer software.
Then, a user should have programming skills to get the desired results.

In this paper, free computer algebra system Xcas is used to construct a matrix
generator, programmed in Xcas program editor. Our matrix generator program file

has a number of specialized matrix functions that create different kinds of matrices

' Xcas is a Computer Algebra System available free in _http://www-fourier.ujf-grenoble.fr/~

parisse /giac.html

not included in typical computer algebra software. Potential usefulness of our matrix
generator is for
1) verification of algebraic properties and behavior of matrices of special
forms i.e. the inverse of a bidiagonal matrix is lower triangular, the
inverse of a band matrix is a full matrix, the Fibonacci determinants
follow the formula |F,|=|F, | +|F,_,| etc.
i) technology applications using an interactive software tool
i) creation of the matrix needed, simplifying and abbreviating the law of
formation

iv) guidance for the user to program more matrix functions.

Conclusively, this paper gives the computer codes for several matrix families,
describes their input and gives examples of their use. The structure of the paper is the
following. Section 2 presents Computer Algebra System Xcas and discusses briefly
the programming commands in Xcas. Section 3 presents the codes for automatic
generation of block diagonal and triangular matrices using entries of a random
number generator, for automatic generation of random and special band matrices and
of Fourier matrices, for elementary matrices, for coefficient matrices related to
traditional Algebra theorems, for specific functional matrices. The last section

concludes the paper.

2. The Computer Algebra System Xcas
2.1 The Xcas system
Xcas is a Computer Algebra System, (CAS), which was developed by Bernard

Parisse, at the University of Grenoble, France. In addition to its algebraic capabilities

Xcas incorporates a Dynamical Geometry System, (DGS), in two and three
dimensions, spreadsheets, and programming both in a Logo-like language and in its
own language. Justifiably, it has been called the “swiss knife for mathematics”. Xcas
is a free system available for Mac OS X, Windows (except possibly for Vista) and
Linux/Ubuntu; in the File menu it contains an option available for the automatic
update of the system. The on-line help is easily accessible and provides numerous
examples of each function. Moreover, a user's manual is available, which proves very
helpful. Xcas has been translated in several languages. In several localizations there is

a users' forum available.

2.2 Programming in Xcas®

Programs in Xcas may be written in a separate program level, via Prg->New
of Prg Menu. This will open an editor in a new level. The editor has its own menu,
where we can import our computer codes of the following section, separated by «:;»,
save and export the current program as matrix generator.cxx. Working in any session
of Xcas, by writing in a commandline read("matrix generator.cxx") we can use
multiblockdiagonal, uppertriang, uppertriang2, lowertriang, lowertriang2, bandmatrix,
tridiagonal, bidiagonal, fibonacci, fourier, elementary, schur, routh, jacobian,

borderhessian, wronskian functions.

3. Construction of Matrices
3.1 Random Block Diagonal Matrices
Our programmed function multiblockdiagonal(m,n) generates square matrices

with n mxm random blocks along the main diagonal and zeros everywhere else:

* The present paper includes computer codes written in Xcas 0.9.9.

multiblockdiagonal(m,n):=BlockDiagonal([[seq(randmatrix(m,m),n)]])

For example, by writing in Xcas:
multiblockdiagonal(3,5), the output is:
85. 60, -96, 0. 0.

-14, 18, 92, 0, 0.
23, 27, -88, 0, 0.

o o o o o o

[D o B s I o R o R o B s N o N s |
o o o o 0o o o o o
o o o o o o o o o

53]
[}
(53]
[}
i
(s}
53]

L
B
-
o
©
M2
=N =T = N = B = T = B = B = T = B = T = R =

o o o o o o o o o o o o
o o o o o o o o o o o o

o o N
W
i
o o i
-]
|
o o &
]
! o]
=y
N
= 0
L o
[l |
[le]
n (5]

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o

o o o o o o o o o
o o o o o o o o o
o o o o o o o O O

=]
=]
o
M
%]
|
M
~
|
o
o

Using built-in function BlockDiagonal(Lst(1)|[Mtrx(A)) we can create random
blocks of any dimension along the main diagonal, by writing in Xcas:
BlockDiagonal([randmatrix(2,2),randmatrix(3,3),randmatrix(5,5)])

the output is the following:

-85, 44, 0, 0, 0O, O o, 0, 0, 0O
-34. 5, 0. 0, 0, 0O 0, 0, 0 0
o, 0, 49 25 -71.0 0, 0, 0, 0
o, 0, 64, -74, -27. 0 0, 0, 0 0
o, 0, 72, 38, -88. 0 0, 0. 0 0
o, 0, 0, 0 0 62, 21, 37, -16, 8
o, 0, 0 0 0 66, -54. 15, 684, 17
o, 0, 0 0 0 -81, 62, T3, -75. 15
o, 0, 0 0 0 95, 77, -71, -81, 67
o, 0, 0 0 0 5, 24, 81, -80. 52

Random blocks in blockdiagonal matrices built, are generated by Xcas
function randmatrix(n,n), which returns a matrix of size nxm containing random

integers.

3.2 Random Triangular and Strictly Triangular Matrices

Our programmed function uppertriang(m) generates random upper triangular

square matrices of size m:

uppertriang(m):=matrix(m,m,(j,k)->if(j>k) 0;else rand(1000);)

For example, by writing in Xcas:

uppertriang(7), the output is:

622, 301, 607, 939, 914, 141, 233
873, 921, 202, 407, 590, 955
903, 318, 748, 983, 340
673, 788, 737, 109
0. 463, 883, 502
0. 0. 826, 159

o o 9o o o o
o o o o o
(=T = R = B -

0. 0. 0, 874

Our programmed function uppertriang2(m) generates random strictly upper
triangular square matrices of size m:

uppertriang2(m):=matrix(m,m,(j,k)->f(j>=k)0;else rand(1000);)

For example, by writing in Xcas:

uppertriang?2(6), the output is

0, 159, 258, 442, 223, 3
0, 0, 621, 920, 376, 291
0, 0, 788, 707, B33
0,0, 0, 0 521, 10
0,0, 0 0 0, &
0,0 0, 0 0o, 0

Accordingly, our programmed functions lowertriang(m) and lowertriang2(m)
generate random lower and strictly lower triangular square matrices of size m:

lowertriang(m):=matrix(m,m,(j,k)->1f(j<k) 0;else rand(1000);)
lowertriang2(m):=matrix(m,m,(j,k)->1f(j<=k)0;else rand(1000);)

For example, by writing in Xcas:

lowertriang(14), the output is

12,

T2,

21,

216,
847,

671,
946,

598,
623,
448,

783,
748,
613,

281,

817,
128,
961,

By writing in Xcas:

lowertriang2(6), the output is

In the examples above nonzero entries are non-negative 3-digit random integers

a71.
. 731,
. BO7,
. B45,
. 94,

381,

45,
58,

. BBT,
. 203,
. 804,

266,
781,
849,
107,
130,

20,

880,

39,

129,
958,
397,

[T s R = R = |

469,
. 364,
. 167,

0,

560,
446,

44,

948,

46,

o o o o o

376,

. 328,
. 345,
. 203,
.71,

. 989,
. B75,

0,
0,

810,
749,

74,

897,

o o o o o o

255,
146,
602,
245,
133,
457,
234,
145,

0,
0,
0.

896,
a7,
156,

generated by Xcas function rand(1000).

3.3 Random Band Matrices
Let us define a band matrix as a matrix with zero entries except within the band

li— jl<w. Our programmed function bandmatrix(n,w) generates matrices of size n

o o o o o o O o

=y
-
o
=y
-
o

676, 575,
724, 376,
581, 188,
G669, 753,
393, 362,

(=T = R = B =

251, 0,
277, 217,

=T = I = |

0,

o o o o o o o o o

890,
209,
967,
495,
275,

0
0
0
0
0
0

o o o o o o o o o o

870,
654,
727,
372,

0. 0. 0
0. 0. 0
0, 0, o]
0. 0. 0
0. 0. 0
0. 0. 0
0. 0. 0
0, 0, o]
0. 0. 0
0. 0. 0
0. 0. 0
316, 0, o]
792, 80, O

434, T33, 953

with w nonzero entries above and below the principal diagonal:

bandmatrix(n,w):=matrix(n,n,(i,j)->if(abs(i-j)<=w)rand(-10..10)(); else 0;)

For example, by writing in Xcas:

bandmatrix(10,3), the output is

2704, 709, -2078, -3621, 0, 0, 0. 0, 0, 0
-0.8127, -2607, 6603, 4443, 5734, 0. 0. 0, 0, 0
-5.602, -6.404, 2512, T7.87. 3036, 4958, 0. 0. 0, 0
-4.38, 9682, -53562, 9255, 2622, 113, 3062, 0, 0, 0

0. -9.366, 645, 1.599, 9371, -5.056, 9659, 9773, 0, 0

0. 0. 0.7385, 7.555, -2929, 3649, -4523, 3453, -7164, 0

0. 0. 0. 2.87, 005427, 7.279, 7136, 4452, -9125, 03515
0, 0. 0] 0. 2323, 3911, -5393, 7943, 3593, -07458
0, 0. 0, 0. 0, 8687, 903, -9616, 1.75, -8.395
0, 0. 0] 0. 0, 0, -6.066, 6651, -9.025, 1122

The following codes create tridiagonal and bidiagonal matrices of size n:
tridiagonal(n):=matrix(n,n,(i,j)->if(abs(i-j)<=1)rand(-10..10)(); else 0;)
For example, by writing in Xcas:

tridiagonal(7), the output is:

9083, -3.723, 0, 0. 0. 0. 0
9.471, 0.2258, -4.744, 0, 0. 0. 0
0. 6874, -2207, 08476, 0, 0. 0
0 0, -1.754, 3473, -0.5604, 0, 0
0. 0 0, -F.554, -225, -3.354, 0
0 0. 0, 0. -0.3107, 5124, -2.304
0 0 0. 0. 0. -3.818, 2.318

bidiagonal(n):=matrix(n,n,(i,j)->1f(i==j|[i==j+1)rand(-10..10)(); else 0;)
For example, by writing in Xcas:

bidiagonal(7), the output is:

-9.249, 0, 0, 0, 0. 0, 0
8617, -9.437, O, 0 0. 0, 0
0. -2.179, 3.265, 0O, 0. 0, 0
0 -3.96, -8.729, 0, 0, 0
0, 0, 0, 6.101, 891, 0, 0
0, 0 0, 0, 1.325, 3381, 0
0, 0 0, 0, 0, 6.047, -4.223

In the examples above nonzero entries are random numbers with a 1-digit integer

part, generated by Xcas function rand(-10..10).

3.4 Band Matrices of Special Forms

Let us now define the n-th order Fibonacci Matrix F, as a nxn band matrix that
has 1’s on the main diagonal, -1’s along the diagonal immediately above the main
diagonal, 1’s along the diagonal immediately below the main diagonal and zeros
everywhere else. Our programmed function fibonacci(n) generates Fibonacci
matrices of size n:
fibonacci(n):=matrix(n,n,(i,j)->if(i==j+1|[i==)) 1;else (if(i==j-1) -1; else 0;);)
For example, by writing in Xcas:

fibonacci(8), the output is:

o o o o o o

o o o O o O

3.5 Some Special Matrices

Defining the nxn matrix F,=[f;;] for which fijzwij, i,j=1..n as a Fourier matrix then
our programmed function fourier(n) generates Fourier matrices of size n:
fourier(n):=matrix(n,n,(i,j)->w"(1*j))
For example, by writing in Xcas:

fourier(7), the output is:

2 4 G 8 10 12

3 G 9 12 15 18

4 8 12 16 20 24
. . W, .

5 10 15 20 25 30

G 12 18 24 30 36

10

3.6 Elementary Matrices

If we define the matrix that subtracts a multiple 1 of row j from row i as the
elementary matrix E;;, with 1’s on the diagonal and the number -1 in row i, column j
then this differs from the identity matrix by one single elementary row operation. Our
programmed function elementary(n,k,l,a) takes as arguments matrix size (n), the
number of row (k) and column (1) of element a and element (a) and returns the
corresponding elementary matrix.
elementary(n,k,l,a):= matrix(n,n,(i,j)->if(i==j) 1; else (if(i==k-1&&j==I-1)a;else 0;);)
For example, by writing in Xcas:

elementary(4,3,2,-s), the output is:

1.0, 0,0
0.1, 0,0
0. 5.1, 0
0.0, 0,1

3.7 Polynomial Coefficient Matrices
Relying on Schur Theorem (see Chiang, 1984, pp. 601-602) then the real

polynomial
f(X)=ax" +ax"" +a,x"* +..+a,=0

n

is called Schur stable if its roots x; are |xi| < 1. The condition |xi| <1 holds if and only if the

n determinants A, (i=1,..,n) are all positive. The determinants A, are:

ag o .. 0 a, a4 .. q
a ag .. 0 0 a, .. a
ay 0 a, a,
1
A _|ao an A = a a 0 a, A _|@n1 @2 - Ao 0 0o .. a, (1)
! a, apy a, 0 ay a 77" |a, 0 .. 0 a a .. a4
a,1 a, 0 ag ayy a, .. 0 0 ay .. a,
a a .. a; 0 0 .. aqa

11

Our programmed function schur(poly,var,k) with arguments the polynomial
(poly), its variable (var) and the order k (with k ranging from 0 to degree of
polynomial minus 1) of the sequence (1), returns the k-th matrix of the Schur theorem.

The codes in Xcas are:

All(poly,var):=matrix(degree(poly,var),degree(poly,var),(j,k)->if(j<k) 0 ; else
coeff(poly,var)[[j-k+1]];):;
A12(poly,var):=matrix(degree(poly,var),degree(poly,var),(j,k)->ifG>k) 0 ; else
coeff(poly,var)[[degree(poly,var)+j-k+1]];):;
A21(poly,var):=matrix(degree(poly,var),degree(poly,var),(j,k)->if(j<k) 0 ; else
coeff(poly,var)[[degree(poly,var)+k-j+1]];):;
A22(poly,var):=matrix(degree(poly,var),degree(poly,var),(j,k)->ifG>k) 0 ; else
coeff(poly,var)[[k-j+1]];):;
schur(poly,var,k):=blockmatrix(2,2,[subMat(A11(poly,var),0,0,k,k),subMat(A12(poly

,var),0,0,kk),subMat(A21(poly,var),0,0,k,k),subMat(A22(poly,var),0,0,k,k)]):;

The Schur theorem is considered as a perfect difference equation counterpart
of the Routh theorem in the differential equation setup’. Relying now on the Routh-

Hurwitz criteria * then for the real polynomial
f(X)=ax" +ax"" +a,x"* +..+a,=0
the real parts of all its roots x; are negative if and only if the n determinants A, are all

positive

’ See among others Brauer and Nohel (1989), Cushing (2004), Moler, Van Loan (1978),
Moler ,Van Loan (2003) and Noble (1969).

* For more details on the theorem see among others Samuelson (1947, pp. 429-435).

12

a ao 0 0

0 as daz; ap 4o
a a
a ap ! 0 as ag as an

Ay =|ay az’A3=aa ay ajf,Ay = O

9A2 =

as
as as ajz

Our programmed function routh(poly,var,t) with arguments the polynomial
(poly), its variable (var) and the order t (with t ranging from 0 to degree of polynomial
minus 1) of the sequence (2), returns the t-th matrix of Routh’s theorem. The codes in
Xcas are:
routh(poly,var,t):=subMat(blockmatrix(degree(poly,var),1,[seq(list2mat(
[seq(if(j<=degree(poly,var))coeff(poly,var)[[j+1]];else 0;,j=k..0)],2*degree(poly,var))
k=1..2*degree(poly,var),2)]),0,0,t,t):;

Applications with Schur’s theorem and Routhian analysis in Economic
problems can be found in Halkos and Tsilika (2012a).

The matrix with entries the coefficients of the variables (both endogenous and
predetermined) excluded from an equation of a simultaneous equation model but
included in the other equations of the model, has a role to play in rank condition of
identifiability. Coefficient matrices related to rank condition of identifiability are

generated by programmed functions in Xcas in Halkos and Tsilika (2012b).

3.7.1 Numerical Examples
Let us see next some numerical examples of the two theorems mentioned so far.
By writing in Xcas:

schur(a0*x”"4+al*x"3+a2*x"2+a3*x+a4,x,3), the output is:

13

ad, 0, 0, 0, a4, a3, a2, al
al., ab, 0, 0, 0O, a4, a3, a2
a2, at, ad, 0, 0O, 0, a4 a3
a3, a2, al, ad. 0, 0, 0. a4
a4, 0, 0., 0, a0, al, a2, a3
ai. a4, 0, 0, 0O, a0, a1, az
a2, a3 a4, 0. 0, 0, ad, at

al, a2, a3, a4, 0. 0. 0O, a0

routh(a0*x"6+al *x"5+a2*x"4+a3*x 3+ad*x2+a5*x+a6,x,5), the output is:

al, a0, 0, 0, 0. O
as, a2, a1. a0, 0, O
a5, a4, a3, a2, at, a0
0, ab, a5, a4, a3, a2
0, 0, 0, ak, a5, ad

0, 0, 0, 0. 0, a6

3.8 Functional Matrices

Let us now define the matrix of the first order partials of a function as the
Jacobian matrix. Our programmed function jacobian(listf,vars) takes as arguments the
list of functions (listf) and the variable vector (vars) and returns the jacobian matrix:
jacobian(listf,vars):=transpose(diff(listf,vars))

The bordered Hessian matrix of a function f(x,,...,x,) subject to m constraints
(m<n) of the form g’ (x,,...,x,) appears as
0 .. 0 g .. g

0 .. 0 g" .. g’
& - & fu - Su

gil g:l” f;zl f;m

Our programmed function borderhessian(f,vars,listconst,#const) returns the

bordered hessian matrix of a function subject to m equality constraints. borderhessian

14

function takes as arguments the function (f), the variable vector (vars), a vector
containing the constraints’ formulas (listconst) and the number of the constraints
(#const). borderhessian function in Xcas is well defined by the following codes, given
that the jacobian function has earlier been defined.
borderhessian(f,vars,listconst,#const):=blockmatrix(2,2,[newMat(#const,#const),jacob
ian(listconst,vars),transpose(jacobian(listconst,vars)),hessian(f,vars)])

Let us suppose that yl(x), y2(x),...,yn(x) are (n-1) times differentiable

functions. Then the Wronskian of these functions is defined as the matrix

y1’ yl’ y1’

y y Y,
Wy Yymo¥) =] 2

S N U

Our programmed function wronskian(listf,var) returns the wronskian matrix of
a set of functions (listf) of variable (var):
wronskian(listf,var):=seq(diff(listf,var$n),n,0,length(listf)-1)
3.8.1 Numerical Examples

Let us see next some numerical examples of the functional matrices mentioned
so far. Specifically we have
jacobian([x"3*y,x"2*y"2],[X,y])

3 uxguy_ x3

2 2
2uXwy X w2wy

borderhessian(x"2+y"2+w"2,[X,y,W],[X+2*¥y+3*w,2*x+3*y+w-4],2)

0o, 0, 1, 2. 3
0,0, 2, 3.1
1. 2, 2, 0.0
2,3, 0, 2,0
3,1, 0, 0,2

15

wronskian([x"3+3,sqrt(x"2+1),x*sin(x)],x)

3 {2
X +3 +1 Xusingx)

=

2 2
3, KEA XwCOS(X)+sin(x)
+

¥ +1
{ 2
Gux, -"C—*; (-X) »SIN(X)+ 2 »cOS(X)

4
X +2«% +1

4. Conclusions

Working in Xcas environment, a user has the option to use Xcas’ built-in
functions for matrix operations and manipulation. Xcas is free of any charges
accessible to all users interested. Programming structure in Xcas is simple and
programs can be inserted in the same session with entries of different types (symbolic,
numerical, graphical computations). In addition, our codes suggest a direction for
computer experiments. They constitute an open source for further calculations and
give ideas for efficient computation.

Our matrix generator has many advantages.

e The programmed matrix functions are not included in typical / commonly used
algebra packages and produce output requiring simple and clear input.

e Some of our functions have a code structure which uses random numbers to
produce random block diagonal matrices, random triangular matrices, random band
matrices, offering infinite number of examples.

e In educational practice and in research, by automatic construction of the matrix
needed, the user avoids the problem of input and saves time.

e In case of coefficient matrices, the user avoids complex laws of formation and
consequently, possible mistakes.

¢ In case of functional matrices the user also avoids differential calculus operations.

16

References
Anton H. (2000). Elementary Linear Algebra. John Wiley & Sons, Inc., New York.

Anton H., Busby R.C., Knoll C. and Martinez-Garza C. (2003). Contemporary Linear
Algebra, J. Willey, Hoboken NJ.

Batten, D and Martellato, D. (1985). Classical versus Modern Approaches to
Interregional Input-Output Analysis. The Annals of Regional Science, 19(3): 1-15.

Brauer F., Nohel J.A. (1989). Qualitative Theory of Ordinary Differential Equations.
Reprint, Dover.

Cassetti M. (1995). A new method for the identification of patterns in input-output
matrices. Economic Systems Research, 7: 363-381.

Chiang A. (1984). Fundamental Methods of Mathematical Economics. 3" edition,
McGraw-Hill Book, Singapore.

Cushing J.M. (2004). Differential Equations: An Applied Approach. Prentice Hall.

Elsner L. and Johnson C.R. (1989). Nonnegative matrices, zero patterns and spectral
inequalities. Linear Algebra Applications, 120: 225-236.

Goldberg J. L. (1991). Matrix theory with applications. McGraw-Hill, Inc.,
Columbus.

Halkos G.E. and Tsilika K.D. (2012a). Stability Analysis in Economic Dynamics: A
Computational Approach. MPRA paper 41371, University Library of Munich,
Germany.

Halkos G.E. and Tsilika K.D. (2012b). Programming identication criteria in
simultaneous equation models. MPRA paper, 43467, University Library of Munich,
Germany.

Hall F.J., Li Z. and Wang D. (2001). Symmetric sign pattern matrices that require
unique inertia. Linear Algebra Applications, 338(1-3): 153-1609.

Heppell S.S., Caswell H. and Crowder L.B. (2000). Life history and elasticity
patterns, perturbation analysis for species with minimal demographic data. Ecology,
81(3): 654-665.

Hertz G.Z., Hartzell G.W. III and Stormo G.D. (1990). Identification of consensus
patterns in unaligned DNA sequences known to be functionally related. Computer

Applications in the Biosciences 6(2): 81-92.

Johnson C.R. (1983). Sign patterns of inverse nonnegative matrices. Linear Algebra
Applications, 55: 69-80.

17

Kaven A. and Sayarinejad M.A. (2004). Eigensolutions for factorable matrices of
special patterns. Communications in Numerical Methods in Engineering, 20: 133-146.

Lipschutz S. (1987). Theory and problems of linear algebra. McGraw-Hill, Inc.,
Columbus.

Lloyd W.P. and Lee C.F. (1976). Block Recursive Systems in Asset Pricing Models,
The Journal of Finance, 31(4): 1101-1113.

McDonald J.J., Olesky D.D., Tsatsomeros M.J. and van den Driessche P. (1997). Ray
patterns of matrices and nonsingularity. Linear Algebra Applications, 267: 359-373.

Moler C., Van Loan C. (1978). Nineteen dubious ways to compute the exponential of
a matrix. SIAM Review, 20: 801-836.

Moler C., Van Loan C. (2003). Nineteen dubious ways to compute the exponential of
a matrix, twenty-five years later. SIAM Review, 45: 3-49.

Noble B. (1969). Applied Linear Algebra. Prentice Hall.

Parisse B. An Introduction to the Xcas Interface, available at http://www-fourier.ujf-
grenoble.fr/~parisse/giac/tutoriel _en.pdf

Quarteroni A. and Saleri F. (2006). Scientific Computing with MATLAB and Octave,
2" edition, Springer-Verlag, Heidelberg, 2006.

Samuelson P.A. (1947). Foundations of Economic Analysis. Harvard Univrersity
Press.

Stadelmaier M.W., Rose N.J., Poole G.D. and Meyer C.D. (1982). Nonnegative
matrices with power invariant zero patterns. Linear Algebra Applications, 42: 23-29.

Strang G. (1988). Linear Algebra and its Applications. 3™ edition, Harcount Brace
Jovanovich College, Philadelphia, New York.

Tardos G. (2005). On 0-1 matrices and small excluded submatrices, Journal of
Combinatorial Theory Series A, 111(2): 266-288.

Tarr D.G. (1976). Distributed Lags, Morishima Matrices, and the Stability of
Economic Models. Econometrica, 44(3): 597-600.

Veinott A.F. (1969). Minimum concave-cost solution of Leontief substitution models
of multi-facility inventory systems, Operational Research, 17(2): 262-291.

Wermuth N. (1992). On block-recursive linear regression equations. Revista
Brasileira de Probabilidade e Estatistica, 6, 1-56.

Wold H. (1954). Causality and Econometrics. Econometrica, 22: 162-177.

18

