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The Best Estimation for High-Dimensional Markowitz Mean-Variance

Optimization

Abstract The traditional (plug-in) return for the Markowitz mean-variance (MV) optimiza-

tion has been demonstrated to seriously overestimate the theoretical optimal return, especially

when the dimension to sample size ratio p/n is large. The newly developed bootstrap-corrected

estimator corrects the overestimation, but it incurs the “under-prediction problem,” it does not

do well on the estimation of the corresponding allocation, and it has bigger risk. To circumvent

these limitations and to improve the optimal return estimation further, this paper develops the

theory of spectral-corrected estimation. We first establish a theorem to explain why the plug-in

return greatly overestimates the theoretical optimal return. We prove that under some situations

the plug-in return is
√
γ times bigger than the theoretical optimal return, while under other

situations, the plug-in return is bigger than but may not be
√
γ times larger than its theoretic

counterpart where γ = 1
1−y

with y being the limit of the ratio p/n.

Thereafter, we develop the spectral-corrected estimation for the Markowitz MV model

which performs much better than both the plug-in estimation and the bootstrap-corrected es-

timation not only in terms of the return but also in terms of the allocation and the risk. We

further develop properties for our proposed estimation and conduct a simulation to examine the

performance of our proposed estimation. Our simulation shows that our proposed estimation not

only overcomes the problem of “over-prediction,” but also circumvents the “under-prediction,”

“allocation estimation,” and “risk” problems. Our simulation also shows that our proposed

spectral-corrected estimation is stable for different values of sample size n, dimension p, and

their ratio p/n. In addition, we relax the normality assumption in our proposed estimation so

that our proposed spectral-corrected estimators could be obtained when the returns of the assets

being studied could follow any distribution under the condition of the existence of the fourth

moments.

Keywords: G11; C13

JEL Classification: Markowitz mean-variance optimization, Optimal Return, Optimal Port-

folio Allocation, Large Random Matrix, Bootstrap Method.
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1 Introduction

This paper aims to develop the best estimation for the problem of the high-dimensional Markowitz

mean-variance (MV) portfolio optimization. Our proposed estimation may not be the best esti-

mation, but we believe our approach at least enables academics and practitioners to get closer

to obtaining the best estimation for the high-dimensional MV Markowitz optimization problem.

We first discuss the literature on the issue.

The conceptual framework of the classical MV portfolio optimization was set forth by

Markowitz in 1952. Since then, modeling Markowitz MV portfolio optimization theory is one

of the most important topics to be empirically and theoretically studied by academics and prac-

titioners. It is a milestone in modern finance theory, including optimal portfolio construction,

asset allocation, utility maximization, and investment diversification. Given a set of assets, it

enables investors to find the best allocation of wealth incorporating their preferences as well as

their expectations of returns and risks. It provides a powerful tool for investors to allocate their

wealth efficiently.

Although several procedures for computing optimal return estimates (e.g., Sharpe, 1967,

1971; Stone, 1973; Elton, Gruber, and Padberg, 1976, 1978: Markowitz and Perold, 1981;

Perold, 1984; Carpenter et al., 1991; Jacobs, Levy, and Markowitz, 2005) have been put forth

entirely since the 1960s, academics and practitioners still have doubts about the performance of

the estimates. The portfolio formed by using the classical MV approach always results in ex-

treme portfolio weights that fluctuate substantially over time and perform poorly in the sample

estimation as well as in the out-of-sample forecasting. Several studies recommend disregarding

the results, or abandoning the approach. For example, Frankfurter, Phillips, and Seagle (1971)

find that the portfolio selected according to the Markowitz MV criterion is not as effective as an

equally weighted portfolio. Michaud (1989) documents the MV optimization to be one of the

outstanding puzzles in modern finance that has yet to meet with widespread acceptance by the

investment community. He calls this puzzle the “Markowitz optimization enigma” and calls the

MV optimizers “estimation-error maximizers.” Simaan (1997) has found MV-optimized port-

folios to be unintuitive, thereby making their estimates do more harm than good. Furthermore,

Zellner and Chetty (1965), Brown (1978), and Kan and Zhou (2006) show that the Bayesian

rule under a diffuse prior outperforms the MV optimization.

To investigate the reasons why the MV optimization estimate is so far away from its the-

oretic counterpart, different studies provide different observations and suggestions. So far, all

believe that it is because the “optimal” return is formed by a combination of returns from an
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extremely large number of assets (e.g., McNamara, 1998). This is particularly troublesome

because optimization routines are often characterized as error maximization algorithms. Small

changes in the inputs can lead to large changes in the estimation (e.g., Frankfurter, Phillips, and

Seagle, 1971). For the necessary input parameters, some studies (e.g., Michaud, 1989; Chopra,

Hensel, and Turner, 1993; Jorion, 1992; Hensel and Turner, 1998) suggest that the estimation

of the covariance matrix plays an important role in the problem. For instance, Jorion (1985)

and others suggest that the main difficulty concerns the extreme weights that often arise when

constructing sample efficient portfolios that are extremely sensitive to changes in asset means.

Others suggest that the estimation of the correlation matrix plays an important role. For exam-

ple, Laloux, Cizeau, Bouchaud, and Potters (1999) find that Markowitz’s portfolio optimization

scheme is not adequate because its lowest eigenvalues dominating the smallest risk portfolio

are dominated by noise. Thus, how to use the Markowitz optimization procedure efficiently

depends on whether the expected return and the covariance matrix can be estimated accurately.

Many studies have improved the estimate of the classical Markowitz MV approach by us-

ing different approaches. For example, by introducing the notion of “factors” influencing stock

prices, Sharpe (1964) formulates the single-index model to simplify both the informational and

computational complexity of the general model. Ross (1976) uses the arbitrage pricing theory

and the multi-factor model to formulate the excessive returns of assets. Konno and Yamazaki

(1991) propose a mean-absolute deviation portfolio optimization to overcome the difficulties

associated with the classical Markowitz model, but Simaan (1997) finds that the estimation er-

rors for the mean-absolute deviation portfolio model are still very severe, especially in small

samples. Manganelli (2004) works with univariate portfolio GARCH models to provide a so-

lution to the curse of dimensionality associated with multivariate generalized autoregressive

conditionally heteroskedastic estimation. In addition, Wong, Carter, and Kohn (2003) impose

some constraints on the correlation matrix to capture the essence of the real correlation structure

while Ledoit and Wolf (2004) use shrinkage and the eigen-method to construct a better estimate.

On the other hand, Jacobs, Levy, and Markowitz (2005) present fast algorithms for calculating

MV efficient frontiers when the investor can sell securities short as well as buy them long, and

when a factor and/or scenario model of covariance is assumed.

To improve the optimal return estimation, Bai, Liu, and Wong (2009,2009a) first prove

that the traditional return estimate is always larger than its theoretical value with a fixed rate

depending on the ratio of the dimension to the sample size p/n. They call this problem “over-

prediction.” In this paper we explore the issue further. We will look for reasons why the classical

MV optimal return estimation is far away from the real return by adopting random matrix theory.

We find that the estimation of getting the optimal return and the corresponding asset allocation
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(we call it plug-in estimators) by plugging the sample mean and the sample covariance matrix

is highly unreliable because (a) the estimate contains substantial estimation error and (b) in

the optimization step the estimation becomes “over-predicted.” We also develop a theorem to

explain why the plug-in return greatly overestimates the theoretical optimal return. For example,

we prove that under some situations the plug-in return is
√
γ times bigger than the theoretical

optimal return, while, under other situations, the plug-in return is bigger than but may not be
√
γ times larger than its theoretic counterpart where γ = 1

1−y
with y being the limit of the ratio

p/n.

To obtain a better optimal return estimator, Bai, Liu, and Wong (2009,2009a) propose a

new method called the bootstrap-corrected estimation to reduce the error of over-prediction by

using the bootstrap approach. They claim that their bootstrap-corrected estimator circumvents

the “over-prediction” problem. Leung, Ng, and Wong (2012) extend their work by providing

a closed form of the estimation. Nonetheless, to check how good an estimate of MV port-

folio optimization is, one should not only care about how good the estimation of the return,

but also about how good the estimation of the corresponding allocation is and how big their

risk is. In this paper we find that the bootstrap-corrected estimation does not outperform the

plug-in estimation for both the allocation and the risk, and sometimes it is even worse. We

call the former the “allocation estimation” problem and the latter the “risk” problem. In ad-

dition, our simulation shows that although the bootstrap-corrected estimation could overcome

the “over-prediction” problem, it incurs the “under-prediction” problem. Thus, looking for the

best MV portfolio optimization estimation that could solve all of the defects in the MV portfo-

lio optimization – the “over-prediction,” “under-prediction,” “allocation estimation,” and “risk”

problems – is still a very important outstanding problem.

In this paper we aim to develop a new estimator that could overcome all four defects. To

do so, we modify the key point estimation – the eigenvalue of the covariance matrix. By doing

so, we provide a more accurate covariance matrix estimator and, thereafter, develop the corre-

sponding optimal estimators for both return and allocation. We establish some properties for

the estimation and conduct simulation. Our simulation results show that our method not on-

ly solves the over-prediction and under-prediction problems, but also substantially reduces the

estimation error of both the return and the allocation and reduces its risk. Our simulation also

shows that our proposed spectral-corrected estimation is stable for different values of sample

size n, dimension p, and their ratio p/n. In addition, we relax the normality assumption in our

proposed estimation so that our proposed spectral-corrected estimators could be obtained for

the problem of the high-dimensional Markowitz MV portfolio optimization when the returns of

the assets being studied could follow any distribution under the condition of the existence of
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the fourth moments. Thus, our proposed estimation should be a very promising method for the

Markowitz portfolio optimization procedure.

The rest of the paper is organized as follows. In Section 2, we will present the problem

of Markowitz’s MV portfolio optimization. In Section 3, we will discuss the theory of the

large dimensional random matrix that could be used to solve the Markowitz portfolio optimiza-

tion problem. In Section 4, we will first introduce the traditional plug-in and newly developed

bootstrap-corrected estimators and, thereafter, develop the theory of the spectral-corrected esti-

mators for the optimal return and its asset allocation. We will conduct a simulation in Section

5 to compare the performance of our proposed spectral-corrected estimators with those of the

plug-in and bootstrap-corrected estimators. Section 6 provides the summary and conclusion and

suggests some possible directions for further research.

2 Markowitz’s Mean-Variance Principle

To distinguish the well-known results in the literature from the ones derived in this paper, all

cited results will be called Propositions and our derived results will be called Theorems. We

first discuss Markowitz’s MV optimization principle.

The pioneering work of Markowitz (1952, 1959) on the MV portfolio optimization pro-

cedure is a milestone in modern finance. It provides a powerful tool for efficiently allocating

wealth to different investment alternatives. This technique incorporates investors’ preferences

and expectations of returns and risks for all assets considered, as well as diversification ef-

fects, which reduce the overall portfolio risk. According to the theory, portfolio optimizers

respond to the uncertainty of an investment by selecting portfolios that maximize profit, subject

to achieving a specified level of calculated risk or, equivalently, minimize variance, subject to

obtaining a predetermined level of expected gain (Markowitz, 1952, 1959, 1991; Kroll, Levy,

and Markowitz, 1984). More precisely, we suppose that there are p-branch of assets whose

returns are denoted by r = (r1, · · · , rp)T with mean vector µ = (µ1, · · · , µp)T and covariance

matrix Σ = (σi j). In addition, we assume that an investor will invest capital C on the p-branch

of assets such that she wants to allocate her investable wealth to the assets to attain one of the

following:

a. to maximize return subject to a given level of risk, or

b. to minimize risk for a given level of expected return.
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Since the above two cases are equivalent, we consider only the first one in this paper. With-

out loss of generality, we assume C = 1 and her investment plan to be c = (c1, · · · , cp)T . Hence,

we have Σ
p

i=1
ci ≤ 1 in which the strict inequality corresponds to the fact that the investor could

invest only part of her wealth. Her anticipated return, R, will then be cTµ with risk cTΣc. In this

paper, we further assume that short selling is allowed, and hence, any component of c could be

positive as well as negative. Thus, the above maximization problem can be reformulated as:

max cTµ, subject to cT 1 ≤ 1 and cTΣc ≤ σ2
0 (2.1)

where 1 represents the p-dimensional vector of ones and σ2
0

is a given level of risk. We call

R = max cTµ satisfying (2.1) the optimal return and c its corresponding allocation plan. One

could obtain the solution of (2.1) from the following proposition:

Proposition 2.1. For the optimization problem shown in (2.1), the optimal return, R, and its

corresponding investment plan, c, are obtained as follows:

a. If

1T
Σ−1µσ0√
µTΣ−1µ

< 1, (2.2)

then the optimal return, R, and corresponding investment plan, c, will be

R = σ0

√
µTΣ−1µ (2.3)

and

c =
σ0√
µTΣ−1µ

Σ−1µ . (2.4)

b. If

1T
Σ−1µσ0√
µTΣ−1µ

> 1 , (2.5)

then the optimal return, R, and corresponding investment plan, c, will be

R =
1T
Σ−1µ

1T
Σ−11

+ b

µ
TΣ−1µ −

(
1T
Σ−1µ

)2

1T
Σ−11

 (2.6)

and

c =
Σ−11

1T
Σ−11

+ b

(
Σ−1µ − 1T

Σ−1µ

1T
Σ−11
Σ−11

)
, (2.7)

where

b =

√√√
1T
Σ−11σ2

0
− 1

µTΣ−1µ1T
Σ−11 −

(
1T
Σ−1µ

)2
.
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The set of efficient feasible portfolios for all possible levels of portfolio risk forms the MV

efficient frontier. For any given level of risk, Proposition 2.1 seems to provide investors a unique

optimal return and its corresponding MV-optimal investment plan, and thus, it seems to provide

a good solution to Markowitz’s MV optimization procedure. Some may think that the problem

is straightforward and the problem has been solved completely. Nonetheless, in reality, this is

not the case because the estimation of the optimal return and its corresponding investment plan

is a difficult task. We will discuss the issue in the next section.

3 Large Dimensional Random Matrix Theory

The large dimensional random matrix theory (LDRMT) traces back to the development of quan-

tum mechanics in the 1940s. Because of its rapid development in theoretical investigations and

its wide applications, it has attracted growing attention in many areas, including signal process-

ing, wireless communications, economics and finance, as well as mathematics and statistics.

Whenever the dimension of the data is large, the classical limiting theorems are no longer suit-

able because the statistical efficiency will be substantially reduced. Hence, academics have to

search for alternative approaches to conduct such data analysis and the LDRMT has been found

to the right for this purpose. The main advantage of adopting the LDRMT is its ability to in-

vestigate the limiting spectrum properties of random matrices when the dimension increases

proportionally with the sample size. This turns out to be a powerful tool in dealing with large

dimensional data analysis.

We incorporate the LDRMT to analyze the high dimensional MV optimization problem.

In the analysis, the sample covariance matrix plays an important role in analyzing this type of

data. Let xk = (x1k, · · · , xpk)
T (k = 1, 2, · · · , n) be i.i.d. random vectors with mean vector µ,

covariance matrix Σ, and the sample covariance matrix

S =
1

n

n∑

k=1

(xk − x)(xk − x)T (3.1)

in which the sample mean x =
∑n

k=1 xk/n is the estimate of the mean vector µ.

The major difficulty in the estimation of optimal return is well recognized to be the inade-

quacy of using the inverse of the estimated covariance to estimate the inverse of the covariance

matrix; see, for example, Laloux, Cizeau, Bouchaud, and Potters (1999). To present and there-

after circumvent this problem, in this paper we first introduce some fundamental definitions and

theoretical results for the LDRMT. To do so, we first define the empirical spectral distribution

for the sample covariance matrix as follows:
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Definition 3.1. (Empirical Spectral Distribution, ESD) Suppose that the sample covariance

matrix S defined in (3.1) is a p × p matrix with eigenvalues {λ j : j = 1, 2, · · · , p}. If all

eigenvalues are real, the empirical spectral distribution function, FS , of the eigenvalues {λ j} for

the sample covariance matrix, S , is

FS (x) =
1

p
♯{ j ≤ p : λ j ≤ x} , (3.2)

where ♯E is the cardinality of the set E.

One of the main problems in LDRMT is to investigate the convergence of the ESD for the

sequence Fn = FS n for a given sequence of random matrices {S n}. The limit distribution F

of Fn, which is usually nonrandom, is called the limiting spectral distribution (LSD) of the

sequence of {S n}. Here, we first introduce one of the most powerful tools—the well-known

Stieltjes transform as follows:

Definition 3.2. (Stieltjes transform) The Stieltjes transform of a measure F is

m(z) =

∫
1

x − z
dF(x), z ∈ C+,

where C+ � {z : z ∈ C,ℑ(z) > 0} is the set of complex numbers with a positive imaginary part.

Applying the Stieltjes transform, the convergence of the ESD Fn could be reduced to the

convergence of mn under some mild conditions where

mn =

∫
1

x − z
dFn(x) =

1

n

p∑

i=1

1

λi − z
=

1

n
tr(S n − zI)−1 . (3.3)

From (3.3), one could easily find that the Stieltjes transform connects the ESD of the covariance

matrix and its eigenvalues.

As as accompaniment to the sample covariance matrix S n, we refer to S
n
= 1

n

∑n
k=1(xk −

x)T (xk − x) as the companion matrix of S n. It is obvious that both S
n

and S n have identical

nonzero eigenvalues, and therefore, we obtain

F
n
(x) = (1 − p

n
)δ0 +

p

n
Fn(x) ,

where F
n

and Fn are, respectively, the ESDs of S
n

and S n. Taking the Stieltjes transform on

both sides of the equation above, we get

mn(z) = −1 − p/n

z
+

p

n
mn(z) .

We denote F
n
, m

n
, F, and m as the companion versions of their corresponding spectral

distributions and Stieltjes transforms. In the development of the theory for covariance matrices,
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one remarkable work is Silverstein (1995), who studies the behavior of the LSD for a sample

covariance matrix by connecting it with the LSD of the corresponding population covariance

matrix as shown in the following proposition:

Proposition 3.1. [Sliverstein (1995)] Suppose that yk = (y1k, y2k, · · · , ypk)
T (k = 1, 2, · · · , n)

are i.i.d. random vectors with zero mean and identity covariance matrix. Assume that Σn is

a p × p nonrandom Hermitian and nonnegative definite matrix and the empirical distribution

FΣn converges almost surely to a probability distribution function H on [0,∞] as n → ∞. Set

xk = µ + Σ
1/2yk. If p = p(n) with p/n → y > 0 as n → ∞, then the ESD FS n converges in

distribution almost surely to a nonrandom distribution function F, whose companion Stieltjes

transform m(z) is the unique solution from

z = − 1

m
+ y

∫
tdH(t)

1 + tm
. (3.4)

Although Proposition 3.1 does not provide explicit expressions of H and F, the expressions

of most of their analytic behaviors can be derived from applying equation (3.4), especially

when some important properties only involve the equation on the real line (Silverstein and

Choi, 1995). The following proposition is one of them:

Proposition 3.2. [Silverstein and Choi (1995)] For LSD F, we let S F denote its support and

S c
F

denote the complement of its support. If u ∈ S c
F
, then m = m(u) satisfies:

a. m ∈ R\{0},

b. (−m)−1 ∈ S c
H

, and

c. dz/dm > 0.

Conversely, if m satisfies (a)-(c), then u = z(m) ∈ S c
F

.

Suppose that a sequence of sample covariance matrices have LSD F with support S F . Since

S F is a closed subset of the real field R, 1/(x− u0) is bounded in S F for any u0 ∈ S c
F
. Define the

generalized Stieltjes transform (GST) of F to be

m(u) =

∫
1

(x − u)
dF(x), u ∈ S c

F ,

we can then express the companion GS T of F (denoted by m(u)) as:

m(u) = −1 − y

u
+ y

∫
1

x − u
dF(x) , ∀u ∈ S c

F\{0} , (3.5)

where y is the limit ratio of population size to sample size p/n. We state the following proposi-

tion, which is useful in the estimation of the high-dimensional Markowitz MV optimization:
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Proposition 3.3. [ Li, Chen, Qin, Yao, and Bai (2013) ] Under the conditions of Proposition

3.1, we denote m
n
(u) and m(u) as the companion GST of FBn and its limit F. In addition, we let

U = lim infn→∞ S c
Fn
\{0} and its interior be

◦
U. Then, for any u ∈

◦
U, we have

a. m
n
(u) converges to m(u) almost surely;

b. m(u) is a solution to equation:

u(m) = − 1

m
+ y

∫
t

1 + tm
dH(t) ; (3.6)

c. under the restriction of du/dm > 0, the solution is unique;

d. for any interval [a, b] with 0 < a < b, H is uniquely determined by {(u,m) : m ∈ [a, b]};
and

e. if H has finite support and [a, b] is an increasing interval of u(m), then H is uniquely

determined by {(u,m) : m[a, b]}.

Applying Propositions 3.1 to 3.3, we obtain a method to estimate the eigenvalues of the

population covariance matrix. We will discuss the theory in the next section.

4 Markowitz Mean-Variance Optimization Estimation

In this section, we first introduce the traditional plug-in and newly developed bootstrap-corrected

estimators. Thereafter, we will develop the spectral-corrected estimators for the optimal return

and its asset allocation. The plug-in estimators are intuitively constructed by plugging the sam-

ple mean and sample covariance matrix into the formula of the theoretic optimal return as shown

in Proposition 2.1, whereas the bootstrap-corrected estimators are constructed by employing the

bootstrap estimation technique. In this paper we propose the spectral-corrected estimators for

the estimation in which the covariance matrix is estimated by the LDRMT. This is a key tech-

nique of improving the performance of our proposed estimators. The details are given in the

following subsections.

4.1 Plug-In Estimator

Proposition 2.1 provides the solution for the optimization problem stated in (2.1). In practice,

the parameters µ and Σ are unknown. A simple and natural way to estimate µ and Σ is to use

the corresponding sample mean x and sample covariance matrix S , respectively. Thereafter, by
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plugging the sample mean x and the sample covariance matrix S into the formulae of the asset

allocation c in Proposition 2.1, we obtain the estimates:

R̂p = ĉT
p x ,

ĉp =



S −1x√
x

T
S −1x

if σ01T S −1x√
x

T
S −1x
< 1,

S −11
1T S −11

+ b̂p

(
S −1x − 1T S −1x

1T S −11
S −11

)
if σ01T S −1x√

x
T

S −1x
> 1,

(4.1)

for the optimal return and its corresponding allocation in which

b̂p =

√
1T S −11σ2

0
− 1

x
T
S −1x1T S −11 − (1T S −1x)2

.

For simplicity, we call R̂p the “plug-in return” and ĉp the “plug-in allocation.” The “plug-in”

return, R̂p, has been used as the traditional return estimator after Markowitz introduce the MV

portfolio optimization theory. This procedure is very simple but academics and practitioners

have found that this estimate could do more harm than good and its estimate is not even as ef-

fective as an equally weighted portfolio estimate (e.g., Frankfurter, Phillips, and Seagle, 1971).

In addition, Bai, Liu, and Wong (2009,2009a) have shown that the traditional return estimate is

always larger than its theoretical value when n and p are large and the ratio of the dimension

to sample size p/n is not small. They call this problem “over-prediction.” Readers may also

refer to Figure 1 for how severe the “over-prediction” is when p and n are large. We note that

although x is a good estimate of µ and ĉp is close to c (see Section 5 for the findings), R̂p = ĉpx

is not a good estimate of cµ. This is because in the expression of ĉp, the eigenvalues of S are

working on the p entries of a vector with x. So, when we compare them one by one and use

the norm of the two-vector difference, it is not very big. But when we compute the return, we

actually sum the inverse of the eigenvalues of S . So it is natural to get an R̂p that is much larger

than R even though ∥ĉp − c∥.
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Figure 1: Empirical and theoretical optimal returns for different numbers of assets
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Solid line—the theoretical optimal return (R);

Dashed line—the plug-in return (R̂p).

In this paper we establish the following theorem to explain the “over-prediction” phenomenon

by analyzing the limiting behaviors of x
T
S −1

n x, 1T S −1
n x, and 1T S −1

n 1:

Theorem 4.1. Suppose that

a. Yp = (y1, · · · , yn) = (yi, j)p,n in which yi, j (i = 1, · · · , p, j = 1, · · · , n) are i.i.d. random

variables with Eyi j = 0, E|yi j|2 = 1, E|yi j|4 < ∞, and xk = Σ
1/2
p yk for each n and for

k = 1, 2, · · · , n;

b. Σp = UpΛpU∗p is nonrandom Hermitian and nonnegative definite with its spectral norm

bounded in p where

Λp = diag( λ1, · · · , λ1︸      ︷︷      ︸, λ2, · · · , λ2︸      ︷︷      ︸, · · · , λL, · · · , λL︸      ︷︷      ︸ ),

p1, p2, · · · , pL

λ1 > λ2 > · · · > λL, and Up = (Up1
,Up2
, · · · ,UpL

); and

c. for any ap, bp ∈ Cp = {x ∈ Cp}, limp→∞
p

n
= y ∈ (0,∞), and aT

p Upi
UT

pi
bp = di, i =

1, 2, · · · , L.

Then, as p, n→ ∞, we have

ap
T S −1

n bp −→
1

(1 − y)
ap

TΣ−1bp

where S n =
1
n
Σ1/2XpXT

pΣ
1/2.

Applying Theorem 4.1, we obtain the following theorem for the plug-in return:

11



Theorem 4.2. Under the conditions stated in Theorem 4.1, as p, n → ∞ and p/n → y, the

plug-in return R̂p = ĉT
p x could be expressed as:

R̂p �



R̂
(1)
p =

√
µTΣ−1µ

1−y
if 1

1−y

σ01TΣ−1µ√
µTΣ−1µ

< 1 (Condition 1),

R̂
(2)
p =

1TΣ−1µ

1TΣ−11
+ b̃

(
µTΣ−1µ − 1TΣ−1µ

1TΣ−11
1TΣ−1µ

)
if 1

1−y

σ01TΣ−1µ√
µTΣ−1µ

> 1 (Condition 2),

where γ = 1/(1 − y) and

b̃ =

√
1TΣ−11σ2

0
−

√
1 − y

µTΣ−1µ1TΣ−11 − (1TΣ−1µ)2
.

Obviously R̂p > R when n, p→ ∞ and p/n→ y ∈ (0, 1). However, when y is close to zero,

R̂p is close to the theoretical optimal return. This property is illustrated by Table 5 and Figure 1.

There are two problems for the plug-in estimation: one problem is that the conditions of R̂p are

not the same as those of the theoretical return. Obviously, Condition 1 in Theorem 4.1 implies

that the condition in (2.2) and Condition 2 in Theorem 4.1 include two situations: the first one

is that 1 − y < σ01TΣ−1µ√
µTΣ−1µ

< 1 belongs to the condition in (2.2), and
σ01TΣ−1µ√
µTΣ−1µ

> 1 belongs to the

condition in (2.5). This means that the plug-in estimation may select R̂
(1)
p as the return when

(2.5) is correct. The other problem is that R̂
(1)
p is

√
γ times bigger than the real optimal return,

while R̂
(2)
p is bigger than but may not be

√
γ times bigger than the theoretical optimal return.

4.2 Bootstrap-Corrected Estimation

To circumvent this limitation, Bai, Liu, and Wong (2009, 2009a) propose a bootstrap technique

to circumvent the limitation of the “plug-in” estimators. They use the parametric approach of

the bootstrap methodology to avoid possible singularity of the covariance matrix estimation in

the bootstrap sample. We describe the details of this procedure as follows: First, a resample χ∗ =

{x∗
1
, · · · , x∗n} is drawn from the p-variate normal distribution with mean x and covariance matrix

S defined in equation (3.1). Then, invoking Markowitz’s optimization procedure again on the

resample χ∗, we obtain the “bootstrapped plug-in allocation,” ĉ∗p, and the “bootstrapped plug-in

return,” R̂∗p = ĉ∗Tp x
∗
, where x

∗
=

∑n
1 x∗

k
/n. Before we carry on the discussion, we first state

the following proposition, which is one of the basic theoretical foundations for Markowitz’s

optimization estimation:

Proposition 4.1. Assume that y1, · · · , yn are n independent random p-vectors of i.i.d. entries

with zero mean and identity variance. Suppose that xk = µ + zk with zk = Σ
1
2 yk where µ is an

unknown p-vector and Σ is an unknown p × p covariance matrix. Also, we assume that the

12



entries of yk’s have finite fourth moments and as p, n→ ∞ and p/n→ y ∈ (0, 1), we have

µ
TΣ−1
µ

n
−→ a1 ,

1T
Σ−11

n
−→ a2 , and

1T
Σ−1
µ

n
−→ a3,

satisfying a1a2 − a2
3
> 0. Then, with probability 1, we have

lim
n→∞

R̂p√
n
=



√
γa1 > lim

n→∞

R(1)

√
n
=
√

a1 when a3 < 0,

σ0

√
γ(a1a2−a2

3
)

a2
> lim

n→∞

R(2)

√
n
= σ0

√
a1a2 − a2

3

a2

when a3 > 0 ,

where R(1) and R(2) are the returns for the two cases given in Proposition 2.1, respectively,

γ =
∫ b

a

1
x
dFy(x) = 1

1−y
> 1, a = (1 − √y)2, and b = (1 +

√
y)2.

Applying this proposition, one could conclude that when n is large enough, one could obtain

R̂p ≃
√
γR. We note that the relation An ≃ Bn means that An/Bn → 1 in the limiting procedure

and we say that An and Bn are proportionally similar to each other in the sequel. If Bn is

a sequence of parameters, we shall say that An is proportionally consistent with Bn. As the

relationship R̂∗p ≃
√
γR̂p is its dual conclusion, one could then obtain the following equation:

√
γ(R − R̂p) ≃ R̂p − R̂∗p . (4.2)

Applying the bootstrap-corrected approach to equation (4.2), we could construct the esti-

mate

R̂b = R̂p +
1√
γ

(R̂p − R̂∗p) (4.3)

of the optimal return. In addition, rewriting (4.2), we get

√
γ
(
cTµ − ĉT x

)
≃ ĉT

p x − ĉ∗Tp x
∗

and obtain the estimate

ĉb = ĉp +
1√
γ

(ĉp − ĉ∗p) (4.4)

of the corresponding allocation. For simplicity, we call R̂b the “bootstrap-corrected return”

and ĉb the “bootstrap-corrected allocation.”

The main advantage of the bootstrap-corrected estimation is that its return estimate is consis-

tent with the optimal return, and thus, it circumvents the over-prediction problem of the plug-in

return estimate. Hence, one may believe that the bootstrap-corrected estimation is the best esti-

mation for the MV portfolio optimization. Nonetheless, to check how good an estimate of MV

portfolio optimization is, one should not only care about how good the estimation of the return
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is, but also about how good the estimation of the corresponding allocation is and how big their

risk is.1 According to our simulation in Section 5, we find that the bootstrap-corrected estima-

tion does not even outperform the plug-in estimation in both allocation and risk and sometimes

it could be even worse. We call the former the “allocation estimation” problem and the latter

the “risk” problem. Moreover, our simulation, we find that, yes, the bootstrap-corrected estima-

tion does overcome the “over-prediction” problem but it incurs an “under-prediction” problem.

The “under-prediction” is not too serious when the dimension to sample size ratio (y = p/n)

is not large but it becomes very serious when y is large. Thus, the bootstrap-corrected esti-

mation is not the best MV portfolio optimization. Thus, looking for the best MV portfolio

optimization estimation that could solve all of the defects in the MV portfolio optimization –

the “over-prediction,” “under-prediction,” “allocation estimation,” and “risk” problems – is still

a very important outstanding problem. It is our objective in this paper to obtain an estimation

that circumvents all four defects.

4.3 Spectral-Corrected Estimators

In this section, we will first discuss how to estimate the eigenvalues of the population covariance

matrix, and thereafter, we will develop the theory of the spectral-corrected estimators, which

will circumvent all the four defects—the over-prediction phenomenon, the under-prediction

problem, the allocation estimation problem, and the problem of big risk. We will discuss the

details in the following subsections.

4.3.1 Estimation of the eigenvalues of the population covariance and the population co-

variance matrix

Letting (s j)1≤ j≤p be the p eigenvalues of the population covariance matrix Σ, we consider the

spectral distribution (S.D.) H of Σ such that

H(x) =
1

p

p∑

j=1

δs j
(x) , (4.5)

in which δb is the Dirac point measure at b. It is obvious that the estimation of the eigenvalues

of Σ could be converted to the estimation of the S.D. of H as shown in (4.5).

Bai, Chen, and Yao (2010) provide a method to estimate the S.D. of H, when the popu-

lation spectrum is of finite support. They prove that their proposed estimate is consistent and

asymptotically Gaussian when the size k of the limiting support is fixed and known. In addition,

when the order k of the model is unknown, they incorporate a cross-validation procedure in their

estimation method to select the unknown model dimension. They also construct the moment

1Readers may refer to equation (5.3) for the definition of risk.
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relationship between the limits of ESD and the population spectral distribution (PSD), and

then develop the moment estimation. In addition, by using the equations of the limiting spectral

distribution of the sample covariance matrix and by adopting the Stietjes transform tools, Li,

Chen, Qin, Yao, Bai (2013) develop a series of new techniques to provide consistent estimation

for the population spectrum distribution. We state the steps to estimate H, the eigenvalues of

the population covariance matrix, as follows:

Step 1: Set B = 1
n
XXT ;

Step 2: compute eigenvalues of matrix B, denoted as λ1 ≤ λ2 ≤ · · · ≤ λp;

Step 3: put B in formula (3.6) to obtain

m(u) = −1 − y

u
+ y

∫
1

x − u
dFB(x), ∀u ∈ A ≡ (−∞, λ1) ∪ (λp,+∞) \ {0};

Step 4: given {u1, u2, · · · , uI} ⊂ A, we get {m
1
, · · · ,m

I
} = {m(u1), · · · ,m(uI)}; and

Step 5: compute Ĥ such that

Ĥ = arg min
H

I∑

i=1

(
u(m

i
,H) − ui

)2
. (4.6)

Then, the S.D. H of Σ can be estimated by Ĥ as shown in (4.6).

From the estimation of the S.D. H of Σ in the above steps, we obtain the eigenvalue estima-

tors â1 ≥ â2 ≥ · · · ≥ âp. According to the spectral theory, we have

S = VΛ̃VT , (4.7)

where Λ̃ = diag(λ̃1, · · · , λ̃p) with λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃p and the column vectors of V are the

orthogonal eigenvectors of S with respect to λ̃1, · · · , λ̃p. Suppose that Λ̂ = diag{â1, â2, · · · , âp}
in which â1 ≥ â2 ≥ · · · ≥ âp are the estimations of the eigenvalues for matrix Σ; we put Λ̂ in

equation (4.7) and obtain the spectral-corrected covariance

Σ̂s = VΛ̂VT . (4.8)

The spectral-corrected covariance in (4.8) could be used in the development of the “best” opti-

mal estimation. We will discuss the issue in the following subsections.
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4.3.2 Estimation of the optimal return and allocation

After estimating the spectral-corrected covariance Σ̂s from (4.8) and from the steps discussed in

Section 4.3.1, one could plug the sample mean vector x and the spectral-corrected covariance

Σ̂s into the formulae of the asset allocation c in Proposition 2.1 to obtain

ĉs =



σ0Σ̂
−1
s x√

x
T
Σ̂−1

s x
if

σ01T Σ̂−1
s x√

x
T
Σ̂−1

s x
< 1,

Σ̂−1
s 1

1T Σ̂−1
s 1
+ b̂s

(
Σ̂−1

s x − 1T Σ̂−1
s x

1T Σ̂−1
s 1
Σ̂−1

s 1

)
if

σ01T Σ̂−1
s x√

x
T
Σ̂−1

s x
> 1,

(4.9)

where

b̂s =

√√
1T Σ̂−1

s 1σ2
0
− 1

x
T
Σ̂−1

s x1T Σ̂−1
s 1 − (1T Σ̂−1

s x)2
.

Since the estimator Σ̂s is obtained by estimating the eigenvalues of the population covariance,

we call ĉs the spectral-corrected allocation. The corresponding return can be estimated by

R̂s = ĉT
s x

which we call the spectral-corrected return. It can also be expressed as

R̂s =



σ0

√
x

T
Σ̂−1

s x if
σ01T Σ̂−1

s x√
x

T
Σ̂−1

s x
< 1 ,

x
′
Σ̂−1

s 1

1T Σ̂−1
s 1
+ b̂s

(
x
′
Σ̂−1

s x −
(
1T Σ̂−1

s x
)2

1T Σ̂−1
s 1

)
if

σ01T Σ̂−1
s x√

x
T
Σ̂−1

s x
> 1 .

(4.10)

In addition, the risk of the spectral-corrected allocation can be defined as

Risks
c = ĉT

s Σĉs

=



σ2
0
x
′
Σ̂−1

s ΣΣ̂
−1
s x

x
T
Σ̂−1

s x
if

σ01T Σ̂−1
s x√

x
T
Σ̂−1

s x
< 1 ,

[
A

T + b̂s

(
B

T + CT
)]
Σ
[
A + b̂s (B + C)

]
if

σ01T Σ̂−1
s x√

x
T
Σ̂−1

s x
> 1 ,

(4.11)

which we callspectral-corrected risk. Here A =
Σ̂−1

s 1

1T Σ̂−1
s 1

, B = Σ̂−1
s x and C =

1T Σ̂−1
s x

1T Σ̂−1
s 1
Σ̂−1

s 1.

4.3.3 The limiting behavior of the spectral-corrected return

In the previous two subsections, we developed the theory for the construction of the spectral-

corrected estimation. Now, we turn to comparing the performance of the spectral-corrected esti-

mation with that of the plug-in and bootstrap-corrected estimations. Does the spectral-corrected

return get closer to the theoretical optimal return? Does the spectral-corrected allocation also get

closer to the theoretical optimal allocation? Is the spectral-corrected risk smaller and bounded
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by an acceptable level? In this subsection and the next subsection we will explore the answers

of the above questions.

We start our discussion with R̂s. From equation (4.10), we know that x
′
Σ̂−1

s x, 1′Σ̂−1
s x, and

1′Σ̂−1
s 1 are the main components in the formula of the spectral-corrected return. Thus, we only

need to study the limit of ap
T Σ̂−1

s bp that enables us to get the limits of the above-mentioned

items under some regularity conditions. This is because both ap and bp could be x/∥x∥ and

1/
√

p, and thus, studying the limit of ap
T Σ̂−1

s bp is as good as studying the limits of x
′

∥x∥ Σ̂
−1
s

x
∥x∥ ,

1′√
p
Σ̂−1

s
x
′

∥x∥ , and 1′√
p
Σ̂−1

s
1′√

p
. To do so, we first establish the following theorem:

Theorem 4.3. If

a. Yp = (y1, · · · , yn) = (yi, j)p,n in which yi, j (i = 1, · · · , p, j = 1, · · · , n) are i.i.d. random

variables with Eyi j = 0, E|yi j|2 = 1, E|yi j|4 < ∞, and xk = Σ
1/2
p yk for each n and for

k = 1, · · · , n;

b. Σp = UpΛpUT
p is nonrandom Hermitian and nonnegative definite with its spectral norm

bounded in p where

Λp = diag( λ1, · · · , λ1︸      ︷︷      ︸, λ2, · · · , λ2︸      ︷︷      ︸, · · · , λL, · · · , λL︸      ︷︷      ︸ ),

p1, p2, · · · , pL

(4.12)

λ1 > λ2 > · · · > λL, Up = (Up1
,Up2
, · · · ,UpL

), and limpi→∞
pi

n
= yi ∈ (0,∞); and

c. for the sample covariance matrix S n = VpΛ̃VT
p expressed in the form as shown in equation

(3.1), the limiting spectral distribution is spectral separated,

then, for any pair of vector sequences {ap}, {bp} ∈ Cp satisfying aT
p Upi

UT
pi

bp = di (i = 1, 2, · · · , L),

we have

ap
T B−1

p bp −→
L∑

k=1

dk

λk

L∑

j=1

λk(u j − λ j)

λ j(u j − λk)
� ςap,bp

a.s. ,

as p, n → ∞ and p/n → y, where Bp = VpΛpVT
p , u j is the solution of 1 + y

∫
t

u−t
dH(t) = 0 for

any j = 1, · · · , L with λ1 > u1 > λ2 > · · · > λL > uL > 0.

Applying both Theorem 4.3 and the consistent properties of the spectral estimation (Li,

Chen, Qin, Yao, Bai (2013)), we obtain the following theorem:

Theorem 4.4. Under the conditions stated in Theorem 4.3, as n, p → ∞ and p/n → y, we

have

ap
T Σ̂−1

s bp −→
L∑

k=1

dk

λk

L∑

j=1

λk(u j − λ j)

λ j(u j − λk)
� ςap,bp

a.s. (4.13)

where ςap,bp
is the limit of ap

T Σ̂−1
s bp .
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We note that ςap,bp
is a function of di, λi, and ui (i = 1, · · · , L) in which di, λi, and ui

(i = 1, · · · , L) are given in the conditions of Theorem 4.3. For ςap,bp
, it is interesting to find the

following result:
∣∣∣ap

TΣ−1bp

∣∣∣ <
∣∣∣ςap,bp

∣∣∣ <
∣∣∣∣∣∣
ap

TΣ−1bp

1 − y

∣∣∣∣∣∣ (4.14)

for any pair of unit vectors ap and bp, in which
ap

TΣ−1bp

1−y
is the limit of ap

T S −1
n bp as p, n → ∞

and p/n → y according to Theorem 4.1. In this paper we will evaluate the performance of

the spectral-corrected method by simulation and exhibit the simulation results in Tables 1 and

2. These tables report the values of ap
T S −1

n bp, ap
T Σ̂−1

s bp, and ap
TΣ−1bp for a pair of random

bounded vectors ap and bp. From these tables, we notice that

∣∣∣ap
TΣ−1bp

∣∣∣ <
∣∣∣∣ap

T Σ̂−1
s bp

∣∣∣∣ <
∣∣∣ap

T S −1
n bp

∣∣∣ . (4.15)

We also note that the limits of the middle and right terms in equation (4.14) are the corre-

sponding terms in equation (4.15), because
∣∣∣∣ap

T Σ̂−1
s bp

∣∣∣∣ → |ςap,bp
| and

∣∣∣ap
T S −1

n bp

∣∣∣ → |ap
TΣ−1bp|
(1−y)

as

p, n→ ∞ and p/n→ y.

When we compare the standard deviations (s.d.’s) of the terms in (4.14), we find that

ap
T Σ̂−1

s bp is much stabler than ap
T S −1

n bp for any y. When y increases from 0.1 to 0.9, the

performance of both ap
T Σ̂−1

s bp and ap
T S −1

n bp gets worse, but the performance of ap
T Σ̂−1

s bp im-

proves greatly by comparison with ap
T S −1

n bp, not only because the mean of the former is closer

to the theoretical value, but also the s.d. of the former is smaller and the estimation is more sta-

ble than that of S . In addition, our simulation shows that the inequalities in (4.14) hold. Thus,

we recommend that academics and practitioners use the spectral-corrected estimation in their

analysis. To obtain further analysis, we first establish the following theorem:

Theorem 4.5. Under the conditions stated in Theorem 4.3, if

(
1√
p
, 1√

p

)
,

(
1√
p
, µ∥µ∥

)
, and

(
µ

∥µ∥ ,
µ

∥µ∥

)

belong to

{
(υ1, υ2) : υT

1 Upi
UT

pi
υ2 = di ∈ R, i = 1, · · · , L,max {∥υ1∥, ∥υ2∥} ≤ M(> 0)

}
,

σ0 = ξσ0
/
√

p, ∥µ∥/√p = ξµ + o(1), then, as p, n→ ∞ and p/n→ y, we have

a.

1′Σ̂−1
s 1

p
−→ ς1,1 ,

1′Σ̂−1
s µ√

p∥µ∥ −→ ς1,µ , and
µ′Σ̂−1

s µ

∥µ∥2 −→ ςµ,µ , (4.16)

b.

1′Σ̂−1
s x

√
p∥x∥ −→ ς1,µ and

x
′
Σ̂−1

s x

∥x∥2 −→ ςµ,µ , (4.17)

where ς1,1, ς1,µ, and ςµ,µ are defined in (4.13).
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Now, we turn to analyzing the limit of the spectral-corrected return R̂s defined in (4.10).

Suppose σ0 = ξσ0
/
√

p. As p, n → ∞ and p/n → y, we first obtain the limit of the condition

stated in (4.10) as follows:

σ01T Σ̂−1
s x

√
x

T
Σ̂−1

s x

=
ξσ0

1T

√
p
Σ̂−1

s
x
∥x∥√

x
T

∥x∥ Σ̂
−1
s

x
T

∥x∥

−→ ξσ0

ς1,µ

ςµ,µ
.

For the spectral-corrected return stated in (4.10), the first value of R̂s possesses the following

limit property:

σ0

√
x

T
Σ̂−1

s x = ξσ0

√
x

T
Σ̂−1

s x

∥x∥2 · ∥x∥
2

p
−→ ξσ0

ξµ
√
ςµ,µ as p, n→ ∞ and p/n→ y.

The second value of R̂s in (4.10) becomes

R̂s =
x

T
Σ̂−1

s 1

1T Σ̂−1
s 1
+ b̂s

x
T
Σ̂−1

s x −
(
1T Σ̂−1

s x
)2

1T Σ̂−1
s 1



=
∥x∥√

p

x
T

∥x∥ Σ̂
−1
s

1√
p

1√
p

T
Σ̂−1

s
1√
p

+ b̂s∥x∥2


x

T

∥x∥ Σ̂
−1
s

x

∥x∥ −

(
1√
p

T
Σ̂−1

s
x
∥x∥

)2

1√
p

T
Σ̂−1

s
1√
p


.

Here, as p, n→ ∞ and p/n→ y, we have

b̂s∥x∥2 = ∥x∥2
√√

1T Σ̂−1
s 1σ2

0
− 1

x
T
Σ̂−1

s x1T Σ̂−1
s 1 − (1T Σ̂−1

s x)2

=
∥x∥√

p

√√√√√ 1√
p

T
Σ̂−1

s
1√
p
ξσ0
− 1

x
∥x∥

T
Σ̂−1

s
x
∥x∥

1√
p

T
Σ̂−1

s
1√
p
− ( 1√

p

T
Σ̂−1

s
x
∥x∥)

2

−→ ξµ

√
ς1,1ξσ0

− 1

ςµ,µς1,1 − (ς1,µ)2
.

Thus, as p, n→ ∞ and p/n→ y, we obtain

R̂s −→ ξµ
ς1,µ

ς1,1

+ ξµ

√
ς1,1ξσ0

− 1

ςµ,µς1,1 − (ς1,µ)2

(
ςµ,µ −

(ς1,µ)
2

ς1,1

)
. (4.18)

According to the above analysis, we obtain the following theorem:

Theorem 4.6. Under the conditions and definitions stated in Theorem 4.5, as n, p → ∞ and

p/n→ y, we have

R̂s −→


ξσ0
ξµ
√
ςµ,µ if ξσ0

ς1,µ/ςµ,µ < 1 ,

ξµ
ς1,µ
ς1,1
+ ξµ

√
ς1,1ξσ0

−1

ςµ,µς1,1−(ς1,µ)2

(
ςµ,µ − (ς1,µ)

2

ς1,1

)
if ξσ0

ς1,µ/ςµ,µ > 1 .
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In this paper we hypothesize the conjecture that R̂s is proportionally consistent with the

theoretical optimal return R defined in (2.3) or (2.6) under some regularity conditions. The

results in Theorem 4.6 help us to check this conjecture. To complete the work, we establish the

limit of the theoretical optimal return as shown in the following theorem:

Theorem 4.7. Under the conditions of Theorem 4.5, as p, n→ ∞ and p/n→ y, we have

a. the limits of
1′Σ−11

p
,

1′Σ−1µ√
p∥µ∥ , and

µ′Σ−1µ

∥µ∥2

exist, and

b. the theoretical optimal return R satisfies

R −→



ξσ0
ξµ

√
ς0
µ,µ if ξσ0

ς0
1,µ
/ς0
µ,µ < 1,

ξµ
ς0

1,µ

ς0
1,1

+ ξµ

√
ς0

1,1
ξσ0
−1

ς0
µ,µς

0
1,1
−(ς1,µ)2

(
ς0
µ,µ −

(ς0
1,µ

)2

ς0
1,1

)
if ξσ0

ς0
1,µ
/ς0
µ,µ > 1,

where ς0
1,1

, ς0
1,µ

, and ς0
µ,µ are the corresponding limits in (a).

From Table 1, we find that (ς1,1, ς1,µ, ςµ,µ) is very close to (ς0
1,1
, ς0

1,µ
, ς0
µ,µ). Thus, Theorems

4.6 and 4.7 and our simulation results support the conjecture that R̂s is proportionally consistent

with the theoretical optimal return R under some regularity conditions.

4.3.4 The limiting behavior of the spectral-corrected risk

In this paper, we also hypothesize the conjecture that the spectral-corrected risk Risks
c (defined

in equation (4.11)) is close to the Risk of the theoretical optimal return under some regularity

conditions. To examine this conjecture, in this section we will study the limiting behavior of the

spectral-corrected risk. To do so, from (4.11), we only need to examine the limiting behavior of

ap
T Σ̂−1

s ΣΣ̂
−1
s bp as stated in the following theorem:

Theorem 4.8. Suppose that the projections on each U j ( j = 1, · · · , L) subspace of vectors ap

and bp only have finite nonzero entries. Then, under the same conditions of Theorem 4.3, we

have

ap
T B−1

p ΣB−1
p bp −→

L∑

k=1

dk

λk


L∑

j=1

λk(u j − λ j)

λ j(u j − λk)



2

� ϱap,bp
a.s. (4.19)

From Theorem 4.8, we notice that ϱap,bp
depends only on the information of dk, λk, and

uk (k = 1, · · · , L) about the population. Since it is difficult to obtain the theoretical result for

the comparison of ap
T S −1

n ΣS −1
n bp, ap

T Σ̂−1
s ΣΣ̂

−1
s bp, and ap

TΣ−1bp for each pair of the uniform
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bounded vector ap, bp, in this paper we conduct a simulation for the comparison and report the

results in Tables 3 and 4. Table 3 shows that, compared with ap
T S −1

n ΣS −1
n bp and ap

T Σ̂−1
s ΣΣ̂

−1
s bp,

the limit of ap
T Σ̂−1

s ΣΣ̂
−1
s bp is much closer to the real value ap

TΣ−1bp for any y. From the results

in Table 4, one could easily observe that ap
T Σ̂−1

s ΣΣ̂
−1
s bp converges. Thus, we establish the

following theorem for the spectral-corrected risk Risks
c:

Theorem 4.9. Under the conditions of Theorem 4.5, if p, n→ ∞ and p/n→ y, then

a. the limits of

1T Σ̂−1
s ΣΣ̂

−1
s 1

p
,

1T Σ̂−1
s ΣΣ̂

−1
s µ√

p∥µ∥ , and
µT Σ̂−1

s ΣΣ̂
−1
s µ

∥µ∥2 ,

exist and they are denoted by ϱ1,1, ϱ1,µ and ϱµ,µ , and

b.

1T Σ̂−1
s ΣΣ̂

−1
s 1

p
−→ ϱ1,1,

1T Σ̂−1
s ΣΣ̂

−1
s X

√
p∥X∥

−→ ϱ1,µ,
X

T
Σ̂−1

s ΣΣ̂
−1
s X

∥X∥2
−→ ϱµ,µ.

In addition, we have

c. when ξσ0
ς1,µ/ςµ,µ < 1,

p · Risks
c → ξσ0

ϱµ,µ

ςµ,µ
a.s., and

d. when ξσ0
ς1,µ/ςµ,µ > 1, p · Risks

c almost surely converges to

ϱ1,1

ς1,1

+
ϱ1,1

ξµς1,1

√
ς1,1ξσ0

− 1

ςµ,µς1,1 − (ς1,µ)2
+

√
ς1,1ξσ0

− 1

ςµ,µς1,1 − (ς1,µ)2

ϱµ,µ − 2
ς1,µϱ1,µ

ς1,1

+

(
ς1,µ

ς1,1

)2

ϱ1,1

 .

We note that in Theorem 4.9, if we suppose that σ0 =
ξσ0√

p
, then we have p · Risk → ξσ0

as

p, n → ∞ and p/n → y. We also note that the limit of p · Risks
c is not equal to that of p · Risk.

However, it is closer to that of p · Risk than the other two risks.

In addition, from Table 4, we observe that (ϱ1,1, ϱ1,µ, ϱµ,µ) is very close to (ς0
1,1
, ς0

1,µ
, ς0
µ,µ).

Thus, Risks
c is close to the theoretical risk. Theorems 4.6, 4.7, and 4.9 and our simulation

results support our conjecture that Risks
c is close to the Risk of the theoretical optimal return

under some regularity conditions.

5 Simulation Study

In this section, we will conduct simulation to compare (1) how good the performance of the

spectral-corrected return R̂s is in comparison with that of the plug-in return R̂p and bootstrap-

corrected return R̂b, (2) how good the performance of the spectral-corrected allocation ĉs in
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comparison with that of the plug-in allocation ĉp and bootstrap-corrected allocation ĉb, and (3)

what the risks of the plug-in return R̂p, bootstrap-corrected return R̂b, and spectral-corrected

return R̂s, and among them, which one is smallest.

In order to check how good the performance of the spectral-corrected return R̂s is in com-

parison with that of the plug-in return R̂p and bootstrap-corrected return R̂b, we define

dωR = Rω − R with ω = p, b, s (5.1)

in which we call ds
R

the spectral-corrected difference for the return, which is the difference

between the spectral-corrected optimal return estimate R̂s and the theoretic optimal return R.

The plug-in difference d
p

R
and bootstrap-corrected difference db

R
for the return are defined

similarly as stated in (5.1).

To check how good the performance of the spectral-corrected allocation ĉs is in comparison

with that of the plug-in allocation ĉp and bootstrap-corrected allocation ĉb, we define

dωc = ∥ĉω − c∥ with ω = p, b, s (5.2)

in which we call ds
c the spectral-corrected normed difference for the allocation, which is

the normed difference between the spectral-corrected optimal allocation estimate ĉs and the

theoretic optimal allocation c. The plug-in normed difference d
p
c and the bootstrap-corrected

normed difference db
c are defined similarly as stated in (5.2).

Among the risks of the plug-in return R̂p, bootstrap-corrected return, and spectral-corrected

return R̂s, to check which one is the smallest, we define

Riskωc = ĉ′ωΣĉω, with ω = p, b, s (5.3)

in which we call Riskb
c , Risk

p
c , and Risks

c the plug-in risk, bootstrap-corrected risk, and

spectral-corrected risk, respectively. We will also compare dωc , dω
R

, and riskωc for ω = p, b, s

with those for the theoretical optimal return R. They are dR
R, dc

c, and Riskc
c such that

dR
R = R − R = 0 , dc

c = ∥c − c∥ = 0 , and Riskc
c = c′Σc = 1 . (5.4)

Given a p-dimension nonzero vector µ = (µ1, · · · , µp)T and a positive definite matrix Σ =

(σi j), which is assumed to be a diagonal matrix for simplicity, we state the simulation procedure

as follows:

Step 1: For each round of N times simulation, we will first fix p and choose µ = (µ1, · · · , µp)T

in which each µi is generated from U(−1, 1). We will then select λ = (λ1, ..., λp), and

Weight =
(

p1

p
, ..., pL

p

)
. Thereafter, we set Σ = Λp in which Λp is defined in equation

(4.12).2 We will fix p, µ, and λ for each round of simulation.

2 Using λ and Weight as described here is suitable to all the simulation conducted in this paper.
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Step 2: Generate n vectors of returns r = (r1, · · · , rp)T for the p-branch of assets from a popula-

tion with mean µ and covariance matrix Σ.

Step 3: Compute the real optimal allocation c from (2.4) or (2.7) and return R from (2.3) or (2.6).

Step 4: Compute ĉω and R̂ω for ω = p, b, s.

Step 5: Compute dω
R

, dωc , and riskω for ω = p, b, s.

Step 6: Repeat Steps 2 to 5 N times.

Step 7: Compute the means and standard deviations of R̂ω, dω
R

, dωc , and riskω for ω = p, b, s for

each set of µ, λ, and Weight.

We conduct the simulation according to the above steps for each set of µ, λ and Weight and

exhibit in Table 5 the means and standard deviations of R̂ω, dω
R

, dωc , and riskω for ω = p, b, s. We

also display R, dR
R, dc

c, and Riskc
c for the theoretical optimal return R in the table for comparison.

In the three panels of Table 5, p is fixed and y increases from 0.1 to 0.9 for each given p.

Here, we compare the performance of the plug-in, bootstrap-corrected, and spectral-corrected

estimations under three different PSDs.

We first compare the performance of the plug-in return R̂p, bootstrap-corrected return R̂b,

and spectral-corrected return R̂s. From Panels A, B, and C of Table 5, one could notice that the

performance of the plug-in return R̂p is not good even for y = 0.1 and the mean of the plug-in

return is always higher than the real theoretical return R for any y and for any PSD, and thus, the

plug-in difference d
p

R
for the return is always positive, with d

p

R
increasing sharply as y increases.

This shows how serious the “over-prediction” problem is when one uses the plug-in return R̂p.

However, the s.d. of d
p

R
(or R̂p) is not too bad for y = 0.1 but it becomes worse when y increases.

From the table, we find that when y = 0.9, the mean of R̂p is higher than twice the value of R

and the s.d. is so big that we are not surprised that academics have commented that employing

R̂p could do more harm than good.

We turn to examining the performance of the bootstrap-corrected return R̂b. From Table 5,

we find that the performance of R̂b is reasonably good for small values of y, say, for y ≤ 0.2. Its

performance becomes worse when y increases but its performance is still better than that of R̂p.

From Table 5, we find that the mean of R̂b always underestimates the theoretical optimal return

because db
R

is always negative. We call this the “under-prediction” problem. We observe that

the absolute value of db
R

is less than 10% of R when y ≤ 0.6 in Panel A, when y ≤ 0.5 in Panel

B, and when y ≤ 0.4 in Panel C of Table 5. Nonetheless, the absolute value of db
R

is more than

30% of R when y = 0.8 and more than 80% of R when y = 0.9 in Panel A, more than 39% of

R when y = 0.8 and more than 94% of R when y = 0.9 in Panel B, and more than 55% of R
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when y = 0.8 and more than 115% of R when y = 0.9 in Panel C of Table 5. This shows that

R̂b does circumvent the “over-prediction” problem but it incurs an “under-prediction” problem,

especially for large values of y. In addition, from the table, we find that the s.d. of db
R

(or R̂b) is

higher than that of db
R

(or R̂p) uniformly for any value of y and for any PSD. Thus, we conclude

that the bootstrap-corrected return R̂b is still far from the ideal estimator for the optimal return

R.

We now turn to examining the performance of our proposed spectral-corrected return R̂s.

From Table 5, we find that the mean of R̂s is still smaller than R, and thus, there is still an

“under-prediction” problem for the spectral-corrected return. However, from the table, we find

that R̂s is so close to its theoretical optimal return R that ds
R

is as small as 0.01% of R and

less than 1.6% of R uniformly for any value of y from 0.1 to 0.9 and for any PSD. Thus, the

“under-prediction” problem is very minimal if there even is one. In addition, from the table

we find that the s.d. of ds
R

(or the s.d. of R̂s) is so small that it is as small as 1.3% of the value

of R and uniformly less than 6.4% of the value of R. The s.d. of ds
R

(R̂s) is uniformly much

smaller than those of d
p

R
and db

R
(R̂p and R̂b). Moreover, from Table 5, we find that the mean

of d
p

R
(db

R
) is as much as 12040 (10055) times ds

R
(ds

R
) while the s.d. of d

p

R
(db

R
) is as much as

257 (382) times ds
R

(ds
R
). Thus, we claim that our proposed spectral-corrected return R̂s could be

the best estimator for the high-dimensional Markowitz MV portfolio optimization. If it is not,

at least our proposed estimator enables academics and practitioners to get closer to obtaining

the best estimation for the high-dimensional MV Markowitz optimization problem, and thus,

we recommend that academics and practitioners use our proposed spectral-corrected return R̂s

in their estimation. In addition, our simulation also shows that the estimation of our proposed

spectral-corrected return R̂s and its standard deviation are stable for different values of sample

size n, dimension p, and their ratio p/n but not for R̂p or R̂b.

We turn to checking the “allocation estimation” problem by examining dωc defined in (5.2)

for ω = p, b, s. We first examine the performance of the plug-in allocation ĉp. From Table 5, we

find that although the plug-in estimation has a very serious “over-prediction” problem, it does

not have any “allocation estimation” problem or at least the “allocation estimation” problem

is not serious because d
p
c is doing very well. From the table, we find that the mean of d

p
c is

smaller than 0.1 for any y and for any PSD except the value at y = 0.9 in Panel C of Table 5, in

which case it is 0.13, which is still very small. In addition, most of its s.d.’s are smaller than 0.1

with the maximum of 0.23 at y = 0.9 in Panel C of Table 5, which is still very small. So, we

conclude that the plug-in estimators do not have an “allocation estimation” problem or at least

the “allocation estimation” problem is not serious.

On the contrary, although the bootstrap-corrected estimation is not serious for small values

of y, the problem is serious for large values of y. From Table 5, we find that the mean of db
c is
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less than 0.1 only for y ≤ 0.6 in Panels A and B and for y ≤ 0.4 in Panel C of Table 5. However,

the mean of db
c increases as y increases and it is higher than 1.2 (1.5, 2) for y = 0.9 in Panel

A (B, C) of Table 5. This is unacceptably high. In addition, the s.d. of ds
c is higher than 0.48

for y ≥ 0.7 in all panels, higher than 3 for y = 0.9 in all panels and as high as 4.83 for y = 0.9

in Panel C of Table 5. This is also unacceptably high. Thus, we conclude that the “allocation

estimation problem” is very serious for the bootstrap-corrected estimation for any large value

of y.

On the other hand, from Table 5, we find that sometimes the spectral-corrected allocation ĉs

does perform better than the plug-in allocation but, in general, the spectral-corrected allocation

does not perform as well as the plug-in allocation. Nonetheless, the spectral-corrected allocation

ĉs performs reasonably well because (1) nearly all of the means of ds
c are smaller than those of

db
c (except when y = 0.5 and 0.6 in Panel C of Table 5 in which case the difference is still very

minimal); (2) all of the s.d.’s of ds
c are smaller than those of db

c ; (3) the means of ds
c are less than

0.1 when y ≤ 0.7 (0.6, 0.4) in Panel A (B, C) and the biggest ds
c is still smaller than 0.26, which

is only 84% of the largest value of the mean of db
c ; and (4) the largest s.d. of ds

c is still less than

0.35, which is only 46% of the largest value of the s.d. of db
c . In addition, our simulation also

shows that the estimation of our proposed spectral-corrected allocation ĉs is stable because ds
c

and its standard deviation are stable for different values of sample size n, dimension p, and their

ratio p/n but not for ĉb. Thus, we conclude that there is no “allocation estimation” problem for

the spectral-corrected estimation or at least the “allocation estimation” problem is not serious.

Last, we study the risk problem for the three allocation estimations. We first study the risk

problem for the plug-in estimation. From Table 5, we find that the risk problem is not serious for

the plug-in estimation for any small value of y because the mean of risk
p
c is about 23% bigger

than the theoretical risk when y = 0.1 and it is still less than 2 for y = 0.2. However, when y

increases, the mean of risk
p
c increases sharply and it is around twice as big as the theoretical

risk when y = 0.3, and 10 times as big as the theoretical risk when y = 0.7 and it is more than

86 (83,77) times bigger than the theoretical risk when y = 0.9 in Panel A (B, C) of Table 5. The

s.d. of risk
p
c could be higher than 79. Since both the mean and the s.d. are unacceptably high

for any large value of y, we conclude that the risk problem is serious for the plug-in estimation

for any large value of y.

We turn to examining the risk problem for the bootstrap-corrected estimation. From Table

5, we find that the risk problem for the bootstrap-corrected estimation is even more serious than

the plug-in estimation because (1) the mean of riskb
c is uniformly higher than that of the mean

of risk
p
c for any value of y and for any PSD; (2) the s.d. of riskb

c is higher than that of risk
p
c for

more than half (14) of the cases; (3) when y increases, riskb
c increases even more sharply than

risk
p
c ; and (4) the mean and s.d. of riskb

c are as high as 151 and 170 (156 and 177, 166 and 188)
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for y = 0.9 in Panel A (B and C), respectively. Thus, we conclude that the risk problem for the

bootstrap-corrected estimation is even more serious than that for the plug-in estimation.

Finally, we examine the risk problem for our proposed spectral-corrected estimation. From

Table 5, we find that there is NO risk problem for the spectral-corrected estimation because (1)

when y = 0.1, risks
c is only around 7% (with s.d. around 0.03) bigger than the theoretical risk for

all panels; (2) when y increases, risks
c still increases but the speed is so slow that it is negligibl;

(3) the mean of the risks
c is still less than 2 for y ≤ 0.7 in Panel A, y ≤ 0.9 in Panels B and C;

(4) the mean of the risks
c is only 2.13 in Panel A, 1.82 in Panel B, 2.11 and 1.37 in Panel C for

y = 0.9; and the s.d. of the risks
c is as small as 0.03 for y = 0.1 in all panels, increases when y

increases, and is as high as 0.58, 0.48, and 0.28 for Panels A, B, and C for y = 0.9. In addition,

our simulation also shows that the estimation of risks
c in our spectral-corrected estimation is

stable because the estimate of risks
c and its standard deviation are stable for different values of

sample size n, dimension p, and their ratio p/n but not for risk
p
c or riskb

c . Thus, we conclude

that there is NO risk problem for the spectral-corrected estimation. Based on the above analysis,

we conclude that the spectral-corrected estimation could be the best estimation for the problem

of the high-dimensional Markowitz MV portfolio optimization or at least our approach enables

academics and practitioners to get closer to obtaining the best estimation for the problem.

6 Conclusions

The purpose of this paper is to solve the “Markowitz optimization enigma” by developing a new

covariance estimation to capture the essence of the portfolio selection. By using large dimen-

sional data analysis, we first theoretically prove that the plug-in return, obtained by plugging

the sample mean and sample covariance into the formulae of the optimal return, is always larger

than its theoretically optimal value under more general conditions when the number of assets is

large. We note that Bai, Liu, and Wong (2009, 2009a) have also proved that the plug-in return

is always larger than its theoretically optimal value but they only show that the plug-in return is
√
γ times bigger than the theoretical optimal return, while, in this paper, we develop more exact

and generalizable results. For example, we prove that under some situations the plug-in return

is
√
γ times bigger than the theoretical optimal return, while under other situations the plug-in

return is bigger than but may not be
√
γ times bigger than the theoretical optimal return.

In the Markowitz MV portfolio optimization problem, the key problem actually is how to

estimate the population covariance matrix accurately. In this paper, we introduce the spectral-

corrected covariance matrix to correct the sample covariance matrix and derive some very im-

portant theoretical results. We construct the spectral-corrected covariance Σ̂s as the estimation

of the population covariance matrix and provide the limiting behavior of the a′Σ̂sb for differ-
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ent bounded vectors a and b when p goes to infinity with n increasing proportionally. Our

simulations do demonstrate that a′Σ̂sb estimates a′Σb very well. According to the theory we

developed in this paper, we built up the spectral-corrected estimation that performs much better

than both the plug-in and the bootstrap-corrected estimations, not only for the return but also

for the allocation and the risk. Since our approach is easy to operate and implement in practice,

the entire efficient frontier of our estimates can be constructed analytically. Thus, our proposed

estimator facilitates the Markowitz MV optimization procedure, making it implementable and

practically useful. In addition, the essence of the portfolio analysis problem could be adequately

captured by our proposed approach. This greatly enhances the practical uses of the Markowitz

mean-variance optimization procedure.

Since our model includes the situation in which one of the assets is a riskless asset, the

separation theorem holds, and thus, our proposed return estimate is the optimal combination of

the riskless asset and the optimal risky portfolio. We further note that the other assets listed in

our model could be common stocks, preferred shares, bonds, and other types of assets so that

the optimal return estimate proposed in our paper actually represents the optimal return for the

best combination of riskless rate asset, bonds, stocks, and other assets. So, using the spectral-

corrected estimation will be a very good investment strategy for the best combination of riskless

rate asset, bonds, stocks, and other assets.

We remark that the returns being studied in the MV optimization procedure are usually

assumed to be normally distributed. However, many studies (see, e.g., Fama, 1963, 1965;

Clark, 1973; Blattberg and Gonedes, 1974; Fielitz and Rozelle, 1983; Fong and Wong, 2006)

conclude that the normality assumption in the distribution of a security or portfolio return is

violated. We further note that another contribution of our proposed approach is that we relax

the normality assumption in the underlying distribution for the return being studied in the MV

optimization procedure. More precisely, we relax the condition to the existence of the fourth

moments. Thus, our proposed spectral-corrected estimators could be obtained for the problem

of the high-dimensional Markowitz MV portfolio optimization when the returns of the assets

being studied could follow any distribution under the condition of the existence of the fourth

moments.

Last, we note that although we have developed many important theoretical results in this

paper, there are still some results for which we should conduct simulations to check their rela-

tionships. Thus, further research could include developing such relationships theoretically. We

also note that the theory developed in this paper could be applied to many related theories. For

example, Korkie and Turtle (2002) and Bai, Liu, and Wong (2009, 2009a) have established a

theory for the optimal return of self-financing portfolios. Academics could easily apply the es-

timation approach developed in this paper to extend their theory. In addition, although we claim
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that our estimation could be the best estimation, it might still be possible to get even better

one(s). Thus, further research could also include improving our estimation further and devel-

oping even better estimations. For example, El Karoui’s (2008) algorithm of estimating the

population eigenvalues of large dimensional covariance matrices and the nonlinear shrinkage

estimation of large-dimensional covariance matrices and their inverses developed by Ledoit and

Wolf (2012) could be extended further to fit some weaker conditions. If this could be done, ex-

tensions could also include incorporating their covariance estimation to develop a new estimate

for the high-dimensional Markowitz MV portfolio optimization.
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Table 1: Comparison of a′S −1
n b, a′Σ̂−1

s b, limp→∞,p/n→y a′Σ̂−1
s b, and a′Σ−1b.

Panel A: λ = (25, 10, 5, 1), Weight = (0.25, 0.25, 0.25, 0.25).

y a′S −1
n b

s.d. o f

a′S −1
n b

a′Σ̂−1
s b

s.d. o f

a′Σ̂−1
s b

a′Σ−1b
1−y

ςa,b a′Σ−1b

0.1 2.0667 0.1308 1.8832 0.0938 2.066 1.8857 1.86

0.2 2.3315 0.2095 1.9175 0.1330 2.325 1.9153 1.86

0.3 2.6678 0.3085 1.9482 0.1644 2.657 1.9497 1.86

0.4 3.1142 0.4673 1.9840 0.2065 3.1 1.9896 1.86

0.5 3.7495 0.7119 2.0253 0.2459 3.72 2.0370 1.86

0.6 4.7594 1.0897 2.0822 0.2783 4.65 2.0953 1.86

0.7 6.4346 1.8411 2.1402 0.3138 6.2 2.1661 1.86

0.8 9.6998 3.7428 2.2027 0.3458 9.3 2.2479 1.86

0.9 20.638 14.465 2.2479 0.4005 18.6 2.3540 1.86

Panel B: λ = (10, 5, 1), Weight = (0.4, 0.3, 0.3).

y a′S −1
n b

s.d. o f

a′S −1
n b

a′Σ̂−1
s b

s.d. o f

a′Σ̂−1
s b

a′Σ−1b
1−y

ςa,b a′Σ−1b

0.1 1.8914 0.1124 1.7159 0.0783 1.888 1.7161 1.7

0.2 2.1294 0.1921 1.7348 0.1149 2.125 1.7348 1.7

0.3 2.4432 0.3064 1.7574 0.1527 2.428 1.7567 1.7

0.4 2.8605 0.4222 1.7829 0.1719 2.833 1.7823 1.7

0.5 3.4308 0.5982 1.8105 0.1938 3.4 1.8126 1.7

0.6 4.3315 1.0416 1.8452 0.2431 4.25 1.8498 1.7

0.7 5.9039 1.6676 1.8846 0.2519 5.666 1.8943 1.7

0.8 8.9074 3.4104 1.9236 0.2736 8.5 1.9444 1.7

0.9 19.060 11.968 1.9514 0.2913 17 2.0066 1.7

Panel C: λ = (5, 3, 1), Weight = (0.4, 0.3, 0.3).

y a′S −1
n b

s.d. o f

a′S −1
n b

a′Σ̂−1
s b

s.d. o f

a′Σ̂−1
s b

a′Σ−1b
1−y

ςa,b a′Σ−1b

0.1 2.5216 0.1528 2.3017 0.1102 2.5185 2.3016 2.2666

0.2 2.8384 0.2550 2.3396 0.1563 2.8333 2.3421 2.2666

0.3 3.2562 0.4079 2.3862 0.2061 3.2380 2.3892 2.2666

0.4 3.8107 0.5633 2.4343 0.2265 3.7777 2.4435 2.2666

0.5 4.5773 0.8110 2.4757 0.2483 4.5333 2.5066 2.2666

0.6 5.7787 1.3933 2.5069 0.2810 5.6666 2.5809 2.2666

0.7 7.8695 2.2318 2.5382 0.2793 7.5555 2.6643 2.2666

0.8 11.881 4.5272 2.5699 0.2882 11.333 2.7502 2.2666

0.9 25.446 16.054 2.5890 0.2989 22.666 2.8458 2.2666

Note: p = 100 is the dimension of the population, y = p/n, N = 10000 is the number of simulation, λ is

the vector with the different eigenvalues of the population covariance matrix, and Weight is the weight

vector of the corresponding eigenvalues over the dimension p. Entries of a and b are generated from

the uniform distribution on (−1, 1). For easy comparison, we normalize a and b such that a′Σ̂b is fixed.

Readers may refer to footnote 2 in the text on how to use λ and Weight in the simulation.
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Table 2: Comparison of a′S −1
n b, a′Σ̂−1

s b, limp→∞,p/n→y a′Σ̂−1
s b and a′Σ−1b.

Panel A: y = 0.2, N = 10000, λ = (10, 5, 1), Weight = (0.4, 0.3, 0.3).

p a′S −1
n b

s.d. o f

a′S −1
n b

a′Σ̂−1
s b

s.d. o f

a′Σ̂−1
s b

a′Σ−1b
1−y

ςa,b a′Σ−1b

50 2.1370 0.2663 1.7351 0.1533 2.125 1.7348 1.7

100 2.1309 0.1927 1.7347 0.1069 2.125 1.7348 1.7

150 2.1276 0.1472 1.7336 0.0851 2.125 1.7348 1.7

200 2.1264 0.1236 1.7345 0.0715 2.125 1.7348 1.7

250 2.1281 0.1102 1.7343 0.0635 2.125 1.7348 1.7

300 2.1266 0.1015 1.7350 0.0585 2.125 1.7348 1.7

Panel B: y = 0.5, N = 10000, λ = (10, 5, 1), Weight = (0.3, 0.3, 0.4).

p a′S −1
n b

s.d. o f

a′S −1
n b

a′Σ̂−1
s b

s.d. o f

a′Σ̂−1
s b

a′Σ−1b
1−y

ςa,b a′Σ−1b

50 3.5076 0.9089 1.8167 0.2754 3.4 1.8126 1.7

100 3.4564 0.5949 1.8106 0.1823 3.4 1.8126 1.7

150 3.4349 0.4785 1.8099 0.1496 3.4 1.8126 1.7

200 3.4258 0.3999 1.8099 0.1278 3.4 1.8126 1.7

250 3.4157 0.3678 1.8098 0.1149 3.4 1.8126 1.7

300 3.4124 0.3181 1.8087 0.1003 3.4 1.8126 1.7

Panel C: y = 0.8, N = 10000, λ = (10, 5, 1), Weight = (0.3, 0.3, 0.4).

p a′S −1
n b

s.d. o f

a′S −1
n b

a′Σ̂−1
s b

s.d. o f

a′Σ̂−1
s b

a′Σ−1b
1−y

ςa,b a′Σ−1b

50 10.2870 6.2017 1.9282 0.3798 8.5 1.9481 1.7

100 9.2256 3.6183 1.9169 0.2676 8.5 1.9444 1.7

150 9.0281 2.4383 1.9138 0.2019 8.5 1.9456 1.7

200 8.8168 2.1477 1.9175 0.1793 8.5 1.9444 1.7

250 8.8046 1.9380 1.9177 0.1659 8.5 1.9451 1.7

300 8.7166 1.6673 1.9160 0.1444 8.5 1.9444 1.7

Note:p is the dimension of the population, y = p/n, N is the number of simulation, λ is the

vector with the different eigenvalues of the population covariance matrix, and Weight is the

weight vector of the corresponding eigenvalues over the dimension p. Entries of a and b are

generated from the uniform distribution on (−1, 1). For easy comparison, we normalize a and b

such that a′Σ̂b is fixed. Readers may refer to footnote 2 in the text on how to use λ and Weight

in the simulation.
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Table 3: Comparison of a′S −1
n ΣS −1

n b, a′Σ̂−1
s ΣΣ̂

−1
s b, limp→∞ a′Σ̂−1

s ΣΣ̂
−1
s b, and a′Σ−1b.

Panel A: λ = (25, 10, 5, 1), Weight = (0.25, 0.25, 0.25, 0.25).

y a′S −1
n ΣS −1

n b
s.d. o f

a′S −1
n ΣS −1

n b
a′Σ̂−1

s ΣΣ̂
−1
s b

s.d. o f

a′Σ̂−1
s ΣΣ̂

−1
s b

ϱa,b a′Σ−1b

0.1 2.5540 0.3291 2.0609 0.2072 1.9146 1.86

0.2 3.6663 0.6767 2.3280 0.3295 1.9848 1.86

0.3 5.5031 1.3299 2.6309 0.4554 2.0756 1.86

0.4 8.7847 2.8049 3.0013 0.6495 2.1930 1.86

0.5 15.385 6.2912 3.4631 0.8811 2.3474 1.86

0.6 31.376 16.011 4.1253 1.2105 2.5585 1.86

0.7 78.560 51.428 4.9380 1.6136 2.8447 1.86

0.8 272.04 268.23 5.8136 2.0421 3.2148 1.86

0.9 2874.0 6453.6 6.6451 2.5092 3.7593 1.86

Panel A: λ = (10, 5, 1), Weight = (0.4, 0.3, 0.3).

y a′S −1
n ΣS −1

n b
s.d. o f

a′S −1
n ΣS −1

n b
a′Σ̂−1

s ΣΣ̂
−1
s b

s.d. o f

a′Σ̂−1
s ΣΣ̂

−1
s b

ϱa,b a′Σ−1b

0.1 2.3411 0.2827 1.8597 0.1710 1.7354 1.7

0.2 3.3440 0.6207 2.0528 0.2763 1.7835 1.7

0.3 5.0434 1.3168 2.2779 0.4040 1.8483 1.7

0.4 8.1018 2.5581 2.5480 0.5107 1.9339 1.7

0.5 14.027 5.3002 2.8901 0.6743 2.0473 1.7

0.6 28.479 15.271 3.3483 0.9860 2.2014 1.7

0.7 72.610 47.662 3.8413 1.1533 2.4057 1.7

0.8 250.61 232.78 4.3277 1.3515 2.6607 1.7

0.9 2695.7 5616.6 4.7573 1.5257 3.0163 1.7

Panel A: λ = (5, 3, 1), Weight = (0.4, 0.3, 0.3).

y a′S −1
n ΣS −1

n b
s.d. o f

a′S −1
n ΣS −1

n b
a′Σ̂−1

s ΣΣ̂
−1
s b

s.d. o f

a′Σ̂−1
s ΣΣ̂

−1
s b

ϱa,b a′Σ−1b

0.1 3.1210 0.3839 2.5079 0.2419 2.3459 2.2666

0.2 4.4565 0.8244 2.7755 0.3769 2.4587 2.2666

0.3 6.7186 1.7533 3.1020 0.5570 2.6135 2.2666

0.4 10.786 3.4074 3.4696 0.6975 2.8173 2.2666

0.5 18.729 7.1874 3.8066 0.8334 3.0817 2.2666

0.6 38.021 20.461 4.0860 0.9681 3.4268 2.2666

0.7 96.768 63.820 4.3398 1.0042 3.8566 2.2666

0.8 333.82 307.84 4.5702 1.0590 4.3472 2.2666

0.9 3617.4 7589.3 4.7502 1.1209 4.9539 2.2666

Note: p = 100 is the dimension of the population, y = p/n, N = 10000 is the number of simulation, λ is

the vector with the different eigenvalues of the population covariance matrix, and Weight is the weight

vector of the corresponding eigenvalues over the dimension p. Entries of a and b are generated from

the uniform distribution on (−1, 1). For easy comparison, we normalize a and b such that a′Σ̂b is fixed.

Readers may refer to footnote 2 in the text on how to use λ and Weight in the simulation.
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Table 4: Comparison of a′S −1
n ΣS −1

n b, a′Σ̂−1
s ΣΣ̂

−1
s b, limp→∞ a′Σ̂−1

s ΣΣ̂
−1
s b, and a′Σ−1b.

Panel A: y = 0.2, N = 10000, λ = (10, 5, 1), Weight = (0.4, 0.3, 0.3).

p a′S −1
n ΣS −1

n b
s.d. o f

a′S −1
n ΣS −1

n b
a′Σ̂−1

s ΣΣ̂
−1
s b

s.d. o f

a′Σ̂−1
s ΣΣ̂

−1
s b

ϱa,b a′Σ−1b

50 3.3818 0.8707 2.0566 0.3698 1.7835 1.7

100 3.3510 0.6234 2.0536 0.2564 1.7835 1.7

150 3.3382 0.4742 2.0508 0.2051 1.7835 1.7

200 3.3295 0.3975 2.0513 0.1713 1.7835 1.7

250 3.3350 0.3535 2.0511 0.1528 1.7835 1.7

300 3.3292 0.3276 2.0520 0.1406 1.7835 1.7

Panel B: y = 0.5, N = 10000, λ = (10, 5, 1), Weight = (0.4, 0.3, 0.3).

p a′S −1
n ΣS −1

n b
s.d. o f

a′S −1
n ΣS −1

n b
a′Σ̂−1

s ΣΣ̂
−1
s b

s.d. o f

a′Σ̂−1
s ΣΣ̂

−1
s b

ϱa,b a′Σ−1b

50 15.1436 8.7435 2.9442 0.9984 2.0473 1.7

100 14.3526 5.3885 2.8950 0.6342 2.0473 1.7

150 14.0760 4.2313 2.8892 0.5152 2.0473 1.7

200 13.9539 3.4708 2.8806 0.4413 2.0473 1.7

250 13.8223 3.2053 2.8752 0.3920 2.0473 1.7

300 13.7772 2.7557 2.8691 0.3422 2.0473 1.7

Panel C: y = 0.8, N = 10000, λ = (10, 5, 1), Weight = (0.4, 0.3, 0.3).

p a′S −1
n ΣS −1

n b
s.d. o f

a′S −1
n ΣS −1

n b
a′Σ̂−1

s ΣΣ̂
−1
s b

s.d. o f

a′Σ̂−1
s ΣΣ̂

−1
s b

ϱa,b a′Σ−1b

50 422.1066 808.6923 4.4565 2.0094 2.6806 1.7

100 283.3364 274.6084 4.3262 1.3453 2.6607 1.7

150 260.2747 165.8750 4.2826 1.0236 2.6673 1.7

200 242.0023 137.1476 4.2875 0.9057 2.6607 1.7

250 239.3207 118.9240 4.2909 0.8456 2.6647 1.7

300 230.9242 100.4345 4.2752 0.7308 2.6607 1.7

Note : p is the dimension of the population, y = p/n, N is the number of simulation, λ is the

vector with the different eigenvalues of the population covariance matrix, and Weight is the

weight vector of the corresponding eigenvalues over the dimension p. Entries of a and b are

generated from the uniform distribution on (−1, 1). For easy comparison, we normalize a and b

such that a′Σ̂b is fixed. Readers may refer to footnote 2 in the text on how to use λ and Weight

in the simulation.
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Table 5: Comparison of spectral-corrected estimation with the plug-in and Bootstrap-corrected

estimations

Panel A: λ = (25, 10, 5, 1) , w = (0.25, 0.25, 0.25, 0.25)

Return dc Risk

mean dω
R

s.d. mean s.d. mean s.d.

y real 3.8190 0 0 0 0 1 0

0.1 plug-in 4.0197 0.2006 0.0924 5.71E-16 4.303E-16 1.2323 0.0609

bootstrap 3.8071 -0.0119 0.1312 2.90E-05 1.552E-3 1.2452 0.0806

spectral 3.8138 -0.0052 0.0503 4.78E-16 3.641E-16 1.0771 0.0312

0.2 plug-in 4.2539 0.4348 0.1482 2.91E-04 0.0130 1.5553 0.1219

bootstrap 3.7960 -0.0230 0.2074 1.46E-03 0.0321 1.5848 0.1516

spectral 3.8069 -0.0121 0.0742 4.84E-16 3.653E-16 1.1675 0.0536

0.3 plug-in 4.5373 0.7183 0.2235 2.15E-03 0.0341 2.0276 0.2342

bootstrap 3.7727 -0.0463 0.3165 8.35E-03 0.0836 2.0751 0.2609

spectral 3.7973 -0.0217 0.0948 4.05E-04 0.0181 1.2729 0.0797

0.4 plug-in 4.8701 1.0511 0.3401 5.06E-03 0.0464 2.7319 0.4441

bootstrap 3.7381 -0.0809 0.5096 2.09E-02 0.1353 2.8165 0.4297

spectral 3.7857 -0.0333 0.1128 2.72E-03 0.0474 1.3939 0.1121

0.5 plug-in 5.2814 1.4623 0.5721 8.12E-03 0.0498 3.8820 0.9076

bootstrap 3.6502 -0.1688 0.9054 4.04E-02 0.2040 4.0793 0.7797

spectral 3.7800 -0.0390 0.1343 1.37E-02 0.1060 1.5416 0.1637

0.6 plug-in 5.8286 2.0095 0.8879 6.34E-03 0.0351 6.0203 1.8452

bootstrap 3.5030 -0.3160 1.3923 6.22E-02 0.2751 6.5127 1.6391

spectral 3.7679 -0.0511 0.1640 3.95E-02 0.1787 1.7010 0.2492

0.7 plug-in 6.5938 2.7747 1.4396 6.01E-03 0.0277 10.6988 4.3778

bootstrap 3.2346 -0.5844 2.1844 1.31E-01 0.4856 12.1496 4.3399

spectral 3.7626 -0.0564 0.1891 7.65E-02 0.2453 1.8649 0.3548

0.8 plug-in 7.6161 3.7970 2.4100 2.30E-02 0.0729 22.22 12.515

bootstrap 2.5653 -1.2537 3.5775 0.3009 0.9693 28.768 15.926

spectral 3.7605 -0.0585 0.2130 1.09E-01 0.2884 2.0102 0.4625

0.9 plug-in 9.9073 6.0882 4.7808 0.0820 0.1790 86.581 78.657

bootstrap 0.7019 -3.1171 7.0065 1.2398 3.4164 151.27 170.23

spectral 3.7585 -0.0604 0.2449 1.51E-01 0.3329 2.1382 0.5822
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Panel B: λ = (10, 5, 1) , w = (0.4, 0.3, 0.3)

Return dc Risk

mean dω
R

s.d. mean s.d. mean s.d.

y real 4.0247 0 0 0 0 1 0

0.1 plug-in 4.2379 0.2131 0.0981 5.53E-16 4.14E-16 1.2326 0.0611

bootstrap 4.0140 -0.0107 0.1391 1.83E-04 0.0053 1.2439 0.0808

spectral 4.0196 -0.0050 0.0541 4.65E-16 3.47E-16 1.0708 0.0312

0.2 plug-in 4.4835 0.4588 0.1619 1.79E-03 0.0322 1.5532 0.1270

bootstrap 3.9983 -0.0263 0.2322 6.02E-03 0.0729 1.5798 0.1531

spectral 4.0122 -0.0125 0.0789 7.94E-05 0.0079 1.1524 0.0520

0.3 plug-in 4.7775 0.7527 0.2618 5.20E-03 0.0502 2.0194 0.2572

bootstrap 3.9629 -0.0617 0.3950 1.87E-02 0.1289 2.0667 0.2655

spectral 4.0034 -0.0213 0.1008 1.31E-03 0.0317 1.2444 0.0759

0.4 plug-in 5.1088 1.0841 0.4302 1.04E-02 0.0635 2.6997 0.5118

bootstrap 3.8888 -0.1359 0.6871 4.02E-02 0.1927 2.8007 0.4346

spectral 3.9933 -0.0314 0.1196 9.12E-03 0.0833 1.3462 0.1075

0.5 plug-in 5.5241 1.4993 0.7044 1.16E-02 0.0556 3.8153 1.0081

bootstrap 3.7612 -0.2635 1.1514 6.57E-02 0.2691 4.0675 0.7844

spectral 3.9909 -0.0338 0.1410 3.05E-02 0.1508 1.4652 0.1629

0.6 plug-in 6.0615 2.0368 1.0906 8.43E-03 0.0375 5.8713 2.0261

bootstrap 3.5352 -0.4895 1.7415 9.70E-02 0.3608 6.5447 1.7161

spectral 3.9828 -0.0419 0.1678 6.58E-02 0.2178 1.5793 0.2406

0.7 plug-in 6.8264 2.8017 1.7075 8.79E-03 0.0336 10.393 4.6787

bootstrap 3.1870 -0.8377 2.6091 1.95E-01 0.6379 12.336 4.5793

spectral 3.9844 -0.0402 0.1908 1.11E-01 0.2759 1.6811 0.3263

0.8 plug-in 7.8668 3.8420 2.7378 3.11E-02 0.0859 21.589 12.998

bootstrap 2.4225 -1.6022 4.0791 0.4158 1.1867 29.425 16.636

spectral 3.9842 -0.0404 0.2094 1.40E-01 0.3054 1.7668 0.3981

0.9 plug-in 10.147 6.1229 5.2831 0.0989 0.1956 83.53 79.77

bootstrap 0.2299 -3.7948 7.7471 1.5703 3.9876 156.9 177.2

spectral 3.9903 -0.0343 0.2342 1.83E-01 0.3408 1.8290 0.4788
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Panel C: λ = (5, 3, 1) , w = (0.4, 0.3, 0.3)

Return dc Risk

mean dω
R

s.d. mean s.d. mean s.d.

y real 4.3376 0 0 0 0 1 0

0.1 plug-in 4.5684 0.2307 0.1088 1.39E-03 0.0263 1.2319 0.0634

bootstrap 4.3260 -0.0116 0.1572 5.29E-03 0.0597 1.2412 0.0824

spectral 4.3266 -0.0110 0.0679 1.69E-04 0.0097 1.0673 0.0352

0.2 plug-in 4.8172 0.4795 0.2181 9.56E-03 0.0622 1.5382 0.1637

bootstrap 4.2767 -0.0609 0.3580 3.13E-02 0.1565 1.5646 0.1711

spectral 4.3122 -0.0254 0.0974 1.05E-02 0.0771 1.1367 0.0585

0.3 plug-in 5.0988 0.7612 0.4000 1.57E-02 0.0708 1.9699 0.3554

bootstrap 4.1712 -0.1664 0.6833 5.67E-02 0.2135 2.0361 0.2906

spectral 4.3022 -0.0354 0.1265 4.39E-02 0.1550 1.2044 0.0930

0.4 plug-in 5.4127 1.0751 0.6435 1.70E-02 0.0631 2.5992 0.6690

bootstrap 4.0139 -0.3237 1.1002 8.44E-02 0.2710 2.7718 0.4480

spectral 4.3006 -0.0370 0.1552 9.37E-02 0.2186 1.2601 0.1349

0.5 plug-in 5.8043 1.4666 0.9996 1.24E-02 0.0430 3.6282 1.2445

bootstrap 3.7780 -0.5596 1.6819 1.16E-01 0.3661 4.0675 0.8115

spectral 4.3104 -0.0272 0.1756 1.37E-01 0.2547 1.3051 0.1783

0.6 plug-in 6.3027 1.9650 1.4782 8.96E-03 0.0304 5.5166 2.3755

bootstrap 3.4027 -0.9349 2.4206 1.68E-01 0.5082 6.6470 1.8593

spectral 4.3161 -0.0215 0.1981 1.80E-01 0.2808 1.3257 0.2105

0.7 plug-in 7.0149 2.6772 2.2115 2.44E-02 0.0641 9.6467 5.2082

bootstrap 2.8573 -1.4803 3.4346 3.15E-01 0.8413 12.79 5.0708

spectral 4.3282 -0.0094 0.2110 2.16E-01 0.2961 1.3450 0.2420

0.8 plug-in 8.0686 3.7309 3.3101 6.00E-02 0.1273 20.1585 13.6538

bootstrap 1.9350 -2.4026 4.9736 0.6151 1.5195 30.8030 18.0832

spectral 4.3301 -0.0075 0.2216 2.33E-01 0.3022 1.3621 0.2642

0.9 plug-in 10.35 6.0201 6.0308 0.1374 0.2333 77.81 79.22

bootstrap -0.6901 -5.0278 8.9579 2.0820 4.8334 166.1 188.6

spectral 4.3371 -0.0005 0.2342 2.53E-01 0.3086 1.3754 0.2839

Note: p = 100 is the number of the assets, N = 10000 is the number of simulations, λ is constructed by

the different eigenvalues of Σ, and w is the corresponding weight vector of λ on the whole p eigenvalues

of Σ. The results are also compared and those of the real counterpart, which are denoted as “real.”

Readers may refer to footnote 2 in the text on how to use λ and Weight in the simulation. We also note

that the s.d. of R̂ω is the same of that of dω
R

.
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