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Abstract

We present an evolutionary model of a population interacting in repeated Prisoner’s Dilemma. Fach
type is characterized by the number of steps he looks ahead, and each agent has an independent
probability to observe the opponent’s type. We show that if this probability is not too close to 0
or 1, then the evolutionary process admits a stable outcome, in which the population includes a
mixture of “naive” agents who look 1 step ahead, and “moderately sophisticated” agents who look 3
steps ahead. Moreover, this outcome is unique under the additional assumption that agents present
reciprocity at early stages of the interaction.

KEYWORDS: bounded forward-looking, evolutionary stability, Prisoner’s Dilemma. JEL Clas-
sification: C73, D03.

1 Introduction

Experimental evidence suggests that people look only few stages ahead and use backward
induction reasoning to a limited extent. For example, players usually defect only at the
last couple of stages when playing a finitely repeated Prisoner’s Dilemma game (see, e.g.,
Selten and Stoecker (1986)) and “Centipede” game (McKelvey and Palfrey (1995); Nagel and
Tang (1998)), and they ignore future opportunities that are more than 1-2 steps ahead when
interacting in sequential bargaining (Neelin, Sonnenschein, and Spiegel (1988)). A second

stylized fact is the heterogeneity of the population: some people systematically look fewer

*I would like to express my deep gratitude to Itai Arieli, Vince Crawford, Eddie Dekel, Eric Mohlin, Ariel
Rubinstein, Peyton Young, seminar participants at Birmingham, Oxford, and University College London,
and workshop participants in fifth Transatlantic Theory Workshop at Northwestern University, for many
useful comments, discussions, and ideas.
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Tab. 1: Payoff at the symmetric stage game Prisoner’s Dilemma (A > 3.15).

steps than others (see, e.g., Johnson, Camerer, Sen, and Rymon (2002)).!

These observations raise two related evolutionary puzzles. The first puzzle is why people only
look few steps ahead. In many games, the ability to look one more step than your opponent
gives a substantial advantage. As the cognitive cost of an additional step is moderate in
relatively-simple games (see, e.g., Camerer (2003, Section 5.3.5)), it is puzzling why there
has not been an “arms race” in which people learn to look more steps ahead throughout the
evolutionary process (the so called “red queen effect”; Robson (2003)). The second puzzle is
how the “naive” people, who systematically look fewer steps ahead, survive.

In this paper we present an evolutionary model where agents, who differ in their forward
looking ability, play repeated Prisoner’s Dilemma. We characterize a stable heterogeneous
population of naive agents (who look 1 step ahead) and moderately sophisticated agents (who
look 3 steps ahead). Moreover, we show that under an additional assumption of reciprocal
behavior at early stages of the interaction, this is the unique stable population.

In each generation agents from a large population are randomly matched and each couple
plays (without rematching) repeated Prisoner’s Dilemma. The stage payoffs are described in
Table 1: mutual cooperation (both players play C) yields both players A, mutual defection
(both players play D) gives 1, and if a single player defects, he obtains A+1 and his opponent
gets 0. The length of the interactions at each generation, T, has a geometric distribution
with parameter \. In what follows, we assume that mutual cooperation is sufficiently efficient
(A > 3), and that the interaction is long enough (X close to 1).2

Each agent in our model has a type in the set {Ly, Lo, ..., Lys, Lo } that determines how
many steps he looks ahead (results are independent of M, given that M > 3). Agents of
type Lo are informed about the realized length of the interaction before the game begins.
An agent of type Ly is informed about the realized length k periods before the end (after
playing at stage T — k). We interpret this information structure to stem from bounded

forward-lookingness: type L, becomes aware of the realized final period and its strategic

! Similar stylized facts are also observed with respect to the number of strategic iterations that players
use in static games, as suggested by the cognitive hierarchy (or level-k) models (see, e.g., Stahl and Wilson
(1994); Nagel (1995); Costa-Gomes, Crawford, and Broseta (2001); Camerer, Ho, and Chong (2004)).

2 In order to simplify the presentation of the results, we assumed that: (1) defection yields the same
additional payoff (relative to cooperation) regardless of the opponent’s strategy, and (2) all interactions at
each generation has the same length. The results remain qualitatively similar also without these assumptions.
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“backward-induction” implications only £ rounds before the end.

We assume that types are partially observable in the following way (similar to Dekel,
Ely, and Yilankaya (2007)): before the interaction begins, each agent has an independent
probability p to observe his opponent’s type.® Informally, this can be interpreted as an
opportunity to observe opponent’s past behavior, or to observe a trait that is correlated
with the forward-looking ability. The total payoff of an agent of type Ly is the undiscounted
sum of payoffs in the repeated Prisoner’s Dilemma minus an arbitrarily small cost that is
increasing in k& (a marginal cost for having a better forward-looking ability).

We capture the stable points of the dynamic evolutionary process by adapting the notion
of evolutionarily stable strategy (ESS, Maynard-Smith (1974)) to a setup with different types.
In such a setup, the state of the population is described by a configuration - a pair consisting
of a distribution of types and the (possibly mixed) strategy that each type uses in the game.
A configuration is evolutionarily stable if any sufficiently small group of mutants who invades
the population is outperformed by the incumbents in the post-entry population.*

Our first result shows that if p is not too close to 0 and 1 (and this interval is increasing
in A), then there exists an evolutionarily stable configuration, which includes two kinds of
players: (1) naive agents of type L; who only begin defecting at the last stage (their pro-
portion increases in both p and A), (2) moderately sophisticated agents of type Lsz: usually
they defect two stages before the end, unless they observe that their opponent is sophisti-
cated, and, in this case, they begin defecting one stage earlier. Stability relies on the balance
between the direct disadvantage of naive agents (defecting too late), and the indirect ad-
vantage - when naivety is observed by a moderately sophisticated opponent, it serves as a
commitment device that allows an additional round of mutual cooperation. Higher types
(L4 or more) cannot invade the population because Ls’s behavior remains the best-reply also
when being informed earlier about the realized length of the interaction.

As common in evolutionary models, this environment admits other stable configurations.
Our second result characterizes an additional assumption - early-reciprocity, under which,
this is the unique stable configuration.’ Specifically, we assume that as long as an agent is
uninformed about the realized length of the interaction he must: (1) be “nice” - never defect
before his opponent, and (2) “retaliate” - defect if the opponent defected in the previous

stage. Two examples for such heuristics are “tit-for-tat” (defect if the opponent defected in

3 Results remain the same if agents were able to observe only lower opponents’ type (see remark 2).

4 The “mutants” achieve the same payoff if they are equivalent to the incumbents: have the same distri-
bution of types and play the same on-equilibrium path. If they are not equivalent, we require the mutants
to obtain a strictly lower payoff.

5 In addition, we refine evolutionary-stability by requiring stable configurations to satisfy “properness”
(Myerson (1978)). This restricts the incumbents to use “reasonable” strategies against external mutants.
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the previous stage) and “grim” (defect if the opponent ever defected in the past).

The plausibility of this assumption relies on Axelrod (1984)’s findings that reciprocal
behavior is very successful in tournaments of infinitely repeated Prisoner’s Dilemma. In
addition, a support for this assumption and for the predicted behavior in our model, is given
in experiments that study behavior in finitely-repeated Prisoner’s Dilemma. Selten and
Stoecker (1986) study games with 10 rounds and show: (1) if any player defected, then almost
always both players defect at all remaining stages, (2) usually there is mutual cooperation
in the first 6 rounds, and (3) players begin defecting in the last 1-4 rounds.® Johnson,
Camerer, Sen, and Rymon (2002)’s findings suggest that bounded forward-lookingness is
the main cause for this behavior.

It is interesting to note that stable configurations are very different when p is close to
0 or 1. In both cases (assuming early-reciprocity), stable configurations must include L
agents who, when facing other L., agents, defect at all stages. When p is close to 0, types
are too rarely observed, and the indirect advantage of naive agents is too weak. When p
is close to 1, there is an “arms race” between sophisticated agents who observe each other:
each such agent wishes to defect one stage before his opponent.

Our formal analysis deals only with repeated Prisoner’s Dilemma. It is straightforward
to extend the results to other games in which looking far ahead decreases efficiency. One
example for such games is “centipede” (Rosenthal (1981)), which can represent sequential
gift exchange. Such interactions are important both in primitive hunter-gatherer societies
(see, e.g., Haviland, Prins, and Walrath (2007), p. 440), as well as in modern societies.

We conclude by briefly surveying the related literature. Geanakoplos and Gray (1991)
study complex sequential decision problems and describe circumstances under which looking
too far ahead in a decision tree leads to poor choices. Stahl (1993); Stennek (2000) and
Mohlin (2012) present evolutionary models of bounded strategic reasoning (“level-k”), which
are related to our model when p = 0 or p = 1. This paper is novel in introducing partial
observability in this setup, and showing that it yields qualitative different results. Crawford
(2003) studies zero-sum games with “cheap talk” and show that naive and sophisticated
agents may co-exist and obtain the same payoff. Finally, Mengel (2012) assumes bounded
forward looking, and demonstrates in an interaction of repeated Prisoner’s Dilemma that
it can induce cooperative behavior while both myopic play and unlimited forward looking

behavior only induce defections.

6 In the experiment subjects engaged in 25 sequences (“super-games”) of repeated Prisoner’s Dilemma.
The above results describe the behavior of subjects in the last 13 sequences (after the initial 12 sequences in
which players are inexperienced and their actions are “noisier”). See similar results in Andreoni and Miller
(1993); Cooper, DeJong, Forsythe, and Ross (1996); Bruttel, Giith, and Kamecke (2012).
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The paper is structured as follows. Section 2 presents our model. In Section 3 we show the
stability of the configuration in which L; and L3 co-exist. In Section 4 we prove uniqueness
under the assumption of early-reciprocity, and characterize the stable configurations for low
and high p-s. Appendix A compares our notion of stability with Dekel, Ely, and Yilankaya
(2007), and show that our results are similar also with their notion, and Appendix B includes

the formal proofs.

2 Model

2.1 Payoffs, Strategies and Types

We consider a large population in which at each generation agents are randomly matched, and
each pair of agents play the repeated Prisoner’s Dilemma with a geometric random length:
T. The stage game includes two actions: {C, D}. The stage-payoffs are described in Table
1. As is standard in the evolutionary literature, this payoff is interpreted as representing
“success” or “fitness.” To simplify the presentation of the results we assume that: (1) the
interaction lasts at least 3 rounds - T —2~Geo (\); and (2) at each generation all interactions
have the same length (while lengths in different generations are independent). The results
remain qualitatively the same without these assumptions.

Agents in the population differ in their forward-looking ability, which is captured by their
type. Fix an arbitrary integer M > 4, and let £ = {Ly, ..., Ly, Lo} be the set of types.”
An agent of type Ly is informed about the realized length of the interaction after playing at
round T — k, or at the beginning of the interaction if T < k. We dub agents as uninformed

before they receive the signal about the realized length, and as informed afterwords.

Remark 1. We set Ly to be the minimal type in the model. However, our results are robust to
this choice. Specifically, if the minimal type in £ were L, (for some k € N including & = 0)
instead of L, then all our results would hold for a “shifted” unique stable configuration,

(u*,b%), where L is replaced by Ly and Lj is replaced by Lj.o.

Let ¢ : L — RT be a strictly increasing function satisfying ¢ (L;) = 0, and let § > 0.
Agents of type Ly bear a cognitive cost of § - ¢ (Lg). The payoff of the repeated game is the
undiscounted sum of the stage payoffs minus the cognitive cost. In what follows we focus on
the case of: (1) arbitrarily low cognitive costs - sufficiently small §, (2) long interaction - A
is close enough to 1, and (3) efficient mutual cooperation - A is large enough (A > 3.2 for

stability, and A > 4.6 for uniqueness).

7 The results also hold for M = 3 but this make the notations of the proof more cumbersome.
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Following Dekel, Ely, and Yilankaya (2007), we assume that before the interaction begins
each player observes the type of his opponent with probability p (and gets no information
about his opponent’s type with probability 1 — p), independently of the event that his
opponent observes his type.® We use the term stranger to describe an opponent whose type

is not observed.

Remark 2. In some environments it might be plausible to assume that agents only iden-
tify lower opponent’s types (see, Mohlin (2012)). All of our results remain the same with

asymmetric type observability, where the informative signal (obtained with probability p) is:
1. The opponent’s exact type, if it is strictly lower than the agent’s type.
2. If the opponent’s type is weakly higher, then the agent only observes this fact.

A history of the game of length ¢ > 0 is a triple (Lw,, (a;, a_i)t)where: (1) Ly € LU
describes the signal about the opponent’s type (¢ denotes a stranger); (2) [ € {1,..., M, o0};
[ = oo describes the case of an uninformed agent - the number of remaining stages (dubbed,
the horizon) is unknown, and [ < oo describes the length of a known horizon; and (3)
(as,a_;)" € {C x D}" describe the t action-profiles that were observed so far in the game.
Let H, denote the set of all histories of length t, and let H = U,cyH; be the set of all
histories. A pure strategy (resp., behavioral strategy) is a function b : H — {C, D} (resp.,
p:H — A({C,D}) from the set of histories to the set of pure (resp., mixed) actions.

2.2 Configurations

Following the “indirect evolutionary approach” (Giith and Yaari (1992)) we present a reduced-
form static analysis of a dynamic process that describes the evolution of types.® This process
can be interpreted as either: (1) biological process - types are genetically determined, and
payoff is the number of offspring; and (2) learning and imitation process - an agent’s type
describes the way he perceives strategic interactions; once in a while an agent may decide to
change his strategic framework and imitate the type of a more successful agent.

Given a distribution of types u € A (L) let C'(u) C L denote the support of p (types
with positive frequency). Types in C (u) are called incumbents, and types outside C' (i) are
called external mutants. The state of the population is described by a configuration - a pair

consisting of a distribution of types and their strategy profile. Formally:

8 The results remain qualitatively similar if the signal structure is slightly altered by: (1) a small positive
correlation with the opponent’s signal, or (2) a small probability that the informative signal is incorrect.

9 The indirect approach was mainly used to study evolution of preferences. See Frenkel, Heller, and Teper
(2012) for a previous adaptation of this approach to study evolution of cognitive biases.
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Definition 1. Configuration (u, ) is a pair where p € A (L) is a distribution of types, and

b= (Bk)kec(m is the profile of behavioral strategies of the incumbents.

Remark 3. Note that a configuration also determines the behavior against external mutants.
In Appendix A we show that our results remain qualitatively similar also with Dekel, Ely,
and Yilankaya (2007)’s alternative notion, in which h the state of the population determines

only the strategies that are used against incumbents.

Next, we define the mixture of two configurations as follows:
Definition 2. Let (u, ) and (i, 8’) be configurations, and let 0 < ¢ < 1. The mizture
configuration (/],B) =(1—€- -(wp)+e- (W,B)is: p=(1—¢€)-p+e-p, and:

(L—€)-p(Le) B+ e (Li) - B
(M=) p(le) +e-p' (L)

vk € C (i), By =

When e is small we interpret (1 —€)- (u, B)+€- (1, 8') as a post-entry configuration after
incumbents in state (u, §) are invaded by ¢ mutants with configuration (¢/, f'). Finally, we
define two configurations as equivalent if they have the same distribution and they induce

the same observed play. Formally:

Definition 3. Configurations (i, 8) and (u/, 8') are equivalent ((u,8) ~ (¢, 08)) if: (1)
p =, and (2) for each pair of incumbents Ly, Ly € C (1), the observed play when type Ly

plays against type L, is the same in both configurations.

Note that that following the invasion of € mutants, the incumbents in each of two equiv-

alent configurations may act differently when facing these mutants.

3 Evolutionary Stability

3.1 Definition

In a model without types, the state of the population is described by a strategy. A strategy is
neutrally (resp., evolutionarily) stable if any sufficiently small group of mutants who invades
the population and plays an arbitrary strategy would achieve a weakly (strictly) lower payoff

than the incumbents. Formally:

Definition 4. (Maynard-Smith (1974); Maynard Smith (1982)) Strategy o € X is neutrally
(resp., evolutionarily) stable if for any strategy o’ (resp., 0’ # o) there exists ¢,» € (0,1)
such that for every 0 < € < €y u(o,e0’ +(1—¢€)o) > u(o’;ea’ + (1 —¢€)o). (resp.,
u(o,ec’ +(1—€)o) >u(o’,ed’ + (1 —¢€)0)).
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In what follows we extend the notion of evolutionary stability from strategies to configu-
rations. Given two configurations (u, 8) and (¢, 5) define w ((u, 8) , (¢, ")) as the expected
payoff of a player from population (i, 3) who plays against an opponent from population
(1/,8") (and the type of each player is observed with independent probability p). A con-
figuration is neutrally (evolutionarily) stable if any sufficiently small group of mutants who
invades the population would obtain a weakly (strictly) lower payoff than the incumbents in

the post-entry population. Formally:

Definition 5. Configuration (u, ) is neutrally (resp., evolutionarily) stable if for any con-
figuration (y/, 8) (resp., any (¢/, 8') % (1, §)) there exists €,» € (0, 1) such that V0 < € < €,

u((p,B) e (W, B) + (1 —e€) (1, 8) = u((W,8), e, )+ (1 =€) (1, 8))

(vesp., u (1, B) e (1, B') + (1 —€) (1, 8)) > u (W, 8) e (W', ') + (1 =€) (u, B)))-
Remark 4. Note that:

1. Evolutionarily stable configurations are only weakly stable against invasions of equiv-

alent mutants.

2. Definition 5 is closely related to Maynard Smith (1982)’s Definition 4 in two ways:

(a) When the set of types is a singleton, then Definition 5 and Definition 4 coincide.

(b) Consider a two-player “meta-game” in which each player chooses a type and a
strategy for that type. Note that a mixed “meta-strategy” in this game is a
configuration. A symmetric strategy profile in this “meta-game” is a neutrally
stable strategy if and only if it is a neutrally stable configuration.!®

3. Similar to the standard setup without types (see, Taylor and Jonker (1978)), neutral

stability implies (Lyapunov) dynamic stability: no small change in the population can

take it away from a neutral stable configuration in any payoff-monotonic dynamics.

It is well known that any neutrally stable strategy is a Nash equilibrium. Similarly (see
Proposition 2 in Appendix B.1) strategy profile 8 in a neutrally stable configuration (u, )
is: (1) balanced - all incumbents obtain the same payoff, and (2) a Bayes—Nash equilibrium

in the Bayesian game with distribution pu.

10 An evolutionarily stable configuration may be only a neutrally stable strategy in the “meta-game” as
“meta-strategies” that only deviate off-equilibrium path yield the same payoff as the incumbents in the
post-entry population.
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3.2 Stability Result

Our first result characterizes an evolutionarily stable configuration, (x*, b*), in which naive
players (type Li) and moderately sophisticated players (type L3) co-exist. Let the configu-
ration (u*,b*) be defined as follows:

1. The population includes only types L; and L3 with the following frequencies:

p-(A—=1)—1+0-c(L3)
p-(A-1)

1—50([/3)
p-(A-1)

w(Ly) = , w1t (Ls) =

2. Uninformed agents play grim: defect if and only if the opponent has ever defected.

3. Informed L, agents defect at the last stage. Informed L3 players:

(a) Against an observed type different from L;: defect at the last three stages.

(b) Against strangers and observed L;: Follow “grim” at horizon=3, and defect at the

last two stages.

Our first results shows that (u*, b*) is stable if p is not too close to 0 or 1.

Theorem 1. Let ﬁ <p< %, let 0 > 0 be sufficiently small and let A < 1 be sufficiently

large. Then (u*,b*) is evolutionarily stable.'!

The formal proof appears in Appendix B.2. In what follows we briefly sketch its outline.
First, we show that b* is a Bayes—Nash equilibrium (given p*), and that following grim till
the last three rounds is also a best reply for informed mutants of higher types (if p is not too
close to 1). Next, we show that (u*,b*) is balanced. In order to show this, we compare the
fitness of L, and L3 agents against different opponents. L, agents succeed more against an
observing L3 opponent (who observed their type), because their observed naivety induces an
additional round of mutual cooperation. L3 agents achieve a better payoff in the two other
cases: against naive opponents and against an unobserving sophisticated opponent. This
implies that there is a unique level of u (L) that balances the payoff of the two kinds of
players (if p is not too close to 0).

Finally, we use these two properties to show resistance to mutations. If € more players of
type Li (Ls3) join the populations, then due to the previous arguments, they would have a
strictly lower payoff than the incumbents (on average). Mutants of type Lo are outperformed
due to their inability to defect one stage earlier against an observed type Ls. Mutants of

types L4 or more are outperformed due to their higher cognitive costs.

I Note that the interval ﬁ < p < 43 is increasing in A, it converges to the entire interval [0,1] in

the limit A — oo,and it is non-empty for each A > 3.2.
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4 Uniqueness

Similar to other models of repeated interactions our environment admits additional stable
configurations. In this section we show that if we further assume that uninformed agents

present reciprocal behavior, then (u*, b*) is the unique stable configuration.

4.1 Reciprocal Behavior

In an early-reciprocal strategy uninformed agents: (1) never defect first (“nice”), and (2)

defect if the opponent has defected in the last stage (“retaliate”). Formally:
Definition 6. Behavioral strategy [ is an early-reciprocal strategy if :

1. 8 (-, 00, (ai,a_i)t) =(Cifa”, = C for each 7 <t (nice); and

2. B(-,00,(ai,a—;)") = D if a'; = D (retaliate).

As discussed in the introduction, reciprocal behavior includes a family of heuristics (such
as, “tit-for-tat” and “grim”), which are very successful in experimental and simulated plays
of infinitely repeated Prisoner’s Dilemma (e.g., Axelrod (1984)). In what follows we assume
that all agents (both incumbents and mutants) are limited to playing only early-reciprocal

strategies (dubbed, early-reciprocity assumption).

4.2 Properness Refinement

Even with the early-reciprocity assumption, the interaction admits additional evolutionarily

stable configurations. One such configuration is described in the following example.

Example. Consider the configuration that assigns mass 1 to L. agents who defect at
all stages against any observed opponent’s type. Omne can see that this configuration is
evolutionarily stable. However, the stability relies on the incumbents defecting at all stages
against naive mutants (L1). Such a strategy is strictly dominated by an alternative strategy
that cooperates for the first M —2 stages against naive opponents (due to the early-reciprocity
assumption). Thus, in the long run, as a response to recurrent entrees of naive mutants,
incumbents are expected to evolve into cooperating at the first stages of the game when

facing naive opponents, and the stability of the configuration will be lost.

Motivated by this example, we refine evolutionary stability by requiring properness (My-
erson (1978)). We begin by formally defining properness in this setup. A configuration is

interior if every combination of type and pure strategy has a positive probability. With some
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abuse of notation: (1) we denote by Ly also the distribution that assigns mass 1 to type Ly;
and (2) we consider the behavioral strategy [ as a mixed strategy, and denote by (5 (b) the
probability of the pure strategy b.

Definition 7. Configuration (u, 3) is interior if for each types Ly € £ and for each pure
early-reciprocal strategy b: (1) p(Ly) > 0, and (2) 5 (b) > 0.

Given € > 0, an interior strategy configuration (u, 8) is e-proper if for every type LyLy €

L and every pure early-reciprocal strategy by, by :

w (L, bi) (s B)) < w((Lues bir ) (1 8)) = (L) - B (br) < € pu(Laer) - 5 (bar) -
A configuration is proper if it is the limit of some e-proper equilibria when € — 0.

Definition 8. Configuration (u, ) is proper, if there exists a sequence (e, > 0),, — 0
and a sequence of €,-proper interior configurations (u", 5") such that yu” —, o i, and if
2 (Lk) > 0 then ﬁ]? —?n—o0 Bk

Remark 5. Note that:

1. The configuration in the example above is not proper because in any interior configu-
ration, cooperating in the first M — 2 stages strictly dominates early defection against
observed L;. This implies that always defecting against type L, cannot be played with

positive probability in a proper configuration.

2. Tt is immediate to see that in every proper configuration (u, ) the profile 5 is a

balanced Bayes—Nash equilibrium.

3. Definition 8 is closely related to Myerson’s (1978) definition of proper equilibrium:

(a) If there is a single type, then Definition 5 and Myerson’s definition coincide.

(b) Consider again the two-player “meta-game” in which each player chooses a type
and an early reciprocal strategy. A symmetric (mixed) strategy profile in this

meta-game is a proper equilibrium if and only if it is a proper configuration.

4. In the proof of our uniqueness result (Theorem 2) we only use a weaker property
that is implied by properness: the requirement that the strategy that an incumbent
plays against an external mutant must be a best-reply to some strategy of the external

mutant, which is best-reply to the incumbent configuration.
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A configuration is a proper naturally (evolutionarily) stable if it is both proper and nat-
urally (evolutionarily) stable. van Damme (1987) showed for normal-form games without
types that evolutionary stability implies properness. In our setup, this does not hold, be-
cause we weakened evolutionary stability by allowing equivalent mutants to fare the same
as the incumbents. Thus, we have to slightly enhance evolutionary stability by explicitly

require properness.

4.3 Uniqueness Result

It is straightforward to show that (u*,b*) is proper (Prop. 3, proved in Appendix B.3). Our
next result shows that with the early-reciprocity assumption any proper neutrally stable

configuration is equivalent to (u*, b*).12

Theorem 2. Let A > 4.6, ﬁ <p< %, 0 > 0 be sufficiently small, X < 1 be sufficiently
large, and assume early-reciprocity. Then if (u, 5) is a proper neutrally stable configuration,

then it is equivalent to (u*,b*)."3

The sketch of the proof is as follows (see Appendix B.4 for the formal proof). First,
observe that a configuration with a single type is not stable: (1) if the type is L., then the
entire population defects all the time, and mutants of type L; induce cooperation against
them and, in doing so, outperform the incumbents; and (2) if the type is Ly # Lo, then
mutants of type L., can invade the population. Let Ly, be the smallest (“naive”) type in the
population. Then, it is immediate to see that type Lj, must always defect when the horizon
is at most kq, and all other types must defect when the horizon is at most ky + 1.

The next step is to show that a large fraction of the non-naive population must cooperate
at all horizons larger than k; + 1 when facing strangers. Otherwise, a small increase in the
frequency of the naive players (type Ly, ) would improve their fitness relative to the non-naive
agents (as many non-naive agents defect too early against unobserved naive opponents), and
this implies instability. The fact that this fraction is so large implies that if there are non-
naive players who defect at earlier horizons than k; + 1 against strangers, then: (1) the large
fraction who defects at horizon k; + 1 against strangers must belong to type Ly, 11, and (2)
all the remaining non-naive players must defect at horizon k; + 2 against strangers. This

characterization allows us to find the unique distribution of types that satisfies the balance

12 The assumption A > 4.6 is required to have uniqueness in the entire interval ﬁ <p< % . For

lower A-s the uniqueness may hold only in a sub-interval (as discussed in the proof in Appendix B.4).
13 The uniqueness result holds also for A < 4.6 but in a smaller interval as detailed Corollary 1 in Appendix
B.4.



A Comparison With Dekel, Ely, and Yilankaya (2007)’s Stability 13

of payoffs among the different types, but it turns out that this distribution is not stable
against small perturbations in the frequency of the incumbents.

Finally, if all non-naive players defect at horizon k; 4+ 1 against strangers, then it implies
that they all defect at horizon k; + 2 against observed non-naive opponents, and the balance
between the payoffs of the different types implies that the frequency of naive and non-naive
players is the same as in p*. Finally, we show that if k; > 1, then the configuration can be
invaded by mutants of type L;, who would outperform the incumbents by inducing more

mutual cooperation when being observed by the opponents.

4.4 Low and High p-s

Our main results (Theorems 1-2) characterized the unique stable configuration in the interval
A

oz <P < %. In this section we deal with the remaining intervals: low p-s (below ﬁ)
and high p-s (above %), and show that the stable configurations are qualitatively different
at these intervals. In both cases, stable configurations (if they exist) must include L, players
who, when facing L., opponents, defect at all stages.

When p is close to 0, this occurs because the indirect advantage of lower types is too
small and they cannot exist in a stable configuration (because the probability of being
observed by the opponent is too low). When p is close to 1, there is an “arms race” between
sophisticated agents who observe each other: each such agent wishes to defect one stage
before his opponent. The result of this “arms race” is that in any stable configuration there
must be L., agents in the population, and these L., players defect at the first stage when
they observe a L., opponent. Table 2 summarizes this result, which is formalized as follows

(see proof in Appendix B.5):
Theorem 3. Let A > 4.6, 6 > 0 be sufficiently small, N < 1 be sufficiently large, and

assume early-reciprocity. Let (u, 3) be a proper neutrally stable strategy.

A
(A-17"

2. Let ﬁ <p< A2 Then (u,B) =~ (u*,b*).

1. Let p < Then 11 (Lo) = 1 and everyone defects at all stages.

3. Let % <p<1. Then u(Ly) >0, and Ly, agents always defect against observed L,

opponents.

A Comparison With Dekel, Ely, and Yilankaya (2007)’s Stability

In our notion of stability, the state of the population specifies the behavior of the incumbents

also against external mutants. Dekel, Ely, and Yilankaya (2007) present an alternative
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Tab. 2: Characterization of Proper Evolutionarily stable Configurations

Interval Example Characterization of Proper
(A =10) Evolutionarily stable Configurations
0<p< ﬁ 1% < p < 12% | Necessary condition: only p (L) = 1.
A A1 (u*,b*) - Naive (L) and moderately
@a-n7 <P <73 12% < p < 90% sophisticated agents (Ls3) co-exist.
Al <p<i 0% <p<1 Necessary condition: u (L) > 0.

notion according to which the state of the population only specifies the behavior of players
against incumbents, and the behavior against external mutants is determined by a post-
entry adaptation process.'* In this appendix we describe Dekel, Ely, and Yilankaya (2007)’s
notion, and show that our results remain qualitatively similar with this notion.

Dekel, Ely, and Yilankaya (2007) assume that the adaptation process according to which
agents choose their strategies is much faster than the evolutionary process according to
which the frequency of the types evolves. Thus, they assume that the post-entry population
adjusts their play to an exact Bayes—Nash equilibrium immediately after mutants enter the
population. Let a compact configuration be a pair consisting of a distribution of types and the
strategy that each type uses against strangers and other incumbents (but behavior against

external mutants is unspecified). A compact configuration (u, 8) is (strictly) DEY-stable if:

1. Strategy profile 3 is:

(a) A Bayes—Nash equilibrium in the Bayesian game with the distribution of types p.

(b) Balanced - it induces the same payoff to all types in C (u).

2. For each type L, € L, there exists a sufficiently small ¢y such that for each € < ¢,

after e mutants of type L invade the population:

(a) There exist post-entry Bayes-Nash equilibria in which the incumbents’ play is

only slightly changed relative to the pre-entry play.

(b) In all these equilibria the mutants are (strictly) outperformed by the incumbents.

14 A similar approach is used in the notions of mental equilibrium (Winter, Garcia-Jurado, and Mendez-
Naya (2010)) and evolutionarily stable types (Alger and Weibull (2012)). Both notions apply only to ho-
mogeneous populations that include a single type, and thus are not appropriate to deal with stability of
heterogeneous populations.
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With simple adaptations, Lemmas 1-5 apply also for DEY-stability. This immediately im-
plies that (u*, b*) is strictly DEY-stable, and that it is “qualitative unique” under the early
reciprocity assumption. That is, any other DEY-stable configuration satisfies similar quali-
tative properties: (1) naive agents (type L;) and moderately sophisticated agents (types in
the set { Lo, L3, L4}) co-exist, and (2) higher types (Ls and above) do not exist. Formally:

ﬁ,%) <p< %7 let & > 0 be sufficiently small, let

A < 1 be sufficiently large, and assume early-reciprocity. Then the compact configuration
(u*,0%) is strictly DEY-stable. Moreover, any other DEY-stable configuration (u,b) satisfies:

dopeatt(Li) =1, and 0 < p (L) < 1.2

Proposition 1. Let max(

In this setup we only have the weaker “qualitative” uniqueness because Lemmas 6-7, which
are required for “full” uniqueness, do not hold. The lemmas fail because DEY-stability does

not consider what happens as a result of a small perturbation to the:

e strategies played by the incumbents (part 1 of both lemmas), as DEY-stability im-
plicitly assumes that the incumbents immediately adjust back to their previous play

(which remain Bayes—Nash equilibrium).

e frequencies of the different incumbent types (part 4 of Lemma 7), as DEY-stability only
allows mutants to have a single type, while such perturbations can only be represented

by entry of heterogeneous mutants.

Finally, we note that if one adapts DEY-stability by: (1) allowing non-external mutants to
have several types, and (2) assuming that the adjustment to a new exact equilibrium takes
place only after the entry of external mutants, then all of our results, including the “full”

uniqueness would hold.

B Proofs

Throughout the proofs we use dj, to denote the following behavior of an informed agent: play
grim if the horizon>k, and defect if horizon< k£ . Note the for an informed agent of type
Ly, all behaviors d,,, for m > k are equivalent, as such an agent never encounter an horizon
larger than k. In all the results we assume that § > 0 is sufficiently small, and that A < 1 is
sufficiently large.

15 Note that the interval max (ﬁ, %) <p< % is increasing in A, it converges to the entire

interval [0, 1] in the limit A — oo, and it is non-empty for each A > 3.4.
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B.1 Neutral Stability Implies Balanced Bayes—Nash Equilibrium

Proposition 2. Let (u,[3) be a neutrally stable configuration. Then, the strategy profile
B: (1) induces the same payoff for each type in the support of p, and (2) is a Bayes—Nash

equilibrium in the Bayesian game with distribution of types p.
Proof.

1. Assume to the contrary that (3 induces different payoffs to different types. Let L, €
C' (1) be the type with the highest payoff. Then u ((Lg, 5k), (i, 8)) > w ((, 8) , (i, B))-
This implies that for sufficiently small € > 0, mutants of type L, who play Sy achieve
a strictly higher payoff than the incumbents and this contradicts the stability.

2. Assume to the contrary that /3 is not a Bayes—Nash equilibrium. Let L, € C (i) be
the type who does not play a best response against (u,3). This implies that there
exists strategy £, such that w((Lg, ;) , (1, 8)) > u((Lk, Br), (1, B)). By the first
part of the proposition, w ((Lg, Bx), (1, 8)) = u((i, 8), (i, 8)). This implies that for
sufficiently small e > 0, mutants of type L; who play [, obtain a strictly higher than
the incumbents and this contradicts the stability of (u, 3).

B.2 Stability of (u*,b")

Theorem 1. Let ﬁ <p< %. Then configuration (u*,b*) is evolutionarily stable.

Proof. In order to prove that evolutionary stability, we first show two auxiliary results:

(u*,b*) is balanced (Lemma 1), and b* is a Bayes—Nash equilibrium (given p*) that is strict

with respect to on-equilibrium path deviations (Lemma 2).

Lemma 1. Configuration (u*,b*) is balanced.

Proof. Let ¢ = p(Ly). Agent of type Ly gets (T —1)- A+ 1 against L; opponent and
(T —2) - A+ 1 against L3 opponent. Agent of type L; obtains (T —2)- A+ (A+1)+1=
(T —1)- A+ 2 against L, and against L3 opponent he gets: (T — 3) A + 3 if both players
identify each other, (T—3)- A+ (A+1)+2 = (T —2)- A+ 3 if only he identifies his
opponent, (T — 3)- A+ 0+ 2 if only his opponent identifies him, and (T — 2) - A+ 2 if both
players identify each other. Denote by d3 = & - ¢(L3) the cognitive cost of type Ls. The
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different types get the same payoff if:

- (T=1)-A+D+(1-¢q) - (T=2)-A+1)+d3=q-(T=1)-A+2)+(1—¢q)-
(PP (T=3)A+3)+p(1=p)(T=2)- A+3)+((T-3)-A+2))+ (1 -p)* (T -2)- A+2))
1-q¢)(T-2)A+1—-((T=3)A+1+2*+p(1—-p)(A+2+ 1)+ (1—p)?(A+1)))+d=¢
g=(1—-q)- (A= (20 +p(1—p) (A+3)+ (1 —p)*(A+1))) + 3
¢=1-q)(A-(pP’2-A-3+A+1)+p(A+3-24-2)+ (A+1))) +
¢g=(1-q)(A-(p(1—-A)+(A+1)))+ s
g=1=-q)(-p(1-A) -1 +05=(1-¢q)(p(A—1)—1)+ 33

qip(A=1)—141)=p(A—-1)—1+43

p(A—1)—1+0;3
p(A-1)

Note that for each p > ﬁ we get a valid value of 0 < ¢ < 1. O

q= (B.1)

Lemma 2. Strategy profile b* is a Bayes—Nash equilibrium given the distribution p*. More-
over: (1) playing grim until the last three stages is also the best reply of informed mutants of
higher types, and (2) any deviation that induces a different play on-equilibrium path yields a
strictly worse payoff.

Proof. For large enough A < 1, it is immediate that playing grim is a best reply for an
uninformed agent. In what follows we focus on informed agents. We have to show that (1)
Playing d, against observed L; opponents and strangers, and playing ds against observed
non-naive opponents is a best reply of all informed agent (including informed mutants with
types Ly with k& > 3); and (2) deviations on-equilibrium path are strictly worse. It is
immediate that dy is a best reply against an observed naive opponent, and strictly better
than all on-equilibrium path deviations. Next, we show that playing ds against a stranger is
strictly better than playing ds. This is true if the following inequality holds (looking at the

payoffs of the last 3 rounds, as all preceding payoffs are the same):

q-(24+2)+(1-¢q)-2p+(1-p) (A+2)>q¢ (A+3)+(1—q)-Bp+(1—p)- (A+3))

Q'(A—1)>(1—q)<:>q>%.
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Using (B.1) one obtains:

p-A—p A-A>p-A-p & p'(A2_2A+1>>A©p>W.

It is then immediate that ds is also strictly better (against strangers) than any other deviation
on-equilibrium path (also when a mutant agent is informed earlier about the realized length).
We are left with showing that playing ds is strictly better than playing d, against an observed
non-naive opponent (and this immediately implies that d3 is also strictly better than any
deviation on-equilibrium path also of a mutant which is informed earlier about the realized
length). This is true if the following inequality holds (focusing on the payoffs of the last 4

rounds, as preceding payoffs are equal):

p-(A+3)+(1—-p)-(2A4+3)>p-(A+4)+(1—p)-(A+4)

A-1

(1-p)-(A=1)>p & A-1>Ap & P
We now use the lemmas to prove that (u*,0*) is evolutionarily stable. That is, we have to
show that after an invasion of € mutants with configuration (u,8) (i, 5) % (u*,b*)), the
incumbents obtain a strictly higher payoff than the mutants in the post-entry population

(for sufficiently small € > 0). O

First, consider mutants of types L, or L3. If these mutants play differently against
incumbents (strangers, Ly or L3) than do their incumbent counterparts on-equilibrium path,
then they are strictly worse off by the previous lemmas. Note that when the proportion of L,
agents becomes larger (smaller) relative to its proportion in u*, then the L; agents achieve
a lower (higher) payoff than the L3 agents. This is because L; agents obtain a strictly lower
payoff than L3 agents when facing L; opponents (Ls players obtain an additional fitness
point by defecting when the horizon is equal to 2). This implies that mutants of types L; or
L3 who play the same as their incumbent counterparts on-equilibrium path, obtain a strictly
lower payoff than the incumbents (unless these mutants have the same distribution of types
as the incumbents, and, in this case, they obtain the same payoff).

Next, consider mutants of different types (Lo or Ly or higher). Mutants of type Lo
achieve a strictly lower payoff against incumbents: they have the same payoff as L3 in most
cases, but they obtain a strictly lower payoff when they observe an opponent of type L3 due

to their inability to defect at horizon 3. Mutants of higher types (L4 or more) obtain at
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most the incumbents’ payoff when facing incumbents (as discussed before, L3’s strategy is
a best-reply also when being informed earlier about the realized length), while they have a
strictly larger cognitive cost (0 - ¢(L4)). Thus these mutants achieve a strictly lower payoff
than the incumbents. Finally, mutants may gain an advantage from a secret handshake-
like behavior (Robson (1990)) - playing the same against incumbent types and strangers,
while cooperating with each other when observing a mutant type (different from L, and L3).
However, for sufficiently small €, such an advantage cannot compensate for the strict losses
mentioned above, and this implies that any configuration of mutants would be outperformed

by the incumbents. O

B.3 Properness of (u* b")

We first show that (u*,b*) is a proper configuration.

Proposition 3. Let ﬁ <p< %. Then configuration (u*,b*) is proper.

Proof. Let the sequence of interior €,-proper configurations (u™, ™) that converge to (u*, b*)
be defined as follows (for brevity we only sketch the main details of the construction). Each
external mutant Ly ¢ {L;, L3} has p" (Ly) = O (e,), while p™ (Ly) = u(L1) — O (e,) and
p" (Ls) = pu(Ls) — O (e,). With probability of 1 — O (¢,) all types play grim when being
uninformed, and when being informed they play ds against strangers and L; opponents,
and play ds against other observed opponents. Agents play all other pure strategies with
probabilities of O (¢,,) or smaller magnitudes in a way that is consistent with e,-properness.

Observe that such a configuration is €,-proper, and this implies the properness of (p*,0*). [

B.4 Uniqueness of (u*,b")

A-1
A

is a proper neutrally stable configuration, then it is equivalent to (u*,b*).'6

Theorem 2. Let A > 4.6, ﬁ <p< and assume early-reciprocity. Then if (u, f)

Theorem 2 follows immediately from Lemmas 3-7. First, Lemma 3 shows that proper
neutrally stable configuration must include more than one type in their support, and the

lowest type must be at most M — 1. Formally:

Lemma 3. Let (u, B) be a configuration such that 5 is a Bayes—Nash equilibrium given p.
Let 0 < p. Let type Ly, € C(u) be the smallest type in the population. Then:

1. Everyone defects (with probability 1) at any horizon weakly smaller than k.

16 If A < 4.6, Theorem 2 holds if p satisfies: max (ﬁ, %) <p<A orp<i-24
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2. Any type Ly # Ly, in the population defects (with probability 1) at horizon ki + 1.
3. If p(Ly,) = 1 then the configuration is not neutrally stable.
4. If ki = M then the configuration is not neutrally stable.
5. 1w(Lg) <landky <M —1.
Proof.

1. It is common knowledge that all types are at least k;. This implies that defecting when
the horizon is at most k; is the unique strictly dominance-solvable strategy. Thus, all
players must defect with probability 1 when the horizon is at most k; given any signal

about the opponent.
2. Part (1) implies that defecting is strictly better than cooperating at horizon ki + 1.

3. Observe that if k&1 < oo, then € mutants of type L., who enter the population and
play dj, 41 strictly outperform the incumbents. If k& = oo, then for sufficiently large
A, mutants of type L; will strictly outperform the incumbents, because they induce at
least T — 2 rounds of mutual cooperation when their nativity is being observed (due

to the properness requirement).

4. TIf the lowest type in the population is Lj,, then L., agents strictly outperform agents

with type Lj;_1 and the configuration cannot be neutrally stable.
5. It is immediately implied by the previous parts.
O

Remark 6. Note that if Ais not close enough to 1 (and this threshold is decreasing in p and
converges to 1 as p — 0), then the configuration in which all agents have type L., and they

always defect can be a proper evolutionary stable.

Given a configuration with more than one incumbent, we call the lowest incumbent type
“naive,” and all other incumbents are dubbed non-naive types. Let a cooperative opponent
be an opponent who has not defected so far in the game. The following lemma shows that
if everyone cooperates at all horizons strictly larger than k; + 1 in a proper neutrally stable

configuration, then this configuration must be equivalent to (u*,b*).
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Lemma 4. Let p < %, let (u, B) be a proper neutrally stable strategy, and let type Ly, €
C () be the smallest type in the population. Assume that p(Lg,) < 1, k1 < M — 1, and
all types in the population cooperate at all horizons strictly larger than ki + 1 when facing

cooperative strangers. Then:
1. No one defects at a horizon strictly larger than ki + 2 against any incumbent.

2. u(Lg,41) = 0 and all non-naive incumbents play dy,+1 against strangers or observed
types Ly, , and they play dg, o against any non-naive observed incumbents (up to off-

equilibrium path deviations).
3. No incumbent has a type strictly larger than Ly, 1o (if ki +1= M, let k1 + 2 := o).
4. The population only includes types {Lg,, Lk, +2}, and:

pA=1) =140 (c(Lpto) = c(Lny))

N(Lkl): p(A—l)

_A

a7 and no neutrally stable configuration exists if p < —2—

for any p > R

5. If p> ﬁ, then (u,b) and (u*,b*) are equivalent configurations.
Proof.

1. We have to show that playing dy, o is strictly better than an earlier defection against
an observed non-naive incumbent. This is because defecting at horizon k;+3 (defecting
at a horizon strictly larger than &y 4 3) yields A — 1 (at least 2- (A — 1)) fewer points
than dy, 1o against an unobserving opponent and at most 1 (2) more points than dy, 1o
against an observing opponent. Thus dy, ;o is strictly better than defecting at a horizon
of at least ki + 3 if:

A-1
A

1-p)-A=1)>p e (A-1)>Ap & > p.

2. By part (2) of the previous lemma all non-naive incumbents play dj,,, when facing
strangers or observed Lg,. It is immediate that d, o is strictly better than defecting
at a horizon of at most k; + 1 when facing an observed non-naive incumbent. By the
previous part, any incumbent with a type strictly larger than Ly, 1 plays di, 12 against
observed non-naive incumbents. In order to complete the proof we have to show that
all non-naive incumbents have type different than Ly, ;. Assume to the contrary

that: (I) all non-naive incumbents have type Ly, 11; this implies that mutants of type
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L who play di, 12 against non-naive incumbents and dy, ;1 against strangers or naive
incumbents outperform the incumbents; or (IT) some of the non-naive incumbents have
type Lg,+1 while other incumbents have higher types; then for sufficiently small § > 0,

the latter group outperforms the former.

3. Assume to the contrary that there are players of a type strictly higher than Ly, io.
If there are also incumbents of type Lj, 2 then the previous part shows that both
groups play the same on-equilibrium path, and thus the agents with the strictly higher
types must obtain strictly lower payoffs due to the cognitive costs. Otherwise, any
best-reply mutant type Ly, +1 must play di,+1 against strangers and naive incumbents
(or an equivalent strategy that only differs off-equilibrium path), and this implies that
in any proper configuration, non-naive incumbents cannot defect at horizons strictly
higher than %y 4+ 2 when facing an observed mutant type L, 1. This implies that such

mutants outperform the incumbents due to the cognitive costs.

4. C(u) = {Lk,, Lk, +2} is immediate from the previous two parts. In any balanced con-

figuration the naive and the non-naive incumbents must have the same payoff. By re-

peating Lemma 1’s calculations, this implies that p (Lg,) = pm_l%lw'}géﬁ?ﬁ”_C(Lkl)).

A
(A-1)*

By repeating Lemma 2’s calculations, this configuration cannot be stable if p <

5. If Ly, = Ly then the previous parts imply that (u, 5) ~ (u*, b*) are equivalent configu-
rations. Assume to the contrary that k; > 1. We now show that e mutants of type L,
who invade the population outperform Lj, incumbents (and this immediately implies
that the mutants also outperform the incumbents of type Ly, 12, as the post-entry dif-
ference in the payoffs between the incumbents is O (€)). When facing an opponent of
type Lg,, the mutants obtain one less point. When facing an unobserving opponent of
type L, 12, both types Ly and Ly, fare the same. When facing an observing opponent
of type L, 2, the mutants obtain at least A — 1 more fitness points (by inducing a

sophisticated opponent to postpone his defection). Thus the mutants outperform if:

p-(A-1)
l1+p-(A-1)

(L) <p-(A—=1)-pu(Lpy2) =p-(A=1)-(1 = p(Ly,)) & p(Ly,) <

By the previous part:

p(A-1)—1+0 (c(Li+s) —c(Ln)) _ _p-(A-1)
p(A—1) l1+p-(A-1)

% (Lk’l) =

where the last inequality holds for a sufficiently small § > 0.
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]

We now have to deal with the remaining case in which only a fraction of the non-naive
players cooperate at all horizons strictly larger than k141 when facing a cooperative stranger.
First, Lemma 5 shows that the frequency of the naive players is small, and that these naive
players must have type L, and that if p is not too small, then the population must include

also types Ly — L4 but no higher types.

Lemma 5. Let (i, 5) be a proper neutrally stable strategy, and let type Ly, € C () be the
smallest type in the population. Assume that p(Ly,) < 1, ky < M — 1, and that there are

agents who defect at horizons larger than ki + 1 when facing cooperative strangers. Then:
1op(Ly,) < %
2. If p > ﬁ, then Ly, = L.
3. Ifp> %, then p (Ly) > 0.
4. If p(Ls) > 0 and 42 > p > L then:

(a) No incumbent defects at horizons > 3 when facing cooperative strangers.
(b) No incumbent defects at horizons > 4 when facing any cooperative incumbent.

(¢) No incumbent has a type strictly higher than Ly.

Proof.

1. The fact that there are incumbents who defect with positive probability at horizons
strictly larger than k; + 1 against strangers implies that early defection (at horizon
strictly larger than k; + 1) yields a weakly better payoff than d, 1 against cooperative
strangers. Early defection at horizon ki +2 (>k; +2) yields at least A—1 (2- (A —1))
fewer fitness points against naive agents, and at most 1 (2) more points against non-

naive opponents. This can hold only if:

1

plli) (A=) <A =p(lun) 1 plln) < 4. (B.2)
2. Assume to the contrary that k; > 1. Observe that ¢ mutants of type L; outperform
the incumbents of type L, (and thus outperform all the incumbents in the post-entry

configuration) if: p- (A —1)- (1 — pu(Ly,)) > p(Lg,) - 1. This is because the mutants
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of type L earn at least A — 1 more points when their type is observed by a non-
naive incumbent, they earn the same when their type is not observed by a non-naive
incumbent, and they earn at most 1 less point when playing against a naive incumbent

(type Ly,). Thus the mutants achieve a strictly higher payoff if:

p-(A-1)
l+p-(A-1)

p(A=1)>pu(Ly) - 1+p-(A-1)) & > p(La)

Substituting (B.2) yields:

p-(A-1) 1
T (A=1) > spA-(A-1)>1+p-(A-1) <:>p>m.

3. Assume to the contrary that p(Ly) = 0. Balance implies that the naive players (L)

must have the same payoff as the non-naive players. This can hold only if:

p-(A=2)- (1 -p(l) <A —=p)- (L=p(L)) 2+ p(Ll).

This is because naive players obtain (on average) at least A — 2 more fitness points
when their type is observed by a non-naive opponent (as they induce their opponent
to cooperate at least one more round), and non-naive agents get at most 1 more
point against a naive opponent and at most 2 more points against a non-observing

sophisticated opponent. Thus:

(P (A=2)=2-(1=p) (1 =p(l)) <p(l) & (p-A=2)- (1 - p(L)) < p(l)

p- J—
(p-A=2) <plla)-(p-A=1) & p(l) >
Substituting (B.2) yields:
1 p-A-2 9 5

The last inequality holds if and only if p > a contradiction.

e (A 1)7
4. Let p(Lsy) =1 = p(Ly) — p (L)
(a) Balance implies that types L; and Ly obtain the same payoff. This can hold only
if:
pep(Lsy)  (A=1) <p(Ly)+ p(Le) + (1 =p)-p(Lsy).
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This is because type L; obtains A — 1 more fitness points against an observing
opponent of type L3 or higher, while type Ly obtains 1 more point against types
L, and Ly and at most 1 more point against an unobserving type Ls or higher.
Thus:

prp(Lay) (A=1) <1—p(Lsy)+ (1 —p)-p(lsy) =1—p-p(Lsy)

1
prpu(lsr) A<l & ’LL(L3+><A_-p'

This implies, together with (B.2):

_ 1 I Ap-p-1
M(Lz)_l_M(Ll)_M(L:H)>1_Z_A-p_ e

From the same argument as in part (1) of this lemma, if y(Ly) > & then no
incumbent defects at a horizon strictly larger than 3 when facing cooperative
strangers. Substituting this inequality yields:

1 Ap—p-1

1
— < = <Ap—-p—-1<& > —.
Y 1) p p—p P>

(b) The proof repeats the argument of part (2) of Lemma 4.

(c) The proof repeats the argument of part (3) of Lemma 4.

]

Lemma 6 shows that: (1) a large fraction of non-naive players cooperate at all horizons
strictly larger than k; + 1 when facing cooperative strangers, (2) if p < 1 — i?_jx then no
incumbent defects at a horizon strictly larger than k; + 2 when facing cooperative strangers,

and (3) no incumbent has a type higher than Ly, 3.

Lemma 6. Let p <1 — i‘;‘j‘, let (1, B) be a proper neutrally stable strategy, let type Ly, €

C (1) be the smallest type in the population, and assume the that p (Ly,) < 1 and ky < M —1.
Let n be the mean probability that a non-naive incumbent cooperates at all horizons strictly
larger than ki + 1 when facing a cooperative stranger. Assume that n < 1. Then:

1.
(A-1)-1-p)—1

(A-1)-(1-p)

2. No player defects at horizon > ki + 2 when facing cooperative strangers.

n >
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3. No player defects at horizon > ki + 3 when facing cooperative incumbents.
4. No player in the population has a type strictly larger than Ly, 3.

Proof.

1. Type Ly, gets (T — 1)- A+1 points when playing against itself. A random player with
a type different than Ly, who plays against Ly, gets at most (T — 1) A+1+1 when he
observes his opponent’s type, and an expected payoff of at most - (T —1) A+ 2) +
(1—n)-((T—2)-A+3). This implies that a necessary condition for other types to
achieve a higher payoff (on average) when playing against L, than the payoff that L,
gets against itself is (subtracting the equal amount of (T — 2)- A+ 1 from each payoff):

A<p-(A+D+ (0 =p)-(n-(A+1)+2-(1-1n))

1
A<l+p-A+(1-p)-(n-A+1-n) <:>A—1Tp<7]-A+1—77

1 1
(A-1)-(1-p) —1
A-n--p -7 (B3)

If (B.3) does not hold, then the configuration cannot be naturally stable, because a
sufficiently small group of mutants with type L; who invade the population and play

d; would outperform the incumbents.

2. We show that when facing strangers, all types cooperate with probability 1 at all
horizons strictly larger than k; + 2. Assume to the contrary that there is a type who
defects with positive probability against cooperative strangers at horizon [ > k; + 2.
This implies that defecting at horizon [ yields a weakly better payoff against strangers

than dj, 2. This can occur only if:

n-(I=p)-(A=1)<A=n)+n-p

This is because if [ = k1 +3 (I > k1 + 3), dy, 42 yields A —1 (at least 2- (A — 1)) more
points against non-observing opponents who cooperate at all horizons larger than k41,

and it yields at most 1 (2) fewer points against any other opponents. Thus:

1

D (L=p) (A=) S1=n-(1=p) &0 (1=p) AT =p) &0 < gmy—
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Substituting (B.3) yields:

(A-1)-(0=-p—1_ 1
(A-1)-(1-p) ~(1-p)-A

A A-1)-(1-p)-A<A-1& A (A-1)-1-p)<2-A-1

2. A-1 o 2-A-l
A (A—1) TP e

S A (A-1)-(1-p—1)<A-1

I1—-p<

ifjj. By part (2) of Lemma 3, all non-naive

and we get a contradiction to p < 1 —
incumbents defect with probability 1 at any horizon of at most k; + 1. This implies
that n of the non-naive incumbents play di, 1 against cooperative strangers and the

remaining fraction plays dj, ., .
3. The proof repeats the argument of part (2) of Lemma 4.

4. The proof repeats the argument of part (3) of Lemma 4.

The following corollary is immediately implied by Lemmas 3-6:

Corollary 1. Let

- 1 2.A-1 A1 2 Al
T\Aa—2a.a—n) "7t orusP A2 A

let (u, B) % (u*,b*) be a stable proper neutrally stable configuration, and let Ly, € C () be

the lowest incumbent type (“naive”). Then:
1. 7] (Lkl) < 1.
2. All non-nawve incumbents either play di, +1 or dg, 12 against cooperative strangers.
3. pu(Lg) =0 for every k > ki + 3.
1 _

Remark 7. Note that if A > 4.6 then

N I 2A-1)_, 2A-1
A4 a4 A2 A

which implies that Corollary 1 is valid in this case for each p < %.
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Finally, Lemma 7 shows that the configurations characterized by Corollary 1 cannot be
proper neutrally stable (unless it is equivalent to (u*, b*)). To simplify notation, the lemma
describes the case in which Ly, = L; but it works the same (only with more cumbersome

notations) for Ly, > L; (which is possible when p < ﬁ)

Lemma 7. Let 0 < p < 22, let (u, B) be a configuration satisfying: (1) 0 < p (L) <1, (2)
p (L) =0Vk >4, and (3) a positive fraction of non-naive incumbents play ds against coop-
erative strangers, and the remaining non-naive players play ds against cooperative strangers.

Then (i, B) cannot be proper neutrally stable.
Proof. Assume to the contrary that (u, 3) is a proper neutrally stable configuration.

1. All players who play ds against cooperative strangers have type L.
Assume to the contrary that there is a type Lj (/2 > 2) that plays dy with positive
probability against strangers (and by the previous lemma it plays ds with the remaining
probability). Consider the following configuration of mutants ,(x/,b’), which as the
same distribution of types as the incumbents, and play like the incumbents except
when mutant of type k faces a cooperative stranger: (1) i/ = p , (2) for each k # k,
b, = bg, (3) for each Ly € L, b = by except that the mutants of type k play ds
against cooperative strangers. Observe that such mutants strictly outperform the
incumbents: mutants of a type different than L; obtain the same payoff as their
incumbent counterparts, while mutants of type L; achieve a strictly higher payoff
when facing an unobserved opponent of type L; (pre-entry, both dy and ds yielded
the same payoff; post-entry, there are a few more early defectors and thus ds yields a
strictly higher payoff), and obtain the same payoff in all other cases. This implies that

the configuration cannot be neutrally stable.

2. B s characterized as follows: Uninformed agents follow any early-reciprocal behavior.
Informed agents play as follows: Li agents play dv; Lo agents play do; Lz agents
play do against observed Ly and ds in all other cases; and Ly agents play ds against
observed Ly, d3 against strangers and observed Lo, and dy against observed Ly or Ls
(all strategies are determined up to off-equilibrium path deviations that do not change
the observable play).

The strategies used against strangers are determined by the previous part and by
Lemma 3. The strategies used against observed incumbents are best replies if p < %

by the same argument as in part (1) of Lemma 4.
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By a similar argument to part (2) of Lemma 4, agents of type L, outperform agents

of type L3 due to their unique ability to play d4 against an observed type L3 or Ly.

4. To simplify notation we characterize the frequency of each type in the case where the
cognitive costs converge to 0 (& — o). The arguments work very similarly (but the

notation is more cumbersome) for small enough 0 > 0. Then:

1 1+A—p-(A—1)

P Ay M T T A

1
p-(A—1)+1

Let py = p(Ly). The fact that (u,b) is a balanced configuration implies that types

p(Ly) =

Ly and L, should have the same payoff. Type Ly obtains 1 more fitness point against
types L; and Lo, the same payoff against an unobserving type Ly, and A — 1 fewer

points against an observing type L4. The balance between the payoffs implies:

1
p-(A-1)+1

(I—ps)=pa-p- (A=1) & ps= (B.4)

Similarly, L, and L4 should have the same payoff. Type Ly obtains 1 less point against
type Lo, the same number of points against observed type L;, A—1 more points against
unobserved type L, and the comparison against an opponent of type L, depends on
observability: A — 2 more points when both types are observed, 1 less point when
both types are unobserved, 2 fewer points when only the opponent is observed, and
A — 1 more points when only the opponent is observing. Thus, the balance between

the payoffs implies:
T=p) - (A=D+p- (P (A=2)—(1=p)P+p-(1-p)- (A—1-2)) = py

(1=p) - (A=) 4y (PP (A=3)—1+2p+ (p—p?) - (A—3)) = o
(I=p) - (A=1)+ps (p-(A=3)=1+42p) = p
(L=p)pr- (A=) +ps-(p- (A=1)=1)=po=1— 11 — jus

pap(A=1)=1-p-1+(1-p)-(A=1) & pap(A-1) =1-p-(A-p-(A-1))

L—py-p-(A=1)
A-p-(A-1)

- (A=p-(A=1))=1-ps-p-(A-1) & ju=
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Substituting (B.4) yields:

1— p-(A-1) 1
p-(A-1)+1 p-(A-1)+1

MZ A=) A-1) A—p-(A-1)

1 1
Mo A-D+D) (A—p-(A-1) A+p-(1-p (A-1)
This implies that:

1 1
uzzl—ul—mzl—(p.(A_1)+1)-(A—p-(A—1))_p'(A_1)+1

hy =1 I1+A—p-(A-1) _q_ 1+A—p-(A-1)
P-(A=1)+1)-(A=p-(A-1)) (p-(A=1)+1)-(A=p-(A-1))
1+A—p-(A-1)
A+p-(1-p)-(A-1)"

If any of the p;-s is not between 0 and 1 then no neutrally stable configuration exists.

pe =1

5. The configuration is not neutrally stable.

A direct algebraic calculation reveals that for sufficiently small €, ¢ > 0:

(a) If p < 0.5 then € “imitating” mutants (who play the same strategies as the in-
cumbents) with configuration (u/,0’) with p' (L) =1 — p(Ly) + €, ¢/ (L2) = 0,
W (Ly) = p(Ly) — €, and O = b (play the same as the incumbents) outperform
the incumbents in the post-entry population.

(b) If p > 0.5 € “imitating” mutants with a configuration (¢/,b") with p/' (L;) = 0,
W (Lo) = 1—p (Ly)+€, 1/ (Ly) = p(Ly)—€, and ' = b outperform the incumbents

in the post-entry population for sufficiently small e.

B.5 Stable Configurations Near 0 and 1 - Theorem 3

Parts 1 of Theorem 3 is immediate from Remarks 6 and 7, and from Corollary 1. Part 2 is

immediate from Theorems 1-4. We have to prove part 3:

Theorem. 3. (part 3): Let % < p < 1. Then in any proper neutrally stable configuration,
), ) >0, and Ly players defect at all stages when observing an L., opponent.
i, B), (L 0, and Lo players defect at all stag h b mg an L t
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Proof. Let Ly be the highest type in the population. Let [ be the largest horizon in which Ly
agents begin defecting with positive probability against an observed cooperative opponent
of the same type. If this probability is strictly less than 1, then by a similar argument to
part (1) of Lemma 7, the configuration is not neutrally stable (e “imitating” mutants who
differ only in that the L, mutants play d; with probability 1 against observed L; opponents,
would outperform the incumbents). Now, if [ < k, then € mutants of type L, who play d;;
(start defecting one stage earlier) against observed Ly, and play the same as the incumbents
in all other cases, outperform the incumbents of type L (and this implies they outperform

all incumbents) if:

A—-1

p>(1—-p)-(A-1) & p- A>A-1) & p> 1

(because the mutants obtain 1 more point when their L, opponent observes their type, and
they get at most A—1 fewer points when he does not observe their type; they obtain the same
payoff against strangers and other observed opponents). For similar reasons, if | = k < oo,
then ¢ mutants of type L., who play dj., against observed L;, and play the same as the
incumbents of type Ly, in all other cases, outperform incumbents of type L; (and this implies

they outperform all incumbents) in any proper neutrally stable configuration. O
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