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ABSTRACT

A typical finding in many empirical studies is that the production price-profit rate
relationship is, by and large, monotonic. This paper derives, in terms of the usual
single-product model, the spectral conditions that make possible the appearance of
such monotonicity. Furthermore, using data from input-output tables for a number of
countries and years, it examines the extent to which actual economies fulfil those

spectral conditions.

Key words: Eigenvalue distribution, production prices, spectral analysis, Standard
systems

JEL classifications: B51, C67, D46, D57, E11

1. Introduction

In a world of fixed input-output coefficients and at least three commodities, produced
by means of themselves and homogeneous labour, long-period relative prices can
change in a complicated way as income distribution changes, a fact that has critical
implications for the traditional theories of capital, value, distribution and international
trade. In accordance with Classical, Marxian, Austrian and neoclassical theory, Sraffa
(1960) noted that ‘[t]he key to the movement of relative prices consequent upon a
change in the wage lies in the inequality of the proportions in which labour and means
of production are employed in the various industries.” (ibid., §15). Nevertheless,
taking into account that ‘the means of production of an industry are themselves the
product of one or more industries which may in their turn employ a still lower
proportion of labour to means of production’ (ibid., §19), he was able to show that ‘as

the wages fall the price of the product of a low-proportion [...] industry may rise or



may it may fall, or it may even alternate in rising and falling, relative to its means of
production’ (ibid.). Thus, he finally detected the fundamental consequence of the
existence of complicated patterns of price-movement in the internal logic of the
traditional (Austrian and neoclassical) theories of capital as follows: ‘The reversals in
the direction of the movement of relative prices, in the face of unchanged methods of
production, cannot be reconciled with any notion of capital as measurable quantity
independent of distribution and prices.” (ibid., p. 38)."

However, typical findings in many empirical studies of single-product systems
are that” (i) the production price-profit rate curves are, more often than not, monotonic
(in the economically significant interval of the profit rate); (i) non-monotonic
production price-profit rate curves are not only rare but also have no more than one
extremum point; (iii) cases of reversal in the direction of deviation between
production prices and labour values are more rare;’ therefore, (iv) the approximation
of the production prices through Bienenfeld’s (1988) linear and, a fortiori, quadratic
formulae works pretty well; and (v) the so-called ‘wage-profit relationships’ are
almost linear irrespective of the numeraire chosen (i.e., the correlation coefficients
between the wage and profit rates tend to be above 99%), which implies, in its turn,
that there is empirical basis for searching for an ‘approximate surrogate production
function’ (Schefold, 2008a, b). For example, our study on ten 19 x 19 input-output
tables of the Greek economy, spanning the period 1988-1997 (Tsoulfidis and
Mariolis, 2007), in which all capital is (by assumption) circulating capital and the
vector of production prices is normalized with the use of Sraffa’s (1960, ch. 4)
‘Standard commodity’, shows that the movement of prices is, by and large, governed
by the relevant ‘vertically integrated’ (Pasinetti, 1973) capital-labour ratios, and

detects 36 cases of non-monotonic movement (i.e., 36/190=19%) and 29 cases of

' For a compact exposition of the Sraffa-based critique of the traditional theories, see Kurz and
Salvadori (1995, chs 4, 5 and 14). Sraffa’s (1960, chs 3 and 6) analysis of the movement of relative
prices has been extended by Schefold (1976), Pasinetti (1977, Section 5.7), Caravale and Tosato (1980,
pp. 85-87), Parys (1982) and Bidard (1991, pp. 56-58). Moreover, Mainwaring (1978, pp. 16-17) has
constructed and analyzed a very interesting numerical example for the three-commodity case, which
indicates that non-monotonic movements of relative prices need not imply ‘factor-intensity reversal’.
Finally, it should also be noted that, more recently, C. Bidard, H. G. Ehrbar, U. Krause and 1. Steedman
have detected some ‘monotonicity (theoretical) laws’ for the relative prices (see Bidard and Ehrbar,
2007, and the references provided there).

* See Sekerka er al. (1970; Czechoslovakia), Krelle (1977; Germany), Ochoa (1984, ch. 7; USA),
Leontief (1985; USA), Petrovi¢ (1987, 1991; Yugoslavia), Cekota (1988; Canada), Da Silva and
Rosinger (1992; Brazil), Marzi (1994; Italy), Shaikh (1998; USA), Han and Schefold (2006; OECD),
inter alia.

? Since prices are proportional to labour values at a zero profit rate, non-monotonicity is a necessary,
but not sufficient, condition for price-labour value reversal.



price-labour value reversals (i.e., 15%). Furthermore, as it has recently been argued,
the said typical findings, which do not, of course, invalidate the Sraffa-based critique,
could be connected to the distribution of the eigenvalues of the vertically integrated
technical coefficients matrices of actual economies.

The claim that this paper raises is that we can further investigate, both
theoretically and empirically, the monotonicity issue. More specifically, first, we
derive, in terms of the usual linear single-product model, the spectral conditions that
make possible the appearance of such monotonicity and, second, using input-output
data of many diverse economies, i.e., China, Greece, Japan, Korea and USA, for
which it is already known that the production price-profit rate and/or the wage-profit
relationships have the aforementioned typical forms,” we examine the extent to which
actual economies fulfil those conditions.

The remainder of the paper is structured as follows. Section 2 presents a spectral
decomposition of the price system and derives conditions for the monotonicity of the
price-profit rate relationship. Section 3 brings in the empirical evidence by examining

actual input-output data. Section 4 concludes.

2. Theory

Consider a closed, linear system, involving only single products, basic commodities
(in the sense of Sraffa, 1960, §6) and circulating capital. Furthermore, assume that (i)
the input-output coefficients are fixed; (ii) the system is ‘viable’, i.e., the Perron-
Frobenius (P-F hereafter) eigenvalue of the irreducible nxn matrix of input-output
coefficients, A, is less than 1,6 ‘diagonalizable’, i.e., A has a complete set of n

linearly independent eigenvectors, and ‘regular’ (in the sense of Schefold, 1971, pp.

* See Schefold (2008b, ¢) and Mariolis and Tsoulfidis (2009). Nevertheless, Bienenfeld (1988, p- 255)
has already shown that, in the extreme case in which the non-dominant eigenvalues of the said matrix
equal zero, the production prices are strictly linear functions of the profit rate, and Shaikh (1998, p.
244) has noted that ‘[a] large disparity between first and second eigenvalues is another possible source
of linearity.” (see also ibid., p. 250, note 9).

5 For the economy of China, 1997, see Mariolis and Tsoulfidis (2009). For Greece, 1970 and 1988-
1997, see Tsoulfidis and Maniatis (2002) and Tsoulfidis and Mariolis (2007), respectively. For Japan,
1970, 1975, 1980, 1985 and 1990, see Tsoulfidis (2008) and Mariolis and Tsoulfidis (2010). For Korea,
1995 and 2000, see Tsoulfidis and Rieu (2006). Finally, for USA, 1947, 1958, 1963, 1967, 1972 and
1977, see Ochoa (1984), Bienenfeld (1988), Chilcote (1997) and Shaikh (1998).

6 Matrices (and vectors) are denoted by boldface letters. The transpose of an 72x1 vector X is denoted

by X' . Ay, denotes the P-F eigenvalue of a semi-positive nxn matrix A and (X Al,yL) the
corresponding eigenvectors, whilst 4,,, k=2,...,n and |ﬂA2| 2|XA3| 2...Z|2,An|, denotes the

. . T L
non-dominant eigenvalues of A and (X,,,Y,,) the corresponding eigenvectors.



11-23, 1976; see also Bidard and Salvadori, 1995, p. 389), i.e., no (real or complex)

right eigenvector of A is orthogonal to the vector of direct labour coefficients,
1" 0" (iii) the rate of profits, r, is uniform; (iv) labour is not an input to the
household sector and may be treated as homogeneous because relative wage rates are
invariant (see Sraffa, 1960, §10; Kurz and Salvadori, 1995, pp. 322-325); and (v)
wages are paid at the end of the common production period.®

On the basis of these assumptions we can write

p =wl"+1+r)p'A (1)
where p denotes a vector of prices of production and w the money wage rate.
Equation (1) after rearrangement gives:

p'=wv' +rp'H
or

p'=wv' +pp'J (2)
or, if p<I,

P’ =Wy - p] =y’ Y P 3

=0

where H=A[I-A]" (>0) denotes the ‘vertically integrated technical coefficients
matrix’, I the identity matrix, v' =1"[I-A]" (>0") the vector of vertically
integrated labour coefficients or ‘labour values’, R=(4,,)"' =1 (=(4y)") the
maximum rate of profits, i.e., the rate of profits corresponding to w=0 and p>0,

p= rR™", 0< p <1, the ‘relative rate of profits’, and J=RH, with A, = R4, =1,

Ay =Rhy, = RA,(1-2,,)" and |4,,|<1.

7 Schefold argues that ‘non-diagonalizable’ and ‘irregular’ systems are of measure zero in the set of all
systems and thus not generic (ibid.; see also Schefold, 1978, pp. 268-269, whilst for a similar argument,

see Goodwin, 1976, p. 130, footnote 1). As is well known, given any A and an arbitrary & # 0, itis
possible to perturb the entries of A by an amount less than |8| so that the resulting matrix is

diagonalizable (see, e.g., Aruka, 1991, pp. 74-76). Finally, it may also be noted that the concepts of
‘regularity’ and ‘controllability’ (in the sense of Kalman, 1961) are algebraically equivalent (see
Mariolis, 2003).

¥ It would make no relevant difference to our analysis the assumption of ex ante payment of wages (for
the general case, see, e.g., Steedman, 1977, pp. 103-105).

’If A,, is positive, then A,, <A4,,.Ifit is negative or complex, then |ﬂ,Ak| < A,, (the equality holds

iff A isimprimitive) and |1—/I,Ak| > 1—|/1Ak| . Hence, |/1Jk| <1 holds for all k .



If commodity z>0, with viz=1, is chosen as the standard of value or
numeraire, i.e., p'z =1, then (3) implies that
w='[I-pJ]"2)" (4)
which gives a trade-off between w measured in terms of z and p, known as the
w— p relationship. Finally, substituting (4) in (3) gives
p' =(v'[I-pJT"'2) v [I-pJ]" (5)
Since A is assumed to be diagonalizable, v' can be expressed as a linear

combination of the basis vectors y), , i.e.,

vi=Y Vi (6)

m=1
and z can be expressed as a linear combination of the basis vectors z,, =[I-Alx,, ,

ie.,
7= dezAm (7)
m=1

Post-multiplying (6) by z,, gives

T T
v zAm = CmyAmzAm (8)
since, for any two distinct eigenvalues of a matrix, the left eigenvector of one

eigenvalue is orthogonal to the right eigenvector of the other. Pre-multiplying (7) by

v' gives
n
T T
viz=)d v'z,, )
m=1

Hence, if y}, , z,, are normalized by setting

m

y};mzAm =1 a'nd VTZAm =1 (10)

then (8), (9) and v'z =1 imply that

¢,=land ) d, =1 (11)
m=1

Moreover, pre-multiplying (7) by y,, gives
y;lz = dlYLZAl =d, (11a)
and, therefore,

d >0 (11b)



since y,, > 0. Thus, the substitution of (6), (7) and (11) in (4) and (5) yields

w=[(1-p)'d,+> (- piy,)d]"
k=2

or
w= Ho(inmdm)"
and
T =[(-p)'d, +k"22<1 i) = p) 'y + :Zza A Y]
or
p’ = (iln,,,dmw(iln,,,yi,,,)
where
[T, = (- p)1- pA;,)..(A= p4,,) = det[I- pJ]
and

Hm = H(l _10/1‘]/')
j=1

JjEm
Moreover, since w'=dw/dp<0 and (p/w)' >0 (see Sraffa, 1960,

differentiation of (12) and (13) with respect to p implies that
(1-p)2d, +§(1— Py )2 Ayd, >0
and
(=) ¥+ 20 pAo) Ayl >0

respectively. 10

(12)

(12a)

(13)

(13a)

§49).

191t should be noted that Steedman’s (1999a) numeraire, which is not necessarily semi-positive, entails

that (Z:Hmdm)*1 =1 and, therefore, w=II,, W <0, and p" :anyzm (see (12a) and
m=1

m=1

(13a)). Thus, the w— p and p— o relationships take on simpler forms in the sense that the former is

expressed solely in terms of the eigenvalues of J, whilst the latter is expressed in terms of powers of

£ up to p"" . For example, for n=2, we get p' = Y +Yao —p(ﬁJzyTAl +Y,,) or, since

vi= yTAl +yTA2 (see (6) and (11)), p" =[1, pIB, where B= [VT,(I—ﬂJz)yL —v']", and

[1, o] are the coordinates of the price vector in terms of the basis B (see ibid., pp. 7-8 and 12).



From equations (12) and (13), which constitute the spectral forms of the w—p
and p— p relationships, respectively, we derive the following:
(i). If Sraffa’s Standard commodity is chosen as numeraire, i.e., z=[I-A]x,,, then
d, =1 and d, =0. Thus, (12) becomes
w=1l-p (14)

i.e., the w— p relationship is a straight line,"" and (13) becomes

p =y, +U-p)D> A-p) 'Yy, (15)
k=2
or
p' =[L1-p)A-pi,) ", (1= p)A = pd,,) ' 1B, (15a)

where B, =[y,,,¥1,»---¥4,] i a left eigenbasis and
[L,d-p)A=pAy,) s A= p)A = pA, )]
are the coordinates of the price vector in terms of B . Differentiation of (15) with

respect to p gives
(") == (A-4)0-p4) Y
k=2

which implies that the individual components of p can change in a complicated way
as p changes. Nevertheless, it can be shown that there are commodity bundles whose

prices decrease monotonically as p increases. Post-multiplying (15) by z,,,
u=2,..,nand yu+k, gives

P2y, = 1u(P) (16)
where f, (p)=1-p)(1- p/?j#)". Now, it is necessary to distinguish between the

following two cases:

Case I: 1f z,, is a real eigenvector, then f,(0)=0 is a strictly decreasing function

of p, which is strictly concave (convex) to the origin for /1Jﬂ > (<) 0,12 whilst it

" The system consisting of equations (3) and (14) has been investigated intensively by Bienenfeld
(1988), Steedman (1999b), Mariolis and Tsoulfidis (2009, pp. 4-10) and Mariolis (2010).
" It is easily checked that

[ (p)==(1=2,)(1-pA,) > <0
since |/1Jk| <1, and

1 (o) ==20-2,) 4, (- pA,)7>



coincides with 1-p for 4;, =0 and tends to 1 (to (I1-p)(1+ p)7) as A =1
(A, = —1) (see Figure 1). Finally, multiplying both sides of (16) by 4, gives

ke, (k)" = (1= p)(R,R" = p)” (17)
where R, =(4,,)" -1, k,=p'z,,R,~" equal the ratio of the net product to the

means of production (or ‘Standard ratio’) and the capital-intensity of the vertically
integrated sector producing z,, (or, alternatively, of an economically insignificant,

! equals the

non-Sraffian real (non-complex) Standard system),"” respectively, ks =R
capital-intensity of the Sraffian Standard system, and ‘kﬂ‘ <k, since R<‘Rﬂ‘ (see

also Figure 2, which represents equation (14): because of equation (17) tana, gives

|k, |k at p=p', where R, >0 and R, <0).

Ju

1.0h

0.8}
0.6F
0.4+

0.2}

00 .“‘.“‘.p

Figure 1. The prices of non-Sraffian real Standard commodities in terms of the Sraffian
Standard commodity as functions of the relative rate of profits

13 See Sraffa (1960, §42, footnote 2, and §§56, 64). For the non-Sraffian, real and/or complex, Standard
commodities-systems, see also Goodwin (1976, 1977), Velupillai (1990, Part III), Aruka (1991) and
Steenge (1995).



R,R" p

Figure 2. The w— p relationship and the capital-intensities of non-Sraffian real Standard
Systems in terms of the Sraffian Standard commodity

Case 2: If z Ap is a complex eigenvector associated with AJH =a+iff, i=-1,

‘ijﬂ‘ =\/a’ + 7 <1, B=0, then from (15) we get
pT(ZAy"'iAy):Fy(,O) (18)
where ¢ signifies the complex conjugate, and
F,(p) = f,(p)+f,(p)=2(-p)1— pa)[(1— pa)* + p* F] 20 (19)
or

2
F,(p)= 2(1—p)(l—p‘iw‘cos (9)(1—2p‘lJy‘cose+p2 ‘AM‘ ) (19a)
where 0 = arccos(a‘/lm‘_l) . Given that (19) can be written as

27'F,(p)=(g(p)+h(p))”
where
g(p)=[1-p)1-pa)]' (- pa)’* and h(p)=[1-p)1-p)]" (p*B°)

. . . . 14 - . . .
are strictly increasing functions of p, " it follows that F, (p) is a strictly decreasing

function of p. Moreover, equation (19a) implies that 2 F,(p) tends to (1—p) as

" It is easily checked that
g'(p)=(1-p)°(1-a)

and
K(p)=11-p)1-pa)]” pf*2— p(1+a)]
Hence, g'(0) >0 and h'(p) >0, since |a| <land p(I+)<2.



‘ljﬂ‘ —0,to 1-p)=x p‘ﬂJﬂ‘)‘l (a function that is strictly concave (convex) to the

origin) as cos@ —>=*1, and to (1—p)(1+ p° ‘AJ ‘2)‘1 (a function that has an inflection

Y
point in the interval 2— \/?_> (=0.270) < p<1/3) as cos@ — 0 (see also Figures 3a-b,
which represent 2 F,(p) and its second derivative with respect to p, respectively,

for ‘/IM‘ =0.6 and cos@=159/60, £1/6; the dashed line, in Figure 3a, represents

1-p). Furthermore, the ratio of the capital-intensity, &, + l;ﬂ , of the vertically
integrated sector producing z,, +Z,, to the capital-intensity of the Sraffian Standard
system is given by

(k, +k ks = £,(P) Ay + £,(P) Ay, (20)
from which it follows that

Rk <20, 00| = 20= )y 1= o, |
or

Ik, +k,|ks ! < 201- p)| 4y, | 1= p| Ay, )7 <2
Finally,

(k| k) =| £, 04, =10-pa)* + A NA-p* + 21> 21)

. . . . . . 15 . .
is a strictly increasing function of p, since pa <1, and, therefore, kﬂ‘ is a strictly

decreasing function of p (however, |k, +I€#‘ does not necessarily decreases with p;

see, e.g., Figure 4, which is associated with Figure 3a and represents ‘kﬂ +I€#‘ks_1 as

functions of p, respectively).

-1
" It is easily checked that the first derivative of (‘k ﬂ‘ kg )> with respect to £ equals

A0-ap)1-a)+pBlIA-p)’ o’ + 51"

10
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Figure 3. The prices of the sum of complex conjugate non-Sraffian Standard commodities in
terms of the Sraffian Standard commodity as functions of the relative rate of profits

11



Ik, +,| ks

Figure 4. The absolute value of the capital-intensities of vertically integrated sectors
producing the sum of complex conjugate non-Sraffian Standard commodities in terms of the
Sraffian Standard commodity as functions of the relative rate of profits

Thus, we may conclude that, when Sraffa’s Standard commodity is chosen as
numeraire, the well-known Ricardo’s (1951, p. 46) statement regarding the
relationship between production prices and changes in income distribution holds true

with respect to the (real) commodity bundles z,, and z,,+Z,,: they are labour-

intensive relative to the numeraire, in the sense that ‘kﬂ‘<ks and ‘kﬂ +l€#‘<2ks,
respectively, and their prices decrease with increasing p ' However, this conclusion

is not generally independent of the arbitrary choice of numeraire, since ‘k #‘(ks )" and,

therefore, p'z A, are not necessarily monotonic functions of p when z #[I-Alx,,

' It may be said that this is not unanticipated on the basis of Goodwin’s (1976, 1977) method of
‘general co-ordinates’. By following an approach which is closer to our, Bidard and Ehrbar (2007, pp.

203-204) show that ‘kﬂ‘ decrease with o, and if k 4 is complex, then the derivative of its argument

does not change sign, i.e., k , moves monotonically either clockwise or counterclockwise across the

complex plane. Since there are statements in the theory of international trade (e.g., Stolper-Samuelson
effect, ‘factor price’ equalization theorem) that depend crucially on the existence of monotonic price-
profit rate relationships, our conclusion would seem to be of some importance for that theory (see also
Metcalfe and Steedman, 1979; Mariolis, 2004).

12



(see, e.g., Figure 5, where k, attains equal values at different values of p, and

compare with Figure 2).

I I

0o p p p" 1 RR p

Figure 5. The w— p relationship and the capital-intensity of a non-Sraffian positive
Standard system in terms of an arbitrary numeraire

(i1). If the non-dominant eigenvalues of J are real and very close to each other, i.e.,
(Ay2s Ayzses A ) ® A

or, in economic terms, the non-Sraffian Standard systems are real (non-complex) and

their Standard ratios are very close to each other, then (12) reduces to

wal(-p)'d, +(1-p2)" Y d, T

k=2

or, recalling (11), i.e. de =1-d, , and ignoring the error,
k=2

w=(1-p)1- p){1- pll-d,(1- D]} (22)
Double differentiation of (22) with respect to p gives

w'=2d,(d, - 1)1 -)*{1- p[l—d,(1- ]} (23)
which implies that the w—p curve has no inflection points irrespective of the

numeraire chosen. Moreover, (13) reduces to

p" ={1-pll-d,(1- DI} '[(1- p)yy, +1-p)> ¥ i.]

k=2
or

13



P ={1-pll-d,A-D [yy + D ¥ —PAY L+ D ¥ i)]
k=2 k=2

or, recalling (6) and (11),

p ={l-pll-d,(1-D V' +pl(d-Dy,, -V}
or, taking into account the price vectors associated with the extreme values of

p (=0and 1), i.e., p'(0)=v" and p"(1)=d, 'y, (see the price normalization
equation and (11a)),
p' ={l-pll-d,1-)1} {p" (O)+pld,(1-2)p' ) -p O]} (24

Since (24) constitutes a rational function of degree 1, it follows that the p, —p curves
are monotonic irrespective of the numeraire chosen.'” Thus, the system retains all the
essential properties of two-sector economies, in which, however, the ‘neoclassical
parable relations’ do not necessarily hold (see Garegnani, 1970, pp. 408-410, and
Kurz and Salvadori, 1995, chs 3 and 14).
Now, it seems to be appropriate to focus on the following three cases:
Case 1: If A~1, then (22) and (24) imply that

w=1-p (22a)
and

p=p(0) (24a)
i.e., the ‘pure labour theory of value’ (Pasinetti, 1977, pp. 76-78) holds true (like in a
one-sector economy).

Case 2: If |ﬂ| ~ (0 (clearly, this case is also associated with complex eigenvalues), then
(22) and (24) imply that

w=(1-p)[1-pd-d)]" (22b)
and

p' =[-p1-d)I"[p" 0)+p(dp" ()-p" (0)] (24b)

Thus, for d, =1 we get

7 For a similar exploration, which focuses on the curvature of the w— p curve, see Schefold (2008b,

c). Furthermore, it is easily checked that, when we adopt Steedman’s numeraire (see footnote 10), (24)
takes the form

p' =1-pA)"{p (0 +pl1-A)"p" (D-p" (0]}

n-1_T

where pT (1) is now equal to (1-A4)""y,,. Hence, the P; — P curves are not necessarily

monotonic.

14



p' =p (0)+pp (1)-p'(0) (24¢)
which coincides with Bienenfeld’s (1988) linear (approximation) formula for the

. 18,1
price vector.'® "

Case 3: If (A),,A445,... 4, ) =1 and (4., 4;..5.-04;,) ® A, then (22) and (24) still
hold, provided only that d, is replaced by d,+d,+..+d_ . However, if

Qs Agzoen ) ® A" and (A

st Agansen Ap) A, A, ) #1, or if
(Ao Ayssen Ay ) matiff, B#0, i.e., the non-dominant eigenvalues are complex and
very close to each other, then the system tends to behave as a three-sector economy
and, therefore, the w— p curve may exhibit inflection points and the p;,—p curves
may be non-monotonic (see also the 3x3 numerical examples provided by
Mainwaring, 1978, pp. 16-17, and, Shaikh, 1998, pp. 229-230; the latter presents a

. 2
price-labour value reversal).

(iii). In the same vein, let us assume that d, =1 and p|ﬂf,k| << 1, which implies that*’

'8 It should be noted that Bienenfeld (1988) derives f—th order polynomial approximations,
t=1,2,..., from (i) the so-called ‘reduction of prices to dated quantities of embodied labour’ (Kurz

and Salvadori, 1995, p. 175), i.e., pT =(1- p)p(O)TZpIJt (see (3)); and (ii) the fact that for any
=0

B . T T .
semi-positive row vector Y, the vector ¥ J " tends to the left P-F eigenvector of J as t tends to
infinity, from which it follows that, for a sufficiently large value of f, we can write

p(0) 'Y ~p(0)'J* ~...~p" (1). The accuracy of Bienenfeld’s approximations is directly related
to the magnitudes of |1Jk|71, and in the (extreme) case in which A has rank 1, then ﬂjk =0,

p'(0)J =p' (1) and, therefore, equation (24c) holds exactly (see also Mariolis and Tsoulfidis, 2009,

pp- 7-9).
' Numerical examples presented in the Appendix to this paper illustrate the points made above.
2% Garegnani (1970, p. 419, n. 2) notes that ‘the wage-curve is a ratio between a polynomial of the 7 th

degree and one of the (nm—1)th degree in r. [...] [SJuch rational functions admit up to
(3n—6) points of inflexion. [...] Further inquiry would be needed to find whether that maximum
number can be reached in the relevant interval 0 <r <R .

*! Consider the nxn column stochastic matrix M =¥ AIJ)A’:I, which is similar to J, and the
elements of which are independent of the choice of physical measurement units and the normalization
of y,,. Applying Hopf’s upper bound for the modulus of the subdominant eigenvalue of a positive

matrix we get: max{|ﬂjk|} <(L—-s)(L+s)" <1, where L(5) represents the largest (smallest)

element of M, and, therefore, we may conclude that when (but not only when) the elements of M are
‘similar’, approximation (25) works pretty well (for Hopf’s bound, as well as for other, more
complicated representations of the upper bounds for the modulus of the subdominant eigenvalue of
non-negative matrices, see, e.g., Rothblum and Tan, 1985). Furthermore, from Brody’s (1997)

conjecture it directly follows that, when M is a random matrix, with identically and independently
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(A= pA) " =1+ pAy +(PA,)’ +..x 1+ pA,, (25)
Then, ignoring the error, (15) reduces to

P =y +U-p)D 1+ pA)ys

k=2

or

p' :y};l +zy};k _pz(l_ﬂjk)y};k _pzzﬂ“JkyTAk (26)

k=2 k=2 k=2

Since (26) constitutes a polynomial function of degree 2, it follows that the p;,—p

curves have at most one extremum point. Moreover, post-multiplying (6) by J, and

recalling (11), we get

VI=ya+ D A 27)
k=2
or
VI-vi=-> 1= 4,0y, (27a)
k=2

Substituting (27) and (27a) in (26), and recalling p'(0)=v' and p"(1)=y}, (since
d, =1), yields
P’ =p (0)+pP (O)J-p O)+p*(P 1)-p (0)J) (28)

which coincides with Bienenfeld’s (1988) quadratic formula.”> An alternative, but

rather different approximation formula, which is also exact at the extreme values of
p, can be deduced as follows: writing (1-p4,)" as 1+ pA, (1-pA,)" and

substituting in (15) yields

distributed entries, max{|/1Jk|} tends to zero, with speed n-o.s’ when 7 tends to infinity (as Sun,
2008, shows, Brody’s conjecture can be proved using theorems provided by Goldberg et al., 2000).
22 See footnote 18. Since the modulus of the relative error of the approximation (25) equals ( pMJk |)2,

the accuracy of (28) increases with decreasing o . It should also be noted that, in terms of a sector ] s
(28) can be written as

p;p; (0" =1+ plk;, 0k 1)+ p* (k; (Dks ™' —k;(0)ks ™) (28a)
where  k.(0)=p"(OH,p;0)". k,O=p" (DH,p;(0)" = p,(D(Rp,;(0))" denote the
capital-intensity of the vertically integrated sector producing commodity j at p=0 and p=1,
respectively, and H ; denotes the J -th column of H. From (28a) it follows that ,0** = Zp* , where
p =2" (ks —k; (O))(k,; (1) —k; (0))™" denotes the value of p at which the approximate p =P
curve has an extremum point, and p** the approximate value of p at which there is a price-labour

value reversal, i.e., p;p; (0)_l =1.
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P =y, +U=-p)D ya +U0=p)D pAy (1= pAy) 'y
k=2 k=2
or
P =p O +p@ " M-p O)+1A-p)> pA,A-pA) 'y (29
k=2

Thus, if the moduli of the last n—v, 2<v<n-1, eigenvalues are sufficiently small

that can be considered as negligible, then (29) reduces to
P =p (0)+p( M) -p (O)+A-p)Y pA, (1= pA)'yy  (30)
k=2

where the sum of the first two terms coincides with Bienenfeld’s linear approximation

(see equation (24c)), and if A, is positive (negative), then the non-linear term
fou(p)=U-p)pA;, (- pi;, )" is a semi-positive (semi-negative) and strictly concave
(convex) function of p, which is maximized (minimized) at p’ E(l—,/l—ﬂak )le’l,

where —1+42=0414<p'<1 and —3+242=-0.172< f,(p) <1, since |4,]<I.
Relation (30) could be called a ‘v — th order spectral approximation’.
On the basis of this analysis, it may be argued that the monotonicity of the

p;—p curves depends to a great extent on the distribution of the eigenvalues of

matrix J or, alternatively, the exploration of the relationship between production
prices and the profit rate may be reduced to an exploration of the aforementioned
eigenvalue distribution.

Finally, it need hardly be said that, in terms (at least) of the well-known
‘Leontief-Brody approach’ (see Brody, 1970, ch. 1.2; Mathur, 1977), our analysis
remains valid for the (more realistic) case of fixed capital and/or differential profit

rates. Equation (1) becomes

p' =wl' +p"A" +p'Kr (1a)
where A" =A+D, D denotes the matrix of depreciation coefficients, K the matrix
of capital stock coefficients and r the diagonal matrix of the sectoral rates of profits,

r,. Provided that r, exhibit a stable structure in relative terms, which implies that r

can be written as rT, where T represents the relative magnitudes of the rates of
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profits in different sectors and r now represents the ‘overall level’ of the rates of
profits (or, alternatively, the ‘reference’ rate of profits),23 (1a) can be written as

p' =(wl" +p " Kr)[I-A"]"
or

T

p =wlv ] +ppJ (2a)
where [v']' =1'[I-A*]"' denotes the vector of labour values, J'=R'H",
H' =Kr[I-A']", R' = (/Im)“ and p"=r(R")". It then follows that (2a) is

formally equivalent to (2).

3. Empirical Evidence
The application of the previous analysis to the input-output tables of actual economies
(i.e., China, Greece, Japan, Korea, and USA) gives the results summarized in Tables 1
to 3.

The two-part Table 1 reports the moduli of the eigenvalues of J (in descending
order)24 and six measures of the distribution of the moduli of the non-dominant
eigenvalues of J, namely, (i) the arithmetic mean, AM, that gives equal weight to all

moduli; (ii) the geometric mean, GM, which in our case can be written as

1/(n-1)

|detJ| and assigns more weight to lower moduli, and, therefore, is more

appropriate for detecting the central tendency of an exponential set of numbers; (iii)

the so-called spectral flatness, SF, defined as the ratio of the geometric mean to the

arithmetic mean; (iv) 7, = max{r, E|1Jk|/2|ijk|} , where 7, represents a set of
k=2

relative frequencies; (v) the relative (or normalized) entropy, RE, defined as the ratio

of the ‘information content or Shannon entropy’, E, to its maximum possible value,

where E E—Z m, logr, and E_, =log(n—1) is the maximum
k=2

i.e., RE=E/E

max ?

value of E corresponding to 7z, =1/(n—1) for all k; and (vi) the relative ‘equivalent

> For instance, this rate could be the average or the minimum rate of profits of the system. See, e.g.,
Steedman (1977, pp. 180-181); Reati (1986, pp. 159-160).

* The dimensions of the symmetric input-output tables (SIOT) vary from 19 sectors (Greece, 1988-97)
to 39 sectors (USA). The tables of China and Japan are available from the OECD STAN database.
Those of Greece and Korea are provided by the National Statistical Service of Greece and the Bank of
Korea, respectively. Finally, those of USA are from the Bureau of Economic Analysis (BEA) and have
been compiled by Juillard (1986) (the data used in the studies by Ochoa, 1984, Bienenfeld, 1988, and
Shaikh, 1998, are from the same source although at 71 x 71 sector detail).
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number’, REN, defined as EN /(n—1), where EN denotes the so-called equivalent
number, which is determined by the equation log EN = E and represents the number

of eigenvalues with equal moduli that would result in the same amount of entropy. SF

and RE are known to be alternative, but different, measures of similarity (or

closeness) of the moduli and take on values from near zero to one: when all |4, | are
equal to each other, then AM = GM, =, =1/(n—1) and, therefore, SF = RE = REN = 1.

However, a low SF rather reflects the presence of a much lower than the average

min{z, }> whereas a low RE rather reflects the presence of a much higher than the

2
average 7,. >

» Finkelstein and Friedberg (1967) discuss E and EN, and apply them to studies of industrial
competition and concentration, whilst Jasso (1982) and Bailey (1985) discuss SF and RE, respectively,
and apply them to studies of income distribution. It may also be noted that there is a connection

between SF and entropy: using 7, , the former can be expressed as

SF=(n-D[ ="
k=2
or, taking the logarithm of both sides,
log SF =E,, —[-(n—=1)" logr,]
k=2

where log SF' is known as the Wiener entropy and the term in brackets can be conceived as a ‘cross-
entropy’ expression.
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Table 1. The distribution of the moduli of the non-dominant eigenvalues; China, Greece,
Japan, Korea and USA

CHN GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC
1997 1970 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Rank
I 1000 1.000 1000 1.000 1000 1.000 1.000 1000 1.000 1000  1.000  1.000
2 0376 0726 0643 0683 0675 0657 0624 0667 0678 0655 0664  0.641
30304 0539 0416 0436 0418 0397 0443 0433 0420 0382 0382 0330
40282 0470 0409 0377 0376 0382 0443 0353 0357 0382 0382 0307
5 0231 0453 0362 0377 0376 0382 0406 0320 0327 0281 0313 0279
6 0224 0319 0259 0308 0311 0326 0308 0268 0261 0246 0233 0249
7 0224 0319 087 0207 0218 0226 0242 0234 0207 0202 0214  0.249
8§ 0167 0243 0.87 0207 0218 0226 0242 0234 0207 0202 0214 0210
9 0167 0243 0083 0104 0110 0101  0.108 0110 0.109 0098 0098  0.103
10 0165 0218 0083 0082 0089 0094 0.105 0105 0097 0092 0088  0.098
11 0142 0201 0079 0082 0089 0094 0.105 0105 0097 0092 0088  0.098
120126 0201 0079 0080 0080 0078 0081 0083 0082 0085 0086  0.087
130122 0166 0071 0080 0080 0078 0081 0068 0082 0085 0.086  0.042
14 0114 0106 0071 0031 0039 0034 0053 0068 0059 0023 0072  0.035
15 0114 0106 0027 0031 0028 0034 0029 0026 0026 0023 0029 0035
16 0102 0103 0027 0024 0022 0023 0027 0026 0026 0015 0029 0017
17 0102 0100 0020 0024 0022 0023 0027 0017 0023 0015 0019 0017
18 0062 0092 0009 0007 0009 0008 0005 0006 0007 0005 0002 0013
19 0058 0088 0006 0006 0006 0005 0003 0002 0006 0004 0001  0.001
20 0058 0074
21 0052 0.060
22 0044 0.060
23 0041 0043
24 0041 0043
25 0034 0037
26 0034 0037
27 0033 0.030
28 0025  0.029
29 0025 0023
30 0021 0015
31 0021 0.008
32 0018  0.008
33 0006  0.003
34 0.006
35 0.005
36 0.005
37 0.002
38 0.001
Ly 009 0161 0168 0075 0176 0176 0185 0174  0.171 0161 0167  0.157
GM 0048 0083 0086 0086 0088 0087 0089 0081 0088 0074 0074 0.073
SE 0499 0517 0511 0490 0500 0495 0483 0469 0513 0459 0446 0462
©» 1% 4%  21% 2%  21%  21%  19%  21% = 22%  23% = 22%  23%
RE 0873 0856 0829 0824 0829 0831 0837 0835 0836 0822 0834  0.832
REN  62% 59% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%
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contd.

JPN JPN JPN JPN JPN KOR KOR USA USA USA USA USA USA
1970 1975 1980 1985 1990 1995 2000 1947 1958 1963 1967 1972 1977

Rank
1 1.000  1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20652 0711 0762 0.735 0737 0.638  0.683 0.620 0.571 0.638 0.639 0.648 0.527
3 0.434 0445 0474 0653 0.604 0421 0517 0462 0571 0582 0552 0512 0386
4 0388 0381 0474 0572 0604 0373 0422 0436 0451 0479 0421 0400 0378
5 0346 0381 0362 0538 0424 0314 0321 0390 0451 0461 0421 0400 0378
6 0303 0332 0321 039 0351 0271 0303 0334 0376 0461 0399 0306 0330
7 0303 0340 0318 0396 0351 0266 0303 0325 0358 0323 0277 0306 0330
8 0263 0261 0318 0336 0320 0266 0286 0282 0327 0264 0268 0286 0263
9 0244 0261 0292 0328 0320 0.185  0.198 0257 0261 0264 0265 0242 0226
10 0244 0258 0270 0219 0303 0.111  0.141 0205 0255 0257 0265 0236 0.226
11 0218 0200 0260 0219 0236 0111 0.128 0205 0236 0237 0255 0236 0.220
12 0177 0169 0.165 0.157 0.191 0.107  0.128 0.197 0230 0237 0243 0212 0.220
13 0152 0169 0.153 0.152 0.178 0079 0.127 0.197 0230 0216 0228 0212 0.198
14 0152 0067 0.153 0.137 0.166 0068  0.127 0.185 0212 0203 0228 0.196 0.180
15 0.116 0.067 0.144 0.132 0152 0062 0.093 0.161 0212 0203 0.182 0.182 0.147
16 0.107 0.149 0.120 0.132 0.146 0048 0.076 0.139 0.174 0.181 0.182 0.150 0.147
17 0.094 0109 0.120 0.132 0.143 0048 0.076 0.131 0.174 0.171 0.160 0.150 0.137
18 0.094 0.109 0.08 0.132 0.143 0047 0.073 0.131 0.163 0.171 0.150 0.142 0.137
19 0082 0.116 0.085 0.123 0.124 0033 0.036 0.102 0161 0.138 0.150 0.126 0.116
20 0.056 0.058 0.082 0.099 0.105 0.033 0036 0102 0.120 0.138 0.138 0.126 0.102
21 0.046 0.058 0.067 0.070 0.100 0.027 0.028 0.096 0.120 0.133 0.129 0.107 0.102
22 0.046 0.098 0.055 0.070 0.085 0.015 0024 0091 0.116 0.133 0.129 0.107 0.086
23 0.037 0.041 0.048 0.058 0.051 0.015 0022 0.083 0.101 0.090 0.088 0.096 0.086
24 0036 0.090 0.048 0.051 0.051 0.004 0018 0.080 0.101 0.090 0.088 0.078 0.082
25 0036 0.051 0040 0.051 0.039 0.001 0.005 0.080 0.097 0.089 0.085 0.078 0.082
26 0.034 0.051 0.037 0.050 0.039 0.071 0.060 0.089 0.085 0.066 0.059
27 0034 0.036 0037 0036 0.027 0.066 0.060 0.076 0.075 0.051 0.059
28 0.028 0.020 0.030 0.026 0.027 0.066 0.057 0.053 0.075 0.047 0.046
29 0011 0.020 0.019 0.020 0.026 0.051 0.057 0.041 0.046 0.036 0.035
30 0011 0.004 0.019 0.020 0.026 0.031 0.030 0.041 0.046 0.036 0.031
31 0.008 0.004 0.014 0014 0.024 0.029 0.030 0.036 0.037 0.031 0.031
32 0.008 0.003 0.009 0.012 0.024 0.029 0.026 0.036 0.037 0.031 0.030
33 0.001 0.005 0.000 0.008 0.003 0.025 0.024 0.027 0.033 0.026 0.030
34 0.008 0.024 0.027 0.033 0.026 0.024
35 0.008 0.019 0.024 0.020 0.019 0.019
36 0.006 0.014 0.018 0.015 0016 0.014
37 0.006 0.012 0.012 0.015 0.009 0.008
38 0.004 0.002 0.012 0.015 0.009 0.008
39 0.004 0.002 0.009 0.002 0.007 _0.007
AM 0149 0.158 0.168 0.190 0.191 0.148  0.174 0.150 0.171 0.175 0.171 0.156 0.144
GM 0074 0079 0074 0.103 0.108 0068  0.098 0.078 0.090 0.104 0.101 0.091 0.086
SF 0495 0497 0440 0544 0562 0459 0563 0523 0527 0593 0591 0583 0.597
4% 14% a9 12%  12%  18% 16% 11% 9%  10% 10% 11%  10%
RE 0863 0866 0866 0863 0875 0837 0.862 0880 0888 0891 0897 0.888 0.894
REN 61%  63%  63%  59%  63% 58% 63% 63%  66%  66%  68%  66%  66%
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From the numerical results of Table 1 it becomes apparent that the moduli fall
quite rapidly in the ‘beginning’ and then constellate in much lower values. In plotting
these data for each of the countries and years, and after experimentation with various
possible functional forms, we found that a single exponential functional form fits all
the data pretty well, as this can be judged by the high R-square (i.e., in the range of
90.5% (China)-99.4% (Greece, 1970)) as well as by the fact that all coefficients are
statistically significant with zero probability value. This form is

y=c+bexp(x?)
where -1.827 (Greece, 1989) <¢<-1.174 (China) and 0.721 (China) <5 <1.040
(Greece, 1989) (see Figure 6).26 It is expected, therefore, that the SF would be
relatively low and that the opposite would hold true regarding RE. Indeed, it is found
that the former is in the range of 0.440 (Japan, 1980)-0.597 (USA, 1977), whilst the
latter is in the range of 0.822 (Greece, 1995)-0.897 (USA, 1967) and the relevant

maxima relative frequencies, 7,, are 23% and 10%, respectively. Moreover, the REN
is in the range of 58% (Korea, 1995)-68% (USA, 1967).27 Thus, it could be concluded
that these measures in combination give a quite good description of the central

tendency and also the skewness of the distribution of the moduli.

2% In fact, we tried an optimization procedure to find the best possible form, and from the many
possibilities we opted for a simple but, at the same time, general enough to fit the moduli of the
eigenvalues of all countries and years.

" Tt should be noted that we have also experimented with the input-output tables of Canada (1997, 34 x
34; source: OECD STAN database), Japan (1995-1997, 41 x 41; source: OECD STAN database), UK
(1998, 40 x 40; source: OECD STAN database) and USA (1997, 40 x 40; source: BEA, compilation
through the OECD STAN database), and the results were quite similar, i.e., SF: 0.359 (USA)-0.500
(UK), m: 8% (UK)-18% (Canada), RE: 0.811 (Canada)-0.888 (UK), and REN: 52% (Canada)-67%
(UK). The same holds true for the results reported by Mariolis et al. (2010) regarding the 59 x 59 input-
output tables (source: Eurostat) of Denmark (2000, 2004), Finland (1995, 2004), France (1995, 2005),
Germany (2000, 2002) and Sweden (1995, 2005): SF: 0.450 (France, 1995)-0.603 (Denmark, 2004), 7,:
6% (Germany, 2000 and 2002)-15% (Finland, 2004), RE: 0.821(Finland, 2004)-0.900 (Germany, 2000
and 2002), and REN: 50% (Finland, 1995, and Sweden, 1995)-66% (Germany, 2000 and 2002).
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Figure 6. Exponential fit of the distribution of the moduli of the eigenvalues, China, Greece,
Japan, Korea and USA

For reasons of clarity of presentation and economy of space, the numerical
results displayed in Table 2 are only associated with the input-output tables of Japan
and seek to detect the dependence of the distribution of the moduli on the level of
aggregation, that is to say, n 2 More specifically, we experimented with input-output
tables for every 5 years starting from 1980 until 2005 for the 100 x 100 industry
structure and we also repeated the experiment aggregating each of these input-output

tables into 21 sectors.” In our aggregation, we put together similar industries and we

% See footnote 21.
** The original input-output data comprised 108 sectors comes from the Statistical Service of Japan.
The problem with this data set is that 8 of the sectors have zero rows (i.e., they do not deliver any
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kept mainly the manufacturing as the most disaggregated from all the sectors. Finally,
for reasons of economy in space, we present only the first 30 moduli and the last six

rows display the statistical measures of the distribution. Clearly, the results suggest

that RE decreases, whilst 7, and REN increases, with decreasing n. On the other

hand, they do not suggest that the modulus of the subdominant eigenvalues (as well as
SF) tends to increase with decreasing n: it could be considered as rigid and the
‘small’ relative changes that we observe go to either direction (varying from -8.3% to
3.6%). Moreover, in Figure 7a below we display the histogram of the distribution of
the moduli of the non-dominant eigenvalues associated with the 21 x 21 tables and in
Figure 7b we display the histogram associated with the 100 x 100 tables, i.e., 120 and
594 observations, respectively. On the top of each bar we report the number of
observations in each of our 5 bins, the mean value of each bin and the bin edges.
Clearly, the majority of the observations (i.e., 62 (52%) or 411 (69.2%), respectively)
constellate in the lowest bin, whereas 9 (7.5%) or 10 (1.7%), respectively,

observations are on an average less than one-half of the dominant eigenvalue.

output to the other sectors and to themselves), which give rise to an input-output structure with ‘non-
basic’ (in the sense of Sraffa) sectors, and, therefore, zero eigenvalues corresponding to each of these 8
sectors. To side step this problem we aggregated each of these 8 sectors to corresponding similar
sectors so as the resulting input-output structure consists of dimensions 100 x 100 ‘basic’ sectors.
Finally, it should be noted that the results displayed in Table 2 are not comparable with these displayed
in Table 1, since the 33 sectors input-output tables of Japan are constructed using different sources and
also methodology.
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Table 2. The distribution of the moduli of the non-dominant eigenvalues and the level of
aggregation; Japan, 1980-2005

1980 1980 1985 1985 1990 1990 1995 1995 2000 2000 2005 2005
n 21 100 21 100 21 100 21 100 21 100 21 100
Rank
: 1000 1000 1.000 1.000 1.000 1000 1.000 1000 1000 1.000 1.000  1.000
5 0529 0522 sue 0507 0520 050 gs0s 0541 gues 0499 (o 0519
5 0342 0379 301 0300 0415 0448 gios 0497 (uze 0499 (s 0512
4 0342 0379 a6 03ss 0413 0410 o353 0393 (36 0410 s 0421
s 0330 0351 (a5 0336 0413 0410 o353 0393 a5 0410 (a5, 0421
6 0301 0351 (o095 0342 0316 0352 0350 0363 (355 0370 350 0.394
20200 029 76 032 0220 0352  oogg 0363 (oeq 0352 (o3 0355
g 0159 029  iuc 0300 0020 0345 gog0 0346 (9 0352 (59 0331
o 0140 0270 ius 0300 0145 0337  ogsa 0339 o9 0333 4 0308
0 0140 0270 a0 0271 ou33 0337 ouas 0339 (33 0323 (g4 0282
0097 0251 gis oasa 0133 0334 opan 0257 33 0238 (ggp 0258
1 0097 0251 goos 0213 0079 0232 o070 0257 ez 0238 og 0258
;3 0075 0192 goee 0205 0079 0232 o070 0247 goes 0230 oe 0232
14 0075 0191 o066 0201 0079 9230 gpe7 0247 gpe0 0225 psg 0191
15 0054 0191 go51 o188 0071 0230 067 0234 o060 0225 44 0182
16 0022 0166 go44 0184 0071 9226 gpe1 0219 o4y 0202 (ggq 0182
17 0012 0166 519 0184 0016 0218 go13 0196 g 0190 3 0177
18 0012 0144 h011 0156 0015 0205 o1z 0196 g8 0190 g8 0177
jg 0010 0144 6511 0147 0010 %197 005 0172 o018 0188 g5 0175
20 0005 0136 o007 0133 0007 0190 o005 0172 g0 0182 g1z 0175
21 00020128 005 0133 0005 0174 o004 0164 o3 0162 93 0166
» 0.124 0.125 0.163 0.164 0.152 0.149
’ 0.124 0.125 0.163 0.162 0.152 0.146
" 0.123 0.123 0.156 0.162 0.150 0.146
55 0.123 0.123 0.147 0.162 0.150 0.138
26 0.122 0.121 0.147 0.156 0.149 0.138
27 0.120 0.117 0.142 0.156 0.149 0.119
28 0.110 0.117 0.142 0.143 0.139 0.119
29 0.107 0.106 0.137 0.140 0.137 0.115
30 0.107 0.100 0.132 0.140 0.128 0.115
AM 0147 0090 0.160 0091 0169 0106 0173 0110 0169 0105 0.15  0.099
GM 0067 0035 0078 0040 0085 0051 0077 0056 0083 0052 0079  0.048
SF 0452 0380 0487 0440 0501 0482 0448 0511 0491 0498 0499 0487
2 18% 6%  171% 6%  15% 5%  14% 5%  14% 5%  16% 5%
RE 0840 0879 0841 0878 0852 0887 0844 0894 0850 0888 0837  0.878
REN 6% 51% 6% 51%  64%  59%  62%  61%  63%  60%  61%  57%

26



Bin Count: 62
Bin Center: 0.056
Bin Edges: [-inf, 0.11]

60

50

40

21
0.165
[0.11, 0.22] 17

30

0.383
11 [0.328, 0.437]
20 0.274 9
[0.22, 0.328] 0.492
[0.437, inf]

10

0
0 0.1 0.2 0.3 0.4 0.5

Figure 7a. Histogram of the distribution of the moduli of the non-dominant eigenvalues;
Japan, 1980-2005, 21 x 21 input-output tables
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Figure 7b. Histogram of the distribution of the moduli of the non-dominant eigenvalues;
Japan, 1980-2005, 100 x 100 input-output tables
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Finally, Table 3 reports the moduli of the eigenvalues for the case of fixed
capital stock (and a uniform profit rate; see equation (2a)) as well as the relevant
statistical measures of distribution. The matrix of capital stock is rarely available in
the official statistics and one should estimate it from the available data on the basis of
some simplifying assumptions. More specifically, starting with the investment matrix
of the same size and industry structure as of the input-output table we form weights
which post-multiplied, element-by-element, by the vector of capital stock per unit of
output gives the matrix of capital stock coefficients. The assumption here is that the
matrix of capital stock is proportional to investment matrix. It is important to stress at
this point that in the capital stock matrix, the consumer goods producing industries as
they do not normally sell investment goods their respective rows will contain many
zeros or near zero (higher than the fifth decimal) elements, and, therefore, we end up
with many zero or near zero eigenvalues.

We could have side stepped the problem of zero eigenvalues by accounting as
part of the matrix of capital stock the inventories as well as the matrix of workers
necessary consumption (‘wage fund’). However, the data on turnover times are hard
to come by with the exception of the US economy, where they can be approximated
through the inventories to sales ratio. Thus in the interest of brevity and clarity of
presentation we opted not to use inventories and in the same spirit, we did not use
matrices of depreciation coefficients. Thus, in what follows we present estimates of
the moduli of eigenvalues only for the economies that we had access to data on their

capital stock and also we have an idea from past studies about the shape of the w— p

curves. Table 3 below displays the data for Greece (1970), Korea (1995 and 2000)
and the USA (1947, 1958, 1963, 1967, 1972, and 1977).
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Table 3. The distribution of the moduli of the non-dominant eigenvalues for the case of fixed
capital; Greece, Korea and USA

GRC KR KR USA USA USA USA USA USA
1970 1995 2000 1947 1958 1963 1967 1972 1977
Rank

1 1000 1.000 1000  1.000 1.000 1.000 1.000 1.000 1.000
2 0037 0084 0063  0.408 0309 0309 0473 0.549 0.461
3 0035 0059 0063  0.117 0.090 0.105 0.116 0.069 0.069
4 0035 0057 0057  0.069 0.057 0.057 0.065 0.069 0.058
5 0015 0057 0057  0.069 0.045 0.057 0.065 0.062 0.058
6 0012 0026 0025  0.050 0.045 0.053 0.051 0.062 0.054
7 0.004 0007 0009  0.048 0.043 0.049 0.051 0.062 0.054
8 0.004 0004 0009  0.048 0.043 0.049 0.047 0.054 0.041
9 0.002 0004 0008  0.044 0.037 0.043 0.034 0.049 0.036
10 0.002 0000 0003  0.044 0.035 0.043 0.034 0.049 0.036
1 0.000 0000 0003  0.040 0.035 0.042 0.034 0.034 0.036
12 0.000 0000  0.000  0.040 0.033 0.038 0.032 0.034 0.036
13 0.000 0000 0000 049 0.031 0.038 0.032 0.034 0.031
14 0.000 00000000 (9 0.031 0.030 0.029 0.034 0.031
15 0.000 0000 0000 (9 0.029 0.027 0.029 0.030 0.029
16 0.000 0000 0000 (7 0.018 0.022 0.028 0.030 0.029
17 0.000 0000 0000 ¢4 0.017 0.021 0.028 0.029 0.023
18 0.000 0000 0000 ¢ 0.017 0.021 0.027 0.027 0.022
19 0.000 0000 0000 (g7 0.017 0.021 0.021 0.021 0.022
20 0.000 0000 0000 (g7 0.017 0.021 0.021 0.020 0.017
21 0.000 0000 0000 06 0.014 0.018 0.017 0.020 0.016
2 0.000 0000 0000 (g6 0.013 0.016 0.016 0.019 0.015
23 0.000 0000 0000 (g6 0.013 0.016 0.016 0.015 0.014
24 0.000 00000000 (g4pp 0.012 0.010 0.015 0.012 0.014
25 0.000 0000 0000 ¢0p 0.012 0.008 0.015 0.011 0.012
26 0.000 00000000 (1o 0.007 0.007 0.010 0.011 0.012
27 0.000 00000000 (g9 0.006 0.007 0.009 0.010 0.009
28 0.000 0000 0000 (o8 0.006 0.007 0.009 0.010 0.008
29 0.000 0000 0000 007 0.005 0.006 0.009 0.010 0.008
30 0.000 0000 0000 (07 0.005 0.006 0.007 0.006 0.005
31 0.000 00000000 (o6 0.005 0.006 0.007 0.006 0.002
32 0.000 0000 0000 (g3 0.002 0.004 0.007 0.005 0.006
33 0.000 0000 0.000 03 0.002 0.004 0.006 0.003 0.006
34 0.002 0.002 0.003 0.002 0.003 0.003
35 0.001 0.002 0.002 0.001 0.002 0.003
36 0.001 0.002 0.002 0.001 0.002 0.000
37 0.001 0.000 0.001 0.001 0.001 0.001
38 0.000 0.000 0.000 0.001 0.000 0.001
39 0.000 0.000 0.000 0.000 0.000 0.000
AG 0009 0027 0027  0.035 0.028 0.031 0.036 0.039 0.034
GM  22E06 0006 0010 0012 0.009 0.012 0.014 0.015 0.013
SF 24E04 0223 0387 0352 0338 0.406 0394 0377 0.394

© 25% 2%  21% 31% 29% 26% 35% 38% 36%
RE  0.668 0734 0791 0767 0.782 0.800 0.753 0.736 0.748

REN 399 53% 61% 43% 45% 48% 41% 38% 40%
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An inspection of the results reveals that the presence of fixed capital stock leads

to considerably lower moduli and to higher 7, than the corresponding flow data.

Thus, we observe reductions in SF, RE and REN.>°

From all these tables, the associated numerical results and the hitherto analysis
we arrive at the following conclusions:
(i). The moduli of the non-dominant eigenvalues fall quite rapidly in the ‘beginning’
and figuratively speaking their falling pattern can be described by an exponential
curve that approaches asymptotically much lower values, where it is observed a
concentration of moduli. Further analysis reveals that the distribution of the moduli
tends to be remarkably uniform across countries and over time.
(i1). The complex (as well as the negative) eigenvalues tend to appear in the lower
ranks, i.e., their modulus is relatively small. However, even in the cases that they
appear in the higher ranks, i.e., second (USA, 1958, see Table 1, and Japan, 1995, 21
x 21, see Table 2) or third rank (Greece, 1992, 1995 and 1996, USA 1958, Japan 1980
and 1990, see Table 1; see also the cases displayed in Table 2), the real part has been
found to be much larger than the imaginary part (i.e., cos@ =1; see Section 2, point
(1)), which is equivalent to saying that the imaginary part may even be ignored (e.g.,
in the Greek economy the real part is from 19 to 50 times larger than the imaginary
part). Moreover, in the fewer cases that the imaginary part of an eigenvalue exceeds
the real one, not only their ratio is relatively small but also the modulus of the
eigenvalue can be considered as a negligible quantity (e.g., the imaginary part of the
fifth (sixteenth) eigenvalue of the Greek economy, 1997, is 1.1 (1.65) times higher
than the real part, nevertheless the modulus equals 0.098 (0.017)). Finally, by
inspecting all of our eigenvalues we observe that, in general, the imaginary part fends
to fall. Consequently, first, the already detected distribution of the moduli can be
viewed as a fair representation of the distribution of the eigenvalues and, second, the
majority of the prices of the non-Sraffian Standard commodities in terms of the

Sraffian Standard commodity are almost linear functions of p and close to the w—p

% It may be noted that we also experimented with an aggregation in a 3 x 3 input-output table for the
USA (1977): in the flow version, the modulus of the subdominant (complex) eigenvalue equals 0.146;
in the stock version, the subdominant eigenvalue equals 0.031, whilst the third eigenvalue equals -
0.0001. The aggregation in a 3 x 3 input-output table for Greece (1970) did not give any different
results: in the flow version, the modulus of the subdominant (complex) eigenvalue equals 0.087; in the
stock version, the subdominant eigenvalue equals - 0.027, whilst the third eigenvalue equals zero (see
Tsoulfidis, 2010, pp. 150-155). See also the evidence provided by Steenge and Thissen (2005).
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curve, 1—p. For example, we may consider the representative case of the Greek
economy, 1994: Table 4 reports the non-dominant eigenvalues and the mean of the

relative error, MRE, between f,(p) or 27! F,(p)and 1-p 2 and Figure 8 represents

f,(p) to f,(p) (dotted lines), 2™ F,(p) (solid lines) and 1— p (dashed line)).

Table 4. Non-dominant eigenvalues and mean of the relative error between the prices of the
non-Sraffian Standard commodities and the wage-profit curve in terms of the Sraffian
Standard commodity; Greece 1994

Ay, MRE
0.678 67.1%
0.420 29.1%
0.357 23.7%
0.327 21.1%
0.261 15.9%

0.199 £ 0.057 11.3%
0.109 5.9%
-0.071 +i 0.066 3.5%
0.071 +i 0.041 3.7%
0.059 3.1%
-0.013 +i 0.023 0.7%

0.023 1.2%
-0.007 0.3%
0.006 0.3%

AM=134%

1
3 MRE = j \[1— f(p)1- p)*l]\dp,where f(p) denotes f,(p) or 27 F,(p).
0
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Figure 8. The prices of the first three non-Sraffian Standard commodities, the prices of the

sum of complex conjugate non-Sraffian Standard commodities and the money wage rate, in

terms of the Sraffian Standard commodity, as functions of the relative rate of profits; Greece,
1994

(iii). The actual economies do not fulfill the polar spectral conditions that guarantee a
linear or even monotonic price-profit rate relationship (see Section 2, point (ii)).
Nevertheless, those conditions constitute useful ‘ideal types’, since the actual
eigenvalue distribution is indeed polarized and, therefore, both Bienenfeld’s quadratic
formula (see equation (28)) and a spectral formula, which involves few non-dominant
eigenvalues (see relation (30)), track down accurately enough the trajectories of the
actual prices of production (see Section 2, point (iii)). For example, consider the
graphs of Figure 9, which are associated with the Greek economy, 1994, and display
trajectories of the actual prices (depicted by solid lines) and the relevant trajectories
corresponding to (i) a fourth-order polynomial approximation (depicted by dashed

lines that cross the p—axis at p=1) in terms of ‘dated quantities of embodied
labour’ (see equation (3), Steedman, 1999b, and Tsoulfidis and Mariolis, 2007, p.
429), i.e.,

p' =(-p)p O+ pJ+(pJ)* +(pI)’ +(ph)']

or
p' =(1-p)p OX[I+pA, +...+(pA,) IX

where X and the diagonal matrix A; denote matrices formed from the right

eigenvectors and the eigenvalues of J, respectively; (ii) Bienenfeld’s quadratic
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approximation (dashed lines); and (iii) a third-order spectral approximation (dotted
lines), i.e.,
p' *~BLA.+SN-LT.
where B.L.A. denotes Bienenfeld’s linear approximation and
S.N.-L.T =(1- p){[p0.678(1— p0.678) 1y}, +[00.420(1— p0.420) "1y },}

the sum of the two non-linear terms (see Table 4). In fact, for reasons of economy of
space, we focus on the four sectors displaying an extremum point (i.e., sectors 5, 9, 14
and 18; setting aside sector 14, they also give a price-labour value reversal), on two
sectors (10 and 12) that give strictly rising curves and on two sectors (1 and 7) that
give strictly falling curves. Moreover, in each graph we report (i) the actual and the
approximate values of o at which occur extrema points and reversals; and (ii) the
mean of the relative error (MRE) between the approximate and the actual curves (the
subscripts ‘a, p, B and s’ indicate ‘actual, polynomial, Bienenfeld and spectral’,

respectively).*?

2 Tt should be noted that in all sectors that present an extremum point, B.L.A. is found to be
decreasing, whilst in the remaining sectors its monotonicity coincides with that of the actual curve. The
S.N.-L.T. presents a minimum point in the sectors 12 and 14, whilst in the remaining sectors it presents
a maximum.
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approximation and third-order spectral approximation; Greece, 1994
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Clearly, even the polynomial approximation works pretty well, although for ‘low’ or,
more precisely, ‘realistic’ values of the relative rate of profits: in the considered case
of the Greek economy, the ‘actual’ value of the relative rate of profits (i.e., that
associated with the ‘actual’ real wage rate, estimated on the basis of the available
input-output data) is almost 0.272, provided that wages are paid ex ante (see
Tsoulfidis and Mariolis, 2007, p. 428, Table 1), and, to our knowledge, there is no
relevant empirical study where it is greater than 0.40 (and less than 0.17).>® It could
also be added that, regarding sector 9, for which the MRE; is greater, the accuracy of
the spectral approximation is improved considerably by including the sixth
eigenvalue, in the sense that the relevant curve presents a maximum point (as well as
a price-labour value reversal; see Figure 10, where the dotted curve below (above) the
actual one represents the sixth-order (thirteenth-order) spectral approximation, and

Figure 11, where the solid (dotted) curve represents the sum of all the real (complex)
non-linear terms of the spectral approximation). Finally, if w® (=1-p), ij denote
the money wage rate and the price of commodity j, respectively, in terms of the
Sraffian Standard commodity, and w’ the money wage rate corresponding to the
normalization equation p; =v; (= p;(0)), then w=p i OW( pJ.S)‘1 from which it
follows that the w’ curves of the sectors 5, 9 and 18 cross the w® curve at the points

where occur price-labour value reversals, whilst the w’ curves of the remaining

sectors are below or above the w® curve, for 0< p <1. Moreover, since the
approximation of p].S through Bienenfeld’s quadratic formula is pretty accurate, it is

expected that the latter w’ curves will fend to be either strictly convex or strictly
concave to the origin, whilst nothing guarantees that the means of the relative errors
between the w’ and the w® curves will be low. Indeed, Figure 12, which displays all

the differences w’ —w® as functions of P, and Table 5, which reports the values of

p at which the w’ curves change their shape from convex (cx) to concave (ce) or
vice versa and the MRE, show that this statement holds true. More specifically, setting
aside the sectors that display price-labour value reversals, turning points are detected
in the sectors 6, 11 and 14, the sectroral MRE are in the range of 74.6% (sector 19)-

3.1% (sector 14) and their arithmetic mean is almost 29.8%.

3 See, for example, the empirical studies mentioned in footnotes 2 and 5.
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Figure 12: The difference between the money wage rate in terms of the commodity j and the
money wage rate in terms of the Sraffian Standard commodity as a function of the relative
rate of profit; Greece, 1994

Table 5. Curvatures of the wage- profit curves in terms of the commodity j; Greece, 1994

w Curvature MRE
1 ce 46.1%
2 ce 68.8%
3 ce 40.3%
4 ce 48.4%
5 cx-ce, p=0.697 5.1%
6 cx-ce, p=0.351 12.8%
7 ce 19.4%
8 ce 10.0%
9 cx-ce, p=0.594 0.3%
10 cX 11.4%
11| cx-ce, p=0.127 18.2%
12 cx 21.4%
13 cx 14.3%
14| ce-cx, p=0.959 3.1%
15 ce 45.0%
16 cX 7.2%
17 ce 36.4%
18 cx-ce, p=0.630 4.5%
19 ce 74.6%
AM=25.6%
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(iv). Although the level of aggregation affects both the central tendency and skewness
of the eigenvalue distribution, it is expected that it does not drastically affect the
monotonicity of the price-profit rate relationship, since the higher non-dominant
eigenvalues exhibit small relative changes that go to either direction.

(v). Moving from the flow to (the more realistic) stock input-output data the above
conclusions are strengthened; inasmuch as, we found that the subdominant eigenvalue
falls even more abruptly, whereas the third or fourth eigenvalues become
indistinguishable from the rest lending further support to the idea of approximating

the trajectories of the actual prices of production linearly.**

4. Concluding Remarks
On the basis of a spectral decomposition of linear single-product systems, it has been
shown that the monotonicity of the production price-profit rate relationship depends to
a great extent on the distribution of the eigenvalues of the vertically integrated
technical coefficients matrices. The examination of input-output data of many diverse
economies suggested that the majority of the non-dominant eigenvalues concentrate at
very low values and this means that the actual price-wage-profit systems can be
adequately described by only a few non-Sraffian Standard systems. It follows
therefore that the production price-profit rate relationship tends to be monotonic and
its approximation through low-order formulae, like Bienenfeld’s quadratic formula
and a third or fourth-order spectral formula, works extremely well. In the more
realistic case with capital stocks, we found that the non-dominant eigenvalues are
much lower than that of the flow case and thus the linear or a second-order spectral
formula approximate accurately enough the movement of production prices.

A salient feature of our analysis is the tendency towards uniformity in the
eigenvalue distribution across countries and over time. Such a typical finding could be
viewed as a manifestation of technological characteristics embedded in the structure

of actual economies and these may become the focus of future research efforts.

3* Thus, it comes as no surprise that both Ochoa (1984) and Shaikh (1998) find that their linear
approximations are quite accurate and they further claim that there is no necessity for higher order
terms. Bienenfeld (1988), on the other hand, using the same flow input-output data of the US economy,
but not stock data, confirms that his quadratic approximation constitutes a marginal improvement over
the linear one.
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Appendix: Numerical Examples for Cases of Polar Distributions of Eigenvalues

Consider a 4x4 system where all the diagonal (off-diagonal) elements of A equals
0.3 (equals @) and 1" =[1,2,3,6] (by invoking perturbation theorems, see, e.g., Horn

and Johnson, 1990, pp. 371-373, the reader will be able to ascertain that, within
certain limits, the following results are robust to differential parameterization of A,

say A(g)=A+¢E, where E denotes a fixed perturbation matrix). It is obtained that
the moduli of the eigenvalues of A are strictly monotonic functions of a and A4,, <1

for a <7/30=0.233 (see Figure A.1.1).
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Figure A.1.1 The moduli of the eigenvalues of the system as functions of the input-output
coefficient a

For a=0.001 it follows that 1=0.981 and v' =[1.451,2.878,4.304,8.584].
Therefore, the w— p curves tend to coincide with 1—p, and the production prices
tend to be insensitive to p . The Figures A.1.2 a-b represent the w— p and the p, —p
curves, respectively, in terms of z =90.2897'[1,1,10,5]", i.e., v'Zz=1 and d, #1 (the
dashed line, in Figure A.1.2 a, represents 1— ). In fact, w'(p) <0 and, for example,

p, =1.3913(p—1.0592)(p—1.0155)""

or, using the Taylor expansion about p=0,
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p, = v, +0.059p+0.058p" +0.057 p°

whilst the deviation of the vector of prices from the vector of labour values, measured
by the ‘ d —distance’ (which is a numeraire-free measure; see Steedman and Tomkins,

1998), is less than, say, 10% for p <0.873 (see Figure A.1.3)
On the other hand, for =023 it follows that A=0.008 and

v' =[297.85,298.93,300.0,303.22]. Therefore, for d, =1, ie., z=1200"[1,1,1,1]",
the p;, —p curves tend to be linear (see Figure A.1.4), and using the Taylor expansion
about p=0, we get

PRV, +2.149p+0.002p° +(1.242x107°) p°

P, 2v, +1.074p+0.001p> +(6.211x107) p°

Py~ v, —(9.888x107'")p

P, =v, —3.223p-0.002p> —(1.863x10°°) p’

which show that the first-order approximations work pretty well.
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Figure A.1.2. w—p and p,— p curves; a=0.001, 1=0981, d, #1
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Figure A.1.3. The ‘d —distance’ as a function of the relative rate of profits; a=0.001,
A=0.981
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