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Abstract

Popular models for decision making under ambiguity assume that people use not

one but multiple priors. This paper is a first attempt to experimentally elicit multiple

priors. In an ambiguous scenario with two underlying states we measure a subject’s

single prior, her other potential priors (multiple priors), her confidence in these priors

valuation of an ambiguous asset with the same underlying states. We also investigate

subjects’ updating of (multiple) priors after receiving signals about the true states. We

find that single priors are best understood as a confidence-weighted average of mul-

tiple priors. Single priors also predict the valuation of ambiguous assets best, while

both the minimum and maximum of subjects’ multiple priors add explanatory power.

This provides some but no exclusive support for the maxmin (Gilboa and Schmeidler,

1989) and the α maxmin model (Ghirardato et al., 2004). With regard to updating

of priors, we do not observe strong deviations from Bayesian learning, although sub-

jects overadjust/underadjust their priors and their confidence in multiple priors after

a contradictory/confirming signal. Subjects also react to neutral information with
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more confidence in their priors. This holds under ambiguity, but not in a comparison

treatment under risk.

Keywords: ambiguity, uncertainty, risk, multiple priors, Bayesian updating, first-

order beliefs, second-order beliefs

1 Introduction

In many real-world situations there is too little information to form an unique prior that

individuals feel confident enough to use as a sole base for decision making. In such sit-

uations of ambiguity, people may not only have one but multiple priors, which they use

in their decision making process. The maxmin model (Gilboa and Schmeidler, 1989), α

maxmin model (Ghirardato et al., 2004), and the smooth models of ambiguity (Klibanoff

et al., 2005; Nau, 2006) explicitly consider multiple priors and they are probably the most

popular models used to explain the valuation of assets under ambiguity. Although perti-

nent literature tested the predictions of multiple prior models (e.g., Hey et al., 2010), there

is no study, to the best of our knowledge, that elicits and characterizes multiple priors.

Moreover, there is no theory or direct evidence on the updating process of multiple priors

under ambiguity. This paper therefore is a first attempt to measure beliefs with multiple

priors and their updating under ambiguity.

Characterizing beliefs under ambiguity when it is possible to have multiple priors is tricky.

It calls for higher orders of beliefs. Consider, for example, an ambiguous Ellsberg urn

(Ellsberg, 1961) with ten balls that are either white or black. Since a prior is a belief system

that completely describes an individual’s subjective beliefs of the ambiguous scenario,

we would need ten first-order subjective beliefs, with each belief corresponding to the

individual’s likelihood estimation of one of the ten potential underlying states. That is,

ten first-order subjective beliefs constitute one prior. If we want to study beliefs involving

multiple priors, we need to elicit second-order beliefs: an individual’s confidence in all

potential priors.1 Such a procedure can be very complicate and counter-intuitive. It is

1Note that our use of first-order belief and second-order belief are slightly different from the standard
literature (see, e.g., Seo, 2009; Klibanoff et al., 2005). In the above example of the ambiguous Ellsberg
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difficult enough to properly elicit one prior. To elicit more than one prior from the same

individual appears to be impossible. Even if such a procedure could be implemented, it

would be difficult to find an incentive compatible mechanism for it, which may be the

reason why multiple priors have never been empirically elicited so far.2

To measure beliefs with multiple priors we construct an ambiguous scenario with two

potential states of world. With binary outcomes, a single first-order subjective belief

regarding either state of the world completely describes an individual’s probability measure

of all states of the world, and hence is a prior of the individual. To examine an experimental

participant’s multiple priors, we ask each participant to state her confidence in all other

experimental participants’ priors via an incentive compatible mechanism. That is, we elicit

a probability distribution for priors. As the confidence statement relates to a participant’s

uncertainty of others’ priors it indirectly represents her own perception of uncertainty in

the ambiguous scenario. When guessing the priors of other experimental participants in

the absence of any additional information, subjects arguably use their own perception of

uncertainty.3 For example, in a risky scenario, when there is no ambiguity, we would

assume that expected utility maximizers have a degenerated probability distribution with

a 100 percent confidence in the probability of the risky scenario. It is in this sense that

subjects’ individual confidence distributions relate to multiple priors.

Additionally, we provide experimental participants with signals about the true state of the

ambiguous scenario. This allows us to investigate how individuals update their priors and

multiple priors in reaction to the signals. W use the standard deviation of the confidence

distribution of multiple priors as a proxy of individuals’ perception of uncertainty in the

ambiguous scenario. Individuals with larger standard deviations are less confident in their

prior and may exhibit a different update pattern than individuals with higher confidence

urn with ten black or white balls, a first-order belief normally refers to the overall (expected) probability
of a drawn ball being white or black. A second-order belief would then be the ten probabilities for ten
potential states of world. Thus, our first-order beliefs correspond to those second-order beliefs, and our
second-order beliefs are best interpreted as third-order beliefs.

2To properly incentivise individuals to report their multiple priors, we need to make sure that at least
one of the multiple priors actually occur; otherwise individuals cannot gain from reporting sincere beliefs.
In the above case of an ambiguous Ellsberg urn with ten black or white balls, a potential state in a prior
is realized, but never the prior itself.

3This claim is essentially the “impersonally informative” assumption of Prelec (2004).
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in their priors. As we are able to observe a belief updating path for each individual,

with regard to both her prior and multiple priors, we can directly examine learning in

ambiguous scenarios.

The paper’s two main aspects, the measurement of (i) multiple priors and (ii) belief up-

dating, each contribute to several strands of the literature on ambiguity:

(i) The paper complements the literature that tests various models of ambiguity by de-

veloping and analyzing competing predictions that discriminate between the different ap-

proaches (see, e.g., Hey et al., 2010). By eliciting multiple priors, we are able to test the

maxmin model, the α maxmin model, and the smooth ambiguity model (Klibanoff et al.,

2005; Nau, 2006) directly. We found that the valuation of ambiguous assets is best ex-

plained by subjects’ single priors, while the mins and the max’s of subjects’ multiple priors

also add explanatory power. This provides some, but no exclusive support for the maxmin

and the α maxmin model. When comparing the maxmin model and the α maxmin model,

the data gives more support to the latter. Subjects consider both the max and the min

of multiple priors, although they seem to place some more weight on the minimum. In

contrast to intuition, subjects’ overall confidence in their multiple priors (proxied by the

standard deviations of the confidence distributions) do not play an important role in the

evaluation process.

Multiple prior models do not explain how multiple priors collapse into a single prior if

subjects are only allowed to state the latter. In modelling the evaluation of an ambiguous

asset, multiple priors enter the valuation decision directly and without prior aggregation

(Gilboa and Schmeidler, 1989; Ghirardato et al., 2004). In our experiment, however, we

elicit both multiple priors and a single prior that represents an aggregation of the former.

Although it is intuitive to assume that the aggregation of multiple priors into a single prior

is analoguous to the way how multiple priors enter an asset valuation, there is no theory

for this. On a more exploratory note this paper therefore also addresses the relationship

between a subject’s single prior (the prior that a subject reports when she is allowed to

state only one) and her multiple priors. Specifically, we investigate whether the single

prior is the minimum or the maximum of multiple priors, the prior that subjects are
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most confident in, or a confidence weighted prior. We found that single priors are best

understood as a confidence-weighted average of multiple priors.

(ii) The paper also contributes to the literature on learning under ambiguity. Marinacci

(2002) shows that when an individual can sample with replacement from an ambiguous

scenario, she will learn more and more about the true state. Epstein and Schneider (2007)

demonstrate that learning can eventually resolve ambiguity, in the sense of a shrinking

set of priors. The question remains how people learn in ambiguous situations. Bossaerts

et al. (2010) assume a Bayesian learning process and a number of studies in neuroscience

point into the same direction (Friston, 2003, 2005; Doya et al., 2007, for a comprehensive

overview). But this is not a given. In the light of alternative processes (e.g. reinforce-

ment learning) it is still unclear how people adjust their beliefs when they receive signals

about an ambiguous situation. This paper therefore attempts to shed first light on the

updating process with multiple priors. In general we did not observe strong deviations

from Bayesian learning. This is true both for the updating of single priors and the up-

dating of whole confidence distributions. Interestingly, we found that neutral information

reduced perceived uncertainty in the sense of decreasing standard deviations of confidence

distributions of multiple priors. This result holds in ambiguous scenarios, but not under

risk.

Recent studies on amplification effects suggest that the volatility of stock prices in financial

markets might be related to updating under ambiguity (Illeditsch, 2011; Routledge and

Zin, 2009; Guidolin and Rinaldi, 2010). In particular, there have been speculations that

individuals may update differently when receiving a confirming signal (a signal that is

identical to the previous signal) or a contradictory signal (a signal that is opposed to

the previous signal). This relates to studies that find asymmetric reactions to good or

bad news under ambiguity (Epstein and Schneider, 2008; Illeditsch, 2011; Epstein et al.,

2010). In this paper, we directly test and, more importantly, analyze the learning and

updating process of multiple priors that may underly these features. We found that

subjects overadjusted their beliefs when receiving a contradictory signal and underadjusted

to a confirming signal in the ambiguous scenario. This result seems to be consistent with

the claim in Epstein and Schneider (2008) that investors react more strongly to bad news
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than to good news.

The rest of this paper is organized as follows. Section 2 presents the experimental design.

Section 3 reports and discusses the experimental results and Section 4 concludes.

2 Experimental framework

2.1 Construction of the ambiguous scenario

Although the procedure of the construction of the ambiguous scenario should be trans-

parent, the scenario itself must be sufficiently ambiguous. We therefore implemented the

following procedure.

At the beginning of the experimental session, before the instructions were distributed, each

subject was asked to enter 5 pairs of numbers, N1 and N2, into the computer. Subjects

only knew that these ten numbers could be any numbers between 0 and 1 million. We

randomly selected one number n1 out of all N1s and one number n2 out of all N2s. The

computer then constructed a pool of urns, which were either of Type 1: 3 black balls and

6 white balls, or of Type 2: 6 black balls and 3 white balls. The total number of Type 1

urns was determined by the chosen n1. The total number of Type 2 urn was determined

by the chosen n2. That is, we had n1 urns of Type 1 and n2 urns of Type 2, where n1

and n2 were the same for all participants. Figure 1 provides a screen shot illustrating the

construction of the ambiguous scenario.

We randomly selected a single urn from this pool of urns. Note that there are two mutually

exclusive states S = {S1, S2} of the world in this scenario: S1 = The selected urn is of Type 1

and S2 = The selected urn is of Type 2. We asked subjects to estimate the probability

that the underlying state is S1 (the selected urn is of Type 1). As it is very difficult, if

not entirely impossible, to assign objective probabilities to either state of world, subjects

face an ambiguous scenario.
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Figure 1: Screen shot illustrating the construction of the ambiguous scenario.

2.2 Elicitation of single priors

Let p denote the probability that the underlying state is S1. Note that, as there are only

two states of world, each subject’s unique prior is completely described by p. We mainly

relied on a quadratic scoring rule (hereafter QSR) to elicit priors (Brier, 1950). More

explicitly, subjects were each endowed with 100 points which they could assign to two

alternatives:

Alternative 1: The urn is of Type 1 (with 3 black balls and 6 white balls)

Alternative 2: The urn is of Type 2 (with 6 black balls and 3 white balls)

Let m1 and m2 denote the points that subjects assigned to Alternative 1 and Alternative

2, respectively. Such an assignment of points corresponds to the following payment:

Payment if Alternative 1 is true = 1000− 1000 ∗ (1−m1/100)2

Payment if Alternative 2 is true = 1000− 1000 ∗ (1−m2/100)2
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It can be shown that subjects’ expected value is maximized when they choose m1
100 and m2

100

to be equal to their respective subjective beliefs. Therefore, m1
100 and m2

100 can be taken as

the subjective beliefs of the two states of world.4

2.3 Elicitation of confidence distributions of multiple priors

For an incentive compatible elicitation of multiple priors, we exploit the uncertainty about

other participants’ priors to indirectly elicit a subject’s own perception of uncertainty in

the ambiguous scenario. We asked subjects to estimate, for each of the following 10

categories,

C1 = [0, 10], C2 = [11, 20], C3 = [21, 30], C4 = [31, 40], C5 = [41, 50], (1)

C6 = [51, 60], C7 = [61, 70], C8 = [71, 80], C9 = [81, 90], C10 = [91, 100],

the percentage of all subjects present in the session, who assigned m1 points to Alternative

1.5

Individuals were again endowed with 100 points and asked to distribute all points over the

10 categories described above. The payoff was determined by the following function:

payoff = Max{0, 1000− 0.2×

10
∑

i=1

(ri − πi)
2},

where ri denotes the proportion of points that an individual assigned to category Ci,

i = 1, 2, . . . , 10, and πi is the realized proportion of individuals who fall into the category

Ci, i = 1, 2, . . . , 10.

Note that p is the reported prior of an individual when she is allowed to state only one.

More interesting is (ri)
10
i=1, because it signals an individual’s confidence in her priors. If

4We are fully aware of the fact that the underlying assumption of the QSR, expected value maximization,
is often violated. In Section 3.1 we address this issue in detail and also run reliability checks.

5More explicitly, in the experiment we asked each subject: ”Among the participants in the experiment
(in this room), what percentage of people have assigned from 0 to 10 (11 to 20, 21 to 30, etc. ) points to
Alternative 1?”
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our framework were risky, there would be an objective probability of p for the state S1,

and utility maximization(and the assumption of the common knowledge of individuals’

rationality) would imply that each individual would assign all points to the category

including p. As our framework is ambiguous, the individual is less confident about her

priors. Consequently, ri should be more dispersed across the 10 categories than in the

risky case. To be precise, (ri)
10
i=1 is not the confidence distribution of the individual’s own

priors, but the perception of an individual of the distribution of p at the population level.

Yet, in line with the ‘impersonally informative’ assumption of Prelec (2004), when having

to guess the single priors (p) of the rest of the population without additional information,

the best thing one can arguably do is to use one’s own perception of ambiguity as starting

point.6

The relationship between p and (ri)
10
i=1 is also interesting. In our ambiguous framework

an individual could hold multiple priors and is not perfectly confident about any of them.

The relationship between p and (ri)
10
i=1 tells us how an individual facing such a situation

forms her belief when she can only report one prior.

2.4 Updating under ambiguity

In either states of the world in our ambiguous scenario subjects face a risky urn with ten

balls, which are either white or black. In S1, the proportion of black balls is 1
3 , and in S2,

the proportion of black balls is 2
3 . By drawing balls sequentially, with replacement, from

the randomly selected urn, we give subjects the opportunity to update their beliefs (p)

and their respective confidence levels (ri)
10
i=1.

The Bayesian updating process implies that:

6By using the experimental population distribution of priors as truth criterion, we are able to properly
incentivize the elicitation of the confidence distributions of multiple priors. The use of such a criterion
could bias subjects’ confidence distributions towards the population consensus. Prelec (2004) proposes
a useful but procedurally far more demanding alternative to correct such bias. However, Prelec’s (2004)
main objective is to elicit priors, while we focus on the confidence distribution of multiple priors.
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prob(S1|B) =
prob(B|S1) · prob(S1)

prob(B|S1) · prob(S1) + prob(B|S2) · prob(S2)
(2)

prob(S1|W ) =
prob(W |S1) · prob(S1)

prob(W |S1) · prob(S1) + prob(W |S2) · prob(S2)
. (3)

Suppose that, after n draws, an individual’s (updated) estimation of the probability be-

ing in state S1 is pn. Notice that with urns of Type 1 we have Prob(B|S1) = 1
3 and

Prob(W |S1) =
2
3 , and with urns of Type 2 we have Prob(B|S2) =

2
3 and Prob(W |S2) =

1
3 .

Let pn+1|B (or pn+1|W ) denote the posterior after having observed a black ball (or white

ball, respectively). The Equations 2 and 3 are then

pn+1|B =
1
3 · pn

1
3 · pn + 2

3 · (1− pn)
=

pn
2− pn

(4)

pn+1|W =
2
3 · pn

2
3 · pn + 1

3 · (1− pn)
=

2pn
1 + pn

. (5)

If all individuals were Bayesian, they would all update in the same way. Then, after n

draws, individuals with an estimation of (rni )
10
i=1 should also update their estimation of

πi accordingly. By Equations 4 and 5, a prior-by-prior Bayesian updating implies that

(Epstein and Schneider, 2003):

• when the drawn ball is white, then S1 becomes more likely, and those who originally

assign points

p ∈

[

p̄i

2− p̄i
,

p̄i+1

2− p̄i+1

]

(6)

would update their beliefs (p) upwards to the category
[

p̄i, p̄i+1
]

;

• when the drawn ball is black, then those who originally have

p ∈

[

2p̄i

1 + p̄i
,

2p̄i+1

1 + p̄i+1

]

(7)
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would update their beliefs (p) downwards to the category
[

p̄i, p̄i+1
]

,

where p̄1 = 0.1, p̄2 = 0.2, · · · , p̄10 = 1. Under the assumption that subjects perceive the

population’s p’s within each of the categories Ci as uniformly distributed, we can calculate

the updating of (rni )
10
i=1.

In the experiment there were three rounds. In each round subjects faced a new ambiguous

scenario, i.e. new numbers n1 and n2 were randomly selected and determined a new

ambiguous proportion of urns of Type 1. Each round had six periods. In the first period

of each round, subjects were asked to estimate the initial prior that the selected urn is

of Type 1 without seeing any signals (balls). At the beginning of each of the following

five periods, one ball was drawn (with replacement). In each period, subjects were asked

to estimate their updated priors after having seen each draw. The sequences of drawn

balls were predetermined by the experimenter. The ball sequences were the same in all

sessions. The ball sequence in Round 1 was BBWWB, in Round 2 BWBBB, and in

Round 3 WWWBW (with B = black ball, and W = white ball).

2.5 Elicitation of WTP

The WTP of the randomly selected urn in the ambiguous scenario is useful information.

By relating the WTP to priors and multiple priors, we are able to provide a direct test

on some ambiguity models, e.g., Gilboa and Schmeidler’s (1989) maxmin model, the α

maxmin model, and Nau’s (2006) recursive model. We elicited the WTPs of the ambiguous

scenario with the certainty equivalence method by administering a table with 16 rows, each

of which contained two options. Option A was a lottery. It payed 1000 ECU if the selected

urn was of Type 1 and 0 ECU otherwise. Option A therefore directly referred to the states

of the ambiguous scenario. Option B was a sure payment. Subjects were asked to state

their preference between the two options in each row. While Option B’s sure payment

increased from Row 1 to Row 16 and thus became more attractive, Option A (lottery) did

not change. To simplify the choices, subjects were asked to indicate their preferences by
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stating the first row where they preferred Option B over Option A.7

The certainty equivalence method can be rather lengthy to achieve an accurate WTP. The

range in this procedure should be large enough to include all relevant certainty equivalent

values. However, it cannot be too large as this would require too many steps to identify

indifference. We used the points that subjects assigned to Alternative 1, m1, as reference

to compute and dynamically display the potential range of WTP (on a single screen) as

follows:

[max{0, 1000×m1 − 250}, 1000×m1 + 250] .

This range is further divided into 16 steps of size 1000×m1+250−max{0,1000×m1−250}
16 .

2.6 Additional risky treatments

For robustess and comparison we administered two additional treatments where the sce-

nario is risky instead of ambiguous. The only difference between these two risky treatments

and the ambiguous treatments is the construction of the urn pool. In the ambiguous sce-

nario, the total numbers of urns of Type 1 or Type 2 in the pool (n1 and n2, respectively)

were not communicated to subjects. In the first of the risky treatments, the two randomly

drawn numbers n1 and n2 were disclosed to all subjects. In the second risky treatment, n1

and n2 were not randomly drawn, but exogenously set to n1 = n2 = 50 and subjects were

explicitly told that there were 100 urns, among them 50 urns of Type 1 and 50 urns of

Type 2. Then, one urn was randomly selected by the computer. The rest of the procedure

in the risky treatments was identical to the ambiguous treatment.

7Before they confirmed their choice, an ‘as-if-screen’ displayed all implied choices, i.e. marked all rows
above their chosen row as Option A, and all rows at and below their chosen row as Option B. Subjects
were able to change their decision as often as they liked.
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2.7 Procedure

The experiment was run in the Experimental Laboratory for Sociology and Economics

(ELSE) at Utrecht University in December 2011. In total we ran four sessions with the

ambiguity treatment and one session for each of the two risky treatments. Alltogether, 107

subjects participated in the experiment, 69 in the four ambiguity treatments and 38 in the

two risky treatments. All sessions were computerized (Fischbacher, 2007) and recruiting

was done with ORSEE (Greiner, 2004). Each session lasted around 120 minutes. The

average payment was 18.62 Euro.

When checking the sample we find that some subjects consistently report the same belief,

mostly 0.50, as their only prior, regardless of the signals they received. Considering that

our experiment is relatively complicated, subjects with too little variations in their priors

may not have fully understood the incentives or did not report their priors carefully.

Consequently, and because non-varying priors and WTPs are uninformative, we check the

robustness of important results by exluding twelve subjects who have a standard deviation

of priors smaller than 0.1 in our analysis.8 Thus, the sample for robustness checks consists

of 57 subjects, henceforth referred to as ’refined subjects’.

3 Results

3.1 Reliability

Given the critical role of priors in this experiment, it is important to assess their reliability.

This particularly applies to the QSR as it is our main belief elicitation process. The

advantages of the QSR are (i) that it is incentive compatible if subjects are expected

value maximizers and (ii) that it is a very efficient method of belief elicitation. The

8Note that, for a risk-neutral subject, who has an initial prior of 0.5 and applies Bayesian updating of
priors after each signal, the standard deviation across periods should be 0.2407. A value of 0.10 is close
to the 20% quantile of the standard deviations of the priors (0.1131). One example of such subjects is
subject number 9 who has a standard deviation of the priors of 0.08883. His/her priors in the 18 periods
were (.49, .49, .49, .11, .49, .49, .49, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5, .5).
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latter is crucial in our setting, given that we elicited priors 18 times per subject.9 There

are, however, also downsides to the QSR. One is its potential distortion by risk attitudes

(Offerman et al., 2009).10 The assumption of expected value maximization has been

empirically shown violated, and thus the priors elicited via QSR are potentially distorted.

Additionally, it is quite demanding for subjects to understand the incentive behind the

QSR. This could induce additional uncertainties that enter the confidence distributions of

multiple priors.

As alternatives to QSR, there are three other popular methods to elicit subjective be-

liefs (Trautmann and Kuilen, 2011). The first is introspection, where respondents are

directly asked about their beliefs. This method seems to fare well in comparison to the

other alternatives (Trautmann and Kuilen, 2011), is straightforward to explain and easy

to administer. But, since there is no material incentive, subjects may not think carefully

about the problem and therefore add noise to reported subjective beliefs. For this rea-

son, economic experiments rarely include introspection as main belief elicitation method,

although the method is applied as secondary measure. We also used this method as a

robustness check for the priors that we elicited via QSR. The second method is the out-

come matching method. In this method the certainty equivalence of a lottery based on

the states of the scenario at consideration is found. The belief can then be inferred from

the certainty equivalence, under the assumption of expected value maximization. We have

used this method to elicit WTP, but it would have been too lengthy for the elicitation

of priors. The last method is the probability matching method, where a lottery based on

the states of a scenario is constructed and compared with a risky lottery with the same

payoff structure. The probability in the risky lottery which makes the states-based lottery

indifferent with the risky lottery is taken as the belief. This method is the most attractive

alternative to QSR. It is incentive compatible under non-neutral risk attitudes (Wakker,

2004), and relatively easy to explain to subjects. Unfortunately, it is also rather lengthy

to achieve indifference, which is a serious issue as we have to elicit so many (updated)

priors.

9Once in each of the six periods for three rounds.

10Risk attitudes here could mean both utility curvature and probability weighting (Qiu and Steiger,
2011).
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Hence, given our time restriction, it was not possible to administer the outcome or the

probability matching method.11 However, as a robustness check, we implemented the first

of the above mentioned alternatives and asked for an introspective probability statement

for reported single priors. More specifically, we asked subjects to simply state, without

material incentives, the likelihood that the selected urn is of Type 1. This question is

straightforward and it is unlikely that subjects misunderstood it. One way to check the

reliability of the quadratic scoring rule is to compare the cheap-talk likelihood statements

with the incentivized priors. A Pearson’s product-moment correlation test suggests a

strong and highly significant correlation (ρ = 0.8392, and p < 0.01, two-sided tests). The

mean difference between the cheap-talk likelihood and reported priors is 0.0007. It is not

statistically significantly different from zero with a paired two-sided t test (p = 0.1978),

while it is significantly different from zero with a paired two-sided Wilcoxon signed-ranks

test (p = 0.0258). When we restrict our analysis to the refined subjects, the paired two-

sided t test is even less significant (p = 0.8506), and a paired two-sided Wilcoxon test is

only weakly significant (p = 0.0931). Thus, despite the potential impact of risk attitudes

and the complexity of quadratic scoring rule, it seems that subjects in general understood

the eliciting mechanism and responded reasonably as we find a small difference and a high

correlation between the cheap-talk likelihood and priors.

Of course,the high correlation and small difference between the cheap-talk likelihood and

priors does not mean that there is no bias. Note, however, that the focus of this paper

and of the analyses is on relative differences (between single and multiple priors) and

changes (due to updating) of variables that are all equally biased, if at all, because they

are all elicited via the QSR. Relative effects should therefore not be seriously affected. In

reporting and interpreting our results, we shall nevertheless take account of the fact that

the reported values could be biased.

We also check wether subjects perceive the scenario to be ambiguous. For this we run two

tests. First, we analyze the statistical fit of subjects’ confidence distributions on multiple

priors with the actually observed distributions by computing the standard estimation

11Note that the duration of the experiment (without outcome or probability matching method) was just
under two hours.
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error for each subject in each period. Let ri denote the percentage of points each subject

assigned to category Ci as specified in Equation (1) and πi the realized proportion of

individuals who fall in the category Ci. Then the standard estimation error StdError is

calculated as:

StdError =

√

∑10
i=1(ri − πi)2

10

A boxplot of the StdError is shown in Figure 2. The mean of StdError is 16.2003, and

the median is 16.6943. To put these values in perspective, let’s first consider the empirical

distribution of priors in Period 1 of Round 1: (0, 0, 7, 27, 40, 13, 0, 7, 7, 0). With such an

empirical distribution a subject who assigns 100% to one of the extreme categories (C1 or

C10) and zero to all other categories would have a StdError of 35.5598, while a subject

who uniformly assigns 10% to each category would have a StdError of 12.7475. Hence

subjects’ estimates are not too far off, but also have considerable errors. This suggests

that subjects perceive the scenario as ambiguous.

Second, we analyze the treatment effect between the ambiguous and the risky scenario.

Confidence distributions capture subjects’ perception of uncertainty with regard to other

subjects’ priors. In the ambiguous scenario, this uncertainty should contain subjects’

perception of ambiguity, which is our central focus. It could, however, also include the

lack of confidence in other subjects’ capability to understand the QSR, or the lack of

information about others’ risk attitudes, etc.. With the ambiguous scenario in isolation

we cannot distinguish between these confounding effects and the effect of ambiguity that

stems from the selected urn. But, as the same confounding effects also exist in the risky

scenario, a comparison of the standard deviations of the confidence distributions between

the ambiguous and the risky treatment can identify ambiguity as a separate component

of uncertainty in the confidence distributions.12 Indeed, a one-sided Wilcoxon rank-sum

test shows that the standard deviations of the confidence distributions of the ambiguous

scenario are significantly larger than those of the risky scenario (p < 0.01). Hence, subjects

perceive the ambiguous scenario as more uncertain.

12Note that the sequence of signals is the same in both treatments, which allows for a direct comparison.
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Figure 2: Boxplot of subjects’ standard estimation errors over periods per round.
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3.2 Static analyses

3.2.1 Multiple priors and single priors

With the interpretation of subjects’ confidence distributions as a probability measure of

their multiple priors we can now analyze how a subject’s single prior relates to her multiple

priors. Although it is intuitive to assume that the aggregation of multiple priors into a

single prior is analogous to the way how multiple priors enter an asset valuation, there

is no theory for this. Multiple prior models attempt to directly explain valuations (see

Section 3.2.2 for tests), but they stay silent on how subjects would aggregate multiple

priors into a single prior. On a more exploratory note we therefore investigate, whether

subjects, when forced to state a single prior, report the min of their multiple priors, the

max of their priors, the prior in which they are most confident, or perhaps a confidence

weighted average of all multiple prior.13

To see which selection or aggregation of multiple priors best explains subjects’ reported

single priors, we compute the mean difference, mean standard error, as well as the Spear-

man correlation between each of the measures mentioned above and subjects’ single prior.

As the results in Table 3.2.1 show, the confidence weighted prior has the smallest mean

difference, mean standard error, and the highest correlation with the single prior. The

standard errors regarding the confidence weighted prior are significantly smaller than those

of the minimium prior, the maximum prior, and the prior that subjects are most confi-

dent in (one-sided paired Wilcoxon signed-rank tests, p < 0.01 for all tests). Thus, when

subjects are asked to state only one prior, they seem to report their confidence weighted

multiple prior.

This suggests a surprisingly high degree of sophistication in the aggregation of multiple

priors under ambiguity. As confidence weighted priors are closest to a Bayesian approach of

dealing with ambiguity, our result is very much in line with recent, mostly neuroscientific

studies that find support for the view that many processes in the brain are Bayesian

13We compute the min (max) of multiple priors as the smallest (largest) prior that receives a positive
confidence value.
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Of multiple priors:
Single prior

Mean difference1 Mean standard error2 Spearman correlation1

Minimum prior 0.3099∗∗∗ 0.2497∗∗∗ 0.5843∗∗∗

Maximum prior −0.3034∗∗∗ 0.2697∗∗∗ 0.4790∗∗∗

Most confident prior 0.0107∗∗∗ 0.1094∗∗∗ 0.6951∗∗∗

Confidence weighted prior −0.0049 0.0964base 0.7227∗∗∗

∗∗∗, ∗∗, ∗, denote statistical significance at the 1%, 5%, and 10% level, respectively.
1) Two-sided Wilcoxon sign-ranks test for equality of ’difference’ with zero (within each sample).
2) One-sided Wilcoxon sign-ranks test for a smaller standard error of the confidence weighted prior.

Table 1: Difference (single minus multiple), standard error, and Spearman correlation of the single

prior with the min of multiple priors, the max of multiple priors, the prior that subjects are most

confident in, and the confidence weighted prior.

(Friston, 2003, 2005; Doya et al., 2007).

3.2.2 Multiple priors and asset valuation

By analyzing the relationship between WTPs and multiple priors we can test multiple

models directly. Multiple prior models are an extension of the standard model, which

simply assumes expected utility and a single prior. We therefore specify, as a baseline

model, a random effects estimation with the reported single prior as the only explanatory

variable:

WTPs = Intercept + φi + β1m1 + ǫ, (8)

where m1 is the subject’s estimation that the true type of the selected urn is 1 and φi are

individual random effects on the intercept. Model 1 in Table 3.2.2 reports the results.

Note that a correct guess results in a payment of 1000 ECU and that the single prior is

reported in percent (m1 points out of 100). This means that a risk neutral subject would

be willing to pay 10 units more if her single prior increases by one percent. A reported

coefficient for single priors of 8.7780 therefore fits quite well to subjects who are slightly

risk averse.

By using single priors alone, Model 1 misses valuable information. For example, we notice
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Ind. Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 5 - Risk

Intercept 66.0339∗∗∗ 64.9887∗∗∗ 331.1752∗∗∗ 78.6445∗∗∗ 42.6705∗∗∗ 51.7817∗∗∗

(13.6786) (15.6654) (16.0210) (22.2695) (16.2043) (14.8009)

Single prior 8.7780∗∗∗ 8.7794∗∗∗ 8.2424∗∗∗ 8.4505∗∗∗

(0.1233) (0.1238) (0.1722) (0.2183)

Standard deviation of 7.7450

the confidence distribution (56.5159)

Min of multiple priors 6.1786∗∗∗ 4.53540∗∗∗ 0.5004∗∗∗ 0.4647∗

(0.2395) (2.777) (0.1704) (0.2561)

Max of multiple priors 4.0053∗∗∗ 0.4977∗∗∗ 0.1306

(2.977) (0.1762) (0.2361)

Degrees of freedom 1241 1240 1241 1240 1239 643

AIC 15848.44 15840.51 17341.59 17122.2 15817.85 8176.494

BIC 15869.15 15866.39 17362.3 17148.08 15848.9 8203.465

Log likelihood −7920.219 −7915.256 −8666.797 −8556.101 −7902.923 −4082.247

∗∗∗, ∗∗, ∗, denote statistical significance at the 1%, 5%, and 10% level, respectively.
Heteroskedasticity-consistent standard errors are reported in parentheses.

Table 2: Random effects regression of WTPs and priors, min (and/or max) of multiple priors.

that many subjects report a value of 0.5 as single prior. Yet, among these subjects, there

is a high degree of heterogeneity in their multiple priors and WTPs. Figure 3 shows

that these values can be vastly different, despite the fact that all the subjects considered

reported a prior of 0.5. In Models 2 to 4 we therefore analyze the potential impact of

multiple priors and their confidence distributions.

In Model 2 of Table 3.2.2 we first investigate whether the perceived level of uncertainty has

an effect on the evaluation of ambiguous assets. In particular, a high level of uncertainty

could have a negative (positive) effect on the evaluation by ambiguity averse (seeking)

subjects (Klibanoff et al., 2005; Nau, 2006). To examine this, we include the standard

deviation of the confidence distribution on multiple priors in the empirical specification.

In the spirit of Klibanoff et al.’s (2005) model and Nau’s (2006) model, and with a majority

of subjects being ambiguity averse, we would expect a negative coefficient of the standard

deviation. However, as the results of Model 2 show, the coefficient is not significant

(p > 0.10) and has the opposite sign.

Model 3 replicates the maxmin model by including the minimum of the multiple priors as

the only explanatory variable. Although the coefficient of the min of priors is statistically
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reported single prior of 0.5.
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significant, the explanatory power of the model decreases dramatically, in terms of AIC,

BIC, and Log likelihood criteria. As suggested by the α maxmin model, the specification

in Model 4 additionally includes the max of multiple priors. In line with the α maxmin

model, the max of priors (4.0053) plays a statistically and economically important role.

However, the overall explanatory power of the Model 4 is relatively weak.

Thus, we do not find exclusive support for either of the two multiple priors models (Model

3 and 4), nor for Nau’s (2006) model, but strong economic significance and explanatory

power when including single priors (Model 1 and 2). In Model 5, we therefore examine

the maxmin model and α maxmin model in combination with single priors. The maxmin

model argues that subjects only use the min of multiple priors for their evaluation, even if a

single prior and the max of multiple priors are available. However, according to the results

for Model 5, both coefficients for the min and the max of multiple priors are statistically

significant (with p ≤ 0.01) and economically important (0.5004 for the min, 0.4977 for

the max of priors)., though the coefficient for the max of priors is slightly smaller. Thus,

both the min and the max of multiple priors, as well as the single prior, contain useful

information in explaining the values of the ambiguous assets. In fact, Model 5 has the

highest explanatory power in terms of AIC, BIC and Log likelihood.14 When we estimate

the same model with the sample of refined subjects, the coefficient for the min of priors

stays significant while the coefficient for the max of priors loses its significance (0.7368

for the min of the priors with p < 0.01, 0.2909 for the max of the priors with p > 0.1).

Note that the single prior still plays an important role. With a value of 8.2424, its effect

is only slightly lower than in Model 1 (8.7780) and clearly higher than the min (0.5004)

and the max (0.4977) of priors. This is not consistent with the suggestion of the maxmin

model (α maxmin model) that only the min of multiple priors (the min and the max)

has explanatory power for the value of ambiguous assets. When comparing the maxmin

model and the α maxmin model, the results provide more support for the latter, because

subjects consider both the max and the min of multiple priors. In doing so, they seem to

place some more weight on the min of priors.

As discussed in Section 3.1, the dispersion of the confidence distributions may contain

14This applies for WTAs under ambiguity, excluding Model 5-Risk.
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multiple components of uncertainty, including subjects’ own perception of uncertainty in

the ambiguous scenario, and uncertainties regarding others, e.g., subjects’ risk attitudes

and their capability to understand the QSR. However, note that, in principal, uncertain-

ties regarding others should not play a role when one obtains an own valuation of the

ambiguous asset. If the dispersion of the confidence distributions only reflects uncertainty

about the second component, it should not have any explanatory power for the WTPs.

This claim is based on the assumption that there is no common factor which influences

both the way subjects report uncertainties regarding others and their own evaluation.

To test this claim, we run a random effects regression similar to Model 3, but with the

data of the risky treatment. As the results in Model 5-Risk show, the coefficient for the

min of priors is only weakly significant (p = 0.0701), and the effect size is smaller than

in the ambiguous treatment (0.5004 vs 0.4647), in particular when we consider only the

refined subjects (0.7368 vs 0.4647). This suggests that the min of priors in the ambiguous

treatment genuinely captures some additional information.

3.3 Updating

3.3.1 Updating of single priors

We first examine the updating of single priors. As a starting point, we check whether

subjects adjusted the reported probability in accordance with the signals (the color of the

drawn balls). This provides a first indication whether the quadratic scoring rule was well

understood by the subjects. Figure 4 reports subjects’ single priors that the randomly

selected urn was of Type 1 (3 black balls and 6 white balls).15

Figure 4 suggests that the priors respond to the drawn ball sequence in the right direction.

For example, in Round 1 the ball sequence was BBWWB. Subjects start with a median

prior of 0.5 before seeing any balls, then lower the stated prior after seeing black balls

in Period 2 and 3, then raise their prior after seeing white balls in Period 4 and 5, and

15Recall that in each round, after subjects have stated their priors in the first period, we disclosed (and
replaced) one ball per period and asked the subjects to state their updated priors. The sequences in which
the balls were drawn are: BBWWB in Round 1, BWBBB in Round 2, and WWWBW in Round 3.
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Figure 4: Boxplot of single prior that the selected urn is of Type 1 (3 black balls and 6
white balls) and not of Type 2 (6 black balls and 3 white balls).
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finally decrease the prior again after a last black ball in Period 6. Similar developments

can be observed in Round 2 and 3. Thus, subjects recognized the information content

of the signals and reacted accordingly. A paired two-sided Wilcoxon signed-ranks test of

the empirical priors and one-period Bayesian updated priors suggests that the updating

process is not significantly different from a Bayesian process (p > 0.10).16 This result is

consistent with Bossaerts et al. (2010), who assume Bayesian updating for a (uniform)

prior in an ambiguous scenario and find that such an assumption fits their data well.

As mentioned in the introduction, pertinent literature suggests that individuals update

differently when receiving a confirming signal (a signal that is identical to the previous

signal) than receiving a contradictory signal (a signal that opposes the previous signal).

To test this hypothesis, we calculate the updating errors: that is, the observed updating

minus one-period Bayesian updating after a confirming signal (in Period 3, 5, 11, 12, 15,

16), and after a contradictory signal (in Period 4, 6, 9, 10, 17, 18). We then compare

the updating errors after a confirming signal with those after a contradictory signal. The

mean updating error after a confirming signal is −2.3694 percent, and 1.9603 percent

after a contradictory signal. A two-sided Wilcoxon rank-sum test suggests that the the

two samples of updating errors are significantly different from each other (p < 0.01). Since

negative errors imply ‘under-updating’ and positive errors ‘over-updating’, subjects seem

to overadjust their beliefs when receiving a contradictory signal and underadjust to a

confirming signal in the ambiguous scenario. This result seems to be consistent with the

claim that investors react more strongly to bad news than to good news (Epstein and

Schneider, 2008; Illeditsch, 2011).17

16In one-period Bayesian updating, posteriors are Bayesian updated from the one-period ahead priors.
An alternative would be to use the first period beliefs as the priors to calculate Bayesian posteriors for all
later periods. For instance, the Period 6 Bayesian posteriors would be updated all the way from the first
period beliefs, instead of being updated from the beliefs one period ahead – Period 5 – as in one-period
Bayesian updating.

17Note that a confirming signal can be bad news if it confirms a lower value of the selected urn. Therefore,
our notation of confirming and contradictory signals cannot be directly translated into good or bad news.
Learning, however, may provide a link, because subjects’ confidence about the underlying state of the
world increases with a confirming signal while it decreases with a contradictory signal. This tendency is
weaker in the risky treatment, where the mean updating error after a confirming signal is −1.8509 percent
(−2.3694 under ambiguity) and the mean updating error after a contradictory signal is 0.5395 percent
(1.9603 under ambiguity). Moreover, and in contrast to the ambiguous scenario, the difference between
the two kinds of updating errors in the risky treatment is only weakly significant at the 10 percent level
(two-sided Wilcoxon test, p=0.0980).
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3.3.2 Updating of multiple priors

As shown in Section 3.1, a typical feature of the ambiguous scenario is the larger standard

deviation of the confidence distributions of multiple priors. A larger standard deviation

signals less confidence in any of the multiple priors. This lack of confidence could affect

the way subjects update their priors. To test this, we first calculate the absolute difference

between observed updated priors and one-period Bayesian updated priors. A Spearman

correlation test between subjects’ absolute updating errors and the standard deviations

of their confidence distributions shows a significant positive correlation of ρ = 0.1213

(p < 0.01). This suggests that subjects who are less confident in their priors make larger

updating errors.

A signal not only changes subjects’ priors, it should also change their confidence distri-

bution of multiple priors. When a white (black) ball is drawn, it becomes more (less)

likely that the selected urn is of Type 1 and the confidence distributions of multiple priors

should be updated upwards (downwards), in the sense of first-order stochastic dominance.

Let Prior(p̄i|W ) (Prior(p̄i|B)) denote the prior that would obtain the Bayesian poste-

rior of p̄i after a white (black) ball.18 Using equations (7) and (6), and the fact that

the proportion of black balls in S1 is q1 = 1
3 and in S2 is q2 = 2

3 , it can be shown that

Prior(p̄i|W ) = p̄i·(1−q2)

(1−q1)−
¯̄ip(q2−q1)

= p̄i

2−p̄i
and Prior(p̄i|B) = p̄i·q2

p̄i
i
(q2−q1)+q1

= 2p̄i

1+p̄i
. Since

¯̄1p = 0.10, p̄2 = 0.20, . . . , p̄9 = 0.90, we obtain the following values.

• When a white ball is drawn:

Prior(p̄i|W ) = 0.05, 0.11, 0.18, 0.25, 0.33, 0.43, 0.54, 0.67, 0.82.

That means priors in the range of [0.05, 0.11) should be updated (upwards) to the

range of [0.10, 0.20), and priors in the range of [0.11, 0.18) should be updated to the

range [0.20, 0.30), and so on.

• When a black ball is drawn:

18Thus, we are considering a reversed Bayesian updating process.
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Prior(p̄i|B) = 0.18, 0.33, 0.46, 0.57, 0.67, 0.75, 0.82, 0.89, 0.95.

That means priors in the range of [0.01, 0.18) should be updated (downwards) to the

range [0.01, 0.10), and priors in the range of [0.18, 0.33) should be updated to the

range [0.10, 0.20), and so on.

Figure 5 displays the updating errors in each belief interval, computed as observed updat-

ing minus Bayesian updating. We consider only periods with belief updating, e.g., Period

2, 3, 4, 5, 6 in Round 1, Period 8, 9, 10, 11, 12 in Round 2, and Period 14, 15, 16, 17,

18 in Round 3. As Figure 5 shows, in most intervals the median updating error is zero,

which indidicates that updating in the confidence intervals is approximately Bayesian.19

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

2 4 6 9 12 16

−
40

−
20

0
20

40

 

 

Figure 5: Updating error in each category: Empirical updating - Bayesian updating.
Only periods where belief updating takes place are considered. That is, periods 2,3,4,5,6
in Round 1, periods 8, 9, 10, 11, 12 in Round 2, and periods 14, 15, 16, 17, 18 in Round 3.

19Note, however, that updating errors are more frequent and also larger in the middle categories, while
the extreme lower and upper categories seem to be updated much better.
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We now consider the standard deviations of subjects’ confidence distributions, which can

be interpreted as subjects’ perception of uncertainty in an ambiguous scenario. Epstein

and Schneider (2007) suggest that individuals’ confidence about the ambiguous environ-

ment changes as they learn. Such a change in confidence may depend on the signals

received, in particular, whether they are confirming or contradictory. To analyze this,

we computethe updating errors of subjects’ empirical confidence distributions, that is the

standard deviations of the empirical confidence distributions minus the standard devi-

ations of the one-period Bayesian updated confidence distributions. We find that the

mean updating error after a confirming signal is 0.0037, and −0.0133 after a contradictory

signal. Both updating errors are statistically significant from zero (two-sided Wilcoxon

signed-ranks test, p = 0.0143 for confirming signals and p < 0.01 for contradictory sig-

nals). Thus, when receiving a confirming signal, subjects’ are less confident (and perceive

more uncertainty) than implied by Bayesian updating, because the standard deviation

of subjects’ observed confidence is still greater than implied by Bayesian updating (with

a mean difference, or updating error, of 0.0037). When receiving a contradictory signal,

however, subjects’ are more confident (and perceive less uncertainty) than they should un-

der Bayesian updating (with a mean difference in standard deviations of −0.0133). This

feature of updating in the confidence distributions is similar to the updating of single pri-

ors as described in Section 3.3.1. Subjects seem to underadjust (overadjust), both, their

confidence and their single priors, when receiving a confirming (contradictory) signal.

Finally, we examine the updating of the confidence distributions after receiving the same

information overal, but with different signal sequences. Note that our ambiguous scenario

is essentially the Scenario 2 in Epstein and Schneider (2007): the true state of the world

– though ambiguous – is fixed, and thus should be revealed through learning in the long

run. More specifically, subjects initially have little information about the true state of the

world. Due to the lack of information, subjects have weak confidence in their priors. This

is reflected in large standard deviations of subject’s confidence distributions. After balls

are drawn, the true state of the world is slowly revealed. For example, subjects may believe

to know more after seeing the signal sequence of “BBWW” than without seeing anything.

This knowledge cannot be exhibited in priors because subjects’ priors should be the same

in these two situations, but it could be reflected in the confidence distributions of multiple
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Pairs of signals Ambiguous treatment Risky treatments

Mean Comparison p−value Mean Comparison p−value

0 vs BBWW in Round 1 0.1628 v 0.1374∗∗∗ 0.0035 0.1273 v 0.1050 0.2087

B vs BBW in Round 1 0.1486 v 0.1415∗ 0.0578 0.1192 v 0.1091 0.1870

B vs BBWWB in Round 1 0.1486 v 0.1377∗∗ 0.0226 0.1192 v 0.1021 0.1124

BBW vs BBWWB in Round 1 0.1415 v 0.1377 0.2451 0.1091 v 0.1021 0.3302

0 vs BW in Round 2 0.1244 v 0.1213 0.1737 0.1008 v 0.0954 0.1904

B vs BWB in Round 2 0.1270 v 0.1206∗∗ 0.0177 0.1048 v 0.1053 0.3408

WWW vs WWWBW in Round 3 0.1156 v 0.0823∗∗∗ 0.0000 0.1056 v 0.0799∗∗ 0.0163

∗∗∗, ∗∗, ∗, denote statistical significance at the 1%, 5%, and 10% level, respectively.
B=Black ball; W=White ball; 0=No signal

Table 3: One-sided paired Wilcoxon signed-ranks tests on the standard deviations of subjects’

confidence distributions in situations with equal overall information.

priors. We therefore run one-sided paired Wilcoxon signed-ranks tests on the standard

deviations of subjects’ confidence distributions in pairs of situations where the revealed

information is essentially the same. As explained in Section 3.3.1, we have seven such pairs

in the experiment.20.In the spirit of Epstein and Schneider (2007), subjects may have a

higher confidence level – reflected in lower standard deviations of confidence distributions

– in ambiguous situations with more signals, but no difference in overall information.

Table 3.3.2 reports the results. For all pairs the means of standard deviations of confidence

distributions are lower in the later period with more signals (second mean in each cell). In

the ambiguous treatment, the differences between the means are statistically significant

in 5 out of 7 comparisons. In the risky treatments, however, only one comparison is

statistically different. Hence the Null that more, but, in sum, neutralizing signals do not

matter, can be rejected for ambiguity, but seems to hold under risk.

4 Conclusion

This study is a first step towards understanding the evaluation of ambiguous assets and

belief updating in ambiguous scenarios where multiple priors are possible. We have exper-

20Period 1 v Period 5, Period 2 v Period 4, Period 2 v Period 6 , Period 7 v Period 9, Period 8 v Period
10, Period 16 v Period 18
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imentally elicited each subject’s prior regarding the states of ambiguous scenarios. Since

there are only two states of world in our experimental framework, one probability es-

timation – the probability of the randomly selected urn being of Type 1 – completely

describes subjects’ probability measure of the states of the world, and hence is a prior of

the subject. To examine the possibility of multiple priors, in additional to each subject’s

prior, we elicited each subject’s other potential priors and the confidence distribution on

the multiple priors. We then discuss the relationship between subjects’ priors and their

multiple priors. We have also used subjects’ priors and their multiple priors to explain

subjects’ willingness to pay for the ambiguous assets, which are constructed on the same

underlying states as in the ambiguous scenarios. Finally, we have investigated how sub-

jects update their priors and their confidence distributions on multiple priors when they

received signals regarding the true state of the ambiguous scenarios.

We find that in ambiguous scenarios where multiple priors are possible, a subject’s prior,

when forced to state a single prior, is best understood as a confidence-weighted average

of multiple priors. In addition, we find that the valuation of ambiguous assets is best ex-

plained by subjects’ single priors, while the mins and the max’s of subjects’ multiple priors

also add explanatory power. This provides some, but no exclusive support for neither the

maxmin nor the α maxmin model. Further, belief updating after a confirming signal

differs from that of a contradictory signal, both in terms of priors and confidence distribu-

tions of multiple priors. Subjects underreact (overreact) to confirmatory (contradictory)

signals, both in the updating of their prior, as in the adjustment of their confidence in

multiple priors. Finally, additional, but neutral information resolves uncertainty in the

sense of decreasing standard deviations of confidence distributions of multiple priors under

ambiguity, but not under risk.
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