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Abstract

The generalised autocovariance function is defined for a stationary stochastic process as

the inverse Fourier transform of the power transformation of the spectral density function.

Depending on the value of the transformation parameter, this function nests the inverse

and the traditional autocovariance functions. A frequency domain non-parametric estima-

tor based on the power transformation of the pooled periodogram is considered and its

asymptotic distribution is derived. The results are employed to construct classes of tests of

the white noise hypothesis, for clustering and discrimination of stochastic processes and to

introduce a novel feature matching estimator of the spectrum.

Keywords: Stationary Gaussian processes. Non-parametric spectral estimation. White noise

tests. Feature matching. Discriminant Analysis.



1 Introduction

The temporal dependence structure of a stationary stochastic process is characterised by the

autocovariance function, or equivalently by its Fourier transform, the spectral density function.

We generalise this important concept, by introducing the generalised autocovariance function

(GACV), which we define as the inverse Fourier transform of the p-th power of the spectral

density function, where p is a real parameter. The GACV depends on two arguments, the power

parameter p and the lag k. Dividing by the GACV at lag zero for p given yields the generalised

autocorrelation function (GACF).

For k = 0 the GACV is related to the variance profile, introduced by Luati, Proietti and

Reale (2012) as the Hölder mean of the spectrum. For p = 1, it coincides with the traditional

autocovariance function, whereas for p = −1 it yields the inverse autocovariance function, as k

varies. The extension to any real power parameter p is fruitful for many aspects of econometrics

and time series analysis. We focus in particular on model identification, time series clustering

and discriminant analysis, the estimation of the spectrum for cyclical time series, and on testing

the white noise hypothesis and goodness of fit.

The underlying idea, which has a well established tradition in statistics and time series

analysis (Tukey, 1957, Box and Cox, 1964), is that taking powers of the spectral density function

allows one to emphasise certain features of the process. For instance, we illustrate that setting

p > 1 is useful for the identification of spectral peaks, and in general for the extraction of signals

contaminated by noise. Moreover, fractional values of p ∈ (0, 1) enable the definition of classes

of white noise tests with improved size and power properties, with respect to the case p = 1, as

the finite sample distribution can be made closer to the limiting one by the transformation that

is implicit in the use of the GACV.

For given stochastic processes the GACV can be analytically evaluated in closed form in

the time domain by constructing the standard autocovariance function of an auxiliary stochas-

tic process, whose Wold representation is obtained from the original one, by taking a power

transformation of the Wold polynomial.

As far as estimation from a time series realisation is concerned, we consider a nonparametric

estimator based on the power transformation of the pooled periodogram. For a given p, the

estimator is asymptotically normally distributed around the population value, with a variance

that depends on the GACV evaluated at 2p; as a result, a consistent estimator of the asymptotic

variance is readily available. We also show that Bartlett’s formula generalises to any value of p.

As a related result we derive the asymptotic distribution of a ratio estimator of the GACF.
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These results open the way to the application of the GACV for the analysis of stationary

time series. In addition to the possible uses hinted above (model identification, testing for

white noise, and feature extraction), we consider the possibility of defining measures of pairwise

distance based on the GACV or GACF, encompassing the Euclidean and the Hellinger distances,

and we illustrate their use for discriminant and cluster analysis of time series. Negative values

can be relevant as they nest the Euclidean and the Hellinger distances based on the inverse

autocorrelation functions.

The structure of the paper is the following. The GACV and the GACF are formally defined

in section 2. The interpretation in terms of the autocovariance function of a suitably defined

power-transformed process is provided in section 3. This is used for the analytical derivation

of the GACV for first order autoregressive (AR) and moving average processes, as well as long

memory processes (section 4). Estimation is discussed in section 5. Sections 6-8 focus on three

main uses of the GACV and the GACF. The first deals with testing for white noise: two classes of

tests, generalising the Box and Pierce (1970) test and the Milhøj (1981) statistics, are proposed

and their properties discussed. A Yule-Walker estimator of the spectrum based on the GACV

is presented in section 7: in particular, the GACV for p > 1 will highlight the cyclical features

of the series; this property can be exploited for the identification and estimation of spectral

peaks. We finally consider measures of distance between two stochastic processes based on the

GACV or GACF and we illustrate their use for time series discriminant analysis. In section 9

we provide some conclusions and directions for future research.

2 The generalised autocovariance function

Let {xt}t∈T be a stationary zero-mean stochastic process indexed by a discrete time set T ,

with spectral distribution function F (ω). We assume that the spectral density function of the

process exists, F (ω) =
∫ ω
−π f(λ)dλ, and that the process is regular (Doob, 1953, p. 564), i.e.

∫ π
−π log f(ω)dω > −∞. We further assume that the powers f(ω)p exist, are integrable with

respect to dω and bounded for p in (a subset of) the real line.

The generalised autocovariance (GACV) function is defined as the inverse Fourier transform

of the p-th power of the spectral density function,

γpk =
1

2π

∫ π

−π
[2πf(ω)]p cos(ωk)dω (1)

where we have replaced exp(ıωk) by cos(ωk) since the spectral density and the cosine are even
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functions while the sine function is odd. Taking the Fourier transform of γpk gives

[2πf(ω)]p = γp0 + 2

∞∑

k=1

γpk cos(ωk). (2)

The coefficients γpk depend on two arguments, the integer lag k and the real power p. As a

matter of fact, for p = 1, γ1k = γk, the autocovariance of the process at lag k; for p = 0, γ0k = 0,

for k ̸= 0 and γ00 = 1, up to a constant, the autocovariance function of a white noise process;

for p = −1, γ−1k = γik, the inverse autocovariance function (Cleveland, 1972).

The GACV satisfies all the properties of an autocovariance function: an obvious property

is γpk = γp,−k; moreover, γp0 > 0 and |γpk| ≤ γp0, for all integers k. Non-negative definiteness

of the GACV follows from the assumptions on f(ω). These properties enable to define the

generalised autocorrelation function (GACF) as

ρpk =
γpk
γp0

, k = 0,±1,±2, . . . , (3)

taking values in [−1, 1].

Other relevant properties are nested in the following lemma, which is a consequence of the

fact that the spectral density of a convolution is the product of the spectral densities (see corol-

lary 3.4.1.1. in Fuller, 1996).

Lemma 1 Let γpk be defined as in (1) and (2). Then,

∞∑

j=−∞

γp,j+kγq,j+l =
1

2π

∫ π

−π
[2πf(ω)]p+q cos(ω(k − l))dω. (4)

An important special case of Lemma 1, that will be exploited later in the derivation of

goodness of fit tests, relates the GACV with transformation parameter 2p to the GACV at p

and is obtained by setting p = q and l = 0 in lemma 1:

γ2p,k =

∞∑

j=−∞

γpjγp,j+k, (5)

which for k = 0 specialises as

γ2p,0 = γ2p0 + 2

∞∑

j=1

γ2pj .

Furthermore, setting q = −p and l = 0 in lemma 1 we obtain

∞∑

j=−∞

γpjγ−p,j−k = 1k=0, (6)
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where 1A indicates the indicator function on the set A. Property (6) extends the well known

orthogonality between the autocovariance function and the inverse autocovariance function (see

Pourahmadi, 2001, theorem 8.12).

3 The power process and its autocovariance function

The function γpk lends itself to a further interpretation as the autocovariance function of a

power process derived from xt. This interpretation turns out to be useful in the derivation of

the analytic form of γpk, as a function of the parameters that govern the process dynamics, by

evaluating an expectation in the time domain, rather than solving (1) directly.

The Wold representation of {xt}t∈T will be written as

xt = ψ(B)ξt, (7)

where ξt ∼ IID(0, σ2) and ψ(B) = 1+ψ1B+ψ2B
2+ . . . , with coefficients satisfying

∑∞
j=0 |ψj | <

∞, and such that all the roots of the characteristic equation ψ(B) = 0 are in modulus greater

than one; B is the backshift operator, Bkxt = xt−k and IID stands for independent and identi-

cally distributed. The autocovariance function of the linear process (7) is γk = σ2
∑

j=0 ψjψj+k

for k = 0, 1, . . . and γ−k = γk.

Let us consider the power-transformed process:

upt =

{
ψ(B)pξt = ψ(B)pψ(B)−1xt, for p ≥ 0

ψ(B−1)pξt = ψ(B−1)pψ(B)−1xt, for p < 0.
(8)

For arbitrary p, the power of ψ(B) in (8) is still a power series,

ψ(B)p =

∞∑

j=0

ϕjB
j ,

with coefficients given by the recursive relation

ϕj =
1

j

j∑

k=1

[k(p+ 1)− j]ψkϕj−k, j > 0, ϕ0 = 1 (9)

(see Gould, 1974). In most practical applications, a finite version or approximation of ψ(B) can

be considered, say a q dimensional polynomial ψq(B), with q roots −ζ−1
1 ,−ζ−1

2 , . . . ,−ζ−1
q lying

outside the unit circle to ensure invertibility. Hence, ψq(B)p = (1+ζ1B)p(1+ζ2B)p . . . (1+ζqB)p,
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where each factor can be expanded using the binomial theorem holding for p ∈ R and ζi ∈ C,

(1 + ζiB)p =
∑∞

k=0

(
p
k

)
(ζiB)k, where

(
p

k

)
=
p(p− 1)(p− 2) . . . (p− k + 1)

k(k − 1)(k − 2) . . . 1
(10)

with initial conditions
(
p
0

)
= 1,

(
p
1

)
= p, and where absolute convergence is implied by invertibility

(see Graham, Knuth and Patashnik, 1994, ch. 5).

The spectral density of upt is fu(ω) = (2π)−1|ψ(eıω)|2pσ2, and satisfies

2πfu(ω)(σ
2)p−1 = [2πf(ω)]p . (11)

It follows from (1) and (11) that (σ2)1−pγpk is the autocovariance function of the power process

upt.

The variance γp0 is related to the variance profile, defined in Luati, Proietti and Reale (2012)

as the Hölder, or power, mean of the spectrum of xt:

vp =

{
1

2π

∫ π

−π
[2πf(ω)]p

} 1

p

. (12)

In particular, for p ̸= 0, vp = γ
1

p

p0.

As a particular case v−1 = γ−1
−1,0 is the interpolation error variance Var(xt|F\t), where F\t

is the past and future information set excluding the current xt; this is also interpreted as the

harmonic mean of the spectrum. The limit of vp for p→ 0 yields the prediction error variance,

limp→0 vp = σ2, which by the Szegö-Kolmogorov formula is the geometric average of the spectral

density, σ2 = exp
{

1
2π

∫ π
−π log 2πf(ω)dω

}
.

4 Illustrations

4.1 The generalised autocovariance function of AR(1) and MA(1) processes

Let us consider the stationary AR(1) process xt = (1− φB)−1ξt, |φ| < 1, ξt ∼ WN(0, σ2). The

generalised autocovariance function of this process is given by

γpk =
σ2

2π

∫ π

−π
[1− 2φ cosω + φ2]−p cos(ωk)dω.

The power process associated with xt ∼AR(1) is upt = (1− φB)−pξt. Given that, in the present

case, ψ0 = 1, ψ1 = −φ, ψk = 0 for k > 1, the recursive formula (9) becomes ϕj = 1
j (−p + 1 −

j)(−φ)ϕj−1 and thus we obtain ϕj =
(−φ)j

j! (−p)(−p− 1)(−p− 2) . . . (−p− j + 1) = (−φ)j
(
−p
j

)
,
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see equation (10) and note that for p = 0, ψj = 0 for all j, since
(
0
j

)
= 0. The GACV of xt is

(σ2)p−1 times the autocovariance of the process upt and therefore

γpk = σ2p(−φ)k
∞∑

j=0

(−φ)2j
(−p
j

)( −p
j + k

)
(13)

with

γp0 = σ2p
∞∑

j=0

(
p+ j − 1

k

)2

φ2j ,

where we have applied the basic identity,
(
p
j

)
= (−1)j

(
−p+j−1

k

)
. Straightforward algebra allows

us to verify that for p = 1, γ1k = σ2 φk

1−φ2 .

The GACF is

ρpk = (−φ)k
∑∞

j=0(−φ)2j
(
−p
j

)2
((j + 1)(j + 2) . . . (j + k))−1

∑∞
j=0(−φ)2j

(
−p
j

)2 .

Similarly to the AR(1) case, for the invertible MA(1) process xt = (1 − θB)ξt, |θ| < 1,

ξt ∼ WN(0, σ2), with associated power process ut = (1− θB)pξt, we find:

γpk = σ2p(−θ)k
∞∑

j=0

(−θ)2j
(
p

j

)(
p

j + k

)
(14)

and

γp0 = σ2p
∞∑

j=0

(−θ)2j
(
p

j

)2

.

For p = 1, binomial coefficients of the form
(
1
j

)
are involved, which are null whenever j > 1 and

therefore it is immediate to see that γ10 = σ2(1 + θ2) and γ11 = −σ2θ while γ1k = 0 for k > 1,

as expected.

In general, for integer p > 0, the GACV of an MA(1) process has a cutoff point at k = p. As

an example, let us consider the case of a square transformation, that is p = 2, for which:

γ20 = σ4(1 + 4θ2 + θ4),

γ21 = σ4(−θ)(2 + 2θ2),

γ22 = σ4θ2,

γ2k = 0, k > 2.

Equations (13) and (14) generalise to any fractional p equations 3.616.7 and 3.616.4 of Grad-

shteyn and Ryzhik (1994) that hold for AR(1) and MA(1) processes in the case of a positive

integer power p .
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4.2 Long memory processes

For the fractional noise (FN) process, (1 − B)dxt = ξt, where ξt ∼ WN(0, σ2), d < 0.5, the

GACV and GACF are defined for pd < 0.5 and are given respectively by

γpk = σ2p
Γ(1− 2dp)Γ(k + dp)

Γ(1− dp)Γ(dp)Γ(1 + k − dp)
, ρpk =

Γ(1− dp)Γ(k + dp)

Γ(1 + k − dp)Γ(dp)
.

This is easily established from the autocovariance of upt, which is a FN process with memory

parameter pd. For p = −1/d, ρp1 = −0.5, ρpk = 0, k = 2, . . . , as upt ha a non-invertible MA(1)

representation.

Let us consider the Gegenbauer process

xt = (1− 2νB +B2)−dξt,

where ξt ∼ WN(0, σ2); ν = cosλ, determines the frequency at which a long-memory behavior

occurs. The process is stationary for d < 0.5 if |ν| < 1 and for d < 1/4 for ν = ±1. See Gray,

Zhang, and Woodward (1989) for further details. The Wold representation of the process xt is

obtained from the series expansion of the Gegenbauer polynomial (Erdélyi et.al, 1953, 10.9),

xt =

∞∑

j=0

Gj(ν, d)B
jξt−j ,

with coefficients

Gj(ν, d) =

[j/2]∑

q=0

(−1)q(2ν)j−2qΓ(d− q + j)

q!(j − 2q)!Γ(d)

that are derived from the recursive formula:

Gj(ν, d) = 2ν

(
d− 1

j
+ 1

)
Gj−1(ν, d)−

(
2
d− 1

j
+ 1

)
Gj−2(ν, d),

with initial conditions G0(ν, d) = 1 and G1(ν, d) = 2dν. Hence, provided that pd < 0.5, the

generalised autocovariance function of xt for p ̸= 0 is given by

γpk = σ2p
∞∑

j=0

Gj(ν, dp)Gj+k(ν, dp).

For p = 1, the above series is the autocovariance function of the Gegenbauer process and it is

known that it can converge very slowly and several techniques have been implemented with the

aim of increasing the rate of convergence (see Woodward, Cheng and Gray, 1998, and references

therein). The generalised autocovariance function overcomes the problem, since for values of

8



Figure 1: Generalised autocovariances and autocorrelations for the Gegenbauer process xt =

(1− 2νB +B2)−dξt, ξt ∼ WN(0, σ2) with d = 0.4, ν = 0.9, σ2 = 1.
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p < 0.5/d, it converges at a faster rate than p = 1. Figure 1 illustrates the behavior of the

GACV and GACF of a Gegenbauer process with ν = 0.9 and d = 0.4, for different values of

p < 1.25 and k = 1, 2, . . . , 60. For p = −1/d, ρpk = 0, k = 3, . . . , as upt ha a non-invertible

MA(2) representation.

5 Estimation

We shall consider a nonparametric estimator of the generalised autocovariance function based

on the periodogram of (x1, x,2 , . . . , xn),

I(ωj) =
1

2πn

∣∣∣∣∣
n∑

t=1

(xt − x̄)e−ıωjt

∣∣∣∣∣

2

,

evaluated at the Fourier frequencies ωj =
2πj
n ∈ (0, π), 1 < j < [n/2].

Specifically, estimation of γpk, as defined in (1), will be based on the nonparametric estimator
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defined as follows. Let M = [(n− 1)/(2m)], then

γ̂pk =
1

M

M−1∑

j=0

Y
(p)
j cos(ω̄jk), (15)

where

Y
(p)
j =

(
2πĪj

)p Γ(m)

Γ(m+ p)

and

Īj =

m∑

l=1

I(ωjm+l),

is the pooled periodogram over m non overlapping contiguous frequencies, whereas

ω̄j = ωjm+(m+1)/2

are the mid range frequencies.

The estimator (15) is constructed based on the same principles of the variance profile es-

timator considered by Luati, Proietti and Reale (2012), which is an extension of Hannan and

Nicholls (1977) frequency domain estimator of the prediction error variance, which, in turn,

generalised the Davis and Jones (1968) estimator based on the raw periodogram. For simplicity

of exposition, we have ruled out from estimation the frequencies 0 and π, which require a special

treatment, as the asymptotic theory based on the periodogram ordinates is slightly different

in 0 and π. The latter can be included without substantially modifying the estimator, see the

discussion in Hannan and Nicholls (1977).

The factor Γ(m)
Γ(m+p) serves to correct for the asymptotic bias, E

(
Y

(p)
j

)
= (2πf(ω̄j))

p, and

pooling is required since the bias correction term exists only for p > −m, that for p = −1

requires m > 1. Furthermore, we shall prove that the asymptotic variance of the estimator (15)

exists only for p > −m
2 . The underlying assumption is that the spectral density is constant over

frequency intervals of length 2πm
M . Notice that in the definition of γ̂pk the dependence on m is

implicitly considered. The asymptotic properties of the estimator (15) are established by the

following theorem.

Theorem 1 Let {xt}t∈T be the process xt =
∑∞

j=0 ψjξt−j where ξt ∼ NID(0, σ2),
∑∞

j=0 |ψj | <
∞,

∑∞
j=0 |ψj ||j|

1

2
+δ < ∞, δ > 0, and with absolutely continuous spectral density function f(ω),

whose powers f(ω)p are integrable and uniformly bounded. Let us denote the vector of generalised

autocovariance functions up to lag K as γ ′
p = [γp0, γp1, . . . , γpK ]′ and the corresponding estimator

with elements given by (15) as γ̂ ′
p = [γ̂p0, γ̂p1, . . . , γ̂pK ]′. Then, γ̂p →p γ and

√
n∗

(
γ̂p − γp

)
→d N (0,V) (16)
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where V = {vkl; k, l = 0, 1, 2, . . . ,K}, with

vkl =
2

2π

∫ π

−π
[2πf(ω)]2p cos(ωk) cos(ωl)dω (17)

and n∗ = n
m[C(m;p,p)−1] ,with

C(m; p, q) =
Γ(m+ p+ q)Γ(m)

Γ(m+ p)Γ(m+ q)
. (18)

The proof, given in Appendix A.1, is based on the asymptotic properties of the periodogram

of a linear process, that require the strong convergence assumption on the coefficients of the

linear process, on the fractional moments of Gamma random variables and on a central limit

theorem for non linear functionals of the periodogram due to Faÿ, Moulines and Soulier (2002),

which can be applied when some regularity conditions on the functional of the spectrum and on

the moments of the noise process are satisfied. The latter are easy to verify for a power function

and a Gaussian process. Notice that the strong convergence condition on the filter coefficient

implies short-range dependence.

For m = 1 and p > 0, Y
(p)
j is the inverse Laplace transform of [2πf(ωj)]

−(p+1) evaluated at

2πI(ωj), that gives an estimator of [2πf(ωj)]
p as in Taniguchi (1980), so that the consistency

and the asymptotic normality of (15) follows from Taniguchi (1980). For largem, using Stirling’s

approximation, Γ(m)/Γ(m+p) ≈ m−p, Y
(p)
j ≈

(
2πĪj

)p
, and interpreting Īj as a kernel (Daniell)

estimator of the spectral density at ω̄j , theorem 6.1.2 in Taniguchi and Kakizawa (2000) can

be applied, as the power transformation is a continuously twice differentiable function of ω and

cos(kω) is even and continuous in [−π, π]. Since our result rests on the normality assumption,

the additive component of asymptotic variance depending on the fourth cumulant vanishes.

Although our result is derived under more restrictive assumptions, it embodies a finite sample

bias correction and establishes a lower bound for m in the case of a negative p.

For m = 1 and p = 1 the estimator (15) gives the sample autocovariance at lag k, that is

γ̂k = 1
n

∑n−k
t=1 (xt− x̄)(xt+k− x̄) for k = 0, . . . , n−1 and γ̂−k = γ̂k, which follows from the relation

I(ωj) =
1

2π

∑

|h|<n

γ̂h cos(ωjh).

Moreover, equation (17) gives the Bartlett’s formula for the generic element of the asymptotic

covariance matrix of sample covariance, γ̂k. In fact, by lemma 1, equation (4), and by the
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prostapheresis formulae, equation (17) can be written as

vkl =

∞∑

j=−∞

(γp,j+kγp,j+l + γp,j+kγp,j−l) (19)

which for m = 1 and p = 1 coincides with the asymptotic covariance of γ̂k.

In addition, the arguments of the proof allow us to derive the asymptotic covariance between

generalised autocovariance estimators across different power transformations, i.e.

Cov(γ̂pk, γ̂ql) =
1

n
(C(m; p, q)− 1)

2m

2π

∫ π

−π
[2πf(ω)]p+q cos(ωk) cos(ωl)dω. (20)

A consistent estimator of (20) is

Ĉov(γ̂pk, γ̂ql) = (C(m; p, q)− 1)
1

M

M−1∑

j=1

(2πĪj)
p+q cos(ω̄jk) cos(ω̄jl)dω. (21)

Consistency follows from the same arguments that imply consistency of (15), see the last para-

graph of the proof of theorem 1 in appendix A.1.

Under the assumptions of theorem 1, similar results can be derived for the generalised auto-

correlation function, that is estimated based on (15) by

ρ̂pk =
γ̂pk
γ̂p0

. (22)

Theorem 2 Let us consider the vectors ρ′
p = [ρp1, ρp2, . . . , ρpK ]′ and ρ̂′

p = [ρ̂p1, ρ̂p2, . . . , ρ̂pK ]′

having components as in (3) and (22), respectively. Under the assumptions of theorem 1,

√
n∗

(
ρ̂p − ρp

)
→d N (0,W) (23)

where W = {wkl; k, l = 1, 2, . . . ,K}, with generic element given by the Bartlett’s formula

wkl =

∞∑

j=−∞

(ρp,j+kρp,j+l + ρp,j+kρp,j−l + 2ρp,kρp,lρ
2
p,j − ρp,kρp,jρp,j+l − ρp,lρp,jρp,j+k). (24)

The proof is in Appendix A.2 and it is a standard proof based on the same arguments that

lead to the proof of the Bartlett’s formula in the case when p = 1. The asymptotic covariance

matrix is estimated by replacing ρ̂p for the population quantities into the expression for W.

In finite samples, the mean square errors of the GACV and GACF estimators, γ̂pk and ρ̂pk,

are a rather complicated function of p, m, and the spectral properties of xt. Luati, Proietti and

Reale (2012) propose the use of the the jackknife (Quenouille, 1949, see Miller, 1974, and Efron

and Tibshirani, 1993, for reviews) for selecting the bandwidth parameter m.
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6 GACV-based Tests for White Noise

Two classes of tests for white noise can be based on the GACV. When applied to the residuals

from a time series model, they serve as goodness of fit tests.

6.1 Generalised Portmanteau Tests

The generalised Portmanteau test statistic for lack of serial correlation, H0 : ρp1 = ρp2 = · · · =
ρpK = 0, is

BPp = n∗
K∑

k=1

ρ̂2pk. (25)

By Theorem 2, (25) provides an asymptotically χ2
K test, generalising the Box-Pierce (1970)

statistic BP = n
∑K

k=1 ρ̃
2
k where ρ̃k =

∑n−k
t=1 (xt−x̄)(xt+k−x̄)/

∑n
t=1(xt−x̄)2. The generalisation

of the modified statistic LB = n(n+2)
∑K

k=1(n−k)−1ρ̃2k, known as the Ljung-Box (1978) statistic,

is also possible.

6.2 Generalised Milhøj Goodness of Fit Tests

A class of test statistics, generalising Milhøj (1981) goodness of fit test, exploits an important

property of the GACV, which is a direct consequence of Lemma 1: γ2p,0 = γ2p0 + 2
∑∞

j=1 γ
2
pj .

Hence, the ratio

Rp =
γ2p,0
γ2p0

= 1 + 2

∞∑

j=1

ρ2pj

equals 1 for a WN process. A test of the null H0 : Rp = 1 against H1 : Rp > 1 can then be

based on the estimated ratio R̂p =
γ̂2p,0
γ̂2

p0
, whose null distribution has variance

Var(R̂p) =
1

M
{4C(m; p, p) + C(m; 2p, 2p)− 4C(m; 2p, p)− 1} .

Hence, the test statistic

Mp =
R̂p − 1√
Var(R̂p)

(26)

provides an asymptotically standard normal test.

The test (26) has the advantage of being independent of the choice of a particular truncation

lag K, and of depending of the full generalized autocorrelation function. For m = p = 1

it is coincident with the goodness of fit test of Milhøj (1981). It is related to the classes of

serial correlation tests proposed by Hong (1996), and in particular that based on the statistic

13



Hn = n
∑B

j=1K2(j)ρ̃2j , where K(j) is a lag window, e.g. the Tukey-Hanning kernel K(j) =

0.5[1 + cos(πj/τ)], for |j|/τ ≤ 1, K(j) = 0, for |j|/τ > 1, and τ is the truncation parameter.

The relationship has been made clear by Chen and Deo (2004a), see also Beran (1992), who

propose a test based on Tn =
[
2π
n

∑n−1
j=0 f̃(ωj)

]−2
2π
n

∑n−1
j=0 f̃

2(ωj), where f̃(ωj) is an estimate

of the spectral density at the Fourier frequency ωj , and showed that Hn and n(πTn − 0.5) have

the same asymptotic distribution. Our test statistic depends on m and p. Their role will be

illustrated by a Monte Carlo (MC) experiment. Notice that (26) with m > 1 implies a Daniell-

type estimation of the spectral density (the corresponding lag window is the sinc function; see

Priestley, 1981, p 440).

Table 1 reports the size of the WN tests proposed so far when xt ∼ NID(0, 1), estimated

by MC simulation using 50,000 replications, for three different significance levels (10%, 5%

and 1%), two sample sizes (128 and 512), using K autocorrelations (BPp tests and LB) or

τ = K truncation parameter (for the Hong and Chen-Deo statistics), and pooling parameter m.

For BPp we report only the case m = 1. The column “Dist” provides the Euclidean distance

between the upper tail quantiles of the MC distribution and those of the asymptotic distribution

(from 0.80 to 0.995 with step 0.005); hence, it measures the discrepancy between the empirical

distribution and the asymptotic approximation in the upper 20% tail.

While it can be seen that the size properties of the BPp test are only marginally improved

by choosing p < 1, as far as Mp is concerned, having p < 1 yields more substantial gains. The

heuristic explanation is that in finite sample fractional values of p have a normalisation effect

on the distribution It should be recalled that the cube root transformation is the normalising

transformation for a χ2
1 random variable. The Hong (1996) and Chen and Deo (2004a) tests

suffer from size distortions, which are resolved in Chen and Deo (2004b) by taking a power

transformation of the test statistic, aiming at reducing the skewness of the distribution. In our

case, the idea of transforming the periodogram is already embodied in GACV estimate. The

null distribution of the Mp tests are displayed in figure 2, and compared to the Hong (1996) and

Chen and Deo (2004a) tests, whose distribution before the correction is markedly right skewed.

Figure 3 displays the logarithm of the power function of the Mp test conducted at the 5%

significance level, when the data are generated by a first order AR process. The plot confirms

that choosing p < 1 yields a test statistic with improved finite sample properties.

14



Table 1: Effective sizes of WN tests. The data are generated as xt ∼ NID(0, 1)

n = 128

K = 8 K = 13 K = 21

10% 5% 1% Dist 10% 5% 1% Dist 10% 5% 1% Dist

BP1/3 14.58 7.95 1.84 1.75 15.25 8.30 1.99 1.78 17.17 9.40 2.25 2.03

BP1/2 11.50 6.05 1.24 0.65 11.82 6.12 1.34 0.66 12.42 6.41 1.49 0.83

BP2/3 10.41 5.26 1.12 0.22 10.56 5.43 1.18 0.34 10.88 5.84 1.41 0.59

BP3/4 10.09 5.09 1.08 0.14 10.31 5.32 1.21 0.32 10.56 5.69 1.46 0.63

BP1 9.35 4.73 1.14 0.30 9.82 5.31 1.43 0.60 10.39 5.92 1.86 1.20

BP 8.41 4.34 1.03 0.51 7.87 4.13 1.05 0.65 6.74 3.67 1.08 1.07

LB 10.40 5.51 1.37 0.62 11.05 6.10 1.75 1.13 12.01 7.00 2.30 1.87

Hong 9.69 6.50 3.21 2.47 10.13 6.67 3.06 2.31 10.67 6.97 3.16 2.29

Chen-Deo 10.10 6.81 3.42 2.68 10.73 7.06 3.27 2.56 11.37 7.43 3.44 2.57

m = 1 m = 3 m = 5

M1/3 9.65 5.27 1.46 0.42 8.63 4.97 1.57 0.62 7.84 4.70 1.62 0.77

M1/2 9.40 5.29 1.48 0.47 8.45 4.84 1.58 0.59 7.69 4.63 1.60 0.76

M2/3 8.99 5.23 1.61 0.64 8.06 4.63 1.62 0.68 7.37 4.44 1.58 0.83

M3/4 8.70 5.10 1.63 0.73 7.90 4.57 1.59 0.76 7.15 4.32 1.52 0.88

M1 7.65 4.61 1.73 1.04 7.02 4.17 1.55 1.03 6.42 3.85 1.46 1.12

n = 512

K = 11 K = 20 K = 37

10% 5% 1% Dist 10% 5% 1% Dist 10% 5% 1% Dist

BP1/3 11.16 5.66 1.32 0.48 11.59 5.97 1.27 0.59 12.31 6.45 1.40 0.73

BP1/2 10.38 5.19 1.14 0.20 10.54 5.41 1.08 0.23 10.96 5.60 1.12 0.32

BP2/3 10.04 5.05 1.09 0.10 10.29 5.16 1.06 0.14 10.50 5.37 1.17 0.26

BP3/4 9.90 4.97 1.08 0.11 10.25 5.11 1.08 0.13 10.47 5.48 1.22 0.31

BP1 9.66 4.94 1.12 0.17 10.17 5.22 1.26 0.33 10.80 5.82 1.50 0.66

BP 9.29 4.75 1.03 0.21 9.10 4.58 1.08 0.28 8.21 4.28 1.05 0.46

LB 9.98 5.15 1.18 0.24 10.58 5.47 1.34 0.47 11.29 6.16 1.67 0.84

Hong 10.29 6.90 3.18 2.29 10.36 6.81 2.87 1.91 10.84 6.71 2.68 1.63

Chen-Deo 10.43 7.00 3.23 2.35 10.55 6.93 2.93 1.97 11.10 6.90 2.77 1.71

m = 1 m = 3 m = 5

M1/3 9.95 5.16 1.20 0.18 9.46 5.21 1.46 0.38 9.13 5.24 1.51 0.46

M1/2 9.89 5.17 1.27 0.24 9.37 5.19 1.43 0.36 9.06 5.14 1.50 0.45

M2/3 9.75 5.37 1.42 0.36 9.30 5.13 1.47 0.41 8.97 5.00 1.49 0.48

M3/4 9.65 5.47 1.50 0.44 9.11 5.19 1.54 0.46 8.86 5.01 1.53 0.51

M1 9.35 5.37 1.81 0.76 8.75 5.13 1.67 0.68 8.57 4.85 1.65 0.70
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Figure 2: Distribution of white noise tests statistics based on 50,000 simulations of Gaussian

xt ∼ NID(0, 1) with n = 128,m = 1,K = 8.
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Figure 4: US Gross domestic product: quarterly growth rates (1947.2-2012.1), periodogram and

GACF, estimated with m = 3.
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7 Feature matching: a Yule-Walker spectral estimator based on

the GACV

An important use of the GACV is in extracting features of interest from a time series. Figure

4 displays the quarterly growth rate of the US Gross Domestic Product (1947.2-2012.1), along

with its estimated GACF, using m = 3 for p ranging from -1 to 3 (recall that m ≥ 3 is needed to

estimate the GACV at p = −1 with finite asymptotic variance). The cyclical nature of this series

has represented a long debated issue. See Harvey and Jäger (1997) and the references therein.

The periodogram (see also figure 5) does indeed display large ordinates at low frequencies and

ρ̂pk describes a pseudo-cyclical pattern for values of p greater than 1. However, parsimonious

ARMA models, selected on the basis of information criteria, fail to capture the cyclical feature

of GDP growth and fit a monotonically decreasing spectrum with a global maximum at the

origin.

In this section we propose a Yule-Walker spectral estimator based on the GACV. We illustrate

that allowing for a power transformation parameter greater than 1 amounts to boosting the

cyclical features of the series, as large periodogram ordinates will receive an higher weight.
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The Yule-Walker estimation method is very popular in time series estimating the autoregres-

sive parameters (see Percival and Walden, 1993, for a review). Recently, Xia and Tong (2011)

have introduced an approach for time series modelling, aiming at matching stylised features

of the time series, such as the autocorrelation structure. We consider here a feature matching

Yule-Walker estimate of the spectrum with a similar intent, which uses the GACV at different

values of p.

Let Γp,K denote the Toeplitz matrix, formed from the GACV, with generic element γp,|h−k|, h, k =

0, . . . ,K − 1, let γp,K = (γp1, . . . , γpK)′, and φp,K = (φ1p, . . . , φpK)′. The latter is a K × 1 vec-

tor of AR coefficients satisfying the Yule-Walker equations Γp,Kφp,K = γp,K . The polynomial

φp(B) = 1−φ1pB−· · ·φpKBK , characterises the AR approximation of the process upt, and pro-

vides directly the spectral factorisation [2πf(ω)]p ∝ [φp(e
−ıω)φp(e

ıω)]−1. By (9) we can obtain

the AR approximation of order K ′ > K for the original process, π(B)xt = ξt, π(B) = [φp(B)]1/p,

or, equivalently, the moving average representation xt = ψ(B)ξt, ψ(B) = [φp(B)]−1/p. Given

a time series realisation, we replace the theoretical GACF with the estimated one to get

φ̂p,K = Γ̂
−1
p,K γ̂p,K , applying (9), we obtain different estimates for the spectrum of the time

series according to the value of p, f̂p(ω).

Figure 5 displays the periodogram of the US GDP quarterly growth rate series and the

spectral estimates corresponding to p = 0.5, 1, 2, 3, 4, using K = 3 sample GACVs. No cyclical

peaks is identified for p ≤ 1, but as p increases, the cyclical properties of GDP growth become

prominent. For judging which spectral estimate is more suitable, we consider a measure of

deviance equal to minus twice the Whittle’s likelihood (Whittle, 1961), as advocated by Xia

and Tong (2011), dev(p) =
∑n

j=1

[
I(ωj)

f̂p(ωj)
+ ln f̂p(ωj)

]
. The plot of dev(p) versus p (right panel

of figure 5) suggests the value p̃ = 2.65.

The spectral peak, corresponding to a period of roughly 2.5 years (10 quarters), can alterna-

tively be identified by increasing the AR order, as figure 6 shows, but there is a risk of overfitting

the sample spectrum in other frequency ranges.

8 Time Series Cluster and Discriminant Analysis

Let us consider two stochastic processes, {xit}t∈T and {xjt}t∈T , and let fi(ω) and fj(ω) be

their spectral densities. The p-squared distance (p-sd, henceforth) between the two processes is

defined as the integrated squared difference between their power transformed spectra, which is

18



Figure 5: US Gross domestic product (1947.2-2012.1): spectrum estimation by the p-Yule-Walker

method using K = 3.
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Figure 6: US Gross domestic product (1947.2-2012.1): Yule-Walker estimates of the spectrum

(as a function of p and ω), based on different GACV orders.
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equivalent to the Euclidean distance between the GACVs γi,pk and γj,pk of the two processes:

d2ij,p = 1
2π

∫ π
−π {[2πfi(ω)]p − [2πfj(ω)]

p}2 dω
=

∑∞
k=−∞ (γi,pk − γj,pk)

2

= γi,2p,0 + γj,2p,0 − 2
∑∞

k=−∞ γi,pkγj,pk.

(27)

The p-sd (27) encompasses the Euclidean distance (p = 1), referred to as the quadratic distance

in Hong (1996) and the Hellinger distance (p = 1/2). It can also be based on the normalised

spectral densities of the two processes, in which case the autocorrelations ρpk replace the auto-

covariances in (27).

The p-sd can be estimated by

d̂2ij,p = (γ̂i,p0 − γ̂j,p0)
2 + 2

K∑

k=1

(γ̂i,pk − γ̂j,pk)
2 .

or, if the autocorrelations are used,

d̂2ij,p = 2
K∑

k=1

(ρ̂i,pk − ρ̂j,pk)
2 .

The p-sd can be used for clustering time series and estimation by feature matching, if the

distance is computed with respect to the theoretical GACF implied by a time series model. In

the stationary case, for which |ρ1k| declines at a geometric or hyperbolic rate, when p is larger

than 1, the contribution of low order, high autocorrelations to the overall distance will be higher.

On the contrary, for values of 0 < p < 1 less than unity, the contribution of high order, small

autocorrelations, will be comparatively larger. Similar considerations hold for negative p, but

with reference to the inverse autocorrelations.

Another use is in discriminant analysis. The relevance of generalising the distance to frac-

tional and negative values of p is illustrated by an application of Fisher’s linear discriminant

analysis (Mardia, Kent and Bibby, 1979) to a simulated data set.

N = 1, 050 time series of size n were generated under three different models: N1 = 600 AR(1)

series with coefficient φ randomly drawn from a uniform distribution in [0.1, 0.9], N2 = 300

MA(1) series with coefficient θ uniformly distributed in [−0.9,−0.1], and N3 = 150 fractional

noise series with memory parameter uniformly distributed in [0.1, 0.4].

Two-thirds of the series were used as a training sample to estimate the canonical variates,

and the remaining third was used as a test sample. The objective is to classify correctly the 350

test series by predicting their generating model. Different values of p were used to compute the

GACF up to lag K for both the training and the test sample.

20



For the training sample the two canonical variates are obtained from the generalised eigen-

vectors of the between groups deviance matrix, B, satisfying Ba = λa, a′Wa = 1, where W is

the within groups deviance matrix and λ is the generalised eigenvalue of B, for λ > 0.

The test series are then classified according to the smallest Mahalanobis’ distance to the

GACF group means, which amounts to computing the canonical scores for the test series, by

combining linearly the GACFs using the weights a computed on the training sample, and as-

signing the series to the group for which the distance with the canonical means is a minimum.

Different values of p yield different discriminant functions and different results. We select the

optimal solution (across the values of p) as the one minimising the missclassification rate (MR)

computed for the test sample.

Figure 7 displays the MRs for values of p in the range [-2, 2] for a simulation dataset with

n = 1, 000, K = 30. For estimating the GACF we set m = 6. The value of p yielding the

smallest MR resulted p̃ = −0.7 (replicating the experiment, we always obtain values in the

range [-1,-0.2]); the improvement with respect to p = 1 is large (around a 5% reduction in the

MR). The generalised eigenvectors a, defining the two canonical variates for p̃ are also plotted.

Interestingly, the first canonical variable assigns declining (negative) weights to the GACF from

2 to K, whereas the second is a contrast between the first two GACF and the higher order ones.

The two canonical variate scores for the training sample are displayed in figure 8: it illustrates

that the solution provides an effective separation of the three groups.

9 Conclusions

The paper has defined the generalised autocovariance function and has shown its potential for

three different analytic tasks: testing for white noise, the estimation of the spectrum of cyclical

time series, and time series methods based on the distance between stochastic processes, like

cluster and discriminant analysis.

By tuning the power transformation parameter given features of a time series can be em-

phasised or muted for a particular purpose. In this respect, we think that the proposed feature

matching Yule-Walker spectral estimator based the GACV has very good potential for the iden-

tification of spectral peaks of time series affected by noise. As p increases, the contribution of the

noise to the spectrum will be subdued to some extent and the AR fit will attempt at matching

the cyclical properties of the series more closely.

We have also argued that for fractional values of p in (0,1), the tests for white noise based

on the GACV have better finite sample properties than those defined on the untransformed
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Figure 7: Canonical analysis of simulated series: missclassification rate as a function of p, and

canonical variates weights for the optimal p.
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Figure 8: Canonical analysis of simulated series: plot of the two canonical variates for the

training sample, consisting of 400 AR series, 200 MA series and 50 fractional noise series. The

value of p is -0.7.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR
AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR
AR

AR

AR
ARAR
ARAR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

ARAR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR
AR

AR

AR

AR AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR
AR

ARAR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

ARAR

AR

AR

AR

AR

AR

ARAR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

ARAR

AR

AR

AR

AR

AR

AR

AR

AR

AR

ARAR

AR

AR

AR

AR

AR
AR

AR
AR

AR

AR

AR

AR

AR

AR AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

ARAR

AR

AR

AR

AR

AR

AR

AR

AR
AR

AR

AR

AR

AR

ARAR

AR

AR

AR

AR

AR
AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR
AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR AR

ARAR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

MA

MA

MA
MA

MAMA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA
MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA MA

MA
MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA
MA

MA

MA

MA

MA

MA

MA

MA MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MAMA
MA

MA
MA

MA

MA

MA

MA
MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MAMA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

MA

LM

LM

LM

LM

LM
LM

LM

LM

LM

LM LMLM

LM

LM

LM

LM LM

LM

LM

LM

LM

LMLM

LM

LM

LM

LM

LM LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM
LMLM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM
LM

LM

LM

LM

LM

LMLM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

LMLM

LM

LM

LM

LM

LM

LM

23



spectrum or autocorrelation function. We leave to future research the generalisation of Bartlett’s

tests (Bartlett, 1954) for white noise based on the normalized integrated power transformation

of the spectrum (see Priestley, sec. 6.2.6., Durlauf, 1991, Deo, 2000, and Delgado, Hidalgo and

Velasco, 2005).

Another extension that we have not investigated is the partial generalised autocorrelation

function, which can be used as an additional model identification tool, complementing the tra-

ditional one. El Ghini and Francq (2006) advocated the use of the inverse partial ACF, and

their results encourage further investigating this direction.

Finally, we plan to construct an estimator of the long memory parameter based on the GACV,

which generalises the minimum distance estimators based on the autocorrelation function (Ties-

lau, Schmidt and Baillie, 1996) and the variance profile (Luati, Proietti and Reale, 2012).
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A Appendix

A.1 Proof of theorem 1

Let us consider the estimator (15). Under the assumption
∑∞

j=0 |j|
1

2 |ψj | <∞, the periodogram

ordinates of a linear process with finite fourth moment evaluated at the Fourier frequencies

0 < ω1 < · · · < ωk < π are asymptotically IID exponentials with means equal to f(ωj),

j = 1, 2, . . . , k (Brockwell and Davis, 1991, Theorem 10.3.2). If M and m are large enough

for asymptotics and m
M is small enough for f(ω) to be constant over frequency intervals of

length 2πm
M , then, for fixed m, Īj can be interpreted as a Daniell type estimator for f(ω̄j) and

2πĪj ∼ 2πf(ω̄j)Gm, where the Gm are independent and identically distributed basic Gamma

random variables with shape parameter equal to m (see Koopmans, 1974, pp. 269-270). Hence,

E(Y
(p)
j ) = (2πf(ω̄j))

p and Cov(Y
(p)
j , Y

(q)
j ) = (C(m; p, q)−1)[2πf(ω̄j)]

p+q. Notice that, for p = q,

Var(Y
(p)
j ) exists for p > −m

2 .

Let us consider the sequence

Sn(Y
(p)
j ) =

M−1∑

j=0

bj

{
Y

(p)
j − (2πf(ω̄jk))

p
}

(28)

where bj = cj/(s(c
2
j ))

1

2 , with cj = cos(ω̄jk) and s(c
2
j ) =

∑M−1
j=0 cos2(ω̄jk). By construction, the

coefficients bj satisfy
∑M−1

j=0 b2j = 1 and max0≤j≤M−1 |bj | → 0, since cos(ωk) is a function of

bounded variation for ω ∈ (−π, π).
If the Y

(p)
j were IID or, equivalently, if the process {xt}t∈T were a Gaussian white noise, then

a central limit theorem for linear combinations of independent random variables would directly

apply to Sn(Y
(p)
j ), as in Luati, Proietti and Reale (2012). Given that the random variables

Y
(p)
j are asymptotically independent, an intermediate step is needed, that consists in proving

the asymptotic negligibility of the term Sn(Y
(p)
j )− Sn(Z

(p)
j ), where Z

(p)
j = (2πĪj,ξ)

p Γ(m)
Γ(m+p) , Īj,ξ

denoting the pooled periodogram of (ξ1, . . . , ξn) at ω̄j . In this way, a central limit theorem

for Sn(Y
(p)
j ) can be proved as a consequence of a central limit theorem for Sn(Z

(p)
j ), see Faÿ,

Moulines and Soulier (2002). A similar approach is in Klüpperberg and Mikosch (1996), though

in a slightly different context. The implications of Sn(Y
(p)
j ) − Sn(Z

(p)
j ) →p 0 on a central limit

theorem for Sn(Y
(p)
j ) are proved based on a Bartlett-type decomposition that relates the pooled

periodogram of the observed variables with the pooled (pseudo) periodogram of the noise process

and requires the strong assumption on the filter coefficients,
∑∞

j=0 |ψj ||j|
1

2
+δ < ∞, δ < 0. The

latter condition implies short-range dependence on the process. Some additional regularity

conditions on the non linear function of the spectrum that is the object of inference are required
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to prove the weak convergence of Sn(Y
(p)
j ) to Sn(Z

(p)
j ). In our context, Theorem 1 of Faÿ,

Moulines and Soulier (2002) applies to Sn(Y
(p)
j ), since assumptions 1, 2, 4, 7 and S1, that have

to be satisfied when the noise term is Gaussian, hold. Specifically, assumptions 1 and 2 concern

the coefficients bj , assumption 4 requires the existence of the asymptotic variance of Sn(Y
(p)
j ),

which occurs for p > −m
2 , assumption 7 is the convergence on the filter coefficients necessary

for the Bartlett decomposition and assumption S1, such that maxx∈R
|φ(x)|+|φ′(x)|+|φ′′(x)|

1+|x|ν < ∞,

is satisfied for φ(x) = xp and for a Gaussian process, having all finite moments µ ≥ min{8ν, 4}.
Hence,

Sn(Y
(p)
j ) →d N


0,

M−1∑

j=0

b2jVar
(
Y

(p)
j

)

 .

As a function of the estimator (15), by multiplying (28) by 1
M (s(c2j ))

1

2 and rearranging,

1

M

M−1∑

j=0

cjY
(p)
j →d N


 1

M

M−1∑

j=0

cj (2πf(ω̄j))
p ,

1

M

M−1∑

j=0

c2j (2πf(ω̄j))
2p 1

M
(C(m; p, p)− 1)


 .

(29)

By taking the limits (see also Theorem 2 of Faÿ, Moulines and Soulier, 2002)

√
n∗(γ̂pk − γpk) →d N(0, vkk) , (30)

where vkk = 2
2π

∫ π
−π(2πf(ω))

2p cos2(ωk)dω, n∗ = n(m (C(m; p, p)− 1))−1 and C(m; p, q) is as in

(18). It is straightforward to get the covariance between γ̂pk and γ̂pl as vkl as in (17). Taking

vkl for k = 0, 1, . . . ,K and setting the results in matrix notation complete the proof of the

asymptotic distribution of the generalised autocovariance estimator.

Consistency of γ̂pk follows by the Chebychev weak law of large numbers, applied to the

sequence of random variables in (29) and from the convergence of the Riemannian sum to the

integral. This completes the proof of theorem 1.

A.2 Proof of theorem 2

The asymptotic joint normality of the generalised autocorrelation estimators is obtained by

applying the delta method to the transformation operated by the function g : RK+1 → R
K

which associates the vector ρ̂p, having components ρ̂pj =
γ̂pj
γ̂p0

, j = 1, . . . ,K, with the vector

γ̂pj , j = 0, 1, . . . ,K, with components as in (15). The covariance matrix of ρ̂p is W = DVD
′

with partial derivatives matrix D = 1
γp0

[
−ρp IK

]
, so that the generic element of W is (as in

Brockwell and Davis, 1991, proof of theorem 7.2.1) wkl = vkl − ρpkv0l − ρplvk0 + ρpkρplv00. By

replacing vkl with its expression in equation (19), one gets the generalized Bartlett formula (24).
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