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ABSTRACT 

A typical finding in many empirical studies is that the production price-profit rate 

relationship is, by and large, monotonic. This paper derives, in terms of the usual 

single-product model, the spectral conditions that make possible the appearance of 

such monotonicity. Furthermore, using data from input-output tables for a number of 

countries and years, it examines the extent to which actual economies fulfil those 

spectral conditions.  

 

Key words: Eigenvalue distribution, production prices, spectral analysis, Standard 

systems 

JEL classifications: B51, C67, D46, D57, E11 

 

1. Introduction 

In a world of fixed input-output coefficients and at least three commodities, produced 

by means of themselves and homogeneous labour, long-period relative prices can 

change in a complicated way as income distribution changes, a fact that has critical 

implications for the traditional theories of capital, value, distribution and international 

trade. In accordance with Classical, Marxian, Austrian and neoclassical theory, Sraffa 

(1960) noted that ‘[t]he key to the movement of relative prices consequent upon a 

change in the wage lies in the inequality of the proportions in which labour and means 

of production are employed in the various industries.’ (ibid., §15). Nevertheless, 

taking into account that ‘the means of production of an industry are themselves the 

product of one or more industries which may in their turn employ a still lower 

proportion of labour to means of production’ (ibid., §19), he was able to show that ‘as 

the wages fall the price of the product of a low-proportion […] industry may rise or 
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may it may fall, or it may even alternate in rising and falling, relative to its means of 

production’ (ibid.). Thus, he finally detected the fundamental consequence of the 

existence of complicated patterns of price-movement in the internal logic of the 

traditional (Austrian and neoclassical) theories of capital as follows: ‘The reversals in 

the direction of the movement of relative prices, in the face of unchanged methods of 

production, cannot be reconciled with any notion of capital as measurable quantity 

independent of distribution and prices.’ (ibid., p. 38).1 

 However, typical findings in many empirical studies of single-product systems 

are that2 (i) the production price-profit rate curves are, more often than not, monotonic 

(in the economically significant interval of the profit rate); (ii) non-monotonic 

production price-profit rate curves are not only rare but also have no more than one 

extremum point; (iii) cases of reversal in the direction of deviation between 

production prices and labour values are more rare;3 therefore, (iv) the approximation 

of the production prices through Bienenfeld’s (1988) linear and, a fortiori, quadratic 

formulae works pretty well; and (v) the so-called ‘wage-profit relationships’ are 

almost linear irrespective of the numeraire chosen (i.e., the correlation coefficients 

between the wage and profit rates tend to be above 99%), which implies, in its turn, 

that there is empirical basis for searching for an ‘approximate surrogate production 

function’ (Schefold, 2008a, b). For example, our study on ten 19 x 19 input-output 

tables of the Greek economy, spanning the period 1988-1997 (Tsoulfidis and 

Mariolis, 2007), in which all capital is (by assumption) circulating capital and the 

vector of production prices is normalized with the use of Sraffa’s (1960, ch. 4) 

‘Standard commodity’, shows that the movement of prices is, by and large, governed 

by the relevant ‘vertically integrated’ (Pasinetti, 1973) capital-labour ratios, and 

detects 36 cases of non-monotonic movement (i.e., 36/190 19% ) and 29 cases of 

                                                
1 For a compact exposition of the Sraffa-based critique of the traditional theories, see Kurz and 
Salvadori (1995, chs 4, 5 and 14). Sraffa’s (1960, chs 3 and 6) analysis of the movement of relative 
prices has been extended by Schefold (1976), Pasinetti (1977, Section 5.7), Caravale and Tosato (1980, 
pp. 85-87), Parys (1982) and Bidard (1991, pp. 56-58). Moreover, Mainwaring (1978, pp. 16-17) has 
constructed and analyzed a very interesting numerical example for the three-commodity case, which 
indicates that non-monotonic movements of relative prices need not imply ‘factor-intensity reversal’. 
Finally, it should also be noted that, more recently, C. Bidard, H. G. Ehrbar, U. Krause and I. Steedman 
have detected some ‘monotonicity (theoretical) laws’ for the relative prices (see Bidard and Ehrbar, 
2007, and the references provided there). 
2 See Sekerka et al. (1970; Czechoslovakia), Krelle (1977; Germany), Ochoa (1984, ch. 7; USA), 
Leontief (1985; USA), Petrović (1987, 1991; Yugoslavia), Cekota (1988; Canada), Da Silva and 
Rosinger (1992; Brazil), Marzi (1994; Italy), Shaikh (1998; USA), Han and Schefold (2006; OECD), 
inter alia. 
3 Since prices are proportional to labour values at a zero profit rate, non-monotonicity is a necessary, 
but not sufficient, condition for price-labour value reversal. 
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price-labour value reversals (i.e., 15%). Furthermore, as it has recently been argued, 

the said typical findings, which do not, of course, invalidate the Sraffa-based critique, 

could be connected to the distribution of the eigenvalues of the vertically integrated 

technical coefficients matrices of actual economies.4  

 The claim that this paper raises is that we can further investigate, both 

theoretically and empirically, the monotonicity issue. More specifically, first, we 

derive, in terms of the usual linear single-product model, the spectral conditions that 

make possible the appearance of such monotonicity and, second, using input-output 

data of many diverse economies, i.e., China, Greece, Japan, Korea and USA, for 

which it is already known that the production price-profit rate and/or the wage-profit 

relationships have the aforementioned typical forms,5 we examine the extent to which 

actual economies fulfil those conditions.  

The remainder of the paper is structured as follows. Section 2 presents a spectral 

decomposition of the price system and derives conditions for the monotonicity of the 

price-profit rate relationship. Section 3 brings in the empirical evidence by examining 

actual input-output data. Section 4 concludes.   

 

2. Theory 

Consider a closed, linear system, involving only single products, basic commodities 

(in the sense of Sraffa, 1960, §6) and circulating capital. Furthermore, assume that (i) 

the input-output coefficients are fixed; (ii) the system is ‘viable’, i.e., the Perron-

Frobenius (P-F hereafter) eigenvalue of the irreducible n n  matrix of input-output 

coefficients, A , is less than 1,6 ‘diagonalizable’, i.e., A  has a complete set of n  

linearly independent eigenvectors, and ‘regular’ (in the sense of Schefold, 1971, pp. 
                                                
4 See Schefold (2008b, c) and Mariolis and Tsoulfidis (2009). Nevertheless, Bienenfeld (1988, p. 255) 
has already shown that, in the extreme case in which the non-dominant eigenvalues of the said matrix 
equal zero, the production prices are strictly linear functions of the profit rate, and Shaikh (1998, p. 
244) has noted that ‘[a] large disparity between first and second eigenvalues is another possible source 
of linearity.’ (see also ibid., p. 250, note 9). 
5 For the economy of China, 1997, see Mariolis and Tsoulfidis (2009). For Greece, 1970 and 1988-
1997, see Tsoulfidis and Maniatis (2002) and Tsoulfidis and Mariolis (2007), respectively. For Japan, 
1970, 1975, 1980, 1985 and 1990, see Tsoulfidis (2008) and Mariolis and Tsoulfidis (2010). For Korea, 
1995 and 2000, see Tsoulfidis and Rieu (2006). Finally, for USA, 1947, 1958, 1963, 1967, 1972 and 
1977, see Ochoa (1984), Bienenfeld (1988), Chilcote (1997) and Shaikh (1998).   
6 Matrices (and vectors) are denoted by boldface letters. The transpose of an 1n  vector x  is denoted 

by 
Tx . 1A  denotes the P-F eigenvalue of a semi-positive n n  matrix A  and 

T
1 1( , )A Ax y  the 

corresponding eigenvectors, whilst kA , 2,...,k n  and 2 3 ... n    A A A , denotes the 

non-dominant eigenvalues of A  and 
T( , )k kA Ax y  the corresponding eigenvectors. 
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11-23, 1976; see also Bidard and Salvadori, 1995, p. 389), i.e., no (real or complex) 

right eigenvector of A  is orthogonal to the vector of direct labour coefficients, 

Tl
T( ) 0 ;7 (iii) the rate of profits, r , is uniform; (iv) labour is not an input to the 

household sector and may be treated as homogeneous because relative wage rates are 

invariant (see Sraffa, 1960, §10; Kurz and Salvadori, 1995, pp. 322-325); and (v) 

wages are paid at the end of the common production period.8  

         On the basis of these assumptions we can write 

 T T T(1 )w r  p l p A   (1) 

where p  denotes a vector of prices of production and w  the money wage rate. 

Equation (1) after rearrangement gives:  

         T T T
w r p v p H        

or 

    T T T
w  p v p J   (2) 

or, if  , 

    T T 1 T

0

[ ] t t

t

w w 






   p v I J v J  (3) 

where 1[ ] H A I A  ( 0 ) denotes the ‘vertically integrated technical coefficients 

matrix’, I  the identity matrix, T T 1[ ] v l I A  T( ) 0  the vector of  vertically 

integrated labour coefficients or ‘labour values’, 1
1( ) 1R   A  ( 1

1( )  Η ) the 

maximum rate of profits, i.e., the rate of profits corresponding to 0w   and p 0 , 

1
rR  , 0 1  , the ‘relative rate of profits’, and RJ H , with 1 1 1R  J H , 

1(1 )k k k kR R      J H A A  and 1k J
.9 

                                                
7 Schefold argues that ‘non-diagonalizable’ and ‘irregular’ systems are of measure zero in the set of all 
systems and thus not generic (ibid.; see also Schefold, 1978, pp. 268-269, whilst for a similar argument, 

see Goodwin, 1976, p. 130, footnote 1). As is well known, given any A  and an arbitrary 0  , it is 

possible to perturb the entries of A  by an amount less than   so that the resulting matrix is 

diagonalizable (see, e.g., Aruka, 1991, pp. 74-76). Finally, it may also be noted that the concepts of 
‘regularity’ and ‘controllability’ (in the sense of Kalman, 1961) are algebraically equivalent (see 
Mariolis, 2003). 
8 It would make no relevant difference to our analysis the assumption of ex ante payment of wages (for 
the general case, see, e.g., Steedman, 1977, pp. 103-105). 
9 If kA  is positive, then 1k A A . If it is negative or complex, then 1k A A

 (the equality holds 

iff A  is imprimitive) and 1 1k k   A A
. Hence, 1k J

 holds for all k . 
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 If commodity z 0 , with T 1v z , is chosen as the standard of value or 

numeraire, i.e., T 1p z , then (3) implies that 

                       T 1 1( [ ] )w    v I J z  (4) 

which gives a trade-off between w  measured in terms of z  and  , known as the 

w   relationship. Finally, substituting (4) in (3) gives 

 T T 1 1 T 1( [ ] ) [ ]     p v I J z v I J  (5)  

 Since A  is assumed to be diagonalizable, Tv  can be expressed as a linear 

combination of the basis vectors T
mAy , i.e., 

   
T T

1

n

m m

m

c


 Av y    (6) 

and z  can be expressed as a linear combination of the basis vectors [ ]m m A Az I A x , 

i.e., 

   
1

n

m m

m

d


 Az z  (7) 

Post-multiplying (6) by mAz  gives  

  T T
m m m mcA A Av z y z  (8) 

since, for any two distinct eigenvalues of a matrix, the left eigenvector of one 

eigenvalue is orthogonal to the right eigenvector of the other. Pre-multiplying (7) by 

Tv  gives  

  T T

1

n

m m

m

d


 Av z v z   (9) 

Hence, if T
mAy , mAz  are normalized by setting 

 T 1m m A Ay z  and T 1m Av z     (10) 

then (8), (9) and T 1v z  imply that  

 1mc   and 
1

1
n

m

m

d


   (11) 

Moreover, pre-multiplying (7) by T
1Ay  gives  

 T T
1 1 1 1 1d d A A Ay z y z   (11a) 

and, therefore, 

 1 0d   (11b) 
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since 1 Ay 0 . Thus, the substitution of (6), (7) and (11) in (4) and (5) yields 

 1 1 1
1

2

[(1 ) (1 ) ]
n

k k

k

w d d   



    J  (12) 

or 

 1
0

1

( )
n

m m

m

w d




                                                                  (12a) 

and 

              T 1 1 1 1 T 1 T
1 1

2 2

[(1 ) (1 ) ] [(1 ) (1 ) ]
n n

k k k k

k k

d d       

 

       J A J Ap y y  (13) 

or 

 
T 1 T

1 1

( ) ( )
n n

m m m m

m m

d


 

    Ap y         (13a) 

where  

 0 2(1 )(1 )...(1 ) det[ ]n         J J I J  

and 

 
1

(1 )
n

m j

j
j m





   J
 

Moreover, since / 0w dw d    and ( / )w  p 0  (see Sraffa, 1960, §49), 

differentiation of (12) and (13) with respect to   implies that 

 2 2
1

2

(1 ) (1 ) 0
n

k k k

k

d d   



    J J  

and 

 2 T 2 T T
1

2

(1 ) (1 )
n

k k k

k

   



   A J J Ay y 0  

respectively.10  

                                                
10 It should be noted that Steedman’s (1999a) numeraire, which is not necessarily semi-positive, entails 

that 
1

1

( ) 1
n

m m

m

d




   and, therefore, 0w   , 0w  , and 
T T

1

n

m m

m

  Ap y (see (12a) and 

(13a)). Thus, the w   and p  relationships take on simpler forms in the sense that the former is 

expressed solely in terms of the eigenvalues of J , whilst the latter is expressed in terms of powers of 

  up to 
1n 

 . For example, for 2n  , we get 
T T T T T

1 2 2 1 2( )    A A J A Ap y y y y  or, since 

T T T
1 2 A Av y y  (see (6) and (11)), 

T [1, ]p B , where 
T T T T

2 1[ , (1 ) ]  J AB v y v , and 

[1, ]  are the coordinates of the price vector in terms of the basis B  (see ibid., pp. 7-8 and 12). 
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 From equations (12) and (13), which constitute the spectral forms of the w   

and p  relationships, respectively, we derive the following: 

(i). If Sraffa’s Standard commodity is chosen as numeraire, i.e., 1[ ]  Az I A x , then 

1 1d   and 0kd  . Thus, (12) becomes 

  1w       (14) 

i.e., the w   relationship is a straight line,11 and (13) becomes  

  T T 1 T
1

2

(1 ) (1 )
n

k k

k

  



   A J Ap y y  (15) 

or 

  T 1 1
2 E[1, (1 )(1 ) ,..., (1 )(1 ) ]n        J Jp B            (15a) 

where T T T T
E 1 2[ , ,..., ]n A A AB y y y

 
is a left eigenbasis and 

  
1 1

2[1, (1 )(1 ) ,..., (1 )(1 ) ]n       J J   

are the coordinates of the price vector in terms of EB . Differentiation of (15) with 

respect to   gives 

 T 2 T

2

( ) (1 )(1 )
n

k k k

k

  



     J J Ap y  

which implies that the individual components of p  can change in a complicated way 

as   changes. Nevertheless, it can be shown that there are commodity bundles whose 

prices decrease monotonically as   increases. Post-multiplying (15) by Az , 

2,...,n   and k  , gives 

  T ( )f  Ap z         (16) 

where 1( ) (1 )(1 )f       J
. Now, it is necessary to distinguish between the 

following two cases: 

Case 1: If Az  is a real eigenvector, then ( ) 0f    is a strictly decreasing function 

of  , which is strictly concave (convex) to the origin for ( ) 0  J ,12 whilst it 

                                                
11 The system consisting of equations (3) and (14) has been investigated intensively by Bienenfeld 
(1988), Steedman (1999b), Mariolis and Tsoulfidis (2009, pp. 4-10) and Mariolis (2010). 
12 It is easily checked that 

  
2( ) (1 )(1 ) 0k kf         J J  

since 1k J
, and 

 
3( ) 2(1 ) (1 )f           J J J  
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coincides with 1   for 0 J  and tends to 1 (to 1(1 )(1 )    ) as 1m J  

( 1m J ) (see Figure 1). Finally, multiplying both sides of (16) by J  gives 

 1 1 1
S( ) (1 )( )k k R R        (17) 

where 1( ) 1R   A
,  T 1

k R  
 Ap z  equal the ratio of the net product to the 

means of production (or ‘Standard ratio’) and the capital-intensity of the vertically 

integrated sector producing Az
 
(or, alternatively, of an economically insignificant, 

non-Sraffian real (non-complex) Standard system),13 respectively, 1
Sk R

  equals the 

capital-intensity of the Sraffian Standard system, and Sk k  , since R R  (see 

also Figure 2, which represents equation (14): because of equation (17) tan a  gives 

1
Sk k
  at I  , where 2 0R   and 3 0R  ).  

 

 

0.0 0.2 0.4 0.6 0.8 1.0 
ρ 

0.2 

0.4 

0.6 

0.8 

1.0 

fμ 

 

 

Figure 1. The prices of non-Sraffian real Standard commodities in terms of the Sraffian 

Standard commodity as functions of the relative rate of profits 

 

 

 

 

 

 

 

 

 

 

 

                                                
13 See Sraffa (1960, §42, footnote 2, and §§56, 64). For the non-Sraffian, real and/or complex, Standard 
commodities-systems, see also Goodwin (1976, 1977), Velupillai (1990, Part III), Aruka (1991) and 
Steenge (1995). 
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                                                      w  

                                                         1  

                                                          

               I1   

 

 

  
                          3                                                           2  

               1
3R R

                 -1               0   I    1                 1
2R R

    

 

Figure 2. The w   relationship and the capital-intensities of non-Sraffian real Standard 

Systems in terms of the Sraffian Standard commodity 

 

 

 

Case 2: If Az  is a complex eigenvector associated with i   J , 1i   , 

2 2 1    J , 0  , then from (15) we get 

                            T( ) ( )F    A Ap z z   (18) 

where ‘
_

’ signifies the complex conjugate, and  

                     2 2 2 1( ) ( ) ( ) 2(1 )(1 )[(1 ) ] 0F f f                   (19) 

or 

                     
22 1( ) 2(1 )(1 cos )(1 2 cos )F                 J J J  (19a) 

where 
1

arccos( )  


 J . Given that (19) can be written as  

 1 12 ( ) ( ( ) ( ))F g h       

where 

                     1 2( ) [(1 )(1 )] (1 )g         and 1 2 2( ) [(1 )(1 )] ( )h         

are strictly increasing functions of  ,14 it follows that  ( )F   is a strictly decreasing 

function of  . Moreover, equation (19a) implies that 12 ( )F   tends to (1 )  as 

                                                
14 It is easily checked that  

 
2( ) (1 ) (1 )g        

and  

 
2 2( ) [(1 )(1 )] [2 (1 )]h             

Hence, ( ) 0g    and ( ) 0h   , since 1   and (1 ) 2   . 
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0 J
, to 1(1 )(1 )     J

 (a function that is strictly concave (convex) to the 

origin) as cos 1 , and to 
22 1(1 )(1 )     J  (a function that has an inflection 

point in the interval 2 3 ( 0.270) 1/ 3   ) as cos 0   (see also Figures 3a-b, 

which represent 12 ( )F   and its second derivative with respect to  , respectively, 

for 0.6 J
 and cos 59/ 60,  1/6    ; the dashed line, in Figure 3a, represents 

1  ). Furthermore, the ratio of the capital-intensity, k k  , of the vertically 

integrated sector producing  A Az z  to the capital-intensity of the Sraffian Standard 

system is given by 

  1
S( ) ( ) ( )k k k f f          J J  

 (20) 

from which it follows that 

 
11

S 2 ( ) 2(1 ) 1k k k f         
    J J J  

or 

                 1 1
S 2(1 ) (1 ) 2k k k           J J

  

Finally, 

                     
1 22 2 2 2 2 2 2

S( ) ( ) [(1 ) ][(1 ) ]k k f         
       J  (21) 

is a strictly increasing function of  , since 1  ,15 and, therefore, k  is a strictly 

decreasing function of   (however, k k   does not necessarily decreases with  ; 

see, e.g., Figure 4, which is associated with Figure 3a and represents 1
Sk k k 
   as 

functions of  , respectively).  

 
 

                                                
15 It is easily checked that the first derivative of 

1 2
S( )k k


 with respect to   equals 

 
2 3 2 2 12[(1 )(1 ) ][(1 ) ]            
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Figure 3. The prices of the sum of complex conjugate non-Sraffian Standard commodities in 

terms of the Sraffian Standard commodity as functions of the relative rate of profits 
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Figure 4. The absolute value of the capital-intensities of vertically integrated sectors 

producing the sum of complex conjugate non-Sraffian Standard commodities in terms of the 

Sraffian Standard commodity as functions of the relative rate of profits 

 

 

Thus, we may conclude that, when Sraffa’s Standard commodity is chosen as 

numeraire, the well-known Ricardo’s (1951, p. 46) statement regarding the 

relationship between production prices and changes in income distribution holds true 

with respect to the (real) commodity bundles Az  and  A Az z : they are labour-

intensive relative to the numeraire, in the sense that Sk k   and S2k k k   , 

respectively, and their prices decrease with increasing  .16  However, this conclusion 

is not generally independent of the arbitrary choice of numeraire, since 1
S( )k k

  and, 

therefore, T
Ap z  are not necessarily monotonic functions of   when 1[ ]  Az I A x  

                                                
16 It may be said that this is not unanticipated on the basis of Goodwin’s (1976, 1977) method of 
‘general co-ordinates’. By following an approach which is closer to our, Bidard and Ehrbar (2007, pp. 

203-204) show that k  decrease with  , and if k  is complex, then the derivative of its argument 

does not change sign, i.e., k  moves monotonically either clockwise or counterclockwise across the 

complex plane. Since there are statements in the theory of international trade (e.g., Stolper-Samuelson 
effect, ‘factor price’ equalization theorem) that depend crucially on the existence of monotonic price-
profit rate relationships, our conclusion would seem to be of some importance for that theory (see also 
Metcalfe and Steedman, 1979; Mariolis, 2004).  



 13 

(see, e.g., Figure 5, where 2k  attains equal values at different values of  , and 

compare with Figure 2). 
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Figure 5. The w   relationship and the capital-intensity of a non-Sraffian positive 

Standard system in terms of an arbitrary numeraire 

 

 

(ii). If the non-dominant eigenvalues of J  are real and very close to each other, i.e.,  

   2 3( , ,..., )n   J J J  

or, in economic terms, the non-Sraffian Standard systems are real (non-complex) and 

their Standard ratios are very close to each other, then (12) reduces to 

 1 1 1
1

2

[(1 ) (1 ) ]
n

k

k

w d d   



      

or, recalling (11), i.e. 1
2

1
n

k

k

d d


  , and ignoring the error, 

   1
1(1 )(1 ){1 [1 (1 )]}w d           (22) 

Double differentiation of (22) with respect to   gives 

 2 3
1 1 12 ( 1)(1 ) {1 [1 (1 )]}w d d d           (23) 

which implies that the w   curve has no inflection points irrespective of the 

numeraire chosen. Moreover, (13) reduces to 

                                 
T 1 T T

1 1
2

{1 [1 (1 )]} [(1 ) (1 ) ]
n

k

k

d   



       A Ap y y  

or 
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 T 1 T T T T
1 1 1

2 2

{1 [1 (1 )]} [ ( )]
n n

k k

k k

d   

 

       A A A Ap y y y y             

or, recalling (6) and (11), 

 

 T 1 T T T
1 1{1 [1 (1 )]} { [(1 ) ]}d         Ap v y v  

or, taking into account the price vectors associated with the extreme values of 

  ( 0 and 1), i.e., T T(0) p v  and T 1 T
1 1(1) d
 Ap y  (see the price normalization 

equation and (11a)), 

           T 1 T T T
1 1{1 [1 (1 )]} { (0) [ (1 ) (1) (0)]}d d         p p p p  (24) 

Since (24) constitutes a rational function of degree 1, it follows that the jp   curves 

are monotonic irrespective of the numeraire chosen.17 Thus, the system retains all the 

essential properties of two-sector economies, in which, however, the ‘neoclassical 

parable relations’ do not necessarily hold (see Garegnani, 1970, pp. 408-410, and 

Kurz and Salvadori, 1995, chs 3 and 14). 

Now, it seems to be appropriate to focus on the following three cases: 

Case 1: If 1  , then (22) and (24) imply that 

  1w    (22a) 

and 

 (0)p p  (24a) 

i.e., the ‘pure labour theory of value’ (Pasinetti, 1977, pp. 76-78) holds true (like in a 

one-sector economy). 

Case 2: If 0   (clearly, this case is also associated with complex eigenvalues), then 

(22) and (24) imply that 

 1
1(1 )[1 (1 )]w d       (22b) 

and 

                                      T 1 T T T
1 1[1 (1 )] [ (0) ( (1) (0))]d d     p p p p  (24b) 

Thus, for 1 1d   we get 

                                                
17 For a similar exploration, which focuses on the curvature of the w   curve, see Schefold (2008b, 

c). Furthermore, it is easily checked that, when we adopt Steedman’s numeraire (see footnote 10), (24) 
takes the form 

 
T 2 T 2 T T(1 ) { (0) [(1 ) (1) (0)]}n n        p p p p  

where 
T (1)p  is now equal to 

1 T
1(1 )n  Ay . Hence, the jp   curves are not necessarily 

monotonic. 
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 T T T T(0) ( (1) (0))  p p p p  (24c) 

which coincides with Bienenfeld’s (1988) linear (approximation) formula for the 

price vector.18, 19 

Case 3: If 2 3( , ,..., ) 1   J J J  and 1 2( , ,..., )n      J J J , then (22) and (24) still 

hold, provided only that 1d  is replaced by 1 2 ...d d d   . However, if 

*
2 3( , ,..., )   J J J  

and 1 2( , ,..., )n      J J J , *( , ) 1   , or if 

2 3( , ,..., ) ,  0,n i       J J J  
i.e., the non-dominant eigenvalues are complex and 

very close to each other, then the system tends to behave as a three-sector economy 

and, therefore, the w   curve may exhibit inflection points and the jp   curves 

may be non-monotonic (see also the 3 3
 

numerical examples provided by 

Mainwaring, 1978, pp. 16-17, and, Shaikh, 1998, pp. 229-230; the latter presents a 

price-labour value reversal).20 

 (iii). In the same vein, let us assume that 1 1d   and 1k  J
, which implies that21 

                                                
18 It should be noted that Bienenfeld (1988) derives t  th order polynomial approximations, 

1,2,...t  , from (i) the so-called  ‘reduction of prices to dated quantities of embodied labour’ (Kurz 

and Salvadori, 1995, p. 175), i.e., 
T T

0

(1 ) (0) t t

t

 




  p p J (see (3)); and (ii) the fact that for any 

semi-positive row vector 
Ty , the vector 

T ty J  tends to the left P-F eigenvector of J  as t  tends to 

infinity, from which it follows that, for a sufficiently large value of t , we can write 
T T 1 T(0) (0) ... (1)t t  p J p J p . The accuracy of Bienenfeld’s approximations is directly related 

to the magnitudes of 
1

k 
J

, and in the (extreme) case in which A  has rank 1, then 0k J , 

T T(0) (1)p J p  and, therefore, equation (24c) holds exactly (see also Mariolis and Tsoulfidis, 2009, 

pp. 7-9). 
19 Numerical examples presented in the Appendix to this paper illustrate the points made above. 
20 Garegnani (1970, p. 419, n. 2) notes that ‘the wage-curve is a ratio between a polynomial of the n th 

degree and one of the ( 1)n th degree in r . […] [S]uch rational functions admit up to 

(3 6)n points of inflexion. […] Further inquiry would be needed to find whether that maximum 

number can be reached in the relevant interval 0 r R  .’ 
21 Consider the n n  column stochastic matrix 

1
1 1

ˆ ˆ  A AM y Jy , which is similar to J , and the 

elements of which are independent of the choice of physical measurement units and the normalization 

of 1Ay . Applying Hopf’s upper bound for the modulus of the subdominant eigenvalue of a positive 

matrix we get: 
1max{ } ( )( ) 1k L s L s    J , where L ( s ) represents the largest (smallest) 

element of M , and, therefore, we may conclude that when (but not only when) the elements of M  are 
‘similar’, approximation (25) works pretty well (for Hopf’s bound, as well as for other, more 
complicated representations of the upper bounds for the modulus of the subdominant eigenvalue of 
non-negative matrices, see, e.g., Rothblum and Tan, 1985). Furthermore, from Bródy’s (1997) 
conjecture it directly follows that, when M  is a random matrix, with identically and independently 
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 1 2(1 ) 1 ( ) ... 1k k k k         J J J J  (25) 

Then, ignoring the error, (15) reduces to 

 T T T
1

2

(1 ) (1 )
n

k k

k

 


   A J Ap y y  

or 

 T T T T 2 T
1

2 2 2

(1 )
n n n

k k k k k

k k k

   
  

      A A J A J Ap y y y y   (26) 

Since (26) constitutes a polynomial function of degree 2, it follows that the jp   

curves have at most one extremum point. Moreover, post-multiplying (6) by J , and 

recalling (11), we get 

 T T T
1

2

n

k k

k




 A J Av J y y  (27) 

or 

 T T T

2

(1 )
n

k k

k




    J Av J v y  (27a) 

Substituting (27) and (27a) in (26), and recalling T T(0) p v  and T T
1(1)  Ap y  (since 

1 1d  ), yields 

 T T T T 2 T T(0) ( (0) (0)) ( (1) (0) )     p p p J p p p J  (28) 

which coincides with Bienenfeld’s (1988) quadratic formula.22 An alternative, but 

rather different approximation formula, which is also exact at the extreme values of 

 , can be deduced as follows: writing 1(1 )k  J  as 11 (1 )k k   J J  and 

substituting in (15) yields 

                                                                                                                                       

distributed entries, max{ }kJ
tends to zero, with speed 

0.5
n


, when n  tends to infinity (as Sun, 

2008, shows, Bródy’s conjecture can be proved using theorems provided by Goldberg et al., 2000). 
22 See footnote 18. Since the modulus of the relative error of the approximation (25) equals

2( )k J , 

the accuracy of (28) increases with decreasing  . It should also be noted that, in terms of a sector j , 

(28) can be written as 

                                    
1 1 2 1 1

S S S(0) 1 ( (0) 1) ( (1) (0) )j j j j jp p k k k k k k                    (28a)
  

where 
T 1(0) (0) (0)j j jk p

p H , 
T 1 1(1) (1) (0) (1)( (0))j j j j jk p p Rp

  p H  denote the 

capital-intensity of the vertically integrated sector producing commodity j  at 0   and 1  , 

respectively, and jH  denotes the j -th column of H . From (28a) it follows that 
** *2  , where 

* 1 1
S2 ( (0))( (1) (0))j j jk k k k      denotes the value of   at which the approximate jp   

curve has an extremum point, and 
**  the approximate value of   at which there is a price-labour 

value reversal, i.e., 
1(0) 1j jp p
  .
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 T T T 1 T
1

2 2

(1 ) (1 ) (1 )
n n

k k k k

k k

    

 

      A A J J Ap y y y  

or 

                            T T T T 1 T

2

(0) ( (1) (0)) (1 ) (1 )
n

k k k

k

    



      J J Ap p p p y        (29) 

Thus, if the moduli of the last ,  2 1,n v v n     eigenvalues are sufficiently small 

that can be considered as negligible, then (29) reduces to 

 T T T T 1 T

2

(0) ( (1) (0)) (1 ) (1 )k k k

k



    



      J J Ap p p p y       (30) 

where the sum of the first two terms coincides with Bienenfeld’s linear approximation 

(see equation (24c)), and if kJ  is positive (negative), then the non-linear term 

1
s ( ) (1 ) (1 )k k kf       J J  is a semi-positive (semi-negative) and strictly concave 

(convex) function of  , which is maximized (minimized) at 1(1 1 )k k       J J
, 

where 1 2 0.414 1      and s3 2 2 0.172 ( ) 1kf      , since 1k J
. 

Relation (30) could be called a ‘  th order spectral approximation’. 

 On the basis of this analysis, it may be argued that the monotonicity of the 

jp   curves depends to a great extent on the distribution of the eigenvalues of 

matrix J  or, alternatively, the exploration of the relationship between production 

prices and the profit rate may be reduced to an exploration of the aforementioned 

eigenvalue distribution. 

Finally, it need hardly be said that, in terms (at least) of the well-known 

‘Leontief-Bródy approach’ (see Bródy, 1970, ch. 1.2; Mathur, 1977), our analysis 

remains valid for the (more realistic) case of fixed capital and/or differential profit 

rates. Equation (1) becomes 

 T T T T ˆw
  p l p A p Kr   (1a) 

where   A A D , D  denotes the matrix of depreciation coefficients, K  the matrix 

of capital stock coefficients and r̂  the diagonal matrix of the sectoral rates of profits, 

ir . Provided that ir  exhibit a stable structure in relative terms, which implies that r̂  

can be written as ˆrr , where r̂  represents the relative magnitudes of the rates of 
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profits in different sectors and r  now represents the ‘overall level’ of the rates of 

profits (or, alternatively, the ‘reference’ rate of profits),23 (1a) can be written as 

 T T T 1ˆ( )[ ]w r
   p l p Kr I A  

or 

 T T T[ ]w    p v p J  (2a) 

where Τ T 1[ ] [ ]   v l I A  denotes the vector of labour values, R
  J H , 

1ˆ[ ]   H Kr I A , 1

1
( )R  

 
Η

 and 1( )r R    . It then follows that (2a) is 

formally equivalent to (2). 

 

3. Empirical Evidence 

The application of the previous analysis to the input-output tables of actual economies 

(i.e., China, Greece, Japan, Korea, and USA) gives the results summarized in Tables 1 

to 3. 

 The two-part Table 1 reports the moduli of the eigenvalues of J  (in descending 

order)24 and six measures of the distribution of the moduli of the non-dominant 

eigenvalues of J , namely, (i) the arithmetic mean, AM, that gives equal weight to all 

moduli; (ii) the geometric mean, GM, which in our case can be written as 

1/( 1)
det

n
J and assigns more weight to lower moduli, and, therefore, is more 

appropriate for detecting the central tendency of an exponential set of numbers; (iii) 

the so-called spectral flatness, SF, defined as the ratio of the geometric mean to the 

arithmetic mean; (iv) 2
2

max{ / }
n

k k k

k

   


  J J  , where k
  represents a set of 

relative frequencies; (v) the relative (or normalized) entropy, RE, defined as the ratio 

of the ‘information content or Shannon entropy’, E, to its maximum possible value, 

i.e., max/RE E E , where 
2

log
n

k k

k

E  


 
 
and max log( 1)E n   is the maximum 

value of E corresponding to 1/( 1)k n    for all k; and (vi) the relative ‘equivalent 

                                                
23 For instance, this rate could be the average or the minimum rate of profits of the system. See, e.g., 
Steedman (1977, pp. 180-181); Reati (1986, pp. 159-160). 
24 The dimensions of the symmetric input-output tables (SIOT) vary from 19 sectors (Greece, 1988-97) 
to 39 sectors (USA). The tables of China and Japan are available from the OECD STAN database. 
Those of Greece and Korea are provided by the National Statistical Service of Greece and the Bank of 
Korea, respectively. Finally, those of USA are from the Bureau of Economic Analysis (BEA) and have 
been compiled by Juillard (1986) (the data used in the studies by Ochoa, 1984, Bienenfeld, 1988, and 
Shaikh, 1998, are from the same source although at 71 x 71 sector detail). 
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number’, REN, defined as /( 1)EN n , where EN denotes the so-called equivalent 

number, which is determined by the equation log EN E  
and represents the number 

of eigenvalues with equal moduli that would result in the same amount of entropy. SF 

and RE are known to be alternative, but different, measures of similarity (or 

closeness) of the moduli and take on values from near zero to one: when all 
kJ

 are 

equal to each other, then AM = GM, 1/( 1)k n    
and, therefore, SF = RE = REN = 1. 

However, a low SF
 rather reflects the presence of a much lower than the average 

min{ }
k

 , whereas a low RE rather reflects the presence of a much higher than the 

average 2 .25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
25 Finkelstein and Friedberg (1967) discuss E and EN, and apply them to studies of industrial 
competition and concentration, whilst Jasso (1982) and Bailey (1985) discuss SF and RE, respectively, 
and apply them to studies of income distribution. It may also be noted that there is a connection 

between SF and entropy: using k
 , the former can be expressed as  

 
1/( 1)

2

( 1)
n

n

k

k

SF n  



    

or, taking the logarithm of both sides,  

 
1

max
2

log [ ( 1) log ]
n

k

k

SF E n 



      

where log SF  is known as the Wiener entropy and the term in brackets can be conceived as a ‘cross-

entropy’ expression. 
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Table 1.  The distribution of the moduli of the non-dominant eigenvalues; China, Greece, 

Japan, Korea and USA 

 

CHN  

1997 

GRC 

1970 

GRC 

 1988 

GRC 

 1989 

GRC 

 1990 

GRC 

 1991 

GRC  

1992 

GRC 

 1993 

GRC 

1994 

GRC 

 1995 

GRC  

1996 

GRC 

1997 

Rank             

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 0.376 0.726 0.643 0.683 0.675 0.657 0.624 0.667 0.678 0.655 0.664 0.641 

3 0.304 0.539 0.416 0.436 0.418 0.397 0.443 0.433 0.420 0.382 0.382 0.350 

4 0.282 0.470 0.409 0.377 0.376 0.382 0.443 0.353 0.357 0.382 0.382 0.307 

5 0.231 0.453 0.362 0.377 0.376 0.382 0.406 0.320 0.327 0.281 0.313 0.279 

6 0.224 0.319 0.259 0.308 0.311 0.326 0.308 0.268 0.261 0.246 0.233 0.249 

7 0.224 0.319 0.187 0.207 0.218 0.226 0.242 0.234 0.207 0.202 0.214 0.249 

8 0.167 0.243 0.187 0.207 0.218 0.226 0.242 0.234 0.207 0.202 0.214 0.210 

9 0.167 0.243 0.083 0.104 0.110 0.101 0.108 0.110 0.109 0.098 0.098 0.103 

10 0.165 0.218 0.083 0.082 0.089 0.094 0.105 0.105 0.097 0.092 0.088 0.098 

11 0.142 0.201 0.079 0.082 0.089 0.094 0.105 0.105 0.097 0.092 0.088 0.098 

12 0.126 0.201 0.079 0.080 0.080 0.078 0.081 0.083 0.082 0.085 0.086 0.087 

13 0.122 0.166 0.071 0.080 0.080 0.078 0.081 0.068 0.082 0.085 0.086 0.042 

14 0.114 0.106 0.071 0.031 0.039 0.034 0.053 0.068 0.059 0.023 0.072 0.035 

15 0.114 0.106 0.027 0.031 0.028 0.034 0.029 0.026 0.026 0.023 0.029 0.035 

16 0.102 0.103 0.027 0.024 0.022 0.023 0.027 0.026 0.026 0.015 0.029 0.017 

17 0.102 0.100 0.020 0.024 0.022 0.023 0.027 0.017 0.023 0.015 0.019 0.017 

18 0.062 0.092 0.009 0.007 0.009 0.008 0.005 0.006 0.007 0.005 0.002 0.013 

19 0.058 0.088 0.006 0.006 0.006 0.005 0.003 0.002 0.006 0.004 0.001 0.001 

20 0.058 0.074 …. …. …. …. …. …. …. …. …. …. 

21 0.052 0.060 …. …. …. …. …. …. …. …. …. …. 

22 0.044 0.060 …. …. …. …. …. …. …. …. …. …. 

23 0.041 0.043 …. …. …. …. …. …. …. …. …. …. 

24 0.041 0.043 …. …. …. …. …. …. …. …. …. …. 

25 0.034 0.037 …. …. …. …. …. …. …. …. …. …. 

26 0.034 0.037 …. …. …. …. …. …. …. …. …. …. 

27 0.033 0.030 …. …. …. …. …. …. …. …. …. …. 

28 0.025 0.029 …. …. …. …. …. …. …. …. …. …. 

29 0.025 0.023 …. …. …. …. …. …. …. …. …. …. 

30 0.021 0.015 …. …. …. …. …. …. …. …. …. …. 

31 0.021 0.008 …. …. …. …. …. …. …. …. …. …. 

32 0.018 0.008 …. …. …. …. …. …. …. …. …. …. 

33 0.006 0.003 …. …. …. …. …. …. …. …. …. …. 

34 0.006 …. …. …. …. …. …. …. …. …. …. …. 

35 0.005 …. …. …. …. …. …. …. …. …. …. …. 

36 0.005 …. …. …. …. …. …. …. …. …. …. …. 

37 0.002 …. …. …. …. …. …. …. …. …. …. …. 

38 0.001 …. …. …. …. …. …. …. …. …. …. …. 

 

AM 
0.096 0.161 0.168 0.175 0.176 0.176 0.185 0.174 0.171 0.161 0.167 

 
0.157 

 

GM 0.048 0.083 0.086 0.086 0.088 0.087 0.089 0.081 0.088 0.074 0.074 0.073 

SF 0.499 0.517 0.511 0.490 0.500 0.495 0.483 0.469 0.513 0.459 0.446 0.462 

π2 11% 14% 21% 22% 21% 21% 19% 21% 22% 23% 22% 23% 

RE 0.873 0.856 0.829 0.824 0.829 0.831 0.837 0.835 0.836 0.822 0.834 0.832 

REN    62% 59% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 
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contd. 

 
 

 

 

JPN 

1970 

JPN 

1975 

JPN 

1980 

JPN 

1985 

JPN 

1990 

KOR 

1995 
KOR 

2000 

USA 

1947 

USA 

1958 

USA  

1963 

USA  

1967 

USA  

1972 

USA  

1977 

Rank 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 0.652 0.711 0.762 0.735 0.737 0.638 0.683 0.620 0.571 0.638 0.639 0.648 0.527 

3 0.434 0.445 0.474 0.653 0.604 0.421 0.517 0.462 0.571 0.582 0.552 0.512 0.386 

4 0.388 0.381 0.474 0.572 0.604 0.373 0.422 0.436 0.451 0.479 0.421 0.400 0.378 

5 0.346 0.381 0.362 0.538 0.424 0.314 0.321 0.390 0.451 0.461 0.421 0.400 0.378 

6 0.303 0.332 0.321 0.396 0.351 0.271 0.303 0.334 0.376 0.461 0.399 0.306 0.330 

7 0.303 0.340 0.318 0.396 0.351 0.266 0.303 0.325 0.358 0.323 0.277 0.306 0.330 

8 0.263 0.261 0.318 0.336 0.320 0.266 0.286 0.282 0.327 0.264 0.268 0.286 0.263 

9 0.244 0.261 0.292 0.328 0.320 0.185 0.198 0.257 0.261 0.264 0.265 0.242 0.226 

10 0.244 0.258 0.270 0.219 0.303 0.111 0.141 0.205 0.255 0.257 0.265 0.236 0.226 

11 0.218 0.200 0.260 0.219 0.236 0.111 0.128 0.205 0.236 0.237 0.255 0.236 0.220 

12 0.177 0.169 0.165 0.157 0.191 0.107 0.128 0.197 0.230 0.237 0.243 0.212 0.220 

13 0.152 0.169 0.153 0.152 0.178 0.079 0.127 0.197 0.230 0.216 0.228 0.212 0.198 

14 0.152 0.067 0.153 0.137 0.166 0.068 0.127 0.185 0.212 0.203 0.228 0.196 0.180 

15 0.116 0.067 0.144 0.132 0.152 0.062 0.093 0.161 0.212 0.203 0.182 0.182 0.147 

16 0.107 0.149 0.120 0.132 0.146 0.048 0.076 0.139 0.174 0.181 0.182 0.150 0.147 

17 0.094 0.109 0.120 0.132 0.143 0.048 0.076 0.131 0.174 0.171 0.160 0.150 0.137 

18 0.094 0.109 0.088 0.132 0.143 0.047 0.073 0.131 0.163 0.171 0.150 0.142 0.137 

19 0.082 0.116 0.085 0.123 0.124 0.033 0.036 0.102 0.161 0.138 0.150 0.126 0.116 

20 0.056 0.058 0.082 0.099 0.105 0.033 0.036 0.102 0.120 0.138 0.138 0.126 0.102 

21 0.046 0.058 0.067 0.070 0.100 0.027 0.028 0.096 0.120 0.133 0.129 0.107 0.102 

22 0.046 0.098 0.055 0.070 0.085 0.015 0.024 0.091 0.116 0.133 0.129 0.107 0.086 

23 0.037 0.041 0.048 0.058 0.051 0.015 0.022 0.083 0.101 0.090 0.088 0.096 0.086 

24 0.036 0.090 0.048 0.051 0.051 0.004 0.018 0.080 0.101 0.090 0.088 0.078 0.082 

25 0.036 0.051 0.040 0.051 0.039 0.001 0.005 0.080 0.097 0.089 0.085 0.078 0.082 

26 0.034 0.051 0.037 0.050 0.039 
…. …. 

0.071 0.060 0.089 0.085 0.066 0.059 

27 0.034 0.036 0.037 0.036 0.027 
…. …. 

0.066 0.060 0.076 0.075 0.051 0.059 

28 0.028 0.020 0.030 0.026 0.027 
…. …. 

0.066 0.057 0.053 0.075 0.047 0.046 

29 0.011 0.020 0.019 0.020 0.026 
…. …. 

0.051 0.057 0.041 0.046 0.036 0.035 

30 0.011 0.004 0.019 0.020 0.026 
…. …. 

0.031 0.030 0.041 0.046 0.036 0.031 

31 0.008 0.004 0.014 0.014 0.024 
…. …. 

0.029 0.030 0.036 0.037 0.031 0.031 

32 0.008 0.003 0.009 0.012 0.024 
…. …. 

0.029 0.026 0.036 0.037 0.031 0.030 

33 0.001 0.005 0.000 0.008 0.003 
…. …. 

0.025 0.024 0.027 0.033 0.026 0.030 

34 
…. …. …. …. …. …. …. 

0.008 0.024 0.027 0.033 0.026 0.024 

35 
…. …. …. …. …. …. …. 

0.008 0.019 0.024 0.020 0.019 0.019 

36 
…. …. …. …. …. …. …. 

0.006 0.014 0.018 0.015 0.016 0.014 

37 
…. …. …. …. …. …. …. 

0.006 0.012 0.012 0.015 0.009 0.008 

38 
…. …. …. …. …. …. …. 

0.004 0.002 0.012 0.015 0.009 0.008 

39 
…. …. …. …. …. …. …. 

0.004 0.002 0.009 0.002 0.007 0.007 

AM 0.149 0.158 0.168 0.190 0.191 0.148 0.174 0.150 0.171 0.175 0.171 0.156 0.144 

GM 0.074 0.079 0.074 0.103 0.108 0.068 0.098 0.078 0.090 0.104 0.101 0.091 0.086 

SF 0.495 0.497 0.440 0.544 0.562 0.459 0.563 0.523 0.527 0.593 0.591 0.583 0.597 

π2 
14% 14% 14% 12% 12% 18% 16% 11% 9% 10% 10% 11% 10% 

RE 0.863 0.866 0.866 0.863 0.875 0.837 0.862 0.880 0.888 0.891 0.897 0.888 0.894 

   REN 61% 63% 63% 59% 63% 58% 63% 63% 66% 66% 68% 66% 66% 
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 From the numerical results of Table 1 it becomes apparent that the moduli fall 

quite rapidly in the ‘beginning’ and then constellate in much lower values. In plotting 

these data for each of the countries and years, and after experimentation with various 

possible functional forms, we found that a single exponential functional form fits all 

the data pretty well, as this can be judged by the high R-square (i.e., in the range of 

90.5% (China)-99.4% (Greece, 1970)) as well as by the fact that all coefficients are 

statistically significant with zero probability value. This form is  

  0.2exp( )y c b x
   

where -1.827 (Greece, 1989) c  -1.174 (China) and 0.721 (China) b 1.040 

(Greece, 1989) (see Figure 6).26 It is expected, therefore, that the SF would be 

relatively low and that the opposite would hold true regarding RE. Indeed, it is found 

that the former is in the range of 0.440 (Japan, 1980)-0.597 (USA, 1977), whilst the 

latter is in the range of 0.822 (Greece, 1995)-0.897 (USA, 1967) and the relevant 

maxima relative frequencies, 2 , are 23% and 10%, respectively. Moreover, the REN 

is in the range of 58% (Korea, 1995)-68% (USA, 1967).27 Thus, it could be concluded 

that these measures in combination give a quite good description of the central 

tendency and also the skewness of the distribution of the moduli.  

 

 

 

 

 

 

 

 

                                                
26 In fact, we tried an optimization procedure to find the best possible form, and from the many 
possibilities we opted for a simple but, at the same time, general enough to fit the moduli of the 
eigenvalues of all countries and years. 
27 It should be noted that we have also experimented with the input-output tables of Canada (1997, 34 x 
34; source: OECD STAN database), Japan (1995-1997, 41 x 41; source: OECD STAN database), UK 
(1998, 40 x 40; source: OECD STAN database) and USA (1997, 40 x 40; source: BEA, compilation 
through the OECD STAN database), and the results were quite similar, i.e.,  SF: 0.359 (USA)-0.500 
(UK), π2: 8% (UK)-18% (Canada), RE: 0.811 (Canada)-0.888 (UK), and REN: 52% (Canada)-67% 
(UK). The same holds true for the results reported by Mariolis et al. (2010) regarding the 59 x 59 input-
output tables (source: Eurostat) of Denmark (2000, 2004), Finland (1995, 2004), France (1995, 2005), 
Germany (2000, 2002) and Sweden (1995, 2005): SF: 0.450 (France, 1995)-0.603 (Denmark, 2004), π2: 
6% (Germany, 2000 and 2002)-15% (Finland, 2004), RE: 0.821(Finland, 2004)-0.900 (Germany, 2000 
and 2002), and  REN: 50% (Finland, 1995, and Sweden, 1995)-66% (Germany, 2000 and 2002). 
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CHN97 = -1.174 + 0.712exp(x-0.2) 
R-squared = 0.905 

GRC70 = -1.574 + 0.9532exp(x-0.2)  
R-squared = 0.994 

GRC88 = -1.795 + 1.020exp(x-0.2) 
R-squared = 0.986 

GRC89 = -1.827 + 1.040exp(x-0.2) 
R-squared = 0.987 

GRC90 = -1.807 + 1.030exp(x-0.2) 
R-squared = 0.986 

GRC91 = -1.789 + 1.021exp(x-0.2) 

R-squared = 0.981 

GRC92 = -1.785 + 1.024exp(x-0.2) 
R-squared = 0.983 

 
GRC93 = -1.783 + 1.017exp(x-0.2) 

R-squared = 0.991 
GRC94 = -1.790 + 1.019exp(x-0.2) 

R-squared = 0.991 

GRC95 = -1.784 + 1.011exp(x-0.2) 
R-squared = 0.986 

GRC96 = -1.770 + 1.007exp(x-0.2) 
R-squared = 0.984 

GRC97 = -1.738 + 0.986 exp(x-0.2) 
R-squared = 0.975 

JPN70 = -1.464 + 0.887 exp(x-0.2) 
R-squared = 0.988 

JPN75 = -1.484 + 0.903 exp(x-0.2) 
R-squared = 0.977 

JPN80 = -1.543 + 0.940 exp(x-0.2) 
R-squared = 0.986 
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Figure 6. Exponential fit of the distribution of the moduli of the eigenvalues; China, Greece, 

Japan, Korea and USA 

 

 

 For reasons of clarity of presentation and economy of space, the numerical 

results displayed in Table 2 are only associated with the input-output tables of Japan 

and seek to detect the dependence of the distribution of the moduli on the level of 

aggregation, that is to say, n .28 More specifically, we experimented with input-output 

tables for every 5 years starting from 1980 until 2005 for the 100 x 100 industry 

structure and we also repeated the experiment aggregating each of these input-output 

tables into 21 sectors.29 In our aggregation, we put together similar industries and we 

                                                
28 See footnote 21. 
29 The original input-output data comprised 108 sectors comes from the Statistical Service of Japan. 
The problem with this data set is that 8 of the sectors have zero rows (i.e., they do not deliver any 

USA47= -1.375 + 0.853 exp(x-0.2) 
R-squared= 0.991 

USA58= -1.387 + 0.871 exp(x-0.2) 
R-squared= 0.980 

JPN85 = -1.543 + 0.940 exp(x-0.2) 
R-squared = 0.986 

JPN90 = -1.589 + 0.977 exp(x-0.2) 
R-squared = 0.984 

KOR95 = -1.615 + 0.943 exp(x-0.2) 
R-squared = 0.986 

KOR00 = -1.636 + 0.967 exp(x-0.2) 
R-squared = 0.993 

USA63= -1.423 + 0.893 exp(x-0.2) 
R-squared= 0.985 

USA67= -1.374 + 0.864exp(x-0.2) 
R-squared= 0.987 

US77= -1.280 + 0.798 exp(x-0.2) 
R-squared= 0.968 

USA72= -1.378 + 0.858 exp(x-0.2) 
R-squared= 0.991 
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kept mainly the manufacturing as the most disaggregated from all the sectors. Finally, 

for reasons of economy in space, we present only the first 30 moduli and the last six 

rows display the statistical measures of the distribution. Clearly, the results suggest 

that RE decreases, whilst 2  
and REN increases, with decreasing n . On the other 

hand, they do not suggest that the modulus of the subdominant eigenvalues (as well as 

SF) tends to increase with decreasing n : it could be considered as rigid and the 

‘small’ relative changes that we observe go to either direction (varying from -8.3% to 

3.6%). Moreover, in Figure 7a below we display the histogram of the distribution of 

the moduli of the non-dominant eigenvalues associated with the 21 x 21 tables and in 

Figure 7b we display the histogram associated with the 100 x 100 tables, i.e., 120 and 

594 observations, respectively. On the top of each bar we report the number of 

observations in each of our 5 bins, the mean value of each bin and the bin edges. 

Clearly, the majority of the observations (i.e., 62 (52%) or 411 (69.2%), respectively) 

constellate in the lowest bin, whereas 9 (7.5%) or 10 (1.7%), respectively, 

observations are on an average less than one-half of the dominant eigenvalue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                       
output to the other sectors and to themselves), which give rise to an input-output structure with ‘non-
basic’ (in the sense of Sraffa) sectors, and, therefore, zero eigenvalues corresponding to each of these 8 
sectors. To side step this problem we aggregated each of these 8 sectors to corresponding similar 
sectors so as the resulting input-output structure consists of dimensions 100 x 100 ‘basic’ sectors. 
Finally, it should be noted that the results displayed in Table 2 are not comparable with these displayed 
in Table 1, since the 33 sectors input-output tables of Japan are constructed using different sources and 
also methodology. 
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Table 2.  The distribution of the moduli of the non-dominant eigenvalues and the level of 

aggregation; Japan, 1980-2005 

 
 

n 
 

Rank 

1980 

21 

1980 

100 

1985 

21 

1985 

100 

1990 

21 

1990 

100 

1995 

21 

1995 

100 

2000 

21 

2000 

100 

2005 

21 

2005 

100 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 0.529 0.522 0.546 0.527 0.520 0.550 0.496 0.541 0.465 0.499 0.517 0.519 

3 0.342 0.379 0.391 0.390 0.415 0.448 0.496 0.497 0.436 0.499 0.443 0.512 

4 0.342 0.379 0.383 0.386 0.413 0.410 0.383 0.393 0.436 0.410 0.443 0.421 

5 0.330 0.351 0.383 0.386 0.413 0.410 0.383 0.393 0.355 0.410 0.342 0.421 

6 0.301 0.351 0.295 0.342 0.316 0.352 0.359 0.363 0.355 0.370 0.310 0.394 

7 0.200 0.296 0.276 0.342 0.229 0.352 0.249 0.363 0.264 0.352 0.236 0.355 

8 0.159 0.296 0.145 0.309 0.229 0.345 0.249 0.346 0.219 0.352 0.179 0.331 

9 0.140 0.270 0.145 0.309 0.145 0.337 0.182 0.339 0.219 0.333 0.144 0.308 

10 0.140 0.270 0.140 0.271 0.133 0.337 0.145 0.339 0.133 0.323 0.144 0.282 

11 0.097 0.251 0.115 0.254 0.133 0.334 0.122 0.257 0.133 0.238 0.082 0.258 

12 0.097 0.251 0.096 0.213 0.079 0.232 0.079 0.257 0.068 0.238 0.062 0.258 

13 0.075 0.192 0.066 0.205 0.079 0.232 0.079 0.247 0.068 0.230 0.062 0.232 

14 0.075 0.191 0.066 0.201 0.079 0.230 0.067 0.247 0.060 0.225 0.058 0.191 

15 0.054 0.191 0.051 0.188 0.071 0.230 0.067 0.234 0.060 0.225 0.044 0.182 

16 0.022 0.166 0.044 0.184 0.071 0.226 0.061 0.219 0.048 0.202 0.044 0.182 

17 0.012 0.166 0.019 0.184 0.016 0.218 0.013 0.196 0.021 0.190 0.023 0.177 

18 0.012 0.144 0.011 0.156 0.015 0.205 0.012 0.196 0.018 0.190 0.018 0.177 

19 0.010 0.144 0.011 0.147 0.010 0.197 0.005 0.172 0.018 0.188 0.018 0.175 

20 0.005 0.136 0.007 0.133 0.007 0.191 0.005 0.172 0.006 0.182 0.013 0.175 

21 0.002 0.128 0.005 0.133 0.005 0.174 0.004 0.164 0.003 0.162 0.003 0.166 

22 …. 0.124 …. 0.125 …. 0.163 …. 0.164 …. 0.152 …. 0.149 

23 …. 0.124 …. 0.125 …. 0.163 …. 0.162 …. 0.152 …. 0.146 

24 …. 0.123 …. 0.123 …. 0.156 …. 0.162 …. 0.150 …. 0.146 

25 …. 0.123 …. 0.123 …. 0.147 …. 0.162 …. 0.150 …. 0.138 

26 …. 0.122 …. 0.121 …. 0.147 …. 0.156 …. 0.149 …. 0.138 

27 …. 0.120 …. 0.117 …. 0.142 …. 0.156 …. 0.149 …. 0.119 
28 …. 0.110 …. 0.117 …. 0.142 …. 0.143 …. 0.139 …. 0.119 
29 …. 0.107 …. 0.106 …. 0.137 …. 0.140 …. 0.137 …. 0.115 
30 …. 0.107 …. 0.100 …. 0.132 …. 0.140 …. 0.128 …. 0.115 
 

AM 0.147 0.090 0.160 0.091 0.169 0.106 0.173 0.110 0.169 0.105 0.159 0.099 

GM 0.067 0.035 0.078 0.040 0.085 0.051 0.077 0.056 0.083 0.052 0.079 0.048 

SF 0.452 0.389 0.487 0.440 0.501 0.482 0.448 0.511 0.491 0.498 0.499 0.487 

π2 18% 6% 17% 6% 15% 5% 14% 5% 14% 5% 16% 5% 

RE 0.840 0.879 0.841 0.878 0.852 0.887 0.844 0.894 0.850 0.888 0.837 0.878 
 

REN 62% 57% 62% 57% 64% 59% 62% 61% 63% 60% 61% 57% 
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Figure 7a. Histogram of the distribution of the moduli of the non-dominant eigenvalues; 

Japan, 1980-2005, 21 x 21 input-output tables 
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Figure 7b. Histogram of the distribution of the moduli of the non-dominant eigenvalues; 

Japan, 1980-2005, 100 x 100 input-output tables 
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 Finally, Table 3 reports the moduli of the eigenvalues for the case of fixed 

capital stock (and a uniform profit rate; see equation (2a)) as well as the relevant 

statistical measures of distribution. The matrix of capital stock is rarely available in 

the official statistics and one should estimate it from the available data on the basis of 

some simplifying assumptions. More specifically, starting with the investment matrix 

of the same size and industry structure as of the input-output table we form weights 

which post-multiplied, element-by-element, by the vector of capital stock per unit of 

output gives the matrix of capital stock coefficients. The assumption here is that the 

matrix of capital stock is proportional to investment matrix. It is important to stress at 

this point that in the capital stock matrix, the consumer goods producing industries as 

they do not normally sell investment goods their respective rows will contain many 

zeros or near zero (higher than the fifth decimal) elements, and, therefore, we end up 

with many zero or near zero eigenvalues.  

 We could have side stepped the problem of zero eigenvalues by accounting as 

part of the matrix of capital stock the inventories as well as the matrix of workers 

necessary consumption (‘wage fund’). However, the data on turnover times are hard 

to come by with the exception of the US economy, where they can be approximated 

through the inventories to sales ratio. Thus in the interest of brevity and clarity of 

presentation we opted not to use inventories and in the same spirit, we did not use 

matrices of depreciation coefficients. Thus, in what follows we present estimates of 

the moduli of eigenvalues only for the economies that we had access to data on their 

capital stock and also we have an idea from past studies about the shape of the w   

curves. Table 3 below displays the data for Greece (1970), Korea (1995 and 2000) 

and the USA (1947, 1958, 1963, 1967, 1972, and 1977). 

 

 

 

 

 

 

 

 

 



 29 

Table 3. The distribution of the moduli of the non-dominant eigenvalues for the case of fixed 

capital; Greece, Korea and USA 

  

GRC 

 

KR 

 

KR USA 

 

USA 

 

USA 

 

USA 

 

USA 

 

USA 

 1970 1995 2000 1947 1958 1963 1967 1972 1977 
 

Rank 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 0.037 0.084 0.063 0.408 0.309 0.309 0.473 0.549 0.461 

3 0.035 0.059 0.063 0.117 0.090 0.105 0.116 0.069 0.069 

4 0.035 0.057 0.057 0.069 0.057 0.057 0.065 0.069 0.058 

5 0.015 0.057 0.057 0.069 0.045 0.057 0.065 0.062 0.058 

6 0.012 0.026 0.025 0.050 0.045 0.053 0.051 0.062 0.054 

7 0.004 0.007 0.009 0.048 0.043 0.049 0.051 0.062 0.054 

8 0.004 0.004 0.009 0.048 0.043 0.049 0.047 0.054 0.041 

9 0.002 0.004 0.008 0.044 0.037 0.043 0.034 0.049 0.036 

10 0.002 0.000 0.003 0.044 0.035 0.043 0.034 0.049 0.036 

11 0.000 0.000 0.003 0.040 0.035 0.042 0.034 0.034 0.036 

12 0.000 0.000 0.000 0.040 0.033 0.038 0.032 0.034 0.036 

13 0.000 0.000 0.000 0.040 0.031 0.038 0.032 0.034 0.031 

14 0.000 0.000 0.000 0.029 0.031 0.030 0.029 0.034 0.031 

15 0.000 0.000 0.000 0.029 0.029 0.027 0.029 0.030 0.029 

16 0.000 0.000 0.000 0.027 0.018 0.022 0.028 0.030 0.029 

17 0.000 0.000 0.000 0.024 0.017 0.021 0.028 0.029 0.023 

18 0.000 0.000 0.000 0.021 0.017 0.021 0.027 0.027 0.022 

19 0.000 0.000 0.000 0.017 0.017 0.021 0.021 0.021 0.022 

20 0.000 0.000 0.000 0.017 0.017 0.021 0.021 0.020 0.017 

21 0.000 0.000 0.000 0.016 0.014 0.018 0.017 0.020 0.016 

22 0.000 0.000 0.000 0.016 0.013 0.016 0.016 0.019 0.015 

23 0.000 0.000 0.000 0.016 0.013 0.016 0.016 0.015 0.014 

24 0.000 0.000 0.000 0.012 0.012 0.010 0.015 0.012 0.014 

25 0.000 0.000 0.000 0.012 0.012 0.008 0.015 0.011 0.012 

26 0.000 0.000 0.000 0.012 0.007 0.007 0.010 0.011 0.012 

27 0.000 0.000 0.000 0.010 0.006 0.007 0.009 0.010 0.009 

28 0.000 0.000 0.000 0.008 0.006 0.007 0.009 0.010 0.008 

29 0.000 0.000 0.000 0.007 0.005 0.006 0.009 0.010 0.008 

30 0.000 0.000 0.000 0.007 0.005 0.006 0.007 0.006 0.005 

31 0.000 0.000 0.000 0.006 0.005 0.006 0.007 0.006 0.002 

32 0.000 0.000 0.000 0.003 0.002 0.004 0.007 0.005 0.006 

33 0.000 0.000 0.000 0.003 0.002 0.004 0.006 0.003 0.006 

34 …. …. …. 0.002 0.002 0.003 0.002 0.003 0.003 

35 …. …. …. 0.001 0.002 0.002 0.001 0.002 0.003 

36 …. …. …. 0.001 0.002 0.002 0.001 0.002 0.000 

37 …. …. …. 0.001 0.000 0.001 0.001 0.001 0.001 

38 …. …. …. 0.000 0.000 0.000 0.001 0.000 0.001 

39 …. …. …. 0.000 0.000 0.000 0.000 0.000 0.000 
          

AG 0.009 0.027 0.027 0.035 0.028 0.031 0.036 0.039 0.034 

GM 2.2E-06 0.006 0.010 0.012 0.009 0.012 0.014 0.015 0.013 

SF 2.4E-04 0.223 0.387 0.352 0.338 0.406 0.394 0.377 0.394 

π2  25%    28%    21%      31%      29%      26%      35%         38%         36% 

RE 0.668 0.734 0.791 0.767 0.782 0.800 0.753 0.736 0.748 

REN 39%    53%    61%      43%      45%      48%      41%         38%         40% 
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 An inspection of the results reveals that the presence of fixed capital stock leads 

to considerably lower moduli and to higher 2  
than the corresponding flow data. 

Thus, we observe reductions in SF, RE and REN.30 

 From all these tables, the associated numerical results and the hitherto analysis 

we arrive at the following conclusions: 

(i). The moduli of the non-dominant eigenvalues fall quite rapidly in the ‘beginning’ 

and figuratively speaking their falling pattern can be described by an exponential 

curve that approaches asymptotically much lower values, where it is observed a 

concentration of moduli. Further analysis reveals that the distribution of the moduli 

tends to be remarkably uniform across countries and over time. 

 (ii). The complex (as well as the negative) eigenvalues tend to appear in the lower 

ranks, i.e., their modulus is relatively small. However, even in the cases that they 

appear in the higher ranks, i.e., second (USA, 1958, see Table 1, and Japan, 1995, 21 

x 21, see Table 2) or third rank (Greece, 1992, 1995 and 1996, USA 1958, Japan 1980 

and 1990, see Table 1; see also the cases displayed in Table 2), the real part has been 

found to be much larger than the imaginary part (i.e., cos 1  ; see Section 2, point 

(i)), which is equivalent to saying that the imaginary part may even be ignored (e.g., 

in the Greek economy the real part is from 19 to 50 times larger than the imaginary 

part). Moreover, in the fewer cases that the imaginary part of an eigenvalue exceeds 

the real one, not only their ratio is relatively small but also the modulus of the 

eigenvalue can be considered as a negligible quantity (e.g., the imaginary part of the 

fifth (sixteenth) eigenvalue of the Greek economy, 1997, is 1.1 (1.65) times higher 

than the real part, nevertheless the modulus equals 0.098 (0.017)). Finally, by 

inspecting all of our eigenvalues we observe that, in general, the imaginary part tends 

to fall. Consequently, first, the already detected distribution of the moduli can be 

viewed as a fair representation of the distribution of the eigenvalues and, second, the 

majority of the prices of the non-Sraffian Standard commodities in terms of the 

Sraffian Standard commodity are almost linear functions of   and close to the w   

                                                
30 It may be noted that we also experimented with an aggregation in a 3 x 3 input-output table for the 
USA (1977): in the flow version, the modulus of the subdominant (complex) eigenvalue equals 0.146; 
in the stock version, the subdominant eigenvalue equals 0.031, whilst the third eigenvalue equals _ 
0.0001. The aggregation in a 3 x 3 input-output table for Greece (1970) did not give any different 
results: in the flow version, the modulus of the subdominant (complex) eigenvalue equals 0.087; in the 
stock version, the subdominant eigenvalue equals _ 0.027, whilst the third eigenvalue equals zero (see 
Tsoulfidis, 2010, pp. 150-155). See also the evidence provided by Steenge and Thissen (2005).  
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curve, 1  . For example, we may consider the representative case of the Greek 

economy, 1994: Table 4 reports the non-dominant eigenvalues and the mean of the 

relative error, MRE, between ( )f 
 
or 12 ( )F  and 1  ,31 and Figure 8 represents 

2 ( )f 
 
to 4 ( )f    (dotted lines), 12 ( )F   (solid lines) and 1   (dashed line)). 

 

 

Table 4. Non-dominant eigenvalues and mean of the relative error between the prices of the 

non-Sraffian Standard commodities and the wage-profit curve in terms of the Sraffian 

Standard commodity; Greece 1994 
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1
1

0

[1 ( )(1 ) ]MRE f d     , where ( )f 
 
denotes ( )f 

 
or 

12 ( )F 
.  

kJ  MRE 

0.678 67.1% 

0.420 29.1% 

0.357 23.7% 

0.327 21.1% 

0.261 15.9% 

0.199 i 0.057 11.3% 

0.109 5.9% 

-0.071 i 0.066 3.5% 

0.071 i 0.041 3.7% 

0.059 3.1% 

-0.013 i 0.023 0.7% 

0.023 1.2% 

-0.007 0.3% 

0.006 0.3% 

AM=13.4% 
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Figure 8. The prices  of the first three non-Sraffian Standard commodities, the prices of the 

sum of complex conjugate non-Sraffian Standard commodities and the money wage rate,  in 

terms of the Sraffian Standard commodity, as functions of the relative rate of profits; Greece, 

1994 

 

(iii). The actual economies do not fulfill the polar spectral conditions that guarantee a 

linear or even monotonic price-profit rate relationship (see Section 2, point (ii)). 

Nevertheless, those conditions constitute useful ‘ideal types’, since the actual 

eigenvalue distribution is indeed polarized and, therefore, both Bienenfeld’s quadratic 

formula (see equation (28)) and a spectral formula, which involves few non-dominant 

eigenvalues (see relation (30)), track down accurately enough the trajectories of the 

actual prices of production (see Section 2, point (iii)). For example, consider the 

graphs of Figure 9, which are associated with the Greek economy, 1994, and display 

trajectories of the actual prices (depicted by solid lines) and the relevant trajectories 

corresponding to (i) a fourth-order polynomial approximation (depicted by dashed 

lines that cross the  axis at 1  ) in terms of ‘dated quantities of embodied 

labour’ (see equation (3), Steedman, 1999b, and Tsoulfidis and Mariolis, 2007, p. 

429), i.e.,  

 T T 2 3 4(1 ) (0)[ ( ) ( ) ( ) ]         p p I J J J J  

or 

 T T 4 1(1 ) (0) [ ... ( ) ]       J Jp p X I Λ Λ X  

where X  and the diagonal matrix JΛ  denote matrices formed from the right 

eigenvectors and the eigenvalues of J , respectively; (ii) Bienenfeld’s quadratic 
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approximation (dashed lines); and (iii) a third-order spectral approximation (dotted 

lines), i.e.,  

 T B.L.A. S.N-L.T. p  

where B.L.A. denotes Bienenfeld’s linear approximation and  

               1 T 1 T
2 3S.N.-L.T (1 ){[ 0.678(1 0.678) ] [ 0.420(1 0.420) ] }         A Ay y  

the sum of the two non-linear terms (see Table 4). In fact, for reasons of economy of 

space, we focus on the four sectors displaying an extremum point (i.e., sectors 5, 9, 14 

and 18; setting aside sector 14, they also give a price-labour value reversal), on two 

sectors (10 and 12) that give strictly rising curves and on two sectors (1 and 7) that 

give strictly falling curves. Moreover, in each graph we report (i) the actual and the 

approximate values of   at which occur extrema points and reversals; and (ii) the 

mean of the relative error (MRE) between the approximate and the actual curves (the 

subscripts ‘a, p, B and s’ indicate ‘actual, polynomial, Bienenfeld and spectral’, 

respectively).32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
32 It should be noted that in all sectors that present an extremum point, B.L.A. is found to be 
decreasing, whilst in the remaining sectors its monotonicity coincides with that of the actual curve. The 
S.N.-L.T. presents a minimum point in the sectors 12 and 14, whilst in the remaining sectors it presents 
a maximum. 
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Sector 5:  Max: { a 0.488  , p 0.397  , B 0.373  , s 0.491  }, Reversal: 

{ a 0.856  , p 0.646  , B 0.746  , s 0.874  }, p 14.8%MRE  , B 3.3%MRE  , 

s 1.8%MRE 
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Sector 9:  Max: { a 0.352  , p 0.307  , B 0.315  , s 1  },  Reversal: 

{ a 0.680  , p 0.529  , B 0.629  s 1  }, p 15.3%MRE   , B 0.8%MRE  , 

s 5.7%MRE   
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Sector 14:  Min: { a 0.938   , B 1  , s 0.902  }, Reversal: 

{ a 1  , B 1  , s 1  }, p 16.6%MRE   , B 0.3%MRE  , s 0.2%MRE 
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Sector 18:  Max: { a 0.313  , p 0.272  , B 0.137  , s 0.415  }, Reversal:  

{ a 0.546  , p 0.447  , B 0.274  , s 0.754  }, p 14.6%MRE  , B 3.8%MRE  , 

s 6.2%MRE   

 
 



 36 

 

0.0 0.2 0.4 0.6 0.8 1.0 
ρ 

0.1 

0.2 

0.3 

0.4 

0.5 

p10 

 
 

Sector 10: p 17.2%MRE   , B 0.3%MRE  , s 0.9%MRE   
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Sector 12: p 18.3%MRE   , B 1.4%MRE  , s 0.9%MRE   
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Sector 1: p 13.1%MRE   , B 1.7%MRE  , s 0.1%MRE 
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Sector 7: p 14.8%MRE   , B 1.2%MRE  , s 1.9%MRE   

 

Figure 9. Actual prices, fourth-order polynomial approximation, Bienenfeld’s quadratic 
approximation and third-order spectral approximation; Greece, 1994 
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Clearly, even the polynomial approximation works pretty well, although for ‘low’ or, 

more precisely, ‘realistic’ values of the relative rate of profits: in the considered case 

of the Greek economy, the ‘actual’ value of the relative rate of profits (i.e., that 

associated with the ‘actual’ real wage rate, estimated on the basis of the available 

input-output data) is almost 0.272, provided that wages are paid ex ante (see 

Tsoulfidis and Mariolis, 2007, p. 428, Table 1), and, to our knowledge, there is no 

relevant empirical study where it is greater than 0.40 (and less than 0.17).33 Ιt could 

also be added that, regarding sector 9, for which the MREs is greater, the accuracy of 

the spectral approximation is improved considerably by including the sixth 

eigenvalue, in the sense that the relevant curve presents a maximum point (as well as 

a price-labour value reversal; see Figure 10, where the dotted curve below (above) the 

actual one represents the sixth-order (thirteenth-order) spectral approximation, and 

Figure 11, where the solid (dotted) curve represents the sum of all the real (complex) 

non-linear terms of the spectral approximation). Finally, if S  ( 1 )w   , S
jp  denote 

the money wage rate and the price of commodity j , respectively, in terms of the 

Sraffian Standard commodity, and j
w  the money wage rate corresponding to the 

normalization equation  ( (0))j j jp v p  , then S S 1(0) ( )j

j jw p w p
  from which it 

follows that the j
w  curves of the sectors 5, 9 and 18 cross the S

w  curve at the points 

where occur price-labour value reversals, whilst the j
w  curves of the remaining 

sectors are below or above the S
w  curve, for 0 1  . Moreover, since the 

approximation of S
jp  through Bienenfeld’s quadratic formula is pretty accurate, it is 

expected that the latter j
w  curves will tend to be either strictly convex or strictly 

concave to the origin, whilst nothing guarantees that the means of the relative errors 

between the j
w  and the S

w  curves will be low. Indeed, Figure 12, which displays all 

the differences Sj
w w  as functions of  , and Table 5, which reports the  values of 

  at which the j
w  curves change their shape from convex (cx) to concave (ce) or 

vice versa and the MRE, show that this statement holds true. More specifically, setting 

aside the sectors that display price-labour value reversals, turning points are detected 

in the sectors 6, 11 and 14, the sectroral MRE are in the range of 74.6% (sector 19)-

3.1% (sector 14) and their arithmetic mean is almost 29.8%. 

 

                                                
33 See, for example, the empirical studies mentioned in footnotes 2 and 5. 
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Figure 10. Actual price, sixth-order and thirteenth-order spectral approximations 

( s 3.7%MRE  and 1.0% , respectively); Greece, 1994, Sector 9 
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Figure 11. The sums of all the real and complex non-linear terms of the spectral 

approximation as functions of the relative rate of profits; Greece 1994, Sector 9 
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Figure 12: The difference between the money wage rate in terms of the commodity j and the 

money wage rate in terms of the Sraffian Standard commodity as a function of the relative 

rate of profit; Greece, 1994 

 
Table 5. Curvatures of the wage- profit curves in terms of the commodity j; Greece, 1994 

 

w
j Curvature MRE 

1 ce 46.1% 

2 ce 68.8% 

3 ce 40.3% 

4 ce 48.4% 

5 cx-ce, 0.697   5.1% 

6 cx-ce, 0.351   12.8% 

7 ce 19.4% 

8 ce 10.0% 

9 cx-ce, 0.594   0.3% 

10 cx 11.4% 

11 cx-ce, 0.127   18.2% 

12 cx 21.4% 

13 cx 14.3% 

14 ce-cx, 0.959   3.1% 

15 ce 45.0% 

16 cx 7.2% 

17 ce 36.4% 

18 cx-ce, 0.630   4.5% 

19 ce 74.6% 

AM=25.6% 
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(iv). Although the level of aggregation affects both the central tendency and skewness 

of the eigenvalue distribution, it is expected that it does not drastically affect the 

monotonicity of the price-profit rate relationship, since the higher non-dominant 

eigenvalues exhibit small relative changes that go to either direction. 

(v). Moving from the flow to (the more realistic) stock input-output data the above 

conclusions are strengthened; inasmuch as, we found that the subdominant eigenvalue 

falls even more abruptly, whereas the third or fourth eigenvalues become 

indistinguishable from the rest lending further support to the idea of approximating 

the trajectories of the actual prices of production linearly.34 

 

4. Concluding Remarks 

On the basis of a spectral decomposition of linear single-product systems, it has been 

shown that the monotonicity of the production price-profit rate relationship depends to 

a great extent on the distribution of the eigenvalues of the vertically integrated 

technical coefficients matrices. The examination of input-output data of many diverse 

economies suggested that the majority of the non-dominant eigenvalues concentrate at 

very low values and this means that the actual price-wage-profit systems can be 

adequately described by only a few non-Sraffian Standard systems. It follows 

therefore that the production price-profit rate relationship tends to be monotonic and 

its approximation through low-order formulae, like Bienenfeld’s quadratic formula 

and a third or fourth-order spectral formula, works extremely well. In the more 

realistic case with capital stocks, we found that the non-dominant eigenvalues are 

much lower than that of the flow case and thus the linear or a second-order spectral 

formula approximate accurately enough the movement of production prices. 

 A salient feature of our analysis is the tendency towards uniformity in the 

eigenvalue distribution across countries and over time. Such a typical finding could be 

viewed as a manifestation of technological characteristics embedded in the structure 

of actual economies and these may become the focus of future research efforts. 

  

 

                                                
34 Thus, it comes as no surprise that both Ochoa (1984) and Shaikh (1998) find that their linear 
approximations are quite accurate and they further claim that there is no necessity for higher order 
terms. Bienenfeld (1988), on the other hand, using the same flow input-output data of the US economy, 
but not stock data, confirms that his quadratic approximation constitutes a marginal improvement over 
the linear one.  
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Appendix: Numerical Examples for Cases of Polar Distributions of Eigenvalues  

Consider a 4 4  system where all the diagonal (off-diagonal) elements of A  equals 

0.3 (equals a ) and T [1,2,3,6]l  (by invoking perturbation theorems, see, e.g., Horn 

and Johnson, 1990, pp. 371-373, the reader will be able to ascertain that, within 

certain limits, the following results are robust to differential parameterization of A , 

say ( )  A A E , where E denotes a fixed perturbation matrix). It is obtained that 

the moduli of the eigenvalues of A  are strictly monotonic functions of a  and 1 1 A  

for 7/30 0.233a    (see Figure A.1.1). 
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Figure A.1.1 The moduli of the eigenvalues of the system as functions of the input-output 

coefficient a  

 
 

For 0.001a   it follows that 0.981   and T [1.451,2.878,4.304,8.584]v  . 

Therefore, the w   curves tend to coincide with 1  , and the production prices 

tend to be insensitive to  . The Figures A.1.2 a-b represent the w   and the jp   

curves, respectively, in terms of 1 T90.289 [1,1,10,5]z , i.e., T 1v z  and 1 1d   (the 

dashed line, in Figure A.1.2 a, represents 1  ). In fact, ( ) 0w    and, for example,  

 1
1 1.3913( 1.0592)( 1.0155)p       

or, using the Taylor expansion about 0  , 
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 2 3
1 1 0.059 0.058 0.057p v        

whilst the deviation of the vector of prices from the vector of labour values, measured 

by the ‘ d  distance’ (which is a numeraire-free measure; see Steedman and Tomkins, 

1998), is less than, say, 10% for 0.873   (see Figure A.1.3) 

On the other hand, for 0.23a   it follows that 0.008   and 

T [297.85,298.93,300.0,303.22]v  . Therefore, for 1 1d  , i.e., 1 T1200 [1,1,1,1]z , 

the jp   curves tend to be linear (see Figure A.1.4), and using the Taylor expansion 

about 0  , we get 

 2 6 3
1 1 2.149 0.002 (1.242 10 )p v         

 2 7 3
2 2 1.074 0.001 (6.211 10 )p v         

 14
3 3 (9.888 10 )p v     

 2 6 3
4 4 3.223 0.002 (1.863 10 )p v         

which show that the first-order approximations work pretty well. 
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Figure A.1.2. w   and jp   curves; 0.001a  , 0.981  , 1 1d   
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Figure A.1.3. The ‘ d  distance’ as a function of the relative rate of profits; 0.001a  , 

0.981   
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Figure A.1.4. jp   curves; 0.23a  , 0.008  , 1 1d   

 
 
 
 


