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Detecting Dependence Between Spatial Processes

Abstract

Testing the assumption of independence between variables is a crucial aspect of

spatial data analysis. However, the literature is limited and somewhat confusing. To

our knowledge, we can mention only the bivariate generalization of Moran’s statistic.

This test suffers from several restrictions: it is applicable only to pairs of variables, a

weighting matrix and the assumption of linearity are needed; the null hypothesis of

the test is not totally clear. Given these limitations, we develop a new non-parametric

test, Υ (m), based on symbolic dynamics with better properties. We show that the

Υ (m) test can be extended to a multivariate framework, it is robust to departures

from linearity, it does not need a weighting matrix and can be adapted to different

specifications of the null. The test is consistent, computationally simple and with

good size and power, as shown by a Monte Carlo experiment. An application to the

case of the productivity of the manufacturing sector in the Ebro Valley illustrates our

approach.

Keywords: Non-parametric methods; Spatial bootstrapping; Spatial independence; Sym-

bolic dynamics.

JEL Classification: C21; C50; R15
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1 Introduction

Dependence is a distinguishing feature of spatial data. The notion that near locations will

exhibit similar values in a given variable is natural. The literature uses the term spatial

correlation to refer to this feature, which has attracted considerable attention (Lesage and

Pace, 2009, and references therein). We may think in terms of one or several variables

but the situation is the same: data may exhibit positive or negative spatial autocorrelation

depending on the interaction of the agents.

The detection of these dependencies is crucial in order to (i) model complex spatial

relationships in which the spatial arrangement plays a fundamental role, and (ii) predict the

spatial layout of a variable from known information about others variables, possibly, in other

locations. This has been widely recognized in different fields such as epidemiology (Lawson,

2006), biology (Schmitz, 2010), economics (Anselin, 1988) and demography (Goodchild and

Janelle, 2003).

The bivariate generalization of Moran’s I (Wartenberg, 1985) is the most popular tech-

nique for testing the assumption of independence between spatial variables. The expression

of the statistic is as follows:

Ixy =

L∑
i=1

L∑
j=1

i6=j

yiwijxj

S0

√
V̂ ar(y)V̂ ar(x)

, (1)

where wij is the (i, j) − th element of the weighting matrix W and S0 is the sum of its

elements; V̂ ar(y) and V̂ ar(x) refer to the (estimated) variance of the two series, y and x.

Wartenberg’s objective is to account for the spatial dependence of the data and their multi-

variate covariance, ’developing a strategy for the explanatory analysis of the spatial pattern

in the multivariate domain’ (p. 264). Assuming that k different variables are observed in L

observation points in space, he combines the relevant information of this dataset in a (k ×k)

M matrix of Mantel coefficients. The diagonal values of this matrix are the Moran’s I of
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each variable and the off-diagonal elements are the bivariate cross-correlation coefficients of

(1).

The work of Wartenberg focuses on the statistical modelling of the covariance structure

of the data, using generalized spatial principal component analysis. Consequently, he does

not address the problem of assessing significance of the bivariate coefficients (their expected

value and variance were obtained by Mantel, 1967, using a permutation approach). Anselin

et al. (2002) take up the question adopting the so-called randomization approach which

means the assignation of values to locations using random permutations (Cliff and Ord,

1981, Hall, 1985, or Upton and Fingleton, 1985). Then the observed value of the statistic is

evaluated against the empirical randomized distribution. This is the procedure implemented

in, for example, OpenGeoda (Geoda, 2012) in the Multivariate Moran’s I Menu. The null

hypothesis is that the two series are i.i.d. and independent.

The approach of Czaplewski and Reich (1993) to the use of the bivariate Moran’s I is

different. Their null hypothesis is that there is no spatial autocorrelation in the bivariate

process {ys; xs}s∈S where S is a set of locations in space; in their words: ’assume the bivariate

observation (ys; xs) for location s is a random, spatially independent drawing form one (or

separate identical) population(s), and the joint distribution function(s) for Y and X are

unknown’ (p.2). The null of no spatial correlation is conditional on the observed linear

dependence of the pairs (ys; xs)s∈S . The expected value of the bivariate Moran’s Ixy of (1),

considering the L! random permutations of the pairs (ys; xs)s∈S is:

E [Ixy] = −
ρyx

L − 1
, (2)

ρyx being a measure of linear correlation between y and x. The expression of the variance is

rather awkward, as shown in equation (60) of Czaplewski and Reich (1993). Moreover, they

show that, for moderate to large sample sizes (L should be greater than 40), the bivariate

Moran’s Iyx tends to normality under the null (Reich et al., 1994, for a nice application).
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Moreover, we should not forget the risk of spurious correlation when using spatial data.

Fingleton (2001) showed that it is very likely to find correlation between two unrelated se-

ries, in the case they have a spatial unit root or are near to nonstationarity; this result

is, obviously, spurious. Mur and Trivez (2003) extend this problem to series that are spa-

tially autocorrelated, not necessarily near nonstationarity, but with a strong deterministic

component. If this is the case, the bivariate Moran’s I, both in the Geoda and in the

Czaplewski-Reich version, will reject the null hypothesis due to the strong autocorrelation

existing in the series.

Our impression is that the bivariate Moran’s I is a good statistic to explore spatial

relationships but it is not enough. We would need some new techniques capable of working

with three different null hypotheses: (i) the series are i.i.d. and independent (ii) the bivariate

process is spatially non-autocorrelated and (iii) the series are independent. This is the

purpose of the new nonparametric statistic that we call Υ (m). TheΥ (m) test is free from

distributional assumptions, it does need the specification of a W weighting matrix, it is

robust to strong departures from linearity, and it is flexible to the specification of the null

hypothesis. We show that this test can be generalized to the case of more than two variables,

is consistent and with good size and power in the small sample case.

In Section 2 we present some definitions and basic concepts. Section 3 obtains the

independence test under different versions of the null hypothesis. Section 4 presents the

results of a Monte Carlo experiment in which we also include the bivariate Moran’s I. In

Section 5, we discuss an application to the case of the productivity in the manufacturing

sector in the Ebro valley. Conclusions appear in Section 6.

2 Tools for Symbolic Analysis

Symbolic dynamics is based on the transformation of a series into a sequence of symbols

that captures useful information that cannot be directly observed. The idea is to consider a
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space where all the possible states of a system can be represented. This space is partitioned

into a finite number of regions and each region is represented by a symbol. In other words,

symbolic dynamics is a simplified description of a dynamical system. For further details, see

Hao and Zheng (1998).

2.1 Symbolization Process

This section presents a symbolization procedure for spatial series. The symbolization can be

improved if additional information for the processes under study is available.

Let {xs}s∈S and {ys}s∈S be two spatial processes of real data, where S is a set of locations

in space. Let us define a non-empty finite set of symbols, denoted by Γn = {σ1, σ2, . . . , σn}.

Symbolizing a process means defining a map

fx : {xs}s∈S → Γn, (3)

such that each element of the series, xs, is associated with a unique symbol fx (xs) = σis

with is ∈ {1, 2, . . . , n}. We say that location s ∈ S is of the σi − type, relative to the series

{xs}s∈S, if and only if fx (xs) = σis
. We call fx the symbolization map; the same can be

done for y.

Now we introduce a bivariate process {Zs}s∈S:

Zs = {xs, ys} , (4)

where xs and ys are two univariate spatial processes. We define the set of symbols Ω2
n as the

Cartesian product of the two individual sets Γn, that is, Ω2
n = Γn × Γn. The new symbols

are ηij =
(
σx

i , σy
j

)
. The symbolization function of the bivariate process can be expressed as:

g : {Zs}s∈S → Ω2
n = Γn × Γn, (5)
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where

g (Zs = (xs, ys)) = (fx (xs) , fy (ys)) = ηij =
(
σx

i , σy
j

)
. (6)

We say that s is ηij − type for Z = (x, y) or simply that s is ηij − type, if and only if s is

σx
i − type for x and σy

j − type for y.

The analysis can be extended to a multivariate framework by considering the following

k − dimensional process, {Zs}s∈S = {x1s, x2s, . . . , xks}. Let

Ωk
n = Γn × Γn · · · × Γn

be the Cartesian product of k copies of Γn and ηi1,i2,...ik
= (σi1 , σi2 , . . . , σik

) ∈ Ωk
n. We say

that s is ηi1,i2,...ik
− type if and only if s is σij

− type for xjs for all j = 1, 2, . . . , k.

Different symbolization schemes can be used depending on the characteristics of the

series. For the case of spatial data, the following procedure is simple and offers good results

(other alternatives can be found in Matilla and Ruiz, 2008, 2009, López et al., 2010, and

Ruiz et al., 2010). Let Mx
e be the median of the spatial series {xs}s∈S. Define the indicator

function

τs =





1 if xs ≥ Mx
e .

0 otherwise.
(7)

For each s ∈ S, let Ns be the set formed by the (m − 1) neighbours of s, Ns =

{s1, . . . , sm−1}, where m ≥ 2 is the embedding dimension of the symbolization process.

We use the term m − surrounding to denote the group formed by location s and its corre-

sponding set of indices Ns. Then for each location we build the (m × 1) vector:

xm (s) =
(
xs, xs1 , . . . , xsm−1

)
.

Next, we define the indicator function for each si with i = 1, 2, . . . , m − 1:
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ιssi
=





0 if τs 6= τsi
.

1 otherwise.
(8)

Finally, we can symbolize the spatial process {xs}s∈S as fx : {xs}s∈S → Γm, where

function fx is:

fx (xs) =
m−1∑

i=1

ιssi
, (9)

with Γm = {0, 1, . . . , m − 1}. The cardinality of the set Γm is equal to m.

In sum, this symbolization process consists of comparing, for each location s, the value

τs with τsi
for all si ∈ Ns. We repeat the discussion for y. Once the two univariate processes

have been symbolized, we obtain the symbol corresponding to the bivariate process in each

location.

Next, we calculate the absolute and relative frequency of the symbols. The absolute

frequency of symbol σx
i is simply:

nσx
i

= # {s ∈ S|s is σx
i − type for x} , (10)

whose relative frequencies can be estimated:

p (σx
i ) ≡ pσx

i
=

# {s ∈ S|s is σx
i − type for x}

|S|
=

nσx
i

|S|
. (11)

|S| denotes the cardinality of set S. The same applies for series {ys}s∈S. The relative

frequency for ηij ∈ Ω2
n is:

p (ηij) ≡ pηij
=

# {s ∈ S|s is ηij − type}

|S|
=

nηij

|S|
, (12)

We introduce the concept of symbolic entropy for a two − dimensional spatial series
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{Zs}s∈S through the Shannon statistic:

hZ (m) = −
∑

η∈Ω2
m

p (η) ln (p (η)) . (13)

As is well-known, hZ (m) is a measure of information contained, in this case, in the bivariate

process.

Similarly, we can define the marginal symbolic entropies as

hx (m) = −
∑

σx∈Γm

p (σx) ln (p (σx)) , (14)

hy (m) = −
∑

σy∈Γm

p (σy) ln (p (σy)) , (15)

The joint and marginal entropies satisfy that 0 ≤ h (m) ≤ ln (n). The lower limit is

reached when only a single symbol appears and the upper limit is reached when all the

symbols have the same probability (they are uniformly distributed).

Note that under the assumption that each univariate process is i.i.d., and using the

symbolization procedure of (7)-(8)-(9), the probability of a given symbol is given by

p (σ) = Cm−1
σ /2(m−1), (16)

where Cm−1
σ = (m−1)!/[(m−1−σ)!σ!] denotes the number of σ-combinations of symbols, σ ∈

{0, . . . , m − 1}, for the set of m − 1 elements.

2.2 A Simple Example

The following example presents a simple symbolization process. Let us assume that we have

two spatial processes x and y, observed in a 3 × 3 regular lattice as shown in Figure 1.

[FIGURE 1 ABOUT HERE]
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In the first place, we must define the value of m, the embedding dimension, for example,

m = 4. Then we identify the 3 nearest neigbours for each location:

(Ns1 = {s2, s4, s5}),(Ns2 = {s3, s1, s5}), (Ns3 = {s2, s6, s5}), (Ns4 = {s5, s1, s7}),

(Ns5 = {s6, s2, s4}), (Ns6 = {s3, s5, s9}), (Ns7 = {s8, s4, s5}), (Ns8 = {s9, s5, s7}),

(Ns9 = {s6, s8, s5}).

Now we can form the 4 − surroundings for each observation. In the case of variable x

in location s1:

x4 (s1) = (xs1 = 4, xs2 = 1, xs4 = 6, xs5 = 2) .

Similarly with the other locations and processes. The next step is to obtain of the

symbols. In accordance with (7)-(8)-(9), and for variable x in location s1:

fx (xs1) = (ιs1s2 = 0) + (ιs1s4 = 1) + (ιs1s5 = 0) = 1.

Likewise, we can obtain the symbols associated with the other locations:

fx (xs2) = 1; fx (xs3) = 1; fx (xs4) = 1; fx (xs5) = 1; fx (xs6) = 2; fx (xs7) = 2; fx (xs8) =

2; fx (xs9) = 1.

The symbols associated with series y are: fy (ys1) = 0; fy (ys2) = 1; fy (ys3) = 1; fy (ys4) =

1; fy (ys5) = 2; fy (ys6) = 2; fy (ys7) = 1; fy (ys8) = 2; fy (ys9) = 2.

Finally, the symbols for the bivariate process Z = (x, y) are just the Cartesian product

of the two previous sets of symbols:

fz (zs1) = (1; 0); fz (zs2) = (1, 1); fz (zs3) = (1, 1); fz (zs4) = (1, 1); fz (zs5) = (1, 2);

fz (zs6) = (2, 2); fz (zs7) = (2, 1); fz (zs8) = (2, 2); fz (zs9) = (2, 1).

3 A Test for Independence Between Spatial Processes

In this section, we develop two non-parametric tests for spatial dependence using the results

of the previous section.
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3.1 A composite null hypothesis of independence and i.i.d.

Let us consider a two-dimensional spatial series {Zs = (xs, ys)}s∈S with a fixed embedding

dimension, m ≥ 2. Our interest focuses on the following null and alternative hypotheses:

H0 : {xs}s∈S and {ys}s∈S are i.i.d. and independent.

H1 : {xs}s∈S and {ys}s∈S are not i.i.d. and independent.





(17)

The null hypothesis is tested using the symbolization procedure of Section 2.1.

For each symbol η ∈ Ω2
n of the bivariate process, we define the random variable Jηs

as

follows:

Jηs
=





1 if location s is η − type.

0 otherwise.
(18)

Jηs
is a Bernoulli variable with probability of “success” pη, where “success” means that

s is η − type.

This restriction is obvious:
∑

η∈Ω2
n

pη = 1. (19)

We assume that the set of locations S is finite, and that |S| = L . We are interested in

the number of locations that are of η − type, for all symbols η ∈ Ω2
n, this is measured by:

Qη =
∑

s∈S

Jηs
. (20)

Qη is a random variable whose values are integers in the range {0, 1, 2, . . . , L}.

Notice that not all Jη variables are independent (due to the possible overlapping of the

m−surroundings) and, therefore, Qη may not be a Binomial random variable. Nevertheless,

as shown by Soon (1996), the sum of dependent indicators can be approximated to a Binomial

if the following two conditions are satisfied (the details appear in Appendix A):

1. Dependency among the indicators is weak.

2. The probability of occurrence of the indicators is small.
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The first condition can be achived by controling for overlapping. The second condition

depends on the number of symbols, n. The symbolization procedure presented in Section

2.1 entails, in general, a low probability for each indicator.

Ruiz et al. (2010) discuss the case of controlling for the degree of overlapping of the

m − surroundings to assure weak dependence among the Jηs
indicators. They show that

it is possible to attain a good approximation to the Binomial by considering only a subset

of locations, S̃ ⊆ S, with a fixed degree of overlapping. Less overlapping means weaker

dependence among the indicators, but at the cost of not symbolizing all the observations.

Under the null hypothesis H0, if the dependence among the Jη indicators is weak, the

variable Qη can be approximated to a Binomial random variable:

Qη ≈ B (L, pη) . (21)

The joint probability function of the n2 variables (Qη11 , Qη12 , . . . , Qηnn
) is a multinomial

such that:

P (Qη11 = a11, . . . , Qηnn
= ann) =

(a11 + a12 + · · · + ann)!

a11!a12! · · · ann!
pa11

η11
pa12

η12
· · · pann

ηnn
, (22)

where a11 + a12 + · · · + ann = L.

As a result of our symbolization procedure, the following Theorem can be proved (see

web Appendix B for proofs):

Theorem 3.1. Let {xs}s∈S and {ys}s∈S be two spatial processes with |S| = L. Assume that

both processes have been symbolized such that the dependence among indicators Jη is weak.

Denote by hZ (m) the entropy defined in (13) for a fixed embedding dimension m ≥ 2, with

m ∈ N. If the spatial series {xs}s∈S and {ys}s∈S are i.i.d. and independent, then the statistic

Υ (m) = 2L


2 (m − 1) ln (2) −




n∑

i=1

n∑

j=1

nηij

L
ln

(
Cm−1

σx
i

Cm−1
σy

j

)
 − hZ (m)


 (23)
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is asymptotically distributed as a χ2
m2+1.

Let α be a real number with 0 ≤ α ≤ 1 and χ2
α is such that Pr (χ2

k > χ2
α) = α. To test

H0 : {xs}s∈S and {ys}s∈S are i.i.d. and independent, (24)

the decision rule, with a 100 (1 − α) % confidence level, is:

If 0 ≤ Υ (m) ≤ χ2
α, Do not reject H0.

Otherwise, Reject H0.

This test can be generalized to a k − dimensional spatial processes Z. The expression

of the multivariate test is:

Υ (m) = 2L


k (m − 1) ln (2) −




n∑

i1=1

· · ·
n∑

ik=1

nηij

L
ln




k∏

j=1

Cm−1
σ

xi
ij





 − hZ (m)


 (25)

which is asymptotically distributed as a χ2
(mk+k−1) .

The composite null hypothesis of (24) can be rejected, in the first place, due to the lack

of independence of the two spatial processes and, in second place, because they are not i.i.d.

(one or both of them are spatially autocorrelated). We reserve the term interdependence for

the first case and the term intradependence for the second.

3.2 Consistency of the test Υ (m)

In the previous section, we have obtained the Υ (m) test and its asymptotic distribution

under a composite null hypothesis. We now add the property of consistency for a wide range

of spatial processes (see web Appendix C for proofs).

Theorem 3.2. Let {xs}s∈S and {ys}s∈S be two stationary processes, and m > 2 with m ∈ N.

Under dependence of order lower than m,

lim
L→∞

Pr
(
Υ̂ (m) > C

)
= 1,
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for all 0 < C < ∞, C ∈ R.

Parameter m is crucial to ensure the property of consistency. In fact, the Υ (m) test will

reject the composite null hypothesis of (24) provided that the dependence (inter or intra) is

of a smaller order than m; that is, it occurs inside the m-surroundings. The researcher must

define this parameter considering the following conditions:

1. The minimum value of m is 2.

2. The maximum value of m depends on the sample size L. Note that L must be larger

than the number of symbols (n2 ≤ L). Moreover, in order to have a good approximation

to the χ2 distribution, the expected value of the frequencies for each symbol should

be, at least, 5 (Rohatgi, 1976). This means that the embedding dimension should be

fixed so that 5 × n2 ≤ L.

In the case of the univariate symbolization procedure of (7)-(8)-(9), m = n so the restriction

reads m ≤
√

L
5
. For example, if we establish m = 5, the bivariate distribution would have

25 symbols and we need a sample of, at least, 125 observations.

3.3 A permutation alternative to the asymptotic approximation

We may come across situations where the conditions described above cannot be fulfilled

because there is a high overlapping or an insufficient number of observations. In these cases,

the random variable Qη of (20) will be a poor approximation to the Binomial distribution

and, consequently, the convergence of Υ(m) to a χ2 distribution is not guaranteed. Below

we present an alternative strategy for testing independence using a traditional permutation

procedure that does not depend on the Binomial approximation.

Let us define Ψ1 = 1
2L

Υ. The procedure, with a number B of permutations, is as follows:

1. Compute the value of the statistic Ψ̂1 from the original sample {xs}s∈S and {ys}s∈S.

2. Randomly permuting {xs}s∈S and {ys}s∈S, we obtain two permuted series {xs (b)}s∈S

and {ys (b)}s∈S, where b is the number of the permuted sample.

13



3. For series {xs (b)}s∈S and {ys (b)}s∈S, estimate the statistic Ψ̂
(b)
1 .

4. Repeat steps 2 and 3 B−1 times to obtain B permuted values of the statistic
{
Ψ̂

(b)
1

}B

b=1
.

5. Compute the estimated ppermutation − value:

ppermutation − value
(
Ψ̂1

)
=

1

B

B∑

b=1

1
(
Ψ̂

(b)
1 > Ψ̂1

)
, (26)

where 1 (·) is an indicator function that assigns 1 if the inequality is true and 0 otherwise.

6. Reject the null hypothesis H0 of (24) if

ppermutation − value
(
Ψ̂1

)
< α, (27)

for a nominal size α.

We can proceed in the same way for the case of the bivariate Moran’s Iyx, either in what

we have called the Geoda version or in the Czaplewski-Reich version. In the first version,

the randomization algorithm is as follows:

1. Compute the value of the statistic Îyx from the original sample {xs}s∈S and {ys}s∈S.

2. Randomly permuting {xs}s∈S and {ys}s∈S, obtain two permuted series {xs (b)}s∈S and

{ys (b)}s∈S, where b is the number of the permuted sample.

3. For series {xs (b)}s∈S and {ys (b)}s∈S, estimate the statistic Î(b)
yx .

4. Repeat B − 1 times steps 2 and 3 to obtain B permuted realizations of the statistic
{
Î(b)

yx

}B

b=1
.

5. Compute the estimated ppermutation − value:

ppermutation − value
(
Îyx

)
=

1

B

B∑

b=1

1
(
Î(b)

yx > Îyx

)
. (28)

6. Reject the null hypothesis H0 of (24) if

ppermutation − value
(
Îyx

)
> 1 − (α/2) or ppermutation − value

(
Îyx

)
< α/2, (29)
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for a nominal size α.

Note that, in step 2, we randomly permute the two series separately. This procedure

breaks the possible dependence between the series (both are tests of independence) and also

destroys the spatial structure which may exist in either series (they are also test of i.i.d).

The only difference in the Czaplewski-Reich version is that, in step 2, we randomly

permute the pairs {xs, ys}s∈S of the {Zs}s∈S bivariate process, because we want to preserve

the dependence between the two series and destroy their spatial structure.

3.4 A simple null hypothesis of independence

The framework of Section 2 also allows us to test for the hypothesis of independence, allowing

the series not to be i.i.d. The new null hypothesis is that the series, {xs}s∈S and {ys}s∈S are

independent, regardless of their spatial structure. In this section, we obtain a bootstrapped

test for this hypothesis that preserves the spatial structure of each series.

Let us recall that, under the assumption of inter-independence, we have:

pηij
= pσi

pσj
. (30)

So that, for the bivariate process of (4), the measure of entropy can be decomposed as

hZ (m) = hx (m) + hy (m), which leads us to the statistic:

Ψ2 = hx (m) + hy (m) − hZ (m) , (31)

which is the basis of the testing procedure of the null hypothesis:

H
′

0 : {xs}s∈S and {ys}s∈S are independent. (32)

The distribution function of the Ψ2 statistics of (31), under the null of (32), is unknown

even in the case of large samples. We resort to bootstrap techniques. Few results have been
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established for the case of bootstrapping spatial models (Pinkse and Slade, 1998, Fingleton

2005 and 2008, Fingleton and LeGallo, 2008, Monchuk et al., 2011) and many of them focus

on the case of the J test (Burridge and Fingleton, 2010, Burridge, 2012, Han and Lee, 2012)

Our approach follows the general guidelines of the non-overlapping time block bootstrap

of Carlstein (1986). We had to develop a spatial block bootstrap (SBB) to break the depen-

dence of the series but preserving most part of their spatial structure. To our knowledge,

this is the first time that a block bootstrap scheme has been applied to spatial data. The

SBB is as follows:

1. Divide the spatial system into b = L/l contiguous observational blocks of length l.

By contiguous observational block we mean that the observations of each block are

contiguous according to the W weighting matrix. The b blocks cannot overlap and

must exhaust the whole spatial system.

2. Divide the two spatial series according to (1).

3. We have b different sub-samples of length l for each series. The next step is to randomly

resample the blocks, with replacement, in order to build the new bootstrapped series

of length L.

4. The resampling has been completed.

Note that changes in the spatial structure, in terms of the network of connections between

the locations, should be small because blocks of observations are resampled, not individual

observations. The blocks of step (1) are formed according to a distance criterion to b pre-

viously defined fixed points. Let us call them the buoys of the SBB. Once the buoys have

been defined, each observation is assigned to the nearest buoy to form a block of length l

(other procedures can be used depending on the purpose of the bootstrap).

The second part of the SSB has to do with the assignment of the data, taken from their

original location, to the new observation points. The criterion in this stage of the algorithm
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is the distance to the buoy: (i) the observations of each block were ordered according to the

distance to the buoy of the block; (ii) the blocks are resampled; (iii) data are assigned to the

observation points that, in the destination block, occupy the same relative position as in the

block of origin.

The example of Figure 2 illustrates the procedure. The original sample space appears

in the left-hand panel, Figure (a), with 40 data points. We are going to use four blocks,

l = 4. The buoys are the four vertices of the rectangle: {b (0, 0) , b (1, 0) , b (1, 1) , b (0, 1)}.

The resulting blocks appear in the right-hand panel, Figure (b), where each data point has

been assigned to the nearest buoy. Then we resample the four blocks, with replacement.

Assume that the result of a given bootstrap is {b (0, 0) , b (1, 0) , b (1, 0) , b (1, 1)}. This means

that, in the bootstrapped sample, the block b (0, 0) will remain in its original position, the

same as the second block b (1, 0). The data of the second block will be copied in the spatial

layout of the third block, b (1, 1), and distributed according to the distance criterion. Finally,

the 10 observations of the third block will also be copied and distributed in the spatial layout

of the fourth block, b (0, 1).

[Figure 2 about here]

The SSB adapts well to problems where the W matrix has been built according to some

measure of distance, as in the k-nearest neighbours criterion. Obviously, changes in the

contiguity criterion should also involve changes in the spatial bootstrapping scheme. The

SSB will, inevitably, produce some missmatches in relation to the original spatial ordering

of the data but, according to our results, it works efficiently, preserving much of the spatial

structure of the original series.

4 Finite Sample Performance

This section focuses on the behaviour of the the new tests in a finite sampling context. We

use a Monte Carlo approach.

17



4.1 Global parameters of the Monte Carlo

For the null hypothesis of i.i.d. and independence, we compare the Ψ̂1 test with the bivariate

Moran’s Iyx. The two tests coincide in the definition of the null but their structure is very

different. The Ψ̂2 test is not directly comparable with the previous two. Its null hypothesis

is that the series are independent, whatever their univariate structure. To our knowledge,

this is the first test proposed in the literature to deal with such a problem.

In each simulation, we use a randomly generated spatial map of the L locations. The

spatial support is non-regular and overlapping can be a problem, which makes it advisable

an empirical approximation to the independence tests.

The global parameters we use are the following:

L ∈ {100, 400, 1000} , m ∈ {4, 6, 8} . (33)

L is the sample size and m is the embedding dimension.

In the experiment, we want to simulate linear and non-linear models. In the first case,

linearity, we control the relation through the expected coefficient of determination, R2. Based

on a specification like this:

y = βx + θWx + ε,

where the variance of x and ε are 1, V ar [x] = V ar [ε] = 1, assuming independence,

Cov [x, ε] = 0, the R2 statistic is:

R2 =
1

1 + 1

β2+(θ2/m−1)
.
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To measure the empirical size, we use the Data Generation Process (DGP from now on):

y ∼ N (0, 1) , (34)

x ∼ N (0, 1) ,

For the case of the power, we consider bivariate processes of the following type:

y = F [x, Wy, Wx, ε] ; ε ∽ N (0, 1) .

x ∽ N (0, 1) .
(35)

where W is specified using the (m − 1) nearest neighbours criterion, and F is a functional

form to be defined. We have simulated three linear processes and three non-linear processes.

DGP1: Intra-dependence and inter-independence. Linear relation.

y = ρWy + ε. (36)

DGP2 Intra-independence and inter-dependence. Linear relation.

y = βx + θWx + ε. (37)

DGP3 Intra-dependence and inter-dependence. Linear relation.

y = ρWy + θWx + ε. (38)

DGP4 Intra-dependence and inter-independence. Non-linear relation.

y = 1/[(I−ρW )−1ε]. (39)
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DGP5 Intra-independence and inter-dependence. Non-linear relation.

y = 1/(βx+θW x+ε). (40)

DGP6 Intra-dependence and inter-dependence. Non-linear relation.

y = 1/[(I−ρW )−1(θW x+ε)]. (41)

Three values for the R2 coefficient have been used: R2 ∈ {0.4; 0.6; 0.8} . The values of ρ, the

spatial correlation coefficient, are ρ ∈ {0.4; 0.7; 0.9}. Parameter β is fixed at 0.5. The values

of θ are obtained as:

θ =

√
(m − 1) (β2 (1 − R2) − R2)

R2 − 1
. (42)

In the case of DGP3, coefficient ρ has been fixed to 0.5 and θ has been obtained as in

(42), where β = 0.

Note that DGP4-DGP6 are just the inverses of the corresponding linear models DGP1-

DGP3. The reason for this (apparently) strange specification is that we would like to use

strongly non-linear models to better appreciate the differences between the statistics.

The most important parameters of the simulation are m, which defines the embedding

dimension, ρ, which defines the intensity of the spatial intra-dependence and the R2 which

defines the intensity of the relations. Each experiment has been repeated 400 times.

4.2 Results of the Monte Carlo

First, we present the results corresponding to the most restrictive null hypothesis, inde-

pendence and i.i.d.. Then we discuss the results for the null of independence between the

series.

20



4.2.1 Null hypothesis: independence and i.i.d.

Table 1 shows the estimated size for the two tests, Îxy and Ψ̂1. The results are satisfactory

although there is a slight tendency to underestimate the size in small samples, especially for

the Îxy statistic. The restriction that, for each symbol, we must have at least 5 observations

has consequences: for a sample size L = 100, we can only consider the case of m = 4.

[Table 1 about here]

DGP1 presents intra-dependence and the results appear in Table 2. This case falls under

the alternative hypothesis of the bivariate Moran’s Îyx test of not to be i.i.d. (the clause of

independence is true). The behaviour of Îyx is very poor, with a maximum estimated power

of 44.75% . Results are satisfactory for the Ψ̂1 test: power increases rapidly with the sample

size and reacts very quickly to the symptoms of spatial dependence.

[Table 2 about here]

Table 3 shows the estimated power functions for DGP2 (inter-dependence only). The

estimated power of the two tests is quite good, attaining the maximum value, 100, for samples

of medium size. The estimated power of the Îyx test tends to be higher, especially for small

sample sizes. The distance that separates the two tests diminishes as the R2 coefficient

increases.

[Table 3 about here]

For DGP3 (intra- and inter-dependence), the results of Table 4 are even better, with an

estimated power of practically 100% in all cases.

[Table 4 about here]

The estimated power worsens for the non-linear processes. Tables 5, 6 and 7 show the

results for DGP4 (intra-dependence only), DGP5 (inter-dependence only) and DGP6 (intra-
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and inter-dependence), respectively. In all cases, the estimated power reacts positively to

the sample size and to higher values of ρ and of the R2.

[Table 5 about here]

[Table 6 about here]

[Table 7 about here]

The values of the R2 included in Tables 6 and 7 are only for informative purposes (the

relationship is non-linear); in fact, they measure the relation between the elements of the

equation before inverting the right-hand side. As in the linear case, the estimated power of

the Ψ̂1 test for non-linear, intra- and interdependence (Table 7), is fully satisfactory even

with small sample sizes.

On the contrary, the behaviour of the bivariate Moran’s test is very poor. DGP4 presents

nonlinear intra-dependence in y, x and y being independent. The percentage of rejections is

close to the nominal size. The case of the DGP4 corresponds also to the alternative hypoth-

esis of Moran’s Îxy. The results for the other two nonlinear DGP s are also unacceptable.

Tables 5 to 7 confirm that Moran’s Îxy is a spatial correlation coefficient that is not adequate

when the relationship is nonlinear.

4.2.2 Null hypothesis: independence

This section discusses the results of the Ψ̂2 bootstrap test for the null hypothesis of inde-

pendence of (32).

Table 8 shows the rejection frequencies of the Ψ̂2 test for two different specifications of

the null hypothesis. When the processes are i.i.d. N (0, 1), the estimated size fluctuates

around 5%, with a maximum of 5.75% and a minimum of 3.5%. For the case of a spatial

autoregressive (SAR) in y and white noise process in x, the empirical size is slightly higher

that the 5% rate.
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[Table 8 about here]

The estimated power for the case of linear inter-dependence, DGP2, appears in Table

9. The performance of the Ψ̂2 test is not satisfactory for the small sample case, L = 100,

although there is a clear improvement for L = 400. As expected, the power is close to

100% for large sample sizes, L = 1000. A similar pattern emerges for the case of inter-and

intra-dependence, DGP3, in Table 10.

[Table 9 about here]

[Table 10 about here]

Tables 11 and 12 show the results for non-linear models. The estimated power of the Ψ̂2

test decreases in all the cases. DGP5 in Table 11 corresponds to the case of inter-dependence

between the series which are intra-independent. The estimated power for small sample sizes

is very low, always below the 20% rate of correct decisions. The power increases for L = 400

and attains acceptable values for large sample sizes. In all cases, a stronger relation between

the variables (measured through the R2 coefficient) improves the power of the test.

[Table 11 about here]

Finally, Table 12 summarizes the behaviour of the test for the case of nonlinear inter-

and intradependence, DGP6. The situation does not change: bad results for small samples

which improve as the sample size increases. The impact of the R2, as a measure of association

between the variables, is not very clear. It appears to be a kind of trade-off: if the R2

increases there is a beneficial effect, but the length of the m-surrounding, m, has a clear

negative impact.

[Table 12 about here]
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In order to better appreciate these results, we would like to add that the inverse nonlinear

transformations of DGPs 4 to 6 are the worst options for our testing procedure (the same

applies for the case of the bivariate Moran’s Îxy). Better results were obtained for all the

tests with other nonlinear specification, that are closer to linearity.

5 An application to the Ebro Valley

In this section, we focus on the productivity of the labour factor which, in the long run,

’is almost everything’, according to Krugman (1997, p 9). The literature on Regional Eco-

nomics highlights the importance of externalities, as interaction mechanisms which affect

the evolution of productivity in different and, sometimes distant, areas. In general terms,

the literature distinguishes four wide categories of external effects:

(i)- Urban externalities, which have to do with the role of cities in today’s economy.

Jacobs (1984) points to the importance of the diversity of the urban network. The evidence

is not conclusive with respect to size (Rosenthal and Strange, 2004) although it does seem

to be so in relative terms. Ciccone and Hall (1996), Ciccone (2002) and Fingleton (2003)

find a positive effect of the density of employment on productivity.

(ii)- Location externalities or MAR externalities (in honour of Marshall, 1890, Arrow,

1962, Romer, 1990). Part of the literature emphasizes the importance, for a particular

industry, of the spatial concentration: physical concentration generates knowledge exter-

nalities, reduces transport and communication costs, stimulates competition in the supply

markets and improves the qualification in local labour markets.

(iii)- Competition externalities. Porter (1998) claims that the need to remain competitive

is the main incentive for firms to innovate. Pressure from competitors leads firms to better

absorb new technologies, increase their innovative capacity and raise their productivity. The

evidence provided by Glaeser et al. (1992) seems robust.

(iv)- Labour externalities, alluding to the need for the employment demand profile of a
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territory to match the supply profile. Rice et al. (2006) and Erikson and Lindgren (2009)

stressed that a good balance between the two profiles is fundamental for achieving permanent

improvements in productivity.

We are interested in verifiying whether, effectively, the productivity data are related to

the habitual indicators of these extenalities. We will use data from the manufacturing sector

of the municipalities of the Ebro valley, in the Iberian Peninsula. We limit the study to the

period 2007-2009; we use the three-years average.

The Ebro valley is a depression situated in the northeast of the Iberian Peninsula that

follows the course of the River Ebro from its central part to its mouth in the delta of Amposta.

In this macro-region, there are 2,125 municipalities distributed among four Autonomous

Communities: Aragón, Cataluña, La Rioja and Navarra. They make up a little more than

20% of the Spanish economy, with a GDP per capita that is 15% above the average. The

municipalities of the valley tend to be small with a surface area of 44.8 Km2 and a population

of 4,500 on average (for a more detailed analysis, see Angulo et al., 2012).

Most of the information comes from SABI, Sistema de análisis de balances ibéricos (Bu-

reau van Dijk, 2012), complemented with other sources. SABI is a database that contains

information of a representative directory of firms that operate in the Iberian Peninsula. The

information in which we are interested (basically, figures about sales and employment) refer

to firms from the manufacturing sector which, later, have been grouped by municipality. The

variables that we are going to employ are the following:

• PM . The labour productivity of the manufacturing sector of municipality i, obtained

by dividing the sales (in real terms, base 100=2008) declared by the firms of the sector

established in municipality i, in thousands of euros, by the total number of jobs in the

same firms (Source SABI, 2012).

• PO. Population residing in municipality i (Source Instituto Nacional de Estadística,

INE, 2012). This is an indicator of urban externalities.
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• ED. Employment density, measured as the number of jobs per Km2 in municipality i.

This is an indicator of urban externalities.

• QL. Location coefficient for the manufacturing sector in municipality i obtained as:

QLir =

(
eM

i

eM
•

)

(
e•

i

e•

•

) , (43)

where eM
i is the employment of the manufacture sector in municipality i. A dot, •, means

aggregate. This is an indicator of location externalities.

• CC. Competition coefficient defined as:

QLir =

(
ωM

i

eM
•

)

(
ω•

i

e•

•

) , (44)

where ωM
i is the number of firms of the manufacturing sector in municipality i. This is

an indicator of Porter externality.

• ER. Employment rate, obtained as the quotient between total employment and working

population in municipality i. This is an indicator of labour externalities.

Figure 3 shows the municipal distribution of the indicators. There is a strong structure in

these data, as the information in Table 13 corroborates: 10 of the 15 linear correlation coef-

ficients and the six Moran coefficients of spatial correlation are significant. The relationships

that we detect in all cases are positive, as theory predicts.

[FIGURE 3 about here]

In sum, space is a relevant factor to explain the municipal distribution of the productivity

data in the manufacturing sector in the Ebro valley and externalities appear to play a

determinant role.

[Table 13 about here]
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Table 14 shows the results of the tests of Independence between spatial series carried

out in Sections 2 and 3. It should be remembered that not all the test have the same null

hypothesis. The tests Ψ̂1 and the bivariate Moran’s Îyx, Geoda version, have a composite

hypothesis of intra-independence (for each of the two series) and inter-independence (between

the two series). The null hypothesis of test Ψ̂2 is that the two series are independent, whatever

the spatial structure of them.

[Table 14 about here]

These results are interesting in the sense that the composite tests (Ψ̂1 and Îyx) detect a

strong dependence between data on productivity and the indicators of externalities. However,

if we take out the spatial structure of both group of variables we conclude, with the test

Ψ̂2, that this dependence is, to a great extend, spurious. In fact, only for the case of the

location coefficiente, QL, a measure of location or MAR externalities, we obtain a statistically

significant relation with labour productivity.

For the manufacturing sector in the Ebro valley, neither urban externalities nor labour

externalities nor competition externalities a la Porter seem to have a significant relation with

the productivity data. Obviously, if they have no relation, beyond the similarity of their spa-

tial distributions, they could hardly affect (in the sense of causing) the productivity results.

The hypothesis of dependence cannot be rejected for the productivity-spatial concentration

case of the manufacturing sector.

We believe that this result is important in itself because it indicates that not all the

externalities have equal importance: to explain the productivity of the manufacturing sector

in the Ebro valley, we should focus on location externalities. Logically, the next step is to try

to identify the direction of the causal mechanism between the two variables (if it exists). In

fact, either interpretation is possible: higher productivity in a municipality may help attract

manufacturing firms or, alternatively, a concentration of firms in a municipality may improve

the productivity of the labour factor due to specialization.
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6 Conclusions

There is an abundant literature devoted to the issue of spatial autocorrelation, a ‘hot topic’

in Spatial Econometrics as stated by Anselin (1988). However, the references for the case

of cross-correlation analysis between variables are very limited. To our knowledge, we can

only cite the bivariate Moran’s Ixy. This is a good statistic, simple, intuitive and powerful,

but has several limitations: it is restricted to pairs of series, the relation must be linear and

a weighting matrix is needed to solve the test. Moreover, the exact meaning of the null

hypothesis of the test is not totally clear.

The Υ (m) statistic developed in this paper does not suffer from these shortcomings: it

is not restricted to a specific functional form, it can be generalized to the case of more than

two variables, these variables may be of a discrete nature and it does not need a weighting

matrix. The test is consistent and computationally simple to obtain.

In our view, one of the most important properties of the Υ (m) test is that it can be

easily adapted to the null hypothesis of interest. As shown in the paper, it is possible to

test for three different hypotheses within the same framework: (i) the series are i.i.d. and

independent (ii) the bivariate series are non spatially autocorrelated and (iii) the series are

independent. The Monte Carlo results that we report are convincing in favour of the Υ (m)

test, especially when nonlinearities can be present in the models.

Our impression is that the Υ (m) test could be a useful technique for applied research

with spatial data. By way of example, we have discovered that the productivity of the

manufacturing sector in the Ebro Valley, during the last decade, is only related to location

externalities. In fact, urban, labour or externalities ’a-la-Porter’ have been discarded by our

test. Finally, we must acknowledge that there remain aspects that need further attention,

including a more thorough study of non-linear patterns.

Supplementary Materials Web Appendices A, B and C referred to in Section 3 will

be available with this paper at the journal website
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Table 1: Estimated Size of Ψ̂1 and Îxy tests at 5% level

Ψ̂1 Îxy

m 4 6 8 4 6 8

L = 100 4.25 − − 3.50 - -

L = 400 4.25 4.50 5.00 3.50 5.00 5.75

L = 1000 3.00 4.25 5.50 4.25 4.50 5.75

Note: Permutations: 399. Replications: 400.
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Figure 3: Productivity and externality indicators by municipalities in the Ebro valley. Period

2007-2009.

Productivity Manufactures : PM Population : PO

Location Coefficient : QL Competition Coefficient : CC

Employment Rate : ER Employment Density : ED
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