
Munich Personal RePEc Archive

The dynamics of market share’s growth

and competition in quadratic mappings

Dominique, C-Rene and Rivera-Solis, Luis Eduardo

Laval University, Dowling College

3 December 2012

Online at https://mpra.ub.uni-muenchen.de/43652/

MPRA Paper No. 43652, posted 18 Jan 2013 16:43 UTC



1
Professor of Applied Economics (ret.), Laval University

2
, Québec, Canada, e-mail: 

rdom1@Netzero.net.  

2Professor of Finance, Townsend School of Business, Dowling College, New York, USA, e-

mail:rivera@dowling.edu1 

  

The Dynamics of Market Share’s Growth  

And Competition in Quadratic Mappings  

C-René Dominique1 and Luis Eduardo Rivera Solis2   

Abstract  

This paper shows that the observed output of any market, placed within the 

confine of a quadratic map, can characterize the state of that market. Such an 

approach explains the process of market share’s growth and its pitfalls, the 

consequences of broken symmetry of scaling, as well as the limits of firms’ 

competition for market shares.  
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1  Introduction   

The literature on market share’s dynamics focuses mainly on spatial competition 

with quadratic costs, duopolistic strategies, and competition in attraction models, 

but much less so on the growth of market share and its pitfalls. This might be due 

to the inability of these approaches to capture the full complexity of growth 

dynamics. Yet, there exists, at this juncture, a wide consensus on the fact that 

market share’s growth dynamics are non-linear and complex. In fact, it has been 

clearly demonstrated that most processes in economics and finance are better 

characterized by fractal attractors [1], [2], [3], [4] [5], [6]. It would seem, 

therefore, that many important but yet hidden insights into process of market’s 
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share growth could be gained from tackling the notion of complexity head on. And 

the simplest way to proceed is to turn to quadratic mappings, i. e., to the Logistic 

parabola in particular.   

Herein, a quadratic mapping is taken to be a type of mappings that uses the 

previous value of a process raised to the power of two, but which may or may not 

have a closed-form solution. We opted for the Logistic map because it has one. 

Additionally, as a recurrence relation of degree two, it is the simplest example of 

how complex behavior can arise from very simple non-linear relations. More 

succinctly put, the Logistic parabola is a prototypical “strange” attractor. This 

might explain why it has found applications in fields as diverse as semi-conductor 

analyses, thermodynamics, biology, medicine, ecology, and even socio-

economics. Moreover, on a higher explanatory level, the Logistic map lays bare, 

albeit empirically, the consequences of breaking the fundamental concept of 

“symmetry”, which may simply be defined here as an invariance to change. To 

wit: The sharp distinction between “monofractality” and “multifractality” (or self-

affinity), revealed by the logistic map arises precisely from a broken symmetry of 

scale made operational as a broken symmetry of translation of equilibria on its 

linear term (vide infra).  

This paper will draw on these rich insights. But for tractability and completeness, 

it will first briefly review the salient features of the Logistic parabola in order to 

show that any market can be embedded and analyzed in the non-convex set 

bounded by the “hypograph” of the envelop map (f 
max

)  and the “epigraphs” of f 

min 
and that of the linear term of the map. In so doing, the restrained growth of 

market share, the impacts of competition, firms’ efficiency, and even the loss of 

information of a dynamic system evolving in time can easily be characterized.      
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2  Theoretical Preliminaries   

Consider a family of mappings (or Iterated Function Systems): 

           ƒ = {f max, f m (f i, f j )}, i 

 
n, j 

 
n, i  j,                                            (1)  

and a choice variable si = Qi/ Q, where f 
max

: (0, 1)  (0, 1) is the “envelop” map 

whose hump occurs at s = 1/2. f 
m 

(or f 
min

) is the observable map of any market; f 
i 

and f 
j 
describe the mappings of firm i and firm j, respectively, operating in the 

observed market whose total output is Q = 1. It follows that f 
max 

> f 
m

  

 

f 
min

, and  

(f 
i
, f 

j 
) 

 

f 
m

.                                        

It is convenient to begin the analysis with a general description (f 
max

) of the 

restrained growth process of s. That is,  

f 
max 

= K
max 

st – K
max 

h st
+1

, where K
max 

> 1.                       (2)  

This implies that market share grows at a fixed rate determined by K
max

, but at the 

cost (h st
+1

) of generating that discrete level of market share in time t, evaluated 

in terms of market share. Another way of describing the growth process depicted 

by the above equation is to suppose that the net level of st grows at a rate 

determined by K
max

. Then,  

     

f 
max 

(s) = st +1 = K
max 

st (1 – h st 

 

).                                  (3)  

In other words, the growth factor falls to zero as st 1. Since f 
max

(.) 

 

(0, 1), the 

following restrictions are in order:  

                                                            0 < 

  

2, and    h > [1/(

 

+ 1)].  

Denoting s
-
, K

max
, and s* as the mean, the growth factor, and the equilibrium 

value, respectively, we have:  

                s
- 
= {1/[ h (

 

+ 1)] 
1/

  ,                K
max 

={1/[ s
- 
(1 – h s

- 

 

)],                  st*  

= [(K
max 

– 1) / h K
max 

].  
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It can be seen that if h = 1, 

 
= 1, s

- 
= 1/2, K

max 
= 4, and s* = 3/4. Then (3) would 

be reduced to a modified version of Jean-François Verhult’s growth equation, a. k. 

a. the Logistic parabola. It should also be stressed at this point that s* to be stable 

must satisfy:  

                                                             df 
max

/ ds = K
max 

[1 – h st

 

(

 

+ 1)] 

 

[-1, 1 ];                          

(4)  

whether in the envelop map or in its iterates, and df /ds = 0 represents a super-

stable equilibrium. 

2.1- The Dynamics of f 
max

     

The dynamics of (3) may be summarized as follows: Let N (B) and t (s) 

 

N (B) 

be an open neighborhood and the flow of (3), respectively. If t (.) 

 

N (B) at t 

 

0 

and t (.) B as t , then B is a compact hyperbolic attractor for f 
max

. Further, 

denote the locally stable and unstable manifolds for a small neighborhood of B as 

S and U, respectively. Then by letting points in S flow forward in time while 

points in U flow backward in time, the globally stable and unstable manifolds of f 

max 
are:  

                                                              M
s 

= t

 

0 t (B), and  M
u 

= t 

 

0 t (B).                         

(5)         

These manifolds being unique and invariant under the flow, it then follows that,  

                                               s 

 

M
s
, lim t   t (.) = B, and  s 

 

M
u
, lim t -   

t (.) = B.  

Moreover, we define: 

                                         
+
(s) ={s 

 

s = t (s0), t 

 

0}, and 
-
(s) = {s 

 

s = 

t (s0), t 

 

0}  

as an orbit or a positive half trajectory and a negative half trajectory through s0, 

respectively, such that 

 

= 
+ 

 

-
.  

Then:  
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                                              M
s 
(

+
) = t 

 
0 t (S ( )) and    M

u 
(

-
) = t 

 
0 t (U (

)).                                     (6)  

To simplify further and denoting 

 
as the Lyapunov characteristic exponent 

(LCE), we posit: 

                                
+ 

 

M
s
(

 

< 0),     
0
np 

 

M
o
( = 0),                

- 

 

M
u
(

 

> 0)      
0
np 

 

M
0
(

 

= 0);  

That is, 
+
, 

-
, 

o 
represent stable or periodic, unstable, and non-periodic orbits, 

respectively; orbits are either stable or unstable except at aperiodicity where all 

orbits become non-periodic.   

For further ease of exposition, consider the following definitions: 

Definition 1 [7]). B is a strange attractor if it contains a countable subset of 

periodic orbits ( p), an uncountable   subset of non-periodic orbits ( np), and a 

dense orbit ( d).  

Definition 2. If W is a subset of B, W is dense in B if for every point b 

 

B and a 

 

> 0, there is a point  w

 

W such that (b – w) < .    

Definition 3. [8]. If two close points bi, bj 

 

N (B) at t

 

0 becomes exponentially 

distant as t   , then Sensitive Dependence on Initial Conditions (SDIC) exists. 

Thus, B is hyperbolic if 

 

(
+
, 

-
); B is strange if 

 

( p, np, d) by Def.1 and 

Def.2; and B is chaotic if 

 

(
+

, 
-
,  SIDC) by Def.1 – Def.3.  

Suppose for moment that N (B) 

 

3
. Suppose further that all orbits that begin in 

N (B) at time t 

 

0 do so in an inward direction, wonder about N (B), and end up 

in 

 

(.) (which is an image set of U (B)) at time t + 

 

under the transformation of  

(3). Then, it can be shown that the volume of 

 

(.) shrinks to zero [9], [10]. This 

then means that B is an attractor that comprises two subsets of points of zero 

volume. Eq. (3) is therefore a dissipative system containing a strange attractor B = 

  

0 

 

(N (B)). But, due to the loss of energy (information), shrinking volume 



6 

turns B into a “thin” set containing the interleaved subsets of points of zero 

volume. These interleaved subsets intersect. Trajectories (
+
, 

-
), on the other 

hand, do not, but may move from one subset to another as they circulate.  

Here we suppose that N (B) 

 

3 
for concreteness. If f 

max 

 

2
, then N (B) 

 

2
++ 

is a positive area, and the above discussion more properly refers to points of zero 

area; and on the unit interval, it refers to points of zero dim.     

2.2- Characterizing f 
max  

For the complete characterization of f 
max 

the reader is referred to Figure 1 and 

Table 1 at the end of the paper. Figure 1 uses the Hausdorff dimension (D0) for a 

number of reasons. First, D0 is the starting point in the determination of the 

singularity spectrum of f 
max

; as we will see in the last section, the spectrum may 

become handy to distinguish between two regions of persistence. Second, D0 

accommodates both integer and non-integer values. Thirdly, D0 shows that points 

and unions of points of zero area have zero dimensions. Finally, non-periodic 

orbits mean that there are points on the attractor that are visited only once, and 

there are points that are never visited. It so happens that D0 is non-probabilistic 

measure of how orbits fill up the available space. Therefore, for our purpose, D0 is 

much more efficient than both the topological and box-counting dimensions.  

At this juncture, it is clear that variations of the growth factor generate sub-maps 

and intervals of interest. The entries of Table 1 are self explanatory but for two 

brief comments. The BenoitTM software used to compute D0 does not pick up 

certain theoretical critical values of K
max

, except that at K
max 

= 3.44 where 

changes begin to occur. Surprisingly, the first bifurcation at K
max 

= 3.23 appears 

in the monofractal regime. The second occurs during the first enlargement of B. 

Another case in point is the exact place where the process becomes aperiodic. 

There, theoretical and computed values are at variance. Grassberger [11] has 
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determined theoretically and analytically that the Hausdorff dimension of 

quadratic maps at aperiodicity (K
max 

= 3.5699…) to be D0 (

 
) = 0.5381 

 
0.002. But Table 1 indicates aperiodicity at K

max 
= 3.59…with a D0 (

 
) = 

0.58…, probably due to instrumental noise.   

For the present purpose, however, it is worth underlining two other essential 

points. That is, the broad division of the K-continuum and the clear distinction 

between monofractality and multifractality. Referring to Figure 1, it is easily seen 

that monofractality (or self-similarity) begins at K
max 

= 3.0… with a power 

spectrum 

 

= 2.84. In the interval 3.0 < K  

 

3.44, there is persistent 

monofractality and the size of the attracting set B is rather small. Beyond that 

interval, the process becomes multifractal (or self-affine). The flip to 

multifractality is accompanied by significant enlargements of B beginning at K
max 

= 3.44 … and again at 3.60 ….Computed values show that from 3.48….to 3.59 

…the process is mildly multifractal. However, over the interval 3.59 < K
max 

 

3.84, the process is multifractal but severely anti-persistent. In that region, there 

are a few stable orbits (including a mega-cycle at K
max 

= 3.74) and an infinite 

number of unstable orbits coexisting with chaotic K-values. These values are 

densely interwoven with non-chaotic K-values, but they do not form intervals and 

they are all very sensitive to noise. Whereas between 3.84 and 4.0, the process 

remains multifractal but persistent. The interesting thing here to note is that in 

that region usually characterized as chaotic, the subset of stable orbits is not 

empty.   

Another point worth stressing is that the attractor becomes strange (K
max 

= 

3.59….). We attribute strangeness to the fact that B is an invariant set whose 

tangent space diverges into stretching and contracting directions. Previously, each 

point b in B was either in the stable manifold which consists of all points that are 

positively asymptotic to b, or in the unstable manifold consisting of all points that 

are negatively asymptotic to b. At b 

 

B, M
s 

was tangent to the contracting 
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direction, and M
u 

was tangent to the stretching direction. But at aperiodicity, the 

stretching and the shrinking, caused by stable orbits migrating toward that 

accumulation points, convert both M
s 

and M
u 

into M
o
, thereby making the 

attractor strange. Incidentally, it is hypothesized that at aperiodicity, the attractor 

should appear as a Cantor point set. However, our software shows a D0 (

 

) = 

0.58 …instead of 0.6309 for the Cantor point set.  

In short, the characterization of f 
max 

may be summarized as follows: Upon 

variations of K, the invariant set B changes its nature. To wit: From K > 1 and K < 

3.23, B is a fixed-point attractor. Between K = 3.23 and K < 3.59, 

 

(M
s
, M

u
, 

stretching). At K = 3.59, M
s 

and M
u 

change to M
o
, but there is no chaos as defined 

here. Between K = 3.60 and K = 3.84, M
o 

changes back to M
s
, M

u 
and B 

undergoes a second stretching. Between 3.84 < K < 4, 

 

( M
s
, M

u
, folding of B, 

Sensitivity to parameters (STP), and SIDC). Finally at K = 4, there is chaos 

proper, M
s 

 

M
u
, i. e., 

-
- .    

At K
max 

 

3.45 and K
max 

 

3.60, etc., the attracting set undergoes enlargements, 

while at K
max 

 

3.85, it undergoes a shrinking. Between K = 3.23 and K = 3.59, 

orbits go from M
s 

to M
u 

and back to M
s 

after bifurcations. Between K = 3.60 and 

K < 4, 
+ 

venture into chaotic K-values and back, etc. We attribute these to the 

phenomenon called intermittency.  We detect two types of intermittency. In 

themost likely due to phase shifting at K = 3.34, K = 3.50, etc. or to stable orbits 

venturing into chaotic intervals before returning to the previously stable orbits. 

Anyway, more will be said about intermittency in the conclusions. 

The last point to stress at this juncture is the fact that the properties of quadratic 

maps are generic. For example, by varying the parameters h and 

 

in (3), various 

quadratic maps can be generated; differences between them arise only from 

differences in intervals of the growth parameter K.  

3. Characteristics of Actual Markets   
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In Eq. (1), f 
m 

stands for an observable market located between the hypograph 

(HGf) of the non-linear term of (3) and the epigraphes (EGf) of f at K
max  

= 2 and 

the linear term, where,   

HGf = {(f, s) 

 

2
f (= K s

2
) 

 

f (s)}       and          EGf = {(f, s) 

 

2
f (= K s) 

 

f 

(s)}. 

The reason for this stems from the role played by the super-stable orbit at s*= 1 /2 

and the fact that D0 (

 

2
)  

 

1. To be more specific, consider the role of s* = 1/2. 

That value is a member of the list of equilibria of any iterate of (3). For example, 

at the first bifurcation, we have:  

                                                f (f (s)) = K {K  s*(1 – s* ) [1 – K s* (1 – s*)]} = s*;                                  

(7)  

at s* = 1/2,  K1
  
= 2, K2

  
=1 + (5)

1/2
, and K3 = 1 – (5)

1/2 
which not acceptable since s 

> 0. For the first two values, we have s* = 1/2 and s* = 0.809. Successive iterates 

are f (f (f (s))) = s* = 1/2), f (f (f (f (s)))) = s* (= 1/2), etc. Thus at s* = ½, K
m  

= 2 

plays a special role that will be revealed in a moment.  

In the meantime, let us first underline two important points that are necessary to 

characterize a market. The first refers to one of the consequence of Takens’ [13] 

Theorem. That theorem asserts that any output (time series) of a dynamic process 

is sufficient to reconstruct its unknown attractor, on the one hand (see also [2], 

[14]. On the other, the output of a Mandelbrot- van Ness [15] process, or the 

fractional Brownian motion (fBm), is indexed by the Hurst’ [16] exponent H (Ex) 

 

(0, 1). However, many studies have found that H (.) varies with series’ lengths 

and, more significantly, H (.) varies over time [17], [18], [19]. In addition, 

Dominique and Rivera [6] have found a close association between H and the level 

of investors’ expectations (Ex) at certain values of K 
max

. In other words, over the 

range of monofractality (3.0 

 

K
max 

 

3.44), H = a Ex

 

(a is a constant greater than 

zero and 0 

   

1) is a smooth relation describing investors’ long-term 

expectations. But, beyond K
max 

> 3.44, the relation becomes jagged, leading to 
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jittery short-term expectations in response to the jaggedness of H. Attempting to 

explain this would take us far afield. It suffices to realize at this point that the 

mere assumption of investors’ expectations becoming short-term when faced with 

gyrating output and uncertainty in the multi-scaling region is indeed compelling.                         

In the light of the ensuing discussion, we posit:  

                                                                            K
m  

= K
max 

– (H/a)
1/

                                                                

(8)   

                                                                                    = 4 – (2 – D0 ((H/a)
1/

)  

 

2
)  

                                                                                    

 

D0 + 2.  

Hence,     

                                                                  f 
m 

= st +1 = (D0 + 2) st (1 – h st

 

).                                                        

(9)  

Eq. (9) sheds light on many hereto forth nebulous concepts. Both the growth 

factor and variations of H are now explained. As D0 may vary between 1 and 2, 

K
m 

 

3, falling between HGf of f
max 

and the EGf
’
s f (of K

m 
= 2) and the linear 

term. Furthermore, we will show in the next section that fBm exhibits short and 

long-term dependences, thereby clarifying the concepts of persistence and anti-

persistence. It may also be noted that with both STD and LTD, fBm cannot be a 

purely self-similar process because such a process cannot be stationary. Later on, 

we will locate fBm at the intersection of self-similar and Gaussian processes, with 

stationary increments and indexed by H (Ex) 

 

(0, 1).  

3.1- Firms’ Efficiency  

Imagine now a market characterized by h = 

 

= 1and D0 = 1, comprising two 

firms, i and j, respectively. Then K
m 

= 3, s
- 

= 0.500, s* = 2/3. Further, it is 

observed that si* = 0.400 and sj* = 0.266. Since for the market as a whole, h = 

 

= 

1, firms’ equations must satisfy the following conditions: 
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a)                                                            i . j = 1, and;   

b)                                                            I / j = Ki / Kj..  

It is then easy to show after some manipulations that i = 1.1034, j = 0.902 

satisfy the above conditions. Hence,  

                                                                           f 
i    

= 1.6666 si (1 – si
1.1034 

) 

                                                                            f 
j
   = 1.3623 sj (1 – sj

0.902 
)   

The first indication of firm i’s superiority may be seen from the mean. That is,  

                                      si
- 
= [ 1 / (1 + 1.1034)] 

1/1.1034
  = 0.5097,    sj

- 
= [1 / (1 + 

0.902)] 
1/0.902  

= 0.4902.  

At that level, f 
i 
reaches a maximum of 0.4038, while f 

j 
reaches a maximum of 

0.3510. But the main indication of superiority is in terms of costs per share:  

                                                          ci = (0.40)
1.1034 

= 0.3638, cj = (0.266)
0.902 

= 

0.3028.  

Then, firms’ efficiency is given by:  

                                                                      ci / si* = 0.9095,   cj / 0.266 = 1.1383.   

Clearly firm i is more efficient than firm j. It is then no accident that i has a higher 

market share in equilibrium.  

3.2-The Consequences of Competition  

In the above example, the equilibrium of either firm is stable, but surprisingly that 

of the market at s
m

* = 2/3 = si* + sj* is only marginally stable as scale invariance 

is on the verge of being broken. Suppose that either (or both) attempts to increase 

its own share and in so doing pushes market share upward to, say, 0.6913. At that 

level, df
m 

/ ds = 1.24 . As a consequence, market share will bifurcate to s
m*

= 

0.809 > 0.6913. The excess supply will force the competitors to reduce their 

output until s
m* 

= 1 /2 < 0.6913. Now excess demand will call for an increase in 
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output. Thus, market share will tend to oscillate about 0.6913 for as long as the 

competitors are locked in battle for market share.  

Such a situation is reminiscent of Edgeworth’s [21] bilateral monopoly problem. If 

both firms are satisfied at si* = 0.400 and sj*= 0.266, they can coexist, if not, 

output will oscillate forever. Edgeworth concluded that the solution to his problem 

was unstable and indeterminate; he should have added: “ in eternal competition”.   

4  Market Output   

As alluded to above, attempts to evaluate experimentally the Hurst’s exponent 

have produced a plethora of different results ([22], [23], among others). Some 

authors claim long-term dependence (LTD) in financial returns ([24], [3]) while 

(LTD) is rejected by others ([25], [27]). Additionally, it is now known that LTD is 

not a property of purely self-similar processes, as self-similarity itself may have 

very different origins. To shed more light on the debate as to whether LTD or STD 

exists in financial time series some authors ([28], [29]) have proposed the more 

appropriate Mixed fractional Brownian motion (MfBm). Indeed, Dominique and 

Rivera [29] have unambiguously shown that the S&P-500 Index exhibits both 

LTD and STD, consistent with changes in investors’ attitude. To make this 

precise:  

Definition 4. The MfBm, denoted Zt  = 

 

i  bi (X 
Hi 

), bi 

 

, i 

 

n, Hi 

 

n, 

 

Hi 

 

(0,1), is a linear combination of quasi Gaussian processes or a superposition of n 

independent input streams, each with its own H.  

Using the terminology of input storage and Teletraffic, Xt
Hi 

are inputs arriving as 

“cars” (short-term expectations) or as “trains” (long-term expectations). Also, 

recognizing that the market is in reality a dynamic input/output construct, it makes 
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sense to model it as an MfBm where Zt is observable while inputs are not; the 

latter are assumed to be Mandelbrot-van Ness processes. More specifically:  

                                                            Xi
Hi 

= { X
H 

(t, ), t 

 
, 

  
},                                                                 

(10)  

is a real-valued mixed Gaussian process, defined on a space ( , P , F), indexed by 

H 

 

(0,1), satisfying E (X
Hi 

(t, )) = 0, t 

 

, while assuming that Hi is constant 

over segment i 

 

n. Here E denotes the expectation with respect to the probability 

law P for X
Hi

, and ( , F) is a measurable space. The probability law is somewhat 

asymmetric. To show this, let first posit: Zt
+ 

and Zt
- 

as positive and negative 

moves at time t, respectively, while p is a probability of occurrence. Then:  

    1 )  State 1, characterized by H > 1/2 (or D0 < 1.5):Then given,   

                                                                      Zt
+ 

 

p11 ( Z
+

t+1)  > p12 ( Z
-
t+1)     

                                                                      Z
-
t 

 

p12 ( Z
-
t+1) > p11 ( Z

+
t+1).     

This means that the probability of a positive move at t + 1 is higher than that of a 

negative move if today’s move is positive and H > 1/2, and vice versa if today’s 

move is negative. In State 1): p11 + p12 = 1, but p11 or p12 may approach 1 

depending on the case; something similar applies to State 2 below). Such a 

situation subsumes that continuity, or long-term expectations, coincides with 

monofractality. It may also be assumed that p1 increases with increasing H (.). On 

the other hand,  

  2)  State 2), characterized by H < 1/2 (or D0 > 1.5:    

                                                                          Zt
+ 

 

p22 ( Z
-
t+1) > p21 ( Z

+
t+1)   

                                                                          Z
-
t  

 

p21 ( Z
+

t+1) > p22 ( Z
-
t+1).  

State 2) implies multifractality and complexity where p2 increases with decreasing 

H (.) values. Hence, expectations quickly turn to short-term.   
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Mandelbrot and van Ness [16] distinguish between the ordinary Brownian motion 

and fBm at the level of covariance function. That is, for any v > 0 and z > 0, z > v:  

                                 Cov (Zv, Zz) = 2
-1 

[ i bi
2 

( v
2Hi 

+ z
2Hi 

- v - z
2Hi 

> 0 (< 0) for 

Hi > 1/2 ( Hi < 1/2);                 (11)  

implying that H > 1/2 is associated with persistence, while H < 1/2 implies anti-

persistence. As a consequence, monofractality (one scale) is also associated with 

persistence (H > 1/2). But we found experimentally that multifractality (multiple 

scales) implies both persistence and anti-persistence. Therefore, the notion to the 

effect that H < 1/2 (H > 1/2) means anti-persistence (persistence) needs a 

clarification.  

The whole situation may be summarized as follows: State 1 is characterized by: H 

> 1/2 (or D0 < 1.5), persistence, and p11 (p12) >> p12 (p11). Whereas, in State 2, we 

have: D0 > 1.5 in the complex region where p22 (p21) >> p21 (p22), but the same 

probability law holds for the chaotic region which is persistent and where D0 < 

1.5. In other words, according to the color code used in physics, the complex 

region (3.59 < K
max 

< 3.85) is pink on the average, while the interval 3.0 < K
max 

 

3.44 and the chaotic region (3.84 < K
max 

< 4.0) are black on the average. 

However, the two black colors are fundamentally different. Type 1 black is in 

State 1 where all orbits are stable fixed-points of periods 2
0
. Whereas Type 2 

black is in State 2 where there are a few stable orbits but most are unstable and 

there are SPD and SDIC. For example, at K 
max 

= 3.84, there is a stable orbit at s* 

= 0.958. But at K 
max 

= 3.842, s* = 0.955 is unstable. A quasi monopolist that 

achieves these levels of market share is in fact very vulnerable to the slightest 

change in the growth parameter. Hence, Type 2 black deserves its bad reputation, 

for any monopole that ventures in that region may crash for reasons that would 

appear mysterious to its CEO.     

Putting this result in the context of Figure 1, we see that the process is persistent if 

D0 < 1.5 over the interval 3.0 

 

K
max 

 

3.44. It is anti-persistent (D0 > 1.5) over the 
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interval 3.49 

 
K

max 

 
3.84, but persistent again over the interval 3.84 …< K

max 
< 

4. Then, as the sole characteristic known as persistence is not too informative, how 

can the first persistent (monofractal) interval be distinguished from the second 

(multifractal)? We will return to this in a moment.  

4.1- Testing Variations in Expectations  

Figure 1 clearly shows a collapse of the H index as the process becomes self-

affine, and that fact is correlated with a collapse of investors’ expectations. We 

will attempt to support that assertion from the US capital market for which we 

have an exceedingly long series. That is, the Grand Microsoft Excel data set, 

sampled daily from January 3
rd 

1950 to February 28
th 

2011, expressed as an 

MfBm (Def. 4). The index was first divided into 12 segments of various lengths 

and according to their scaling factors. Each segment was next de-trended using 

logarithmic differences and filtered for white noise before computing their D0.   

Our results are shown in Table 2 below. As it can be seen, STD is observed over 7 

anti-persistent periods coinciding with economic downturns, while LTD was 

observed over 5 persistent periods coinciding with economic upturns. For the 

present purpose, however, no detailed explanation is necessary, except for two 

pertinent observations. That is, MfBm accounts well for the stylized facts. And the 

US capital market confirms the assertion to the effect that LTDs are correlated 

with investors’ long-term expectations, while STDs are correlated with short-term 

expectations.  

4.2- Estimating Market Conditions from Observed Data  

At the outset market share was defined as si = Qi/ Q. As defined, market share 

does not coincide with published data, which are more properly equilibrium 

values, capable at best of identifying market leaders. As Q is not observable, 

published data do not help much in the assessment of market conditions. However, 

this limitation can be overcome using Figure 1 and Eq. (9). That is,    
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1) Obtain a time series or a weighted index of un-manipulated prices of the 

market to be analyzed;  

2) De-trend, filter and calculate D0 from a Wavelet multi-resolution software;  

3) If D0 > 1.5, the market falls in the anti-persistence and complex region of 

the map;  

4) If D0 < 1.5, the process is either a monofractal or a multifractal. To 

distinguish between the two, the Mandelbrot Method (see [6]) can be used 

to compute at least two of Renyi’s ([28]) generalized dimensions. That is, 

the Information Dimension (D1) and the Correlation Dimension (D2) of 

Grassberger and Procaccia ([29]);  

5) If the process or market is a monofractal, then D0 = D1 = D2. On the other 

hand, if the process is located in the chaotic region, then D0 >  D1 > D2; in 

that case, it must be analyzed as a multifractal.                         
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Labels of figures and tables    

Figure 1 maps D0 and K max. Table 1 summarizes the characteristics of f max, and Table 2 depicts 

STD and LTD in the S&P-500 Index from 1950 to 2011.  

    

 

   D0

                   Kmax 

Figure 1: D0 vs. K max. Over the interval 3.0 < K max < 3.44 the process is a persistent monofractal. Over the interval 3.45 < 

K max < 3.84 it is an anti-persistent multifractal. The interval 3.62…. 

 

K max 

 

3.84 … is the Li & Yorke’s period-3 window. 

The interval 3.84 < K max < 4.0 is persistent- multifractal and chaotic                                                                                                                                                                                        

                                                                                                                   

0

0.5

1
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Table 1: Theoretical and Computed Critical Values and Intervals of K
max

. (1) 

Computed with the Wavelet Multi-resolution BenoitTM of Trusoft International; 

(2) The algorithm indicates a break with monofractality at K
max 

=3.44, but not the 

first bifurcation.   

        Theoretical 

Value 

          Computed Value 

(1) 

                                     Remarks 

              K < 1                    K < 1                                         s* = 0 

              K = 2                    K = 2                                         s* =1 /2  

       df/ds = 0, a fundamental super-stable equilibrium 

       1 < K < 

3.2306 

            1 < K < 3.0 (2)

 

… 

            -2k

  

Ms, k = 0 oh a fixed-point attractor  

         K = 3.23606   

     3.23 …

 

K 

 

3.45 

                K = 3.0….  

            3.23 

 

K 

 

3.44  

Second-order Return map of fmax: Equilibria at s1* =   

0.5000,  s2* = 0.809 …Broken Symmetry at K =3.23 & Beginning of 

Multifractality; Stretching of B at K = 3.23 

Process is a persistent monofractal, but becomes anti-persistent at K = 

3.48 

     3.23 

 

K 

 

3.5699…. 

          3.48 < K 

 

3.59… 

-2k

  

Ms

 

-2k

  

Mu

 

-2k

  

Ms

 

, k = 2, 3, 4, …; period-doubling 

scenario; B becomes anti-persistent at K = 3.48; Small folding of B at 

Kmax = 3.59 

           K = 3.5699                  K = 3.59…. Critical value for aperiodicity, -2k, k ; Attractor becomes strange; 

Hausdorff dim D0 (

 

) = 0.58; -, + 

 

np ; that is, 

 

( p, np, d)  

          K = 3.5699                 K = 3.60 …. Second enlargement of B, starting at 3.60; Process becomes severely anti-

persistent 

     3.5699 < K < 

3.84…. 

              3.59..< K 

 

3.85 

Intervals of complex and chaotic regimes; Mnp

  

(Mu), resulting in +, -

 

and sporadic chaos; Process is anti-persistent  

      3.5699 < K < 

4 

         3.59 

 

Kmax

 

< 

4.0          

Sensitivity to K (STP) and all values of the iterates are sensitive to noise 
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   3.8284 

 
K 

 
3.8414 

                    …… Period-three doubling, -3x2k, k = 1, 2, 3, 4,…within the Li & Yorke 

[12] window; few chaotic intervals  

        3.8414 

 
K < 

4 

            3.84 

 
K < 4.0 Chaotic regime (Def. 3), 

 
(Ms, Mu); +

 
are few, -

 
are plenty; Second 

folding of B due to intermittency, 

 
SIDC, STP, Process becomes 

persistent. 

                

                Table 2: LTD and STD in the S&P-500 Index from 1950-2011. The market alternates between 

anti-persistence and per- sistence. (1) The Hausdorff dimension in 2-D; (2) Values before crashes.                                                                                                               

          Period                  ri        Wavelet 

Points 

                Hi                 D0 
(1)

          1950-58               2126                 211
     0.4760 

 

0.0482               1.5240 

          1958-61                  673                 29
     0.5890 

 

0.0410              1.4110 

          1961-72                2591                 211
     0.5220 

 

0.0321              1.4780 

         1972-80  

(2) 

              2053                 211
     0.2209 

 

0.0359              1.7791 

          1980-83               1076                 210
     0.2870 

 

0.0319              1.7130 

         1983-87 
(2) 

              1074                  210
     0.5590 

 

0.0501              1.4410 

          1988-92               1127                 210
     0.5310 

 

0.0610              1.4690 

          1992-97               1291                 210
     0.4630 

 

0.0559              1.5370 

          1998-02               1149                 210
     0.6100 

 

0.0612              1.3900 

         2003-07 
(2) 

              1024                 210
     0.1101 

 

0.0310              1.8899 

           2007-08                 512                  29
     0.2811 

 

0.0326              1.7189 

           2009-11                 535                  29
     0.1430 

 

0.0339              1.8570 

  

5  Conclusion  

This paper argues that markets are dynamic input/output constructs that are in 

general governed by fractal attractors. Consequently, the extant approaches to the 
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study of the dynamics of market share’s growth are unable to capture the complex 

nature of growth dynamics. The paper then proceeds to show instead that the state 

of any market can easily be characterized in quadratic mapping. It suffices to 

embed an observed output (time series) of that market in the non-convex set, 

bounded by the hypograph of the non-linear term of the envelop map, and the 

epigraphes of the minimum (market) map and the linear term.  

To do so, the paper develops a large class of quadratic maps that can reveal a 

wealth of insights. For example, at certain critical values of the growth parameter, 

the attracting set undergoes an enlargement precisely at the point where scale 

invariance is broken and multifractality ensues. At higher values of the parameter, 

i. e., between aperiodicity and the end of the Li and Yorke’s period-3 window, the 

attracting set undergoes a second enlargement; that interval is characterized by 

complexity and sporadic chaos. Beyond the period-3 window, the attracting set 

abruptly shrinks; the process becomes a persistent multifractal accompanied by a 

greater degree of chaotic behavior. 

We attribute the enlargements and folding of the attracting set to the phenomenon 

called intermittency arising from an incomplete intersection of the stable and 

unstable points. Mainly in the complex region, the system may move sufficiently 

far away from periodic orbits to be affected by chaos before returning to stable 

orbits. Some authors define a second type of intermittency as an alternation of 

phases of periodic orbits and unstable behavior. We found support for the first 

type in the complex region, and support for the second type in the period-doubling 

region, i. e., at points where stable orbits become unstable, or at phase shifting, i. 

e., at K
m 

= 3.34, K
m 

= 3.51, K
m 

 

3.60, etc. 

These and other insights shed light on the role of the growth factor, on firms’ 

efficiency, and on the limits of competition for market shares. Finally, the paper 

suggests that the application of the Mandelbrot Method can distinguish between 

regions of persistent-monofractality from persistent-multifractality.         
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